During BLE Mesh Provisioner initialization, the stack will restore
the nodes information if settings storage is enabled.
Previously when a failure happens (e.g. found the same uuid) during
the restore procedure, the information of the following nodes will
not be restored and error will be directly returned.
But this will introduce some problem with user experience, because
some newly provisioned nodes information will not be restored and
Provisioner will not be able to control those nodes.
So we change the operation here, when a failure happens during the
restore procedure, Provisioner will only ignore the information of
the current node and continue restoring other nodes information.
With this change, if a Provisioner has provisioned the maximum
number of nodes, it can still report the unprovisioned device
beacon from other nodes to the application layer. And this will
be more reasonable compared with the previous implementation.
Previously when the node array of Provisioner is full, no beacon
from unprovisioned devices will be reported, only some warning
logs will be given.
Previously only check the node address when it is assigned by the
application layer. Here we also check the address when the address
is allocated internally. And this will be useful when some mesh
internal tests are performed.
Previously the BLE_MESH_MAX_STORED_NODES option is added for
internal mesh test, which will be a little confusing for the
users to understand.
Here we remove this option, instead the BLE_MESH_MAX_PROV_NODES
will be used for all the cases. For mesh internal test, when
the test function is called to add some nodes info, the info
will be stored in the array of provisioned nodes directly.
The replay protection list of Provisioner should be at least equal
to the number of nodes with the precondition that each node contains
only one element.
The help information of replay protection list is updated, and the
maximum number of nodes for Provisioner is adjusted based on the
replay protection list size.
flash_encryption: modify additional efuses burning method to fix them are not being written
flass_encryption: burn efuse to disable boot from RAM space
flash_encryption: added better checking for key generation state plus set read and write protect for them
soc esp32s2: Add register-level bit definitions for read & wrote protect bits
esp32s2: Fixes for flash encryption
- Write efuses in a batch
- Fix some detection of whether existing efuse blocks are read/write protected
flash_enctryption: enabled flash encryption example on esp32s2
bootloader: raise WDT overflow value providing sufficient interval to encrypt app partition
flash_ encrypt: Fixed the TODOs on flash encryption key generation for esp32s2
flash_encryption: added secure boot features to flash enctryption for esp32s2
bootloader: leave only esp32s2 compatible potentially insecure options on menuconfig.
flash_encryption: removed secure boot version 1 from esp32s2 encryption code
flash_encryption: added CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED option for esp32s2
flash_encryption: fixed the count of left plaintext flash
flash_encryption: disable dcache and icache download when using encryption in release mode
flash_encryption: add cache potentally insecure options for s2 chips
flash_encryption: fixed bug which bricked some chips in relase mode
Previously, the test uses region 3 for the illegal access test
(0x60000000 - 0x7fffffff). This caused issues with there being
peripherals located in that memory range. Change to use region 4
(0x8000000 - 0x9fffffff) instead).
Addressing stability of pppos test:
* listing active network interfaces for presence of "ppp0" interface
* fixed IPv6 address regex to prevent ttfw accept partial address only
(less than 8 octets)
* workaround crash after exiting app_main()