OVMS3-idf/components/bootloader/src/main/bootloader_start.c

845 lines
32 KiB
C
Raw Normal View History

2016-08-17 15:08:22 +00:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
2016-08-17 15:08:22 +00:00
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include <sys/param.h>
2016-08-17 15:08:22 +00:00
#include "esp_attr.h"
#include "esp_log.h"
2016-08-17 15:08:22 +00:00
#include "rom/cache.h"
#include "rom/efuse.h"
2016-08-17 15:08:22 +00:00
#include "rom/ets_sys.h"
#include "rom/spi_flash.h"
#include "rom/crc.h"
#include "rom/rtc.h"
#include "rom/uart.h"
#include "rom/gpio.h"
#include "rom/secure_boot.h"
2016-08-17 15:08:22 +00:00
#include "soc/soc.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
2016-08-17 15:08:22 +00:00
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#include "soc/gpio_reg.h"
#include "soc/gpio_sig_map.h"
2016-08-17 15:08:22 +00:00
#include "sdkconfig.h"
#include "esp_image_format.h"
#include "esp_secure_boot.h"
#include "esp_flash_encrypt.h"
#include "esp_flash_partitions.h"
#include "bootloader_flash.h"
#include "bootloader_random.h"
2016-08-17 15:08:22 +00:00
#include "bootloader_config.h"
#include "flash_qio_mode.h"
2016-08-17 15:08:22 +00:00
extern int _bss_start;
extern int _bss_end;
static const char* TAG = "boot";
2016-08-17 15:08:22 +00:00
/*
We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
flash cache is down and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
*/
void bootloader_main();
static void unpack_load_app(const esp_partition_pos_t *app_node);
void print_flash_info(const esp_image_header_t* pfhdr);
static void set_cache_and_start_app(uint32_t drom_addr,
2016-08-17 15:08:22 +00:00
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr);
static void update_flash_config(const esp_image_header_t* pfhdr);
static void clock_configure(void);
static void uart_console_configure(void);
static void wdt_reset_check(void);
2016-08-17 15:08:22 +00:00
void IRAM_ATTR call_start_cpu0()
{
cpu_configure_region_protection();
2016-08-17 15:08:22 +00:00
//Clear bss
memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
/* completely reset MMU for both CPUs
(in case serial bootloader was running) */
Cache_Read_Disable(0);
Cache_Read_Disable(1);
Cache_Flush(0);
Cache_Flush(1);
mmu_init(0);
DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
mmu_init(1);
DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
/* (above steps probably unnecessary for most serial bootloader
usage, all that's absolutely needed is that we unmask DROM0
cache on the following two lines - normal ROM boot exits with
DROM0 cache unmasked, but serial bootloader exits with it
masked. However can't hurt to be thorough and reset
everything.)
The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are
necessary to work around a hardware bug.
*/
DPORT_REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0);
DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0);
2016-08-17 15:08:22 +00:00
bootloader_main();
}
/** @brief Load partition table
2016-08-17 15:08:22 +00:00
*
* Parse partition table, get useful data such as location of
* OTA data partition, factory app partition, and test app partition.
2016-08-17 15:08:22 +00:00
*
* @param bs bootloader state structure used to save read data
* @return return true if the partition table was succesfully loaded and MD5 checksum is valid.
2016-08-17 15:08:22 +00:00
*/
bool load_partition_table(bootloader_state_t* bs)
2016-08-17 15:08:22 +00:00
{
const esp_partition_info_t *partitions;
const int ESP_PARTITION_TABLE_DATA_LEN = 0xC00; /* length of actual data (signature is appended to this) */
2016-08-17 15:08:22 +00:00
char *partition_usage;
esp_err_t err;
int num_partitions;
2016-08-17 15:08:22 +00:00
#ifdef CONFIG_SECURE_BOOT_ENABLED
if(esp_secure_boot_enabled()) {
ESP_LOGI(TAG, "Verifying partition table signature...");
err = esp_secure_boot_verify_signature(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table signature.");
return false;
}
ESP_LOGD(TAG, "Partition table signature verified");
}
#endif
partitions = bootloader_mmap(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
if (!partitions) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
return false;
}
ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_ADDR, (intptr_t)partitions);
err = esp_partition_table_basic_verify(partitions, true, &num_partitions);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table");
return false;
}
ESP_LOGI(TAG, "Partition Table:");
ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
for(int i = 0; i < num_partitions; i++) {
const esp_partition_info_t *partition = &partitions[i];
ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
2016-08-17 15:08:22 +00:00
partition_usage = "unknown";
/* valid partition table */
switch(partition->type) {
case PART_TYPE_APP: /* app partition */
switch(partition->subtype) {
case PART_SUBTYPE_FACTORY: /* factory binary */
bs->factory = partition->pos;
partition_usage = "factory app";
break;
case PART_SUBTYPE_TEST: /* test binary */
bs->test = partition->pos;
partition_usage = "test app";
break;
default:
/* OTA binary */
if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
++bs->app_count;
partition_usage = "OTA app";
2016-08-17 15:08:22 +00:00
}
else {
partition_usage = "Unknown app";
2016-08-17 15:08:22 +00:00
}
break;
}
break; /* PART_TYPE_APP */
case PART_TYPE_DATA: /* data partition */
switch(partition->subtype) {
case PART_SUBTYPE_DATA_OTA: /* ota data */
bs->ota_info = partition->pos;
partition_usage = "OTA data";
break;
case PART_SUBTYPE_DATA_RF:
partition_usage = "RF data";
break;
case PART_SUBTYPE_DATA_WIFI:
partition_usage = "WiFi data";
break;
default:
partition_usage = "Unknown data";
break;
}
break; /* PARTITION_USAGE_DATA */
default: /* other partition type */
break;
2016-08-17 15:08:22 +00:00
}
/* print partition type info */
ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
partition->type, partition->subtype,
partition->pos.offset, partition->pos.size);
2016-08-17 15:08:22 +00:00
}
bootloader_munmap(partitions);
ESP_LOGI(TAG,"End of partition table");
2016-08-17 15:08:22 +00:00
return true;
}
static uint32_t ota_select_crc(const esp_ota_select_entry_t *s)
2016-08-17 15:08:22 +00:00
{
return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
}
static bool ota_select_valid(const esp_ota_select_entry_t *s)
2016-08-17 15:08:22 +00:00
{
return s->ota_seq != UINT32_MAX && s->crc == ota_select_crc(s);
}
/**
* @function : bootloader_main
* @description: entry function of 2nd bootloader
*
* @inputs: void
*/
void bootloader_main()
{
clock_configure();
uart_console_configure();
wdt_reset_check();
ESP_LOGI(TAG, "ESP-IDF %s 2nd stage bootloader", IDF_VER);
#if defined(CONFIG_SECURE_BOOT_ENABLED) || defined(CONFIG_FLASH_ENCRYPTION_ENABLED)
esp_err_t err;
#endif
esp_image_header_t fhdr;
2016-08-17 15:08:22 +00:00
bootloader_state_t bs;
esp_rom_spiflash_result_t spiRet1,spiRet2;
esp_ota_select_entry_t sa,sb;
const esp_ota_select_entry_t *ota_select_map;
2016-08-17 15:08:22 +00:00
memset(&bs, 0, sizeof(bs));
ESP_LOGI(TAG, "compile time " __TIME__ );
ets_set_appcpu_boot_addr(0);
/* disable watch dog here */
REG_CLR_BIT( RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN );
#ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
const uint32_t spiconfig = ets_efuse_get_spiconfig();
if(spiconfig != EFUSE_SPICONFIG_SPI_DEFAULTS && spiconfig != EFUSE_SPICONFIG_HSPI_DEFAULTS) {
ESP_LOGE(TAG, "SPI flash pins are overridden. \"Enable SPI flash ROM driver patched functions\" must be enabled in menuconfig");
return;
}
#endif
esp_rom_spiflash_unlock();
2016-08-17 15:08:22 +00:00
ESP_LOGI(TAG, "Enabling RNG early entropy source...");
bootloader_random_enable();
#if CONFIG_FLASHMODE_QIO || CONFIG_FLASHMODE_QOUT
bootloader_enable_qio_mode();
#endif
if(esp_image_load_header(0x1000, true, &fhdr) != ESP_OK) {
ESP_LOGE(TAG, "failed to load bootloader header!");
return;
}
2016-08-17 15:08:22 +00:00
print_flash_info(&fhdr);
update_flash_config(&fhdr);
if (!load_partition_table(&bs)) {
ESP_LOGE(TAG, "load partition table error!");
2016-08-17 15:08:22 +00:00
return;
}
esp_partition_pos_t load_part_pos;
2016-08-17 15:08:22 +00:00
if (bs.ota_info.offset != 0) { // check if partition table has OTA info partition
//ESP_LOGE("OTA info sector handling is not implemented");
if (bs.ota_info.size < 2 * SPI_SEC_SIZE) {
ESP_LOGE(TAG, "ERROR: ota_info partition size %d is too small (minimum %d bytes)", bs.ota_info.size, sizeof(esp_ota_select_entry_t));
return;
}
ota_select_map = bootloader_mmap(bs.ota_info.offset, bs.ota_info.size);
if (!ota_select_map) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs.ota_info.offset, bs.ota_info.size);
return;
}
memcpy(&sa, ota_select_map, sizeof(esp_ota_select_entry_t));
memcpy(&sb, (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
bootloader_munmap(ota_select_map);
ESP_LOGD(TAG, "OTA sequence values A 0x%08x B 0x%08x", sa.ota_seq, sb.ota_seq);
2016-08-17 15:08:22 +00:00
if(sa.ota_seq == 0xFFFFFFFF && sb.ota_seq == 0xFFFFFFFF) {
ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF");
// init status flash
if (bs.factory.offset != 0) { // if have factory bin,boot factory bin
ESP_LOGD(TAG, "Defaulting to factory image");
load_part_pos = bs.factory;
} else {
ESP_LOGD(TAG, "No factory image, defaulting to OTA 0");
load_part_pos = bs.ota[0];
sa.ota_seq = 0x01;
sa.crc = ota_select_crc(&sa);
sb.ota_seq = 0x00;
sb.crc = ota_select_crc(&sb);
Cache_Read_Disable(0);
spiRet1 = esp_rom_spiflash_erase_sector(bs.ota_info.offset/0x1000);
spiRet2 = esp_rom_spiflash_erase_sector(bs.ota_info.offset/0x1000+1);
if (spiRet1 != ESP_ROM_SPIFLASH_RESULT_OK || spiRet2 != ESP_ROM_SPIFLASH_RESULT_OK ) {
ESP_LOGE(TAG, SPI_ERROR_LOG);
return;
}
spiRet1 = esp_rom_spiflash_write(bs.ota_info.offset,(uint32_t *)&sa,sizeof(esp_ota_select_entry_t));
spiRet2 = esp_rom_spiflash_write(bs.ota_info.offset + 0x1000,(uint32_t *)&sb,sizeof(esp_ota_select_entry_t));
if (spiRet1 != ESP_ROM_SPIFLASH_RESULT_OK || spiRet2 != ESP_ROM_SPIFLASH_RESULT_OK ) {
ESP_LOGE(TAG, SPI_ERROR_LOG);
return;
}
Cache_Read_Enable(0);
}
2016-08-17 15:08:22 +00:00
//TODO:write data in ota info
} else {
if(ota_select_valid(&sa) && ota_select_valid(&sb)) {
ESP_LOGD(TAG, "Both OTA sequence valid, using OTA slot %d", MAX(sa.ota_seq, sb.ota_seq)-1);
load_part_pos = bs.ota[(MAX(sa.ota_seq, sb.ota_seq) - 1)%bs.app_count];
} else if(ota_select_valid(&sa)) {
ESP_LOGD(TAG, "Only OTA sequence A is valid, using OTA slot %d", sa.ota_seq - 1);
2016-08-17 15:08:22 +00:00
load_part_pos = bs.ota[(sa.ota_seq - 1) % bs.app_count];
} else if(ota_select_valid(&sb)) {
ESP_LOGD(TAG, "Only OTA sequence B is valid, using OTA slot %d", sa.ota_seq - 1);
2016-08-17 15:08:22 +00:00
load_part_pos = bs.ota[(sb.ota_seq - 1) % bs.app_count];
} else if (bs.factory.offset != 0) {
ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
load_part_pos = bs.factory;
} else {
ESP_LOGE(TAG, "ota data partition invalid and no factory, can't boot");
2016-08-17 15:08:22 +00:00
return;
}
}
} else if (bs.factory.offset != 0) { // otherwise, look for factory app partition
load_part_pos = bs.factory;
} else if (bs.test.offset != 0) { // otherwise, look for test app parition
load_part_pos = bs.test;
} else { // nothing to load, bail out
ESP_LOGE(TAG, "nothing to load");
2016-08-17 15:08:22 +00:00
return;
}
#ifdef CONFIG_SECURE_BOOT_ENABLED
/* Generate secure digest from this bootloader to protect future
modifications */
ESP_LOGI(TAG, "Checking secure boot...");
err = esp_secure_boot_permanently_enable();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Bootloader digest generation failed (%d). SECURE BOOT IS NOT ENABLED.", err);
/* Allow booting to continue, as the failure is probably
due to user-configured EFUSEs for testing...
*/
2016-08-17 15:08:22 +00:00
}
#endif
2016-08-17 15:08:22 +00:00
#ifdef CONFIG_FLASH_ENCRYPTION_ENABLED
/* encrypt flash */
ESP_LOGI(TAG, "Checking flash encryption...");
bool flash_encryption_enabled = esp_flash_encryption_enabled();
err = esp_flash_encrypt_check_and_update();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
return;
2016-08-17 15:08:22 +00:00
}
if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
/* Flash encryption was just enabled for the first time,
so issue a system reset to ensure flash encryption
cache resets properly */
ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
return;
}
#endif
ESP_LOGI(TAG, "Disabling RNG early entropy source...");
bootloader_random_disable();
// copy loaded segments to RAM, set up caches for mapped segments, and start application
ESP_LOGI(TAG, "Loading app partition at offset %08x", load_part_pos);
2016-08-17 15:08:22 +00:00
unpack_load_app(&load_part_pos);
}
static void unpack_load_app(const esp_partition_pos_t* partition)
2016-08-17 15:08:22 +00:00
{
esp_err_t err;
esp_image_header_t image_header;
uint32_t image_length;
/* TODO: verify the app image as part of OTA boot decision, so can have fallbacks */
err = esp_image_basic_verify(partition->offset, true, &image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify app image @ 0x%x (%d)", partition->offset, err);
return;
}
#ifdef CONFIG_SECURE_BOOT_ENABLED
if (esp_secure_boot_enabled()) {
ESP_LOGI(TAG, "Verifying app signature @ 0x%x (length 0x%x)", partition->offset, image_length);
err = esp_secure_boot_verify_signature(partition->offset, image_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "App image @ 0x%x failed signature verification (%d)", partition->offset, err);
return;
}
ESP_LOGD(TAG, "App signature is valid");
}
#endif
if (esp_image_load_header(partition->offset, true, &image_header) != ESP_OK) {
ESP_LOGE(TAG, "Failed to load app image header @ 0x%x", partition->offset);
return;
}
2016-08-17 15:08:22 +00:00
uint32_t drom_addr = 0;
uint32_t drom_load_addr = 0;
uint32_t drom_size = 0;
uint32_t irom_addr = 0;
uint32_t irom_load_addr = 0;
uint32_t irom_size = 0;
/* Reload the RTC memory segments whenever a non-deepsleep reset
is occurring */
bool load_rtc_memory = rtc_get_reset_reason(0) != DEEPSLEEP_RESET;
ESP_LOGD(TAG, "bin_header: %u %u %u %u %08x", image_header.magic,
image_header.segment_count,
image_header.spi_mode,
image_header.spi_size,
(unsigned)image_header.entry_addr);
2016-08-17 15:08:22 +00:00
/* Important: From here on this function cannot access any global data (bss/data segments),
as loading the app image may overwrite these.
*/
for (int segment = 0; segment < image_header.segment_count; segment++) {
esp_image_segment_header_t segment_header;
uint32_t data_offs;
if(esp_image_load_segment_header(segment, partition->offset,
&image_header, true,
&segment_header, &data_offs) != ESP_OK) {
ESP_LOGE(TAG, "failed to load segment header #%d", segment);
return;
}
2016-08-17 15:08:22 +00:00
const uint32_t address = segment_header.load_addr;
2016-08-17 15:08:22 +00:00
bool load = true;
bool map = false;
if (address == 0x00000000) { // padding, ignore block
load = false;
}
if (address == 0x00000004) {
load = false; // md5 checksum block
// TODO: actually check md5
}
if (address >= SOC_DROM_LOW && address < SOC_DROM_HIGH) {
ESP_LOGD(TAG, "found drom segment, map from %08x to %08x", data_offs,
segment_header.load_addr);
drom_addr = data_offs;
drom_load_addr = segment_header.load_addr;
drom_size = segment_header.data_len + sizeof(segment_header);
2016-08-17 15:08:22 +00:00
load = false;
map = true;
}
if (address >= SOC_IROM_LOW && address < SOC_IROM_HIGH) {
ESP_LOGD(TAG, "found irom segment, map from %08x to %08x", data_offs,
segment_header.load_addr);
irom_addr = data_offs;
irom_load_addr = segment_header.load_addr;
irom_size = segment_header.data_len + sizeof(segment_header);
2016-08-17 15:08:22 +00:00
load = false;
map = true;
}
if (!load_rtc_memory && address >= SOC_RTC_IRAM_LOW && address < SOC_RTC_IRAM_HIGH) {
ESP_LOGD(TAG, "Skipping RTC code segment at %08x\n", data_offs);
load = false;
}
if (!load_rtc_memory && address >= SOC_RTC_DATA_LOW && address < SOC_RTC_DATA_HIGH) {
ESP_LOGD(TAG, "Skipping RTC data segment at %08x\n", data_offs);
load = false;
}
ESP_LOGI(TAG, "segment %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", segment, data_offs - sizeof(esp_image_segment_header_t),
segment_header.load_addr, segment_header.data_len, segment_header.data_len, (load)?"load":(map)?"map":"");
2016-08-17 15:08:22 +00:00
if (load) {
intptr_t sp, start_addr, end_addr;
ESP_LOGV(TAG, "bootloader_mmap data_offs=%08x data_len=%08x", data_offs, segment_header.data_len);
start_addr = segment_header.load_addr;
end_addr = start_addr + segment_header.data_len;
/* Before loading segment, check it doesn't clobber
bootloader RAM... */
if (end_addr < 0x40000000) {
sp = (intptr_t)get_sp();
if (end_addr > sp) {
ESP_LOGE(TAG, "Segment %d end address %08x overlaps bootloader stack %08x - can't load",
segment, end_addr, sp);
return;
}
if (end_addr > sp - 256) {
/* We don't know for sure this is the stack high water mark, so warn if
it seems like we may overflow.
*/
ESP_LOGW(TAG, "Segment %d end address %08x close to stack pointer %08x",
segment, end_addr, sp);
}
}
const void *data = bootloader_mmap(data_offs, segment_header.data_len);
if(!data) {
ESP_LOGE(TAG, "bootloader_mmap(0x%xc, 0x%x) failed",
data_offs, segment_header.data_len);
return;
}
memcpy((void *)segment_header.load_addr, data, segment_header.data_len);
bootloader_munmap(data);
2016-08-17 15:08:22 +00:00
}
}
2016-08-17 15:08:22 +00:00
set_cache_and_start_app(drom_addr,
drom_load_addr,
drom_size,
irom_addr,
irom_load_addr,
irom_size,
image_header.entry_addr);
}
static void set_cache_and_start_app(
2016-08-17 15:08:22 +00:00
uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
2016-08-17 15:08:22 +00:00
uint32_t entry_addr)
{
ESP_LOGD(TAG, "configure drom and irom and start");
2016-08-17 15:08:22 +00:00
Cache_Read_Disable( 0 );
Cache_Flush( 0 );
uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k
ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
2016-08-17 15:08:22 +00:00
int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
2016-08-17 15:08:22 +00:00
rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
2016-08-17 15:08:22 +00:00
uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k
ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
2016-08-17 15:08:22 +00:00
rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
2016-08-17 15:08:22 +00:00
rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 );
2016-08-17 15:08:22 +00:00
Cache_Read_Enable( 0 );
// Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
2016-08-17 15:08:22 +00:00
ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
2016-08-17 15:08:22 +00:00
typedef void (*entry_t)(void);
entry_t entry = ((entry_t) entry_addr);
// TODO: we have used quite a bit of stack at this point.
// use "movsp" instruction to reset stack back to where ROM stack starts.
(*entry)();
}
static void update_flash_config(const esp_image_header_t* pfhdr)
{
uint32_t size;
switch(pfhdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
size = 1;
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
size = 2;
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
size = 4;
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
size = 8;
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
size = 16;
break;
default:
size = 2;
}
Cache_Read_Disable( 0 );
// Set flash chip size
esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff);
// TODO: set mode
// TODO: set frequency
Cache_Flush(0);
Cache_Read_Enable( 0 );
}
2016-08-17 15:08:22 +00:00
void print_flash_info(const esp_image_header_t* phdr)
2016-08-17 15:08:22 +00:00
{
#if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE)
ESP_LOGD(TAG, "magic %02x", phdr->magic );
ESP_LOGD(TAG, "segments %02x", phdr->segment_count );
ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode );
ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed );
ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size );
2016-08-17 15:08:22 +00:00
const char* str;
switch ( phdr->spi_speed ) {
case ESP_IMAGE_SPI_SPEED_40M:
2016-08-17 15:08:22 +00:00
str = "40MHz";
break;
case ESP_IMAGE_SPI_SPEED_26M:
2016-08-17 15:08:22 +00:00
str = "26.7MHz";
break;
case ESP_IMAGE_SPI_SPEED_20M:
2016-08-17 15:08:22 +00:00
str = "20MHz";
break;
case ESP_IMAGE_SPI_SPEED_80M:
2016-08-17 15:08:22 +00:00
str = "80MHz";
break;
default:
str = "20MHz";
break;
}
ESP_LOGI(TAG, "SPI Speed : %s", str );
2016-08-17 15:08:22 +00:00
/* SPI mode could have been set to QIO during boot already,
so test the SPI registers not the flash header */
uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0));
if (spi_ctrl & SPI_FREAD_QIO) {
2016-08-17 15:08:22 +00:00
str = "QIO";
} else if (spi_ctrl & SPI_FREAD_QUAD) {
2016-08-17 15:08:22 +00:00
str = "QOUT";
} else if (spi_ctrl & SPI_FREAD_DIO) {
2016-08-17 15:08:22 +00:00
str = "DIO";
} else if (spi_ctrl & SPI_FREAD_DUAL) {
2016-08-17 15:08:22 +00:00
str = "DOUT";
} else if (spi_ctrl & SPI_FASTRD_MODE) {
2016-08-17 15:08:22 +00:00
str = "FAST READ";
} else {
2016-08-17 15:08:22 +00:00
str = "SLOW READ";
}
ESP_LOGI(TAG, "SPI Mode : %s", str );
2016-08-17 15:08:22 +00:00
switch ( phdr->spi_size ) {
case ESP_IMAGE_FLASH_SIZE_1MB:
2016-08-17 15:08:22 +00:00
str = "1MB";
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
2016-08-17 15:08:22 +00:00
str = "2MB";
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
2016-08-17 15:08:22 +00:00
str = "4MB";
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
2016-08-17 15:08:22 +00:00
str = "8MB";
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
2016-08-17 15:08:22 +00:00
str = "16MB";
break;
default:
str = "2MB";
2016-08-17 15:08:22 +00:00
break;
}
ESP_LOGI(TAG, "SPI Flash Size : %s", str );
2016-08-17 15:08:22 +00:00
#endif
}
static void clock_configure(void)
{
/* Set CPU to 80MHz. Keep other clocks unmodified. */
uart_tx_wait_idle(0);
rtc_clk_config_t clk_cfg = RTC_CLK_CONFIG_DEFAULT();
clk_cfg.xtal_freq = CONFIG_ESP32_XTAL_FREQ;
clk_cfg.cpu_freq = RTC_CPU_FREQ_80M;
clk_cfg.slow_freq = rtc_clk_slow_freq_get();
clk_cfg.fast_freq = rtc_clk_fast_freq_get();
rtc_clk_init(clk_cfg);
/* As a slight optimization, if 32k XTAL was enabled in sdkconfig, we enable
* it here. Usually it needs some time to start up, so we amortize at least
* part of the start up time by enabling 32k XTAL early.
* App startup code will wait until the oscillator has started up.
*/
#ifdef CONFIG_ESP32_RTC_CLOCK_SOURCE_EXTERNAL_CRYSTAL
if (!rtc_clk_32k_enabled()) {
rtc_clk_32k_bootstrap();
}
#endif
}
static void uart_console_configure(void)
{
#if CONFIG_CONSOLE_UART_NONE
ets_install_putc1(NULL);
ets_install_putc2(NULL);
#else // CONFIG_CONSOLE_UART_NONE
const int uart_num = CONFIG_CONSOLE_UART_NUM;
uartAttach();
ets_install_uart_printf();
// ROM bootloader may have put a lot of text into UART0 FIFO.
// Wait for it to be printed.
uart_tx_wait_idle(0);
#if CONFIG_CONSOLE_UART_CUSTOM
// Some constants to make the following code less upper-case
const int uart_tx_gpio = CONFIG_CONSOLE_UART_TX_GPIO;
const int uart_rx_gpio = CONFIG_CONSOLE_UART_RX_GPIO;
// Switch to the new UART (this just changes UART number used for
// ets_printf in ROM code).
uart_tx_switch(uart_num);
// If console is attached to UART1 or if non-default pins are used,
// need to reconfigure pins using GPIO matrix
if (uart_num != 0 || uart_tx_gpio != 1 || uart_rx_gpio != 3) {
// Change pin mode for GPIO1/3 from UART to GPIO
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_GPIO3);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_GPIO1);
// Route GPIO signals to/from pins
// (arrays should be optimized away by the compiler)
const uint32_t tx_idx_list[3] = { U0TXD_OUT_IDX, U1TXD_OUT_IDX, U2TXD_OUT_IDX };
const uint32_t rx_idx_list[3] = { U0RXD_IN_IDX, U1RXD_IN_IDX, U2RXD_IN_IDX };
const uint32_t tx_idx = tx_idx_list[uart_num];
const uint32_t rx_idx = rx_idx_list[uart_num];
gpio_matrix_out(uart_tx_gpio, tx_idx, 0, 0);
gpio_matrix_in(uart_rx_gpio, rx_idx, 0);
}
#endif // CONFIG_CONSOLE_UART_CUSTOM
// Set configured UART console baud rate
const int uart_baud = CONFIG_CONSOLE_UART_BAUDRATE;
uart_div_modify(uart_num, (rtc_clk_apb_freq_get() << 4) / uart_baud);
#endif // CONFIG_CONSOLE_UART_NONE
}
static void wdt_reset_cpu0_info_enable(void)
{
//We do not reset core1 info here because it didn't work before cpu1 was up. So we put it into call_start_cpu1.
DPORT_REG_SET_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_PDEBUG_ENABLE | DPORT_PRO_CPU_RECORD_ENABLE);
DPORT_REG_CLR_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_RECORD_ENABLE);
}
static void wdt_reset_info_dump(int cpu)
{
uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0,
lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0;
char *cpu_name = cpu ? "APP" : "PRO";
if (cpu == 0) {
stat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_STATUS_REG);
pid = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PID_REG);
inst = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGINST_REG);
dstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGSTATUS_REG);
data = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGDATA_REG);
pc = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGPC_REG);
lsstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0STAT_REG);
lsaddr = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0ADDR_REG);
lsdata = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0DATA_REG);
} else {
stat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_STATUS_REG);
pid = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PID_REG);
inst = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGINST_REG);
dstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGSTATUS_REG);
data = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGDATA_REG);
pc = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGPC_REG);
lsstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0STAT_REG);
lsaddr = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0ADDR_REG);
lsdata = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0DATA_REG);
}
if (DPORT_RECORD_PDEBUGINST_SZ(inst) == 0 &&
DPORT_RECORD_PDEBUGSTATUS_BBCAUSE(dstat) == DPORT_RECORD_PDEBUGSTATUS_BBCAUSE_WAITI) {
ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x (waiti mode)", cpu_name, pc);
} else {
ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x", cpu_name, pc);
}
ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata);
}
static void wdt_reset_check(void)
{
int wdt_rst = 0;
RESET_REASON rst_reas[2];
rst_reas[0] = rtc_get_reset_reason(0);
rst_reas[1] = rtc_get_reset_reason(1);
if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET ||
rst_reas[0] == TGWDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) {
ESP_LOGW(TAG, "PRO CPU has been reset by WDT.");
wdt_rst = 1;
}
if (rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET || rst_reas[1] == TG1WDT_SYS_RESET ||
rst_reas[1] == TGWDT_CPU_RESET || rst_reas[1] == RTCWDT_CPU_RESET) {
ESP_LOGW(TAG, "APP CPU has been reset by WDT.");
wdt_rst = 1;
}
if (wdt_rst) {
// if reset by WDT dump info from trace port
wdt_reset_info_dump(0);
wdt_reset_info_dump(1);
}
wdt_reset_cpu0_info_enable();
}