Previous APIs used to set CPU frequency used CPU frequencies listed in
rtc_cpu_freq_t enumeration. This was problematic for two reasons.
First, supporting many possible frequency values obtained by dividing
XTAL frequency was hard, as every value would have to be listed in
the enumeration. Since different base XTAL frequencies are supported,
this further complicated things, since not all of these divided
frequencies would be valid for any given XTAL frequency. Second,
having to deal with enumeration values often involved switch
statements to convert between enumeration and MHz values, handle
PLL/XTAL frequencies separately, etc.
This change introduces rtc_cpu_freq_config_t structure, which contains
CPU frequency (in MHz) and information on how this frequency has to
be generated: clock source (XTAL/PLL), source frequency, clock
divider value. More fields can be added to this structure in the
future. This structure simplifies many parts of the code, since both
frequency value and frequency generation settings can be accessed in
any place in code without the need for conversions.
Additionally, this change adds setting of REF_TICK dividers to support
frequencies lower then XTAL with DFS.
1. BLE only with 9(max) connection will decrease 3K DRAM
2. BR/EDR only with 7(max) connection will decrease 16K DRAM
3. Any of BLE or BR/EDR connection number decrease will also decrease DRAM consumption
4. Decrease one BLE connection will save about 1KB DRAM
5. Decrease one BR/EDR ACL connection will save about 1.2KB DRAM
6. Decrease one BR/EDR SCO/eSCO will save 2KB DRAM.
7. fix some definition and kconfig
8. remove 1.2k of vhci tx cache and make .bss & .data to heap about 1.4K
9. modify BT Reserved Memory size and modify example to support new bt kconfig
For pins 32 and up the BIT(nr) macro used here overflowed,
causing undetermined GPIO pins to be reset.
Example: freeing SPI device/bus where CS is on pin 33
caused debug UART to cease communication, TXD0 was
disabled.
Fixed as BIT64(nr) macro, to be used elsewhere as needed.
For example in definitions like GPIO_SEL_32..GPIO_SEL_39.
No longer necessary to keep all reserved addresses in 'soc'.
Means 'soc' does not need to know about 'bt', for example.
Also means that Bluetooth can be enabled in config without any memory being reserved for BT
controller. Only if code calling the BT controller is linked in, will this memory be reserved...
Fixed the error division on zero.
Also fixed range CONFIG_ESP32_RTC_CLK_CAL_CYCLES in Kconfig.
Fixed a overflow error by TIMG in the function rtc_clk_cal_internal. This error was due to a limit in values TIMG_RTC_CALI_MAX=0x7FFF (to write the slowclk_cycles) and TIMG_RTC_CALI_VALUE=0x1FFFFFF (to read xtal_cycles). Added assert finctions.
Closes https://github.com/espressif/esp-idf/issues/2147
A new method of workaround an error with DPORT is to ensure that the APB is read and followed by the DPORT register without interruptions and pauses. This fix places this implementation in the IRAM to exclude errors associated with the cache miss.
1. provide options for bluetooth low power mode
2. provide two options for bluetooth low power clock: main XTAL and external 32kHz XTAL
3. provide function and callbacks to control bluetooth low power mode, including enable/disable sleep, software wakeup request, low power clock settings, check power state, etc
4. modify vhci API vhci_host_send_packet to use blocking mode
5. note that DFS and bluetooth modem sleep can not be used together currently.
If the RTC crystal is bad or has no matched capacitance, then you do not need to start such the crystal. It is necessary to determine this case, output an error (about impossibility to start from the oscillator) and start from the internal RC of the chain.
Reduced the default value of the number of bootstrap cycles. Because we can oscillating the oscillator which then stops. (in Kconfig). Changed from 100 to 5.
The number of calibration cycles has been increased. It is the main criterion for estimating the launch of an oscillator. A large increase leads to an increase in the load time, as well as the stability of recognition of this case. (in Kconfig).
Changed from 1024 to 3000.
When two CPUs read the area of the DPORT and the area of the APB, the result is corrupted for the CPU that read the APB area.
And another CPU has valid data.
The method of eliminating this error.
Before reading the registers of the DPORT, make a preliminary reading of the APB register.
In this case, the joint access of the two CPUs to the registers of the APB and the DPORT is successful.
Previous version of the code only connected CD and WP to the
peripheral, in fact the hardware does not use the values of these
signals automatically. This adds code to read CD and WP values when
command is executed and return errors if card is not present, or
write command is executed when WP signal is active.
- Add SDIO support at protocol layer (probing, data transfer, interrupts)
- Add SDIO interrupts support in SDMMC host
- Add test (communicate with ESP32 in SDIO download mode)
Previous code contained a check for PLL frequency to be 240MHz, while
in fact 240MHz was a CPU frequency; corresponding PLL frequency is
480MHz. Fixed the comparison and replaced integer MHz values with an
enum.
1. External 32kHz crystal is started for too long or it may not start at all. It is often observed at the first start.
2. At the first start, it is possible that the crystal did not start. And the recorded period was recorded as 0. Which led to a division error by zero during the transition to the deep sleep mode (Maybe somewhere else).
3. Added a unit test to test a new method of oscillation an external crystal.
4. Added a new method of oscillating of an external crystal. The legs of the crystal are fed with a 32 kHz frequency.
The new method eliminates these errors.
Added unit test: `\esp-idf\components\soc\esp32\test\test_rtc_clk.c`: `make TEST_COMPONENTS=soc`
- 8 Test starting external RTC crystal. Will pass.
`Bootstrap cycles for external 32kHz crystal` - is specified in the file Kconfig by default 100.
QA tested a new method of oscillation the crystal on 25 boards. The supply of square waves on the crystal showed a 100% result in contrast to the previous method of launching the crystal. After the tests, the old method was deleted.
Closes TW19143
The fast path of CPU frequency switch function, used in DFS, was not
waiting for the frequency switch to complete when switching from XTAL
to PLL. This resulted in incorrect reads from peripherals on APB,
where two consecutive reads could return the same value. For example,
in esp_timer, read of FRC_COUNT_REG would return same value as the
preceding read of FRC_ALARM_REG, causing time to jump by the value of
FRC_ALARM_REG / apb_freq_mhz.
This commit adds support for CPU max freqeuency rating
bits in CPU. Bootloader will now print an error if attempting
to 160MHz rated ESP32 at 240MHz.
EFUSE_CHIP_VER_RESERVE has been replaced by the
frequency rating bits. Dependancies on EFUSE_CHIP_VER_RESERVE
have been changed to use EFUSE_CHIP_VER_PKG
This commit removes the lookup table mode due to inferior performance when compared
to linear mode under attenuation 0, 1 and 2. However small portions of the lookup table
are kept for the higher voltages of atten 3 (above ADC reading 2880). That voltage range
in atten 3 has non linear characteristics making the LUT performan better than linear mode.
This commit updates the esp_adc_cal ocmponent to support new calibration methods
which utilize calibratoin values stored in eFuse. This commit includes LUT mode
The TRM describes IOMUX registers are IO_MUX_x_REG for x in GPIO0-39.
Until now ESP-IDF describes them as PERIPHS_IO_MUX_(pinname)_U
This commit adds additional IOMUX register names which match the ones used in the TRM.
RTC_FAST_CLK_FREQ_APPROX is defined as 8500000, so 0.5MHz part was lost
when dividing by MHZ. Since cal_val is 64-bit the parens can be removed.
With 40MHz XTAL for a nominal ESP32 chip, this fixes estimated XTAL
frequency from 38 to 40MHz.
To achieve reliable operation with GD flash at 80MHz, need to raise
core voltage.
This causes the following current consumption increase:
At 80MHz: from 29mA to 33mA
At 160MHz: from 41mA to 47mA
Test conditions: 2 cores running code from IRAM, remaining peripherals
clock gated.
1. move settings of WIFI_CLK_EN_REG for bluetooth into controller init/deinit APIs
2. modify the bit mask used in phy_rf init/deinit to use WIFI-BT shared bits
Previously esp_restart would stall the other CPU before enabling RTC_WDT.
If the other CPU was executing an s32c1i instruction, the lock signal
from CPU to the arbiter would still be held after CPU was stalled. If
the CPU running esp_restart would then try to access the same locked
memory pool, it would be stuck, because lock signal would never be
released.
With this change, esp_restart resets the other CPU before stalling it.
Ideally, we would want to reset the CPU and keep it in reset, but the
hardware doesn't have such feature for PRO_CPU (it is possible to hold
APP_CPU in reset using DPORT register). Given that ROM code will not use
s32c1i in the first few hundred cycles, doing reset and then stall seems
to be safe.
In addition to than, RTC_WDT initialization is moved to the beginning of
the function, to prevent possible lock-up if CPU stalling still has any
issue.
1. Make sure that 8MD256 clock used to estimate XTAL frequency is enabled
before trying to use rtc_clk_cal_ratio.
This fixes "Bogus XTAL frequency: 0 MHz" warnings after software reset.
2. Don't call rtc_clk_xtal_freq_estimate if XTAL frequency is already
known. This reduces startup time after deep sleep or software reset.
3. Compare known XTAL frequency and estimated one before printing a
warning. This fixes "Possibly invalid CONFIG_ESP32_XTAL_FREQ setting
(40MHz). Detected 40 MHz." warnings.