Merge branch 'feature/flash_encryption_esp32s2' into 'master'

feature/flash_encryption_esp32s2: Enable flash encryption mechanism to esp32s2 chips

Closes IDF-804

See merge request espressif/esp-idf!8109
This commit is contained in:
Angus Gratton 2020-04-25 12:28:21 +08:00
commit 017f07cda7
11 changed files with 269 additions and 195 deletions

View file

@ -601,7 +601,7 @@ menu "Security features"
config SECURE_BOOT_ALLOW_ROM_BASIC
bool "Leave ROM BASIC Interpreter available on reset"
depends on SECURE_BOOT_INSECURE || SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT
depends on (SECURE_BOOT_INSECURE || SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT) && IDF_TARGET_ESP32
default N
help
By default, the BASIC ROM Console starts on reset if no valid bootloader is
@ -664,7 +664,7 @@ menu "Security features"
config SECURE_FLASH_UART_BOOTLOADER_ALLOW_DEC
bool "Leave UART bootloader decryption enabled"
depends on SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT
depends on SECURE_FLASH_ENCRYPTION_MODE_DEVELOPMENT && IDF_TARGET_ESP32
default N
help
If not set (default), the bootloader will permanently disable UART bootloader decryption access on

View file

@ -6,17 +6,13 @@ set(srcs
"src/bootloader_random.c"
"src/bootloader_utility.c"
"src/esp_image_format.c"
"src/flash_encrypt.c"
"src/flash_partitions.c"
"src/flash_qio_mode.c"
"src/bootloader_flash_config_${IDF_TARGET}.c"
"src/bootloader_efuse_${IDF_TARGET}.c"
)
if(IDF_TARGET STREQUAL "esp32")
# Not supported on ESP32S2 yet
list(APPEND srcs "src/flash_encrypt.c")
endif()
if(BOOTLOADER_BUILD)
set(include_dirs "include" "include_bootloader")
set(priv_requires micro-ecc spi_flash efuse)

View file

@ -25,66 +25,100 @@
#include "esp32s2/rom/secure_boot.h"
#include "esp32s2/rom/cache.h"
#include "esp32s2/rom/efuse.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#include "hal/wdt_hal.h"
static const char *TAG = "flash_encrypt";
/* Static functions for stages of flash encryption */
static esp_err_t initialise_flash_encryption(void);
static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis);
static esp_err_t encrypt_flash_contents(uint32_t flash_crypt_cnt, bool flash_crypt_wr_dis) __attribute__((unused));
static esp_err_t encrypt_bootloader(void);
static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions);
static esp_err_t encrypt_partition(int index, const esp_partition_info_t *partition);
esp_err_t esp_flash_encrypt_check_and_update(void)
{
// TODO: not clear why this is read from DATA1 and written to PGM_DATA2
uint32_t cnt = REG_GET_FIELD(EFUSE_RD_REPEAT_DATA1_REG, EFUSE_SPI_BOOT_CRYPT_CNT);
ESP_LOGV(TAG, "SPI_BOOT_CRYPT_CNT 0x%x", cnt);
uint8_t flash_crypt_wr_dis = 0;
uint32_t flash_crypt_cnt = 0;
bool flash_crypt_wr_dis = false; // TODO: check if CRYPT_CNT is write disabled
esp_efuse_read_field_blob(ESP_EFUSE_SPI_BOOT_CRYPT_CNT, &flash_crypt_cnt, 3);
esp_efuse_read_field_blob(ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT, &flash_crypt_wr_dis, 1);
ESP_LOGV(TAG, "SPI_BOOT_CRYPT_CNT 0x%x", flash_crypt_cnt);
ESP_LOGV(TAG, "EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT 0x%x", flash_crypt_wr_dis);
_Static_assert(EFUSE_SPI_BOOT_CRYPT_CNT == 0x7, "assuming CRYPT_CNT is only 3 bits wide");
if (cnt == 1 || cnt == 3 || cnt == 7) {
if (__builtin_parity(flash_crypt_cnt) == 1) {
/* Flash is already encrypted */
int left;
if (cnt == 7 /* || disabled */) {
left = 0;
} else if (cnt == 3) {
left = 1;
} else {
left = 2;
int left = (flash_crypt_cnt == 1) ? 1 : 0;
if (flash_crypt_wr_dis) {
left = 0; /* can't update FLASH_CRYPT_CNT, no more flashes */
}
ESP_LOGI(TAG, "flash encryption is enabled (%d plaintext flashes left)", left);
return ESP_OK;
}
else {
} else {
#ifndef CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
/* Flash is not encrypted, so encrypt it! */
return encrypt_flash_contents(cnt, flash_crypt_wr_dis);
return encrypt_flash_contents(flash_crypt_cnt, flash_crypt_wr_dis);
#else
ESP_LOGE(TAG, "flash encryption is not enabled, and SECURE_FLASH_REQUIRE_ALREADY_ENABLED "
"is set, refusing to boot.");
return ESP_ERR_INVALID_STATE;
#endif // CONFIG_SECURE_FLASH_REQUIRE_ALREADY_ENABLED
}
}
static esp_err_t initialise_flash_encryption(void)
static bool s_key_dis_read(ets_efuse_block_t block)
{
/* Before first flash encryption pass, need to initialise key & crypto config */
unsigned key_num = block - ETS_EFUSE_BLOCK_KEY0;
return REG_GET_FIELD(EFUSE_RD_REPEAT_DATA0_REG, EFUSE_RD_DIS) & (EFUSE_RD_DIS_KEY0 << key_num);
}
/* Find out if a key is already set */
bool has_aes128 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, NULL);
bool has_aes256_1 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_1, NULL);
bool has_aes256_2 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_2, NULL);
static bool s_key_dis_write(ets_efuse_block_t block)
{
unsigned key_num = block - ETS_EFUSE_BLOCK_KEY0;
return REG_GET_FIELD(EFUSE_RD_WR_DIS_REG, EFUSE_WR_DIS) & (EFUSE_WR_DIS_KEY0 << key_num);
}
static esp_err_t check_and_generate_encryption_keys(void)
{
esp_err_t err = ESP_ERR_INVALID_STATE;
ets_efuse_block_t aes_128_key_block;
ets_efuse_block_t aes_256_key_block_1;
ets_efuse_block_t aes_256_key_block_2;
bool has_aes128 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_128_KEY, &aes_128_key_block);
bool has_aes256_1 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_1, &aes_256_key_block_1);
bool has_aes256_2 = ets_efuse_find_purpose(ETS_EFUSE_KEY_PURPOSE_XTS_AES_256_KEY_2, &aes_256_key_block_2);
bool has_key = has_aes128 || (has_aes256_1 && has_aes256_2);
bool dis_write = false;
bool dis_read = false;
// If there are keys set, they must be write and read protected!
if(has_key && has_aes128) {
dis_write = s_key_dis_write(aes_128_key_block);
dis_read = s_key_dis_read(aes_128_key_block);
} else if (has_key && has_aes256_1 && has_aes256_2) {
dis_write = s_key_dis_write(aes_256_key_block_1) && s_key_dis_write(aes_256_key_block_2);
dis_read = s_key_dis_read(aes_256_key_block_1) && s_key_dis_read(aes_256_key_block_2);
}
if (!has_key && (has_aes256_1 || has_aes256_2)) {
ESP_LOGE(TAG, "Invalid efuse key blocks: Both AES-256 key blocks must be set.");
return ESP_ERR_INVALID_STATE;
}
if (has_key) {
ESP_LOGI(TAG, "Using pre-existing key in efuse");
if(has_key && (!dis_read || !dis_write)) {
ESP_LOGE(TAG, "Invalid key state, a key was set but not read and write protected.");
return ESP_ERR_INVALID_STATE;
}
ESP_LOGE(TAG, "TODO: Check key is read & write protected"); // TODO
} else {
if(!has_key && !dis_write && !dis_read) {
ESP_LOGI(TAG, "Generating new flash encryption key...");
#ifdef CONFIG_SECURE_FLASH_ENCRYPTION_AES256
const unsigned BLOCKS_NEEDED = 2;
@ -102,26 +136,87 @@ static esp_err_t initialise_flash_encryption(void)
}
for(ets_efuse_purpose_t purpose = PURPOSE_START; purpose <= PURPOSE_END; purpose++) {
uint32_t buf[8];
uint32_t buf[8] = {0};
bootloader_fill_random(buf, sizeof(buf));
ets_efuse_block_t block = ets_efuse_find_unused_key_block();
ESP_LOGD(TAG, "Writing ETS_EFUSE_BLOCK_KEY%d with purpose %d",
block - ETS_EFUSE_BLOCK_KEY0, purpose);
bootloader_debug_buffer(buf, sizeof(buf), "Key content");
/* Note: everything else in this function is deferred as a batch write, but we write the
key (and write protect it) immediately as it's too fiddly to manage unused key blocks, etc.
in bootloader size footprint otherwise. */
int r = ets_efuse_write_key(block, purpose, buf, sizeof(buf));
bzero(buf, sizeof(buf));
if (r != 0) {
ESP_LOGE(TAG, "Failed to write efuse block %d with purpose %d. Can't continue.");
ESP_LOGE(TAG, "Failed to write efuse block %d with purpose %d. Can't continue.",
block, purpose);
return ESP_FAIL;
}
}
/* assuming numbering of esp_efuse_block_t matches ets_efuse_block_t */
_Static_assert((int)EFUSE_BLK_KEY0 == (int)ETS_EFUSE_BLOCK_KEY0, "esp_efuse_block_t doesn't match ets_efuse_block_t");
_Static_assert((int)EFUSE_BLK_KEY1 == (int)ETS_EFUSE_BLOCK_KEY1, "esp_efuse_block_t doesn't match ets_efuse_block_t");
_Static_assert((int)EFUSE_BLK_KEY2 == (int)ETS_EFUSE_BLOCK_KEY2, "esp_efuse_block_t doesn't match ets_efuse_block_t");
_Static_assert((int)EFUSE_BLK_KEY3 == (int)ETS_EFUSE_BLOCK_KEY3, "esp_efuse_block_t doesn't match ets_efuse_block_t");
_Static_assert((int)EFUSE_BLK_KEY4 == (int)ETS_EFUSE_BLOCK_KEY4, "esp_efuse_block_t doesn't match ets_efuse_block_t");
_Static_assert((int)EFUSE_BLK_KEY5 == (int)ETS_EFUSE_BLOCK_KEY5, "esp_efuse_block_t doesn't match ets_efuse_block_t");
// protect this block against reading after key is set (writing is done by ets_efuse_write_key)
err = esp_efuse_set_read_protect(block);
if(err != ESP_OK) {
ESP_LOGE(TAG, "Failed to set read protect to efuse block %d. Can't continue.", block);
return err;
}
}
ESP_LOGD(TAG, "Key generation complete");
return ESP_OK;
} else {
ESP_LOGI(TAG, "Using pre-existing key in efuse");
return ESP_OK;
}
}
static esp_err_t initialise_flash_encryption(void)
{
esp_efuse_batch_write_begin(); /* Batch all efuse writes at the end of this function */
esp_err_t key_state = check_and_generate_encryption_keys();
if(key_state != ESP_OK) {
esp_efuse_batch_write_cancel();
return key_state;
}
ESP_LOGE(TAG, "TODO: burn remaining security protection bits"); // TODO
#ifndef CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_ENC
ESP_LOGI(TAG, "Disable UART bootloader encryption...");
const uint8_t dis_manual_encrypt = 1;
esp_efuse_write_field_blob(ESP_EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT, &dis_manual_encrypt, 1);
#else
ESP_LOGW(TAG, "Not disabling UART bootloader encryption");
#endif
return ESP_OK;
#ifndef CONFIG_SECURE_FLASH_UART_BOOTLOADER_ALLOW_CACHE
ESP_LOGI(TAG, "Disable UART bootloader cache...");
const uint8_t dis_download_caches = 1;
esp_efuse_write_field_blob(ESP_EFUSE_DIS_DOWNLOAD_DCACHE, &dis_download_caches, 1);
esp_efuse_write_field_blob(ESP_EFUSE_DIS_DOWNLOAD_ICACHE, &dis_download_caches, 1);
#else
ESP_LOGW(TAG, "Not disabling UART bootloader cache - SECURITY COMPROMISED");
#endif
#ifndef CONFIG_SECURE_BOOT_ALLOW_JTAG
ESP_LOGI(TAG, "Disable JTAG...");
const uint8_t dis_jtag = 1;
esp_efuse_write_field_blob(ESP_EFUSE_HARD_DIS_JTAG, &dis_jtag, 1);
#else
ESP_LOGW(TAG, "Not disabling JTAG - SECURITY COMPROMISED");
#endif
const uint8_t dis_boot_remap = 1;
esp_efuse_write_field_blob(ESP_EFUSE_DIS_BOOT_REMAP, &dis_boot_remap, 1);
esp_err_t err = esp_efuse_batch_write_commit();
return err;
}
/* Encrypt all flash data that should be encrypted */
@ -134,7 +229,7 @@ static esp_err_t encrypt_flash_contents(uint32_t spi_boot_crypt_cnt, bool flash_
/* If the last spi_boot_crypt_cnt bit is burned or write-disabled, the
device can't re-encrypt itself. */
if (flash_crypt_wr_dis || spi_boot_crypt_cnt == EFUSE_SPI_BOOT_CRYPT_CNT) {
ESP_LOGE(TAG, "Cannot re-encrypt data (SPI_BOOT_CRYPT_CNT 0x%02x write disabled %d", spi_boot_crypt_cnt, flash_crypt_wr_dis);
ESP_LOGE(TAG, "Cannot re-encrypt data SPI_BOOT_CRYPT_CNT 0x%02x write disabled %d", spi_boot_crypt_cnt, flash_crypt_wr_dis);
return ESP_FAIL;
}
@ -156,10 +251,7 @@ static esp_err_t encrypt_flash_contents(uint32_t spi_boot_crypt_cnt, bool flash_
return err;
}
/* Now iterate the just-loaded partition table, looking for entries to encrypt
*/
/* Go through each partition and encrypt if necessary */
/* Now iterate the just-loaded partition table, looking for entries to encrypt */
for (int i = 0; i < num_partitions; i++) {
err = encrypt_partition(i, &partition_table[i]);
if (err != ESP_OK) {
@ -172,13 +264,17 @@ static esp_err_t encrypt_flash_contents(uint32_t spi_boot_crypt_cnt, bool flash_
/* Set least significant 0-bit in spi_boot_crypt_cnt */
int ffs_inv = __builtin_ffs((~spi_boot_crypt_cnt) & 0x7);
/* ffs_inv shouldn't be zero, as zero implies spi_boot_crypt_cnt == 0xFF */
uint32_t new_spi_boot_crypt_cnt = spi_boot_crypt_cnt + (1 << (ffs_inv - 1));
ESP_LOGD(TAG, "SPI_BOOT_CRYPT_CNT 0x%x -> 0x%x", spi_boot_crypt_cnt, new_spi_boot_crypt_cnt);
uint32_t new_spi_boot_crypt_cnt = (1 << (ffs_inv - 1));
ESP_LOGD(TAG, "SPI_BOOT_CRYPT_CNT 0x%x -> 0x%x", spi_boot_crypt_cnt, new_spi_boot_crypt_cnt + spi_boot_crypt_cnt);
ets_efuse_clear_program_registers();
REG_SET_FIELD(EFUSE_PGM_DATA2_REG, EFUSE_SPI_BOOT_CRYPT_CNT, new_spi_boot_crypt_cnt);
ets_efuse_program(ETS_EFUSE_BLOCK0);
esp_efuse_write_field_blob(ESP_EFUSE_SPI_BOOT_CRYPT_CNT, &new_spi_boot_crypt_cnt, 3);
#ifdef CONFIG_SECURE_FLASH_ENCRYPTION_MODE_RELEASE
//Secure SPI boot cnt after its update if needed.
const uint32_t spi_boot_cnt_wr_dis = 1;
ESP_LOGI(TAG, "Write protecting SPI_CRYPT_CNT eFuse");
esp_efuse_write_field_blob(ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT, &spi_boot_cnt_wr_dis, 1);
#endif
ESP_LOGI(TAG, "Flash encryption completed");
return ESP_OK;
@ -191,21 +287,30 @@ static esp_err_t encrypt_bootloader(void)
/* Check for plaintext bootloader (verification will fail if it's already encrypted) */
if (esp_image_verify_bootloader(&image_length) == ESP_OK) {
ESP_LOGD(TAG, "bootloader is plaintext. Encrypting...");
#if CONFIG_SECURE_BOOT_V2_ENABLED
// Account for the signature sector after the bootloader
image_length = (image_length + FLASH_SECTOR_SIZE - 1) & ~(FLASH_SECTOR_SIZE - 1);
image_length += FLASH_SECTOR_SIZE;
if (ESP_BOOTLOADER_OFFSET + image_length > ESP_PARTITION_TABLE_OFFSET) {
ESP_LOGE(TAG, "Bootloader is too large to fit Secure Boot V2 signature sector and partition table (configured offset 0x%x)", ESP_PARTITION_TABLE_OFFSET);
return ESP_ERR_INVALID_SIZE;
}
#endif // CONFIG_SECURE_BOOT_V2_ENABLED
err = esp_flash_encrypt_region(ESP_BOOTLOADER_OFFSET, image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to encrypt bootloader in place: 0x%x", err);
return err;
}
if (esp_secure_boot_enabled()) {
// TODO: anything different for secure boot?
}
}
ESP_LOGI(TAG, "bootloader encrypted successfully");
return err;
}
else {
ESP_LOGW(TAG, "no valid bootloader was found");
return ESP_ERR_NOT_FOUND;
}
return ESP_OK;
}
static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partition_table, int *num_partitions)
@ -232,6 +337,7 @@ static esp_err_t encrypt_and_load_partition_table(esp_partition_info_t *partitio
}
/* Valid partition table loded */
ESP_LOGI(TAG, "partition table encrypted and loaded successfully");
return ESP_OK;
}
@ -280,7 +386,13 @@ esp_err_t esp_flash_encrypt_region(uint32_t src_addr, size_t data_length)
return ESP_FAIL;
}
wdt_hal_context_t rtc_wdt_ctx = {.inst = WDT_RWDT, .rwdt_dev = &RTCCNTL};
for (size_t i = 0; i < data_length; i += FLASH_SECTOR_SIZE) {
wdt_hal_write_protect_disable(&rtc_wdt_ctx);
wdt_hal_feed(&rtc_wdt_ctx);
wdt_hal_write_protect_enable(&rtc_wdt_ctx);
uint32_t sec_start = i + src_addr;
err = bootloader_flash_read(sec_start, buf, FLASH_SECTOR_SIZE, false);
if (err != ESP_OK) {

View file

@ -20,6 +20,14 @@
#include "esp_flash_encrypt.h"
#include "esp_secure_boot.h"
#if CONFIG_IDF_TARGET_ESP32
#define CRYPT_CNT ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT
#define WR_DIS_CRYPT_CNT ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT
#elif CONFIG_IDF_TARGET_ESP32S2
#define CRYPT_CNT ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT
#define WR_DIS_CRYPT_CNT ESP_EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT
#endif
#ifndef BOOTLOADER_BUILD
static const char *TAG = "flash_encrypt";
@ -34,7 +42,7 @@ void esp_flash_encryption_init_checks()
#ifdef CONFIG_SECURE_BOOT
if (esp_secure_boot_enabled() && esp_flash_encryption_enabled()) {
uint8_t flash_crypt_cnt_wr_dis = 0;
esp_efuse_read_field_blob(ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT, &flash_crypt_cnt_wr_dis, 1);
esp_efuse_read_field_blob(CRYPT_CNT, &flash_crypt_cnt_wr_dis, 1);
if (!flash_crypt_cnt_wr_dis) {
ESP_EARLY_LOGE(TAG, "Flash encryption & Secure Boot together requires FLASH_CRYPT_CNT efuse to be write protected. Fixing now...");
esp_flash_write_protect_crypt_cnt();
@ -62,22 +70,35 @@ void esp_flash_encryption_init_checks()
void esp_flash_write_protect_crypt_cnt(void)
{
uint8_t flash_crypt_cnt_wr_dis = 0;
esp_efuse_read_field_blob(ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT, &flash_crypt_cnt_wr_dis, 1);
esp_efuse_read_field_blob(CRYPT_CNT, &flash_crypt_cnt_wr_dis, 1);
if (!flash_crypt_cnt_wr_dis) {
esp_efuse_write_field_cnt(ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT, 1);
esp_efuse_write_field_cnt(WR_DIS_CRYPT_CNT, 1);
}
}
esp_flash_enc_mode_t esp_get_flash_encryption_mode(void)
{
uint8_t efuse_flash_crypt_cnt_wr_protected = 0;
#if CONFIG_IDF_TARGET_ESP32
uint8_t dis_dl_enc = 0, dis_dl_dec = 0, dis_dl_cache = 0;
#elif CONFIG_IDF_TARGET_ESP32S2
uint8_t dis_dl_enc = 0;
uint8_t dis_dl_icache = 0;
uint8_t dis_dl_dcache = 0;
#endif
esp_flash_enc_mode_t mode = ESP_FLASH_ENC_MODE_DEVELOPMENT;
if (esp_flash_encryption_enabled()) {
/* Check if FLASH CRYPT CNT is write protected */
esp_efuse_read_field_blob(ESP_EFUSE_WR_DIS_FLASH_CRYPT_CNT, &efuse_flash_crypt_cnt_wr_protected, 1);
esp_efuse_read_field_blob(WR_DIS_CRYPT_CNT, &efuse_flash_crypt_cnt_wr_protected, 1);
if (efuse_flash_crypt_cnt_wr_protected) {
#if CONFIG_IDF_TARGET_ESP32
esp_efuse_read_field_blob(ESP_EFUSE_DISABLE_DL_CACHE, &dis_dl_cache, 1);
esp_efuse_read_field_blob(ESP_EFUSE_DISABLE_DL_ENCRYPT, &dis_dl_enc, 1);
esp_efuse_read_field_blob(ESP_EFUSE_DISABLE_DL_DECRYPT, &dis_dl_dec, 1);
@ -85,6 +106,15 @@ esp_flash_enc_mode_t esp_get_flash_encryption_mode(void)
if ( dis_dl_cache && dis_dl_enc && dis_dl_dec ) {
mode = ESP_FLASH_ENC_MODE_RELEASE;
}
#elif CONFIG_IDF_TARGET_ESP32S2
esp_efuse_read_field_blob(ESP_EFUSE_DIS_DOWNLOAD_MANUAL_ENCRYPT, &dis_dl_enc, 1);
esp_efuse_read_field_blob(ESP_EFUSE_DIS_DOWNLOAD_ICACHE, &dis_dl_icache, 1);
esp_efuse_read_field_blob(ESP_EFUSE_DIS_DOWNLOAD_DCACHE, &dis_dl_dcache, 1);
if (dis_dl_enc && dis_dl_icache && dis_dl_dcache) {
mode = ESP_FLASH_ENC_MODE_RELEASE;
}
#endif
}
} else {
mode = ESP_FLASH_ENC_MODE_DISABLED;

View file

@ -167,6 +167,14 @@ extern "C" {
#define EFUSE_RD_DIS_V 0x7F
#define EFUSE_RD_DIS_S 0
#define EFUSE_RD_DIS_KEY0 (1<<0)
#define EFUSE_RD_DIS_KEY1 (1<<1)
#define EFUSE_RD_DIS_KEY2 (1<<2)
#define EFUSE_RD_DIS_KEY3 (1<<3)
#define EFUSE_RD_DIS_KEY4 (1<<4)
#define EFUSE_RD_DIS_KEY5 (1<<5)
#define EFUSE_RD_DIS_SYS_DATA_PART2 (1<<6)
#define EFUSE_PGM_DATA2_REG (DR_REG_EFUSE_BASE + 0x008)
/* EFUSE_KEY_PURPOSE_1 : R/W ;bitpos:[31:28] ;default: 4'h0 ; */
/*description: Purpose of Key1. Refer to Table KEY_PURPOSE Values.*/
@ -466,6 +474,36 @@ extern "C" {
#define EFUSE_WR_DIS_V 0xFFFFFFFF
#define EFUSE_WR_DIS_S 0
#define EFUSE_WR_DIS_RD_DIS (1<<0)
#define EFUSE_WR_DIS_DIS_RTC_RAM_BOOT (1<<1)
#define EFUSE_WR_DIS_GROUP_1 (1<<2)
#define EFUSE_WR_DIS_GROUP_2 (1<<3)
#define EFUSE_WR_DIS_SPI_BOOT_CRYPT_CNT (1<<4)
#define EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE0 (1<<5)
#define EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE1 (1<<6)
#define EFUSE_WR_DIS_SECURE_BOOT_KEY_REVOKE2 (1<<7)
#define EFUSE_WR_DIS_KEY0_PURPOSE (1<<8)
#define EFUSE_WR_DIS_KEY1_PURPOSE (1<<9)
#define EFUSE_WR_DIS_KEY2_PURPOSE (1<<10)
#define EFUSE_WR_DIS_KEY3_PURPOSE (1<<11)
#define EFUSE_WR_DIS_KEY4_PURPOSE (1<<12)
#define EFUSE_WR_DIS_KEY5_PURPOSE (1<<13)
#define EFUSE_WR_DIS_SECURE_BOOT_EN (1<<15)
#define EFUSE_WR_DIS_SECURE_BOOT_AGGRESSIVE_REVOKE (1<<16)
#define EFUSE_WR_DIS_GROUP_3 (1<<18)
#define EFUSE_WR_DIS_BLK1 (1<<20)
#define EFUSE_WR_DIS_SYS_DATA_PART1 (1<<21)
#define EFUSE_WR_DIS_USER_DATA (1<<22)
#define EFUSE_WR_DIS_KEY0 (1<<23)
#define EFUSE_WR_DIS_KEY1 (1<<24)
#define EFUSE_WR_DIS_KEY2 (1<<25)
#define EFUSE_WR_DIS_KEY3 (1<<26)
#define EFUSE_WR_DIS_KEY4 (1<<27)
#define EFUSE_WR_DIS_KEY5 (1<<28)
#define EFUSE_WR_DIS_SYS_DATA_PART2 (1<<29)
#define EFUSE_WR_DIS_USB_EXCHG_PINS (1<<30)
#define EFUSE_RD_REPEAT_DATA0_REG (DR_REG_EFUSE_BASE + 0x030)
/* EFUSE_VDD_SPI_DREFH : RO ;bitpos:[31:30] ;default: 2'h0 ; */
/*description: The value of VDD_SPI_DREFH.*/

View file

@ -15,6 +15,7 @@ else()
"cache_utils.c"
"flash_mmap.c"
"flash_ops.c"
"${IDF_TARGET}/flash_ops_${IDF_TARGET}.c"
)
set(srcs
"partition.c")

View file

@ -36,6 +36,10 @@ esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_a
{
const uint8_t *ssrc = (const uint8_t *)src;
esp_rom_spiflash_result_t rc;
assert((dest_addr % 16) == 0);
assert((size % 16) == 0);
rc = esp_rom_spiflash_unlock();
if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
return rc;

View file

@ -22,12 +22,21 @@
#include "esp32s2/rom/cache.h"
#include "hal/spi_flash_hal.h"
#include "esp_flash.h"
#include "esp_log.h"
static const char *TAG = "spiflash_s2";
#define SPICACHE SPIMEM0
#define SPIFLASH SPIMEM1
esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_addr, const void *src, size_t size)
{
const spi_flash_guard_funcs_t *ops = spi_flash_guard_get();
esp_rom_spiflash_result_t rc;
assert((dest_addr % 16) == 0);
assert((size % 16) == 0);
if (!esp_ptr_internal(src)) {
uint8_t block[128]; // Need to buffer in RAM as we write
while (size > 0) {
@ -48,10 +57,13 @@ esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_a
return ESP_ROM_SPIFLASH_RESULT_OK;
}
else { // Already in internal memory
rc = esp_rom_spiflash_unlock();
if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
return rc;
}
ESP_LOGV(TAG, "calling SPI_Encrypt_Write addr 0x%x src %p size 0x%x", dest_addr, src, size);
#ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
/* The ROM function SPI_Encrypt_Write assumes ADDR_BITLEN is already set but new
implementation doesn't automatically set this to a usable value */
SPIFLASH.user1.usr_addr_bitlen = 23;
#endif
if (ops && ops->start) {
ops->start();
@ -64,8 +76,6 @@ esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_a
}
}
#define SPICACHE SPIMEM0
#define SPIFLASH SPIMEM1
#define FLASH_WRAP_CMD 0x77
esp_err_t spi_flash_wrap_set(spi_flash_wrap_mode_t mode)
{

View file

@ -45,6 +45,7 @@
#include "esp_flash.h"
#include "esp_attr.h"
esp_rom_spiflash_result_t IRAM_ATTR spi_flash_write_encrypted_chip(size_t dest_addr, const void *src, size_t size);
/* bytes erased by SPIEraseBlock() ROM function */
#define BLOCK_ERASE_SIZE 65536
@ -434,58 +435,6 @@ out:
#endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL
static IRAM_ATTR esp_err_t spi_flash_write_encrypted_in_rows(size_t dest_addr, const uint8_t *src, size_t size)
{
assert((dest_addr % 16) == 0);
assert((size % 16) == 0);
/* esp_rom_spiflash_write_encrypted encrypts data in RAM as it writes,
so copy to a temporary buffer - 32 bytes at a time.
Each call to esp_rom_spiflash_write_encrypted takes a 32 byte "row" of
data to encrypt, and each row is two 16 byte AES blocks
that share a key (as derived from flash address).
*/
esp_rom_spiflash_result_t rc = ESP_ROM_SPIFLASH_RESULT_OK;
WORD_ALIGNED_ATTR uint8_t encrypt_buf[32];
uint32_t row_size;
for (size_t i = 0; i < size; i += row_size) {
uint32_t row_addr = dest_addr + i;
if (i == 0 && (row_addr % 32) != 0) {
/* writing to second block of a 32 byte row */
row_size = 16;
row_addr -= 16;
/* copy to second block in buffer */
memcpy(encrypt_buf + 16, src + i, 16);
/* decrypt the first block from flash, will reencrypt to same bytes */
spi_flash_read_encrypted(row_addr, encrypt_buf, 16);
} else if (size - i == 16) {
/* 16 bytes left, is first block of a 32 byte row */
row_size = 16;
/* copy to first block in buffer */
memcpy(encrypt_buf, src + i, 16);
/* decrypt the second block from flash, will reencrypt to same bytes */
spi_flash_read_encrypted(row_addr + 16, encrypt_buf + 16, 16);
} else {
/* Writing a full 32 byte row (2 blocks) */
row_size = 32;
memcpy(encrypt_buf, src + i, 32);
}
spi_flash_guard_start();
rc = esp_rom_spiflash_write_encrypted(row_addr, (uint32_t *)encrypt_buf, 32);
spi_flash_guard_end();
if (rc != ESP_ROM_SPIFLASH_RESULT_OK) {
break;
}
}
bzero(encrypt_buf, sizeof(encrypt_buf));
return spi_flash_translate_rc(rc);
}
esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size)
{
esp_err_t err = ESP_OK;
@ -505,7 +454,7 @@ esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src,
}
#ifndef CONFIG_SPI_FLASH_VERIFY_WRITE
err = spi_flash_write_encrypted_in_rows(dest_addr, (const uint8_t*)src, size);
err = spi_flash_write_encrypted_chip(dest_addr, src, size);
COUNTER_ADD_BYTES(write, size);
spi_flash_guard_start();
spi_flash_check_and_flush_cache(dest_addr, size);
@ -535,7 +484,7 @@ esp_err_t IRAM_ATTR spi_flash_write_encrypted(size_t dest_addr, const void *src,
}
#endif
err = spi_flash_write_encrypted_in_rows(dest_addr + i, src + i, read_len);
err = spi_flash_write_encrypted_chip(dest_addr + i, src + i, read_len);
if (err != ESP_OK) {
break;
}
@ -795,78 +744,6 @@ void spi_flash_dump_counters(void)
#endif //CONFIG_SPI_FLASH_ENABLE_COUNTERS
#if CONFIG_IDF_TARGET_ESP32S2
#define SPICACHE SPIMEM0
#define SPIFLASH SPIMEM1
#define FLASH_WRAP_CMD 0x77
esp_err_t spi_flash_wrap_set(spi_flash_wrap_mode_t mode)
{
uint32_t reg_bkp_ctrl = SPIFLASH.ctrl.val;
uint32_t reg_bkp_usr = SPIFLASH.user.val;
SPIFLASH.user.fwrite_dio = 0;
SPIFLASH.user.fwrite_dual = 0;
SPIFLASH.user.fwrite_qio = 1;
SPIFLASH.user.fwrite_quad = 0;
SPIFLASH.ctrl.fcmd_dual = 0;
SPIFLASH.ctrl.fcmd_quad = 0;
SPIFLASH.user.usr_dummy = 0;
SPIFLASH.user.usr_addr = 1;
SPIFLASH.user.usr_command = 1;
SPIFLASH.user2.usr_command_bitlen = 7;
SPIFLASH.user2.usr_command_value = FLASH_WRAP_CMD;
SPIFLASH.user1.usr_addr_bitlen = 23;
SPIFLASH.addr = 0;
SPIFLASH.user.usr_miso = 0;
SPIFLASH.user.usr_mosi = 1;
SPIFLASH.mosi_dlen.usr_mosi_bit_len = 7;
SPIFLASH.data_buf[0] = (uint32_t) mode << 4;;
SPIFLASH.cmd.usr = 1;
while(SPIFLASH.cmd.usr != 0)
{ }
SPIFLASH.ctrl.val = reg_bkp_ctrl;
SPIFLASH.user.val = reg_bkp_usr;
return ESP_OK;
}
esp_err_t spi_flash_enable_wrap(uint32_t wrap_size)
{
switch(wrap_size) {
case 8:
return spi_flash_wrap_set(FLASH_WRAP_MODE_8B);
case 16:
return spi_flash_wrap_set(FLASH_WRAP_MODE_16B);
case 32:
return spi_flash_wrap_set(FLASH_WRAP_MODE_32B);
case 64:
return spi_flash_wrap_set(FLASH_WRAP_MODE_64B);
default:
return ESP_FAIL;
}
}
void spi_flash_disable_wrap(void)
{
spi_flash_wrap_set(FLASH_WRAP_MODE_DISABLE);
}
bool spi_flash_support_wrap_size(uint32_t wrap_size)
{
if (!REG_GET_BIT(SPI_MEM_CTRL_REG(0), SPI_MEM_FREAD_QIO) || !REG_GET_BIT(SPI_MEM_CTRL_REG(0), SPI_MEM_FASTRD_MODE)){
return ESP_FAIL;
}
switch(wrap_size) {
case 0:
case 8:
case 16:
case 32:
case 64:
return true;
default:
return false;
}
}
#endif
#if defined(CONFIG_SPI_FLASH_USE_LEGACY_IMPL) && defined(CONFIG_IDF_TARGET_ESP32S2)
// TODO esp32s2: Remove once ESP32S2 has new SPI Flash API support
esp_flash_t *esp_flash_default_chip = NULL;

View file

@ -2,6 +2,5 @@
# CMakeLists in this exact order for cmake to work correctly
cmake_minimum_required(VERSION 3.5)
# Flash encryption not currently supported for ESP32-S2
include($ENV{IDF_PATH}/tools/cmake/project.cmake)
project(flash_encryption)

View file

@ -23,6 +23,13 @@ static void example_read_write_flash(void);
static const char* TAG = "example";
#if CONFIG_IDF_TARGET_ESP32
#define TARGET_CRYPT_CNT_EFUSE ESP_EFUSE_FLASH_CRYPT_CNT
#define TARGET_CRYPT_CNT_WIDTH 7
#elif CONFIG_IDF_TARGET_ESP32S2
#define TARGET_CRYPT_CNT_EFUSE ESP_EFUSE_SPI_BOOT_CRYPT_CNT
#define TARGET_CRYPT_CNT_WIDTH 3
#endif
void app_main(void)
{
@ -54,7 +61,7 @@ static void example_print_chip_info(void)
static void example_print_flash_encryption_status(void)
{
uint32_t flash_crypt_cnt = 0;
esp_efuse_read_field_blob(ESP_EFUSE_FLASH_CRYPT_CNT, &flash_crypt_cnt, 7);
esp_efuse_read_field_blob(TARGET_CRYPT_CNT_EFUSE, &flash_crypt_cnt, TARGET_CRYPT_CNT_WIDTH);
printf("FLASH_CRYPT_CNT eFuse value is %d\n", flash_crypt_cnt);
esp_flash_enc_mode_t mode = esp_get_flash_encryption_mode();