OVMS3-idf/components/bootloader/src/main/bootloader_start.c

601 lines
20 KiB
C
Raw Normal View History

2016-08-17 15:08:22 +00:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include "esp_attr.h"
#include "rom/cache.h"
#include "rom/ets_sys.h"
#include "rom/spi_flash.h"
#include "rom/crc.h"
#include "soc/soc.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timers_reg.h"
#include "sdkconfig.h"
#include "bootloader_log.h"
#include "bootloader_config.h"
extern int _bss_start;
extern int _bss_end;
/*
We arrive here after the bootloader finished loading the program from flash. The hardware is mostly uninitialized,
flash cache is down and the app CPU is in reset. We do have a stack, so we can do the initialization in C.
*/
// TODO: make a nice header file for ROM functions instead of adding externs all over the place
extern void Cache_Flush(int);
void bootloader_main();
void unpack_load_app(const partition_pos_t *app_node);
void print_flash_info(struct flash_hdr* pfhdr);
void IRAM_ATTR set_cache_and_start_app(uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr);
void IRAM_ATTR call_start_cpu0()
{
//Make page 0 access raise an exception
//Also some other unused pages so we can catch weirdness
//ToDo: this but nicer.
asm volatile (\
"movi a4,0x00000000\n" \
"movi a5,0xf\n" \
"wdtlb a5,a4\n" \
"witlb a5,a4\n" \
"movi a4,0x80000000\n" \
"wdtlb a5,a4\n" \
"witlb a5,a4\n" \
"movi a4,0xa0000000\n" \
"wdtlb a5,a4\n" \
"witlb a5,a4\n" \
"movi a4,0xc0000000\n" \
"wdtlb a5,a4\n" \
"witlb a5,a4\n" \
"movi a4,0xe0000000\n" \
"wdtlb a5,a4\n" \
"witlb a5,a4\n" \
"movi a4,0x20000000\n" \
"movi a5,0x0\n" \
"wdtlb a5,a4\n" \
"witlb a5,a4\n" \
"movi a4,0x40000000\n" \
"movi a5,0x2\n" \
"wdtlb a5,a4\n" \
"witlb a5,a4\n" \
"isync\n" \
:::"a4","a5");
//Clear bss
memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
/* completely reset MMU for both CPUs
(in case serial bootloader was running) */
Cache_Read_Disable(0);
Cache_Read_Disable(1);
Cache_Flush(0);
Cache_Flush(1);
mmu_init(0);
REG_SET_BIT(APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
mmu_init(1);
REG_CLR_BIT(APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
/* (above steps probably unnecessary for most serial bootloader
usage, all that's absolutely needed is that we unmask DROM0
cache on the following two lines - normal ROM boot exits with
DROM0 cache unmasked, but serial bootloader exits with it
masked. However can't hurt to be thorough and reset
everything.)
The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are
necessary to work around a hardware bug.
*/
REG_CLR_BIT(PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0);
REG_CLR_BIT(APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0);
2016-08-17 15:08:22 +00:00
bootloader_main();
}
/**
* @function : get_bin_len
* @description: get bin's length
*
* @inputs: pos bin locate address in flash
* @return: uint32 length of bin,if bin MAGIC error return 0
*/
uint32_t get_bin_len(uint32_t pos)
{
uint32_t len = 8 + 16;
uint8_t i;
log_debug("pos %d %x\n",pos,*(uint8_t *)pos);
if(0xE9 != *(uint8_t *)pos) {
return 0;
}
for (i = 0; i < *(uint8_t *)(pos + 1); i++) {
len += *(uint32_t *)(pos + len + 4) + 8;
}
if (len % 16 != 0) {
len = (len / 16 + 1) * 16;
} else {
len += 16;
}
log_debug("bin length = %d\n", len);
return len;
}
/**
* @function : boot_cache_redirect
* @description: Configure several pages in flash map so that `size` bytes
* starting at `pos` are mapped to 0x3f400000.
* This sets up mapping only for PRO CPU.
*
* @inputs: pos address in flash
* size size of the area to map, in bytes
*/
void boot_cache_redirect( uint32_t pos, size_t size )
{
uint32_t pos_aligned = pos & 0xffff0000;
uint32_t count = (size + 0xffff) / 0x10000;
Cache_Read_Disable( 0 );
Cache_Flush( 0 );
log_debug( "mmu set paddr=%08x count=%d", pos_aligned, count );
cache_flash_mmu_set( 0, 0, 0x3f400000, pos_aligned, 64, count );
Cache_Read_Enable( 0 );
}
/**
* @function : load_partition_table
* @description: Parse partition table, get useful data such as location of
* OTA info sector, factory app sector, and test app sector.
*
* @inputs: bs bootloader state structure used to save the data
* addr address of partition table in flash
* @return: return true, if the partition table is loaded (and MD5 checksum is valid)
*
*/
bool load_partition_table(bootloader_state_t* bs, uint32_t addr)
{
partition_info_t partition;
uint32_t end = addr + 0x1000;
int index = 0;
char *partition_usage;
log_info("Partition Table:");
log_info("## Label Usage Type ST Offset Length");
while (addr < end) {
log_debug("load partition table entry from %x(%08x)", addr, MEM_CACHE(addr));
memcpy(&partition, MEM_CACHE(addr), sizeof(partition));
log_debug("type=%x subtype=%x", partition.type, partition.subtype);
partition_usage = "unknown";
if (partition.magic == PARTITION_MAGIC) { /* valid partition definition */
switch(partition.type) {
case PART_TYPE_APP: /* app partition */
switch(partition.subtype) {
case PART_SUBTYPE_FACTORY: /* factory binary */
bs->factory = partition.pos;
partition_usage = "factory app";
break;
case PART_SUBTYPE_TEST: /* test binary */
bs->test = partition.pos;
partition_usage = "test app";
break;
default:
/* OTA binary */
if ((partition.subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
bs->ota[partition.subtype & PART_SUBTYPE_OTA_MASK] = partition.pos;
++bs->app_count;
partition_usage = "OTA app";
}
else {
partition_usage = "Unknown app";
}
break;
}
break; /* PART_TYPE_APP */
case PART_TYPE_DATA: /* data partition */
switch(partition.subtype) {
case PART_SUBTYPE_DATA_OTA: /* ota data */
bs->ota_info = partition.pos;
partition_usage = "OTA data";
break;
case PART_SUBTYPE_DATA_RF:
partition_usage = "RF data";
break;
case PART_SUBTYPE_DATA_WIFI:
partition_usage = "WiFi data";
break;
default:
partition_usage = "Unknown data";
break;
}
break; /* PARTITION_USAGE_DATA */
default: /* other partition type */
break;
}
}
/* invalid partition magic number */
else {
break; /* todo: validate md5 */
}
/* print partition type info */
log_info("%2d %-16s %-16s %02x %02x %08x %08x", index, partition.label, partition_usage,
partition.type, partition.subtype,
partition.pos.offset, partition.pos.size);
index++;
addr += sizeof(partition);
}
log_info("End of partition table");
return true;
}
static uint32_t ota_select_crc(const ota_select *s)
{
return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
}
static bool ota_select_valid(const ota_select *s)
{
return s->ota_seq != UINT32_MAX && s->crc == ota_select_crc(s);
}
/**
* @function : bootloader_main
* @description: entry function of 2nd bootloader
*
* @inputs: void
*/
void bootloader_main()
{
//Run start routine.
/*ESP32 2ND bootload start here*/
log_info( "\n" );
log_info( "**************************************" );
log_info( "* hello espressif ESP32! *" );
log_info( "* 2nd boot is running! *" );
log_info( "* version (%s) *", BOOT_VERSION);
log_info( "**************************************");
struct flash_hdr fhdr;
bootloader_state_t bs;
SpiFlashOpResult spiRet1,spiRet2;
ota_select sa,sb;
memset(&bs, 0, sizeof(bs));
log_notice( "compile time %s\n", __TIME__ );
/* close watch dog here */
REG_CLR_BIT( RTC_WDTCONFIG0, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
REG_CLR_BIT( WDTCONFIG0(0), TIMERS_WDT_FLASHBOOT_MOD_EN );
2016-08-17 15:08:22 +00:00
SPIUnlock();
/*register first sector in drom0 page 0 */
boot_cache_redirect( 0, 0x5000 );
memcpy((unsigned int *) &fhdr, MEM_CACHE(0x1000), sizeof(struct flash_hdr) );
print_flash_info(&fhdr);
if (!load_partition_table(&bs, PARTITION_ADD)) {
log_error("load partition table error!");
return;
}
partition_pos_t load_part_pos;
if (bs.ota_info.offset != 0) { // check if partition table has OTA info partition
//log_error("OTA info sector handling is not implemented");
boot_cache_redirect(bs.ota_info.offset, bs.ota_info.size );
memcpy(&sa,MEM_CACHE(bs.ota_info.offset & 0x0000ffff),sizeof(sa));
memcpy(&sb,MEM_CACHE((bs.ota_info.offset + 0x1000)&0x0000ffff) ,sizeof(sb));
if(sa.ota_seq == 0xFFFFFFFF && sb.ota_seq == 0xFFFFFFFF) {
// init status flash
load_part_pos = bs.ota[0];
sa.ota_seq = 0x01;
sa.crc = ota_select_crc(&sa);
sb.ota_seq = 0x00;
sb.crc = ota_select_crc(&sb);
Cache_Read_Disable(0);
spiRet1 = SPIEraseSector(bs.ota_info.offset/0x1000);
spiRet2 = SPIEraseSector(bs.ota_info.offset/0x1000+1);
if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) {
log_error(SPI_ERROR_LOG);
return;
}
spiRet1 = SPIWrite(bs.ota_info.offset,(uint32_t *)&sa,sizeof(ota_select));
spiRet2 = SPIWrite(bs.ota_info.offset + 0x1000,(uint32_t *)&sb,sizeof(ota_select));
if (spiRet1 != SPI_FLASH_RESULT_OK || spiRet2 != SPI_FLASH_RESULT_OK ) {
log_error(SPI_ERROR_LOG);
return;
}
Cache_Read_Enable(0);
//TODO:write data in ota info
} else {
if(ota_select_valid(&sa) && ota_select_valid(&sb)) {
load_part_pos = bs.ota[(((sa.ota_seq > sb.ota_seq)?sa.ota_seq:sb.ota_seq) - 1)%bs.app_count];
}else if(ota_select_valid(&sa)) {
load_part_pos = bs.ota[(sa.ota_seq - 1) % bs.app_count];
}else if(ota_select_valid(&sb)) {
load_part_pos = bs.ota[(sb.ota_seq - 1) % bs.app_count];
}else {
log_error("ota data partition info error");
return;
}
}
} else if (bs.factory.offset != 0) { // otherwise, look for factory app partition
load_part_pos = bs.factory;
} else if (bs.test.offset != 0) { // otherwise, look for test app parition
load_part_pos = bs.test;
} else { // nothing to load, bail out
log_error("nothing to load");
return;
}
log_info("Loading app partition at offset %08x", load_part_pos);
if(fhdr.secury_boot_flag == 0x01) {
/* protect the 2nd_boot */
if(false == secure_boot()){
log_error("secure boot failed");
return;
}
}
if(fhdr.encrypt_flag == 0x01) {
/* encrypt flash */
if (false == flash_encrypt(&bs)) {
log_error("flash encrypt failed");
return;
}
}
// copy sections to RAM, set up caches, and start application
unpack_load_app(&load_part_pos);
}
void unpack_load_app(const partition_pos_t* partition)
{
boot_cache_redirect(partition->offset, partition->size);
uint32_t pos = 0;
struct flash_hdr image_header;
memcpy(&image_header, MEM_CACHE(pos), sizeof(image_header));
pos += sizeof(image_header);
uint32_t drom_addr = 0;
uint32_t drom_load_addr = 0;
uint32_t drom_size = 0;
uint32_t irom_addr = 0;
uint32_t irom_load_addr = 0;
uint32_t irom_size = 0;
log_debug("bin_header: %u %u %u %u %08x\n", image_header.magic,
image_header.blocks,
image_header.spi_mode,
image_header.spi_size,
(unsigned)image_header.entry_addr);
for (uint32_t section_index = 0;
section_index < image_header.blocks;
++section_index) {
struct block_hdr section_header = {0};
memcpy(&section_header, MEM_CACHE(pos), sizeof(section_header));
pos += sizeof(section_header);
const uint32_t address = section_header.load_addr;
bool load = true;
bool map = false;
if (address == 0x00000000) { // padding, ignore block
load = false;
}
if (address == 0x00000004) {
load = false; // md5 checksum block
// TODO: actually check md5
}
if (address >= DROM_LOW && address < DROM_HIGH) {
log_debug("found drom section, map from %08x to %08x\n", pos,
section_header.load_addr);
drom_addr = partition->offset + pos - sizeof(section_header);
drom_load_addr = section_header.load_addr;
drom_size = section_header.data_len + sizeof(section_header);
load = false;
map = true;
}
if (address >= IROM_LOW && address < IROM_HIGH) {
log_debug("found irom section, map from %08x to %08x\n", pos,
section_header.load_addr);
irom_addr = partition->offset + pos - sizeof(section_header);
irom_load_addr = section_header.load_addr;
irom_size = section_header.data_len + sizeof(section_header);
load = false;
map = true;
}
log_notice("section %d: paddr=0x%08x vaddr=0x%08x size=0x%05x (%6d) %s", section_index, pos, section_header.load_addr, section_header.data_len, section_header.data_len, (load)?"load":(map)?"map":"");
if (!load) {
pos += section_header.data_len;
continue;
}
memcpy((void*) section_header.load_addr, MEM_CACHE(pos), section_header.data_len);
pos += section_header.data_len;
}
set_cache_and_start_app(drom_addr,
drom_load_addr,
drom_size,
irom_addr,
irom_load_addr,
irom_size,
image_header.entry_addr);
}
void IRAM_ATTR set_cache_and_start_app(
uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr)
{
log_debug("configure drom and irom and start\n");
Cache_Read_Disable( 0 );
Cache_Read_Disable( 1 );
Cache_Flush( 0 );
Cache_Flush( 1 );
uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k
log_debug( "d mmu set paddr=%08x vaddr=%08x size=%d n=%d \n", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
log_debug( "rc=%d", rc );
rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
log_debug( "rc=%d", rc );
uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k
log_debug( "i mmu set paddr=%08x vaddr=%08x size=%d n=%d\n", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
log_debug( "rc=%d", rc );
rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
log_debug( "rc=%d", rc );
REG_CLR_BIT( PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
REG_CLR_BIT( APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 );
Cache_Read_Enable( 0 );
Cache_Read_Enable( 1 );
log_notice("start: 0x%08x\n", entry_addr);
typedef void (*entry_t)(void);
entry_t entry = ((entry_t) entry_addr);
// TODO: we have used quite a bit of stack at this point.
// use "movsp" instruction to reset stack back to where ROM stack starts.
(*entry)();
}
void print_flash_info(struct flash_hdr* pfhdr)
{
#if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE)
struct flash_hdr fhdr = *pfhdr;
log_debug( "[D]: magic %02x\n", fhdr.magic );
log_debug( "[D]: blocks %02x\n", fhdr.blocks );
log_debug( "[D]: spi_mode %02x\n", fhdr.spi_mode );
log_debug( "[D]: spi_speed %02x\n", fhdr.spi_speed );
log_debug( "[D]: spi_size %02x\n", fhdr.spi_size );
const char* str;
switch ( fhdr.spi_speed ) {
case SPI_SPEED_40M:
str = "40MHz";
break;
case SPI_SPEED_26M:
str = "26.7MHz";
break;
case SPI_SPEED_20M:
str = "20MHz";
break;
case SPI_SPEED_80M:
str = "80MHz";
break;
default:
str = "20MHz";
break;
}
log_notice( " SPI Speed : %s", str );
switch ( fhdr.spi_mode ) {
case SPI_MODE_QIO:
str = "QIO";
break;
case SPI_MODE_QOUT:
str = "QOUT";
break;
case SPI_MODE_DIO:
str = "DIO";
break;
case SPI_MODE_DOUT:
str = "DOUT";
break;
case SPI_MODE_FAST_READ:
str = "FAST READ";
break;
case SPI_MODE_SLOW_READ:
str = "SLOW READ";
break;
default:
str = "DIO";
break;
}
log_notice( " SPI Mode : %s", str );
switch ( fhdr.spi_size ) {
case SPI_SIZE_1MB:
str = "1MB";
break;
case SPI_SIZE_2MB:
str = "2MB";
break;
case SPI_SIZE_4MB:
str = "4MB";
break;
case SPI_SIZE_8MB:
str = "8MB";
break;
case SPI_SIZE_16MB:
str = "16MB";
break;
default:
str = "1MB";
break;
}
log_notice( " SPI Flash Size : %s", str );
#endif
}