OVMS3-idf/components/bootloader/subproject/main/bootloader_start.c

966 lines
35 KiB
C
Raw Normal View History

2016-08-17 15:08:22 +00:00
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
2016-08-17 15:08:22 +00:00
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include <stdint.h>
#include <limits.h>
#include <sys/param.h>
2016-08-17 15:08:22 +00:00
#include "esp_attr.h"
#include "esp_log.h"
2016-08-17 15:08:22 +00:00
#include "rom/cache.h"
#include "rom/efuse.h"
2016-08-17 15:08:22 +00:00
#include "rom/ets_sys.h"
#include "rom/spi_flash.h"
#include "rom/crc.h"
#include "rom/rtc.h"
#include "rom/uart.h"
#include "rom/gpio.h"
#include "rom/secure_boot.h"
2016-08-17 15:08:22 +00:00
#include "soc/soc.h"
#include "soc/cpu.h"
#include "soc/rtc.h"
2016-08-17 15:08:22 +00:00
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/efuse_reg.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/timer_group_reg.h"
#include "soc/gpio_reg.h"
#include "soc/gpio_sig_map.h"
2016-08-17 15:08:22 +00:00
#include "sdkconfig.h"
#include "esp_image_format.h"
#include "esp_secure_boot.h"
#include "esp_flash_encrypt.h"
#include "esp_flash_partitions.h"
#include "bootloader_flash.h"
#include "bootloader_random.h"
2016-08-17 15:08:22 +00:00
#include "bootloader_config.h"
#include "bootloader_clock.h"
#include "flash_qio_mode.h"
2016-08-17 15:08:22 +00:00
extern int _bss_start;
extern int _bss_end;
extern int _data_start;
extern int _data_end;
static const char* TAG = "boot";
2016-08-17 15:08:22 +00:00
/* Reduce literal size for some generic string literals */
#define MAP_MSG "Mapping segment %d as %s"
#define MAP_ERR_MSG "Image contains multiple %s segments. Only the last one will be mapped."
2016-08-17 15:08:22 +00:00
void bootloader_main();
static void unpack_load_app(const esp_image_metadata_t *data);
static void print_flash_info(const esp_image_header_t* pfhdr);
static void set_cache_and_start_app(uint32_t drom_addr,
2016-08-17 15:08:22 +00:00
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
uint32_t entry_addr);
static void update_flash_config(const esp_image_header_t* pfhdr);
static void vddsdio_configure();
static void flash_gpio_configure();
static void uart_console_configure(void);
static void wdt_reset_check(void);
2016-08-17 15:08:22 +00:00
/*
* We arrive here after the ROM bootloader finished loading this second stage bootloader from flash.
* The hardware is mostly uninitialized, flash cache is down and the app CPU is in reset.
* We do have a stack, so we can do the initialization in C.
*/
void call_start_cpu0()
2016-08-17 15:08:22 +00:00
{
cpu_configure_region_protection();
2016-08-17 15:08:22 +00:00
/* Sanity check that static RAM is after the stack */
#ifndef NDEBUG
{
int *sp = get_sp();
assert(&_bss_start <= &_bss_end);
assert(&_data_start <= &_data_end);
assert(sp < &_bss_start);
assert(sp < &_data_start);
}
#endif
2016-08-17 15:08:22 +00:00
//Clear bss
memset(&_bss_start, 0, (&_bss_end - &_bss_start) * sizeof(_bss_start));
/* completely reset MMU for both CPUs
(in case serial bootloader was running) */
Cache_Read_Disable(0);
Cache_Read_Disable(1);
Cache_Flush(0);
Cache_Flush(1);
mmu_init(0);
DPORT_REG_SET_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
mmu_init(1);
DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MMU_IA_CLR);
/* (above steps probably unnecessary for most serial bootloader
usage, all that's absolutely needed is that we unmask DROM0
cache on the following two lines - normal ROM boot exits with
DROM0 cache unmasked, but serial bootloader exits with it
masked. However can't hurt to be thorough and reset
everything.)
The lines which manipulate DPORT_APP_CACHE_MMU_IA_CLR bit are
necessary to work around a hardware bug.
*/
DPORT_REG_CLR_BIT(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DROM0);
DPORT_REG_CLR_BIT(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DROM0);
2016-08-17 15:08:22 +00:00
bootloader_main();
}
/** @brief Load partition table
2016-08-17 15:08:22 +00:00
*
* Parse partition table, get useful data such as location of
* OTA data partition, factory app partition, and test app partition.
2016-08-17 15:08:22 +00:00
*
* @param bs bootloader state structure used to save read data
* @return return true if the partition table was succesfully loaded and MD5 checksum is valid.
2016-08-17 15:08:22 +00:00
*/
bool load_partition_table(bootloader_state_t* bs)
2016-08-17 15:08:22 +00:00
{
const esp_partition_info_t *partitions;
const int ESP_PARTITION_TABLE_DATA_LEN = 0xC00; /* length of actual data (signature is appended to this) */
2016-08-17 15:08:22 +00:00
char *partition_usage;
esp_err_t err;
int num_partitions;
2016-08-17 15:08:22 +00:00
#ifdef CONFIG_SECURE_BOOT_ENABLED
if(esp_secure_boot_enabled()) {
ESP_LOGI(TAG, "Verifying partition table signature...");
err = esp_secure_boot_verify_signature(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table signature.");
return false;
}
ESP_LOGD(TAG, "Partition table signature verified");
}
#endif
partitions = bootloader_mmap(ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
if (!partitions) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", ESP_PARTITION_TABLE_ADDR, ESP_PARTITION_TABLE_DATA_LEN);
return false;
}
ESP_LOGD(TAG, "mapped partition table 0x%x at 0x%x", ESP_PARTITION_TABLE_ADDR, (intptr_t)partitions);
err = esp_partition_table_basic_verify(partitions, true, &num_partitions);
if (err != ESP_OK) {
ESP_LOGE(TAG, "Failed to verify partition table");
return false;
}
ESP_LOGI(TAG, "Partition Table:");
ESP_LOGI(TAG, "## Label Usage Type ST Offset Length");
for(int i = 0; i < num_partitions; i++) {
const esp_partition_info_t *partition = &partitions[i];
ESP_LOGD(TAG, "load partition table entry 0x%x", (intptr_t)partition);
ESP_LOGD(TAG, "type=%x subtype=%x", partition->type, partition->subtype);
2016-08-17 15:08:22 +00:00
partition_usage = "unknown";
/* valid partition table */
switch(partition->type) {
case PART_TYPE_APP: /* app partition */
switch(partition->subtype) {
case PART_SUBTYPE_FACTORY: /* factory binary */
bs->factory = partition->pos;
partition_usage = "factory app";
break;
case PART_SUBTYPE_TEST: /* test binary */
bs->test = partition->pos;
partition_usage = "test app";
break;
default:
/* OTA binary */
if ((partition->subtype & ~PART_SUBTYPE_OTA_MASK) == PART_SUBTYPE_OTA_FLAG) {
bs->ota[partition->subtype & PART_SUBTYPE_OTA_MASK] = partition->pos;
++bs->app_count;
partition_usage = "OTA app";
2016-08-17 15:08:22 +00:00
}
else {
partition_usage = "Unknown app";
2016-08-17 15:08:22 +00:00
}
break;
}
break; /* PART_TYPE_APP */
case PART_TYPE_DATA: /* data partition */
switch(partition->subtype) {
case PART_SUBTYPE_DATA_OTA: /* ota data */
bs->ota_info = partition->pos;
partition_usage = "OTA data";
break;
case PART_SUBTYPE_DATA_RF:
partition_usage = "RF data";
break;
case PART_SUBTYPE_DATA_WIFI:
partition_usage = "WiFi data";
break;
default:
partition_usage = "Unknown data";
break;
}
break; /* PARTITION_USAGE_DATA */
default: /* other partition type */
break;
2016-08-17 15:08:22 +00:00
}
/* print partition type info */
ESP_LOGI(TAG, "%2d %-16s %-16s %02x %02x %08x %08x", i, partition->label, partition_usage,
partition->type, partition->subtype,
partition->pos.offset, partition->pos.size);
2016-08-17 15:08:22 +00:00
}
bootloader_munmap(partitions);
ESP_LOGI(TAG,"End of partition table");
2016-08-17 15:08:22 +00:00
return true;
}
static uint32_t ota_select_crc(const esp_ota_select_entry_t *s)
2016-08-17 15:08:22 +00:00
{
return crc32_le(UINT32_MAX, (uint8_t*)&s->ota_seq, 4);
}
static bool ota_select_valid(const esp_ota_select_entry_t *s)
2016-08-17 15:08:22 +00:00
{
return s->ota_seq != UINT32_MAX && s->crc == ota_select_crc(s);
}
/* indexes used by index_to_partition are the OTA index
number, or these special constants */
#define FACTORY_INDEX (-1)
#define TEST_APP_INDEX (-2)
#define INVALID_INDEX (-99)
/* Given a partition index, return the partition position data from the bootloader_state_t structure */
static esp_partition_pos_t index_to_partition(const bootloader_state_t *bs, int index)
{
if (index == FACTORY_INDEX) {
return bs->factory;
}
if (index == TEST_APP_INDEX) {
return bs->test;
}
if (index >= 0 && index < MAX_OTA_SLOTS && index < bs->app_count) {
return bs->ota[index];
}
esp_partition_pos_t invalid = { 0 };
return invalid;
}
static void log_invalid_app_partition(int index)
{
const char *not_bootable = " is not bootable"; /* save a few string literal bytes */
switch(index) {
case FACTORY_INDEX:
ESP_LOGE(TAG, "Factory app partition%s", not_bootable);
break;
case TEST_APP_INDEX:
ESP_LOGE(TAG, "Factory test app partition%s", not_bootable);
break;
default:
ESP_LOGE(TAG, "OTA app partition slot %d%s", index, not_bootable);
break;
}
}
/* Return the index of the selected boot partition.
This is the preferred boot partition, as determined by the partition table &
any OTA sequence number found in OTA data.
This partition will only be booted if it contains a valid app image, otherwise load_boot_image() will search
for a valid partition using this selection as the starting point.
*/
static int get_selected_boot_partition(const bootloader_state_t *bs)
{
esp_ota_select_entry_t sa,sb;
const esp_ota_select_entry_t *ota_select_map;
if (bs->ota_info.offset != 0) {
// partition table has OTA data partition
if (bs->ota_info.size < 2 * SPI_SEC_SIZE) {
ESP_LOGE(TAG, "ota_info partition size %d is too small (minimum %d bytes)", bs->ota_info.size, sizeof(esp_ota_select_entry_t));
return INVALID_INDEX; // can't proceed
}
ESP_LOGD(TAG, "OTA data offset 0x%x", bs->ota_info.offset);
ota_select_map = bootloader_mmap(bs->ota_info.offset, bs->ota_info.size);
if (!ota_select_map) {
ESP_LOGE(TAG, "bootloader_mmap(0x%x, 0x%x) failed", bs->ota_info.offset, bs->ota_info.size);
return INVALID_INDEX; // can't proceed
}
memcpy(&sa, ota_select_map, sizeof(esp_ota_select_entry_t));
memcpy(&sb, (uint8_t *)ota_select_map + SPI_SEC_SIZE, sizeof(esp_ota_select_entry_t));
bootloader_munmap(ota_select_map);
ESP_LOGD(TAG, "OTA sequence values A 0x%08x B 0x%08x", sa.ota_seq, sb.ota_seq);
if(sa.ota_seq == UINT32_MAX && sb.ota_seq == UINT32_MAX) {
ESP_LOGD(TAG, "OTA sequence numbers both empty (all-0xFF)");
if (bs->factory.offset != 0) {
ESP_LOGI(TAG, "Defaulting to factory image");
return FACTORY_INDEX;
} else {
ESP_LOGI(TAG, "No factory image, trying OTA 0");
return 0;
}
} else {
bool ota_valid = false;
const char *ota_msg;
int ota_seq; // Raw OTA sequence number. May be more than # of OTA slots
if(ota_select_valid(&sa) && ota_select_valid(&sb)) {
ota_valid = true;
ota_msg = "Both OTA values";
ota_seq = MAX(sa.ota_seq, sb.ota_seq) - 1;
} else if(ota_select_valid(&sa)) {
ota_valid = true;
ota_msg = "Only OTA sequence A is";
ota_seq = sa.ota_seq - 1;
} else if(ota_select_valid(&sb)) {
ota_valid = true;
ota_msg = "Only OTA sequence B is";
ota_seq = sb.ota_seq - 1;
}
if (ota_valid) {
int ota_slot = ota_seq % bs->app_count; // Actual OTA partition selection
ESP_LOGD(TAG, "%s valid. Mapping seq %d -> OTA slot %d", ota_msg, ota_seq, ota_slot);
return ota_slot;
} else if (bs->factory.offset != 0) {
ESP_LOGE(TAG, "ota data partition invalid, falling back to factory");
return FACTORY_INDEX;
} else {
ESP_LOGE(TAG, "ota data partition invalid and no factory, will try all partitions");
return FACTORY_INDEX;
}
}
}
// otherwise, start from factory app partition and let the search logic
// proceed from there
return FACTORY_INDEX;
}
/* Return true if a partition has a valid app image that was successfully loaded */
static bool try_load_partition(const esp_partition_pos_t *partition, esp_image_metadata_t *data)
{
if (partition->size == 0) {
ESP_LOGD(TAG, "Can't boot from zero-length partition");
return false;
}
if (esp_image_load(ESP_IMAGE_LOAD, partition, data) == ESP_OK) {
ESP_LOGI(TAG, "Loaded app from partition at offset 0x%x",
partition->offset);
return true;
}
return false;
}
#define TRY_LOG_FORMAT "Trying partition index %d offs 0x%x size 0x%x"
/* Load the app for booting. Start from partition 'start_index', if not bootable then work backwards to FACTORY_INDEX
* (ie try any OTA slots in descending order and then the factory partition).
*
* If still nothing, start from 'start_index + 1' and work up to highest numbered OTA partition.
*
* If still nothing, try TEST_APP_INDEX
*
* Returns true on success, false if there's no bootable app in the partition table.
*/
static bool load_boot_image(const bootloader_state_t *bs, int start_index, esp_image_metadata_t *result)
{
int index = start_index;
esp_partition_pos_t part;
/* work backwards from start_index, down to the factory app */
for(index = start_index; index >= FACTORY_INDEX; index--) {
part = index_to_partition(bs, index);
if (part.size == 0) {
continue;
}
ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
if (try_load_partition(&part, result)) {
return true;
}
log_invalid_app_partition(index);
}
/* failing that work forwards from start_index, try valid OTA slots */
for(index = start_index + 1; index < bs->app_count; index++) {
part = index_to_partition(bs, index);
if (part.size == 0) {
continue;
}
ESP_LOGD(TAG, TRY_LOG_FORMAT, index, part.offset, part.size);
if (try_load_partition(&part, result)) {
return true;
}
log_invalid_app_partition(index);
}
if (try_load_partition(&bs->test, result)) {
ESP_LOGW(TAG, "Falling back to test app as only bootable partition");
return true;
}
ESP_LOGE(TAG, "No bootable app partitions in the partition table");
bzero(result, sizeof(esp_image_metadata_t));
return false;
}
2016-08-17 15:08:22 +00:00
/**
* @function : bootloader_main
* @description: entry function of 2nd bootloader
*
* @inputs: void
*/
void bootloader_main()
{
vddsdio_configure();
flash_gpio_configure();
bootloader_clock_configure();
uart_console_configure();
wdt_reset_check();
ESP_LOGI(TAG, "ESP-IDF %s 2nd stage bootloader", IDF_VER);
#if defined(CONFIG_SECURE_BOOT_ENABLED) || defined(CONFIG_FLASH_ENCRYPTION_ENABLED)
esp_err_t err;
#endif
esp_image_header_t fhdr;
bootloader_state_t bs = { 0 };
2016-08-17 15:08:22 +00:00
ESP_LOGI(TAG, "compile time " __TIME__ );
ets_set_appcpu_boot_addr(0);
/* disable watch dog here */
REG_CLR_BIT( RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN );
REG_CLR_BIT( TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN );
#ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH
const uint32_t spiconfig = ets_efuse_get_spiconfig();
if(spiconfig != EFUSE_SPICONFIG_SPI_DEFAULTS && spiconfig != EFUSE_SPICONFIG_HSPI_DEFAULTS) {
ESP_LOGE(TAG, "SPI flash pins are overridden. \"Enable SPI flash ROM driver patched functions\" must be enabled in menuconfig");
return;
}
#endif
esp_rom_spiflash_unlock();
2016-08-17 15:08:22 +00:00
ESP_LOGI(TAG, "Enabling RNG early entropy source...");
bootloader_random_enable();
#if CONFIG_FLASHMODE_QIO || CONFIG_FLASHMODE_QOUT
bootloader_enable_qio_mode();
#endif
if (bootloader_flash_read(ESP_BOOTLOADER_OFFSET, &fhdr,
sizeof(esp_image_header_t), true) != ESP_OK) {
ESP_LOGE(TAG, "failed to load bootloader header!");
return;
}
2016-08-17 15:08:22 +00:00
print_flash_info(&fhdr);
update_flash_config(&fhdr);
if (!load_partition_table(&bs)) {
ESP_LOGE(TAG, "load partition table error!");
2016-08-17 15:08:22 +00:00
return;
}
int boot_index = get_selected_boot_partition(&bs);
if (boot_index == INVALID_INDEX) {
return; // Unrecoverable failure (not due to corrupt ota data or bad partition contents)
}
// Start from the default, look for the first bootable partition
esp_image_metadata_t image_data;
if (!load_boot_image(&bs, boot_index, &image_data)) {
2016-08-17 15:08:22 +00:00
return;
}
#ifdef CONFIG_SECURE_BOOT_ENABLED
/* Generate secure digest from this bootloader to protect future
modifications */
ESP_LOGI(TAG, "Checking secure boot...");
err = esp_secure_boot_permanently_enable();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Bootloader digest generation failed (%d). SECURE BOOT IS NOT ENABLED.", err);
/* Allow booting to continue, as the failure is probably
due to user-configured EFUSEs for testing...
*/
2016-08-17 15:08:22 +00:00
}
#endif
2016-08-17 15:08:22 +00:00
#ifdef CONFIG_FLASH_ENCRYPTION_ENABLED
/* encrypt flash */
ESP_LOGI(TAG, "Checking flash encryption...");
bool flash_encryption_enabled = esp_flash_encryption_enabled();
err = esp_flash_encrypt_check_and_update();
if (err != ESP_OK) {
ESP_LOGE(TAG, "Flash encryption check failed (%d).", err);
return;
2016-08-17 15:08:22 +00:00
}
if (!flash_encryption_enabled && esp_flash_encryption_enabled()) {
/* Flash encryption was just enabled for the first time,
so issue a system reset to ensure flash encryption
cache resets properly */
ESP_LOGI(TAG, "Resetting with flash encryption enabled...");
REG_WRITE(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_SW_SYS_RST);
return;
}
#endif
ESP_LOGI(TAG, "Disabling RNG early entropy source...");
bootloader_random_disable();
// copy loaded segments to RAM, set up caches for mapped segments, and start application
unpack_load_app(&image_data);
2016-08-17 15:08:22 +00:00
}
static void unpack_load_app(const esp_image_metadata_t* data)
2016-08-17 15:08:22 +00:00
{
uint32_t drom_addr = 0;
uint32_t drom_load_addr = 0;
uint32_t drom_size = 0;
uint32_t irom_addr = 0;
uint32_t irom_load_addr = 0;
uint32_t irom_size = 0;
// Find DROM & IROM addresses, to configure cache mappings
for (int i = 0; i < data->image.segment_count; i++) {
const esp_image_segment_header_t *header = &data->segments[i];
if (header->load_addr >= SOC_IROM_LOW && header->load_addr < SOC_IROM_HIGH) {
if (drom_addr != 0) {
ESP_LOGE(TAG, MAP_ERR_MSG, "DROM");
} else {
ESP_LOGD(TAG, "Mapping segment %d as %s", i, "DROM");
}
drom_addr = data->segment_data[i];
drom_load_addr = header->load_addr;
drom_size = header->data_len;
}
if (header->load_addr >= SOC_DROM_LOW && header->load_addr < SOC_DROM_HIGH) {
if (irom_addr != 0) {
ESP_LOGE(TAG, MAP_ERR_MSG, "IROM");
} else {
ESP_LOGD(TAG, "Mapping segment %d as %s", i, "IROM");
}
irom_addr = data->segment_data[i];
irom_load_addr = header->load_addr;
irom_size = header->data_len;
2016-08-17 15:08:22 +00:00
}
}
ESP_LOGD(TAG, "calling set_cache_and_start_app");
2016-08-17 15:08:22 +00:00
set_cache_and_start_app(drom_addr,
drom_load_addr,
drom_size,
irom_addr,
irom_load_addr,
irom_size,
data->image.entry_addr);
2016-08-17 15:08:22 +00:00
}
static void set_cache_and_start_app(
2016-08-17 15:08:22 +00:00
uint32_t drom_addr,
uint32_t drom_load_addr,
uint32_t drom_size,
uint32_t irom_addr,
uint32_t irom_load_addr,
uint32_t irom_size,
2016-08-17 15:08:22 +00:00
uint32_t entry_addr)
{
ESP_LOGD(TAG, "configure drom and irom and start");
2016-08-17 15:08:22 +00:00
Cache_Read_Disable( 0 );
Cache_Flush( 0 );
/* Clear the MMU entries that are already set up,
so the new app only has the mappings it creates.
*/
for (int i = 0; i < DPORT_FLASH_MMU_TABLE_SIZE; i++) {
DPORT_PRO_FLASH_MMU_TABLE[i] = DPORT_FLASH_MMU_TABLE_INVALID_VAL;
}
2016-08-17 15:08:22 +00:00
uint32_t drom_page_count = (drom_size + 64*1024 - 1) / (64*1024); // round up to 64k
ESP_LOGV(TAG, "d mmu set paddr=%08x vaddr=%08x size=%d n=%d", drom_addr & 0xffff0000, drom_load_addr & 0xffff0000, drom_size, drom_page_count );
2016-08-17 15:08:22 +00:00
int rc = cache_flash_mmu_set( 0, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
2016-08-17 15:08:22 +00:00
rc = cache_flash_mmu_set( 1, 0, drom_load_addr & 0xffff0000, drom_addr & 0xffff0000, 64, drom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
2016-08-17 15:08:22 +00:00
uint32_t irom_page_count = (irom_size + 64*1024 - 1) / (64*1024); // round up to 64k
ESP_LOGV(TAG, "i mmu set paddr=%08x vaddr=%08x size=%d n=%d", irom_addr & 0xffff0000, irom_load_addr & 0xffff0000, irom_size, irom_page_count );
2016-08-17 15:08:22 +00:00
rc = cache_flash_mmu_set( 0, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
2016-08-17 15:08:22 +00:00
rc = cache_flash_mmu_set( 1, 0, irom_load_addr & 0xffff0000, irom_addr & 0xffff0000, 64, irom_page_count );
ESP_LOGV(TAG, "rc=%d", rc );
DPORT_REG_CLR_BIT( DPORT_PRO_CACHE_CTRL1_REG, (DPORT_PRO_CACHE_MASK_IRAM0) | (DPORT_PRO_CACHE_MASK_IRAM1 & 0) | (DPORT_PRO_CACHE_MASK_IROM0 & 0) | DPORT_PRO_CACHE_MASK_DROM0 | DPORT_PRO_CACHE_MASK_DRAM1 );
DPORT_REG_CLR_BIT( DPORT_APP_CACHE_CTRL1_REG, (DPORT_APP_CACHE_MASK_IRAM0) | (DPORT_APP_CACHE_MASK_IRAM1 & 0) | (DPORT_APP_CACHE_MASK_IROM0 & 0) | DPORT_APP_CACHE_MASK_DROM0 | DPORT_APP_CACHE_MASK_DRAM1 );
2016-08-17 15:08:22 +00:00
Cache_Read_Enable( 0 );
// Application will need to do Cache_Flush(1) and Cache_Read_Enable(1)
2016-08-17 15:08:22 +00:00
ESP_LOGD(TAG, "start: 0x%08x", entry_addr);
2016-08-17 15:08:22 +00:00
typedef void (*entry_t)(void);
entry_t entry = ((entry_t) entry_addr);
// TODO: we have used quite a bit of stack at this point.
// use "movsp" instruction to reset stack back to where ROM stack starts.
(*entry)();
}
static void update_flash_config(const esp_image_header_t* pfhdr)
{
uint32_t size;
switch(pfhdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
size = 1;
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
size = 2;
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
size = 4;
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
size = 8;
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
size = 16;
break;
default:
size = 2;
}
Cache_Read_Disable( 0 );
// Set flash chip size
esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff);
// TODO: set mode
// TODO: set frequency
Cache_Flush(0);
Cache_Read_Enable( 0 );
}
2016-08-17 15:08:22 +00:00
static void print_flash_info(const esp_image_header_t* phdr)
2016-08-17 15:08:22 +00:00
{
#if (BOOT_LOG_LEVEL >= BOOT_LOG_LEVEL_NOTICE)
ESP_LOGD(TAG, "magic %02x", phdr->magic );
ESP_LOGD(TAG, "segments %02x", phdr->segment_count );
ESP_LOGD(TAG, "spi_mode %02x", phdr->spi_mode );
ESP_LOGD(TAG, "spi_speed %02x", phdr->spi_speed );
ESP_LOGD(TAG, "spi_size %02x", phdr->spi_size );
2016-08-17 15:08:22 +00:00
const char* str;
switch ( phdr->spi_speed ) {
case ESP_IMAGE_SPI_SPEED_40M:
2016-08-17 15:08:22 +00:00
str = "40MHz";
break;
case ESP_IMAGE_SPI_SPEED_26M:
2016-08-17 15:08:22 +00:00
str = "26.7MHz";
break;
case ESP_IMAGE_SPI_SPEED_20M:
2016-08-17 15:08:22 +00:00
str = "20MHz";
break;
case ESP_IMAGE_SPI_SPEED_80M:
2016-08-17 15:08:22 +00:00
str = "80MHz";
break;
default:
str = "20MHz";
break;
}
ESP_LOGI(TAG, "SPI Speed : %s", str );
2016-08-17 15:08:22 +00:00
/* SPI mode could have been set to QIO during boot already,
so test the SPI registers not the flash header */
uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0));
if (spi_ctrl & SPI_FREAD_QIO) {
2016-08-17 15:08:22 +00:00
str = "QIO";
} else if (spi_ctrl & SPI_FREAD_QUAD) {
2016-08-17 15:08:22 +00:00
str = "QOUT";
} else if (spi_ctrl & SPI_FREAD_DIO) {
2016-08-17 15:08:22 +00:00
str = "DIO";
} else if (spi_ctrl & SPI_FREAD_DUAL) {
2016-08-17 15:08:22 +00:00
str = "DOUT";
} else if (spi_ctrl & SPI_FASTRD_MODE) {
2016-08-17 15:08:22 +00:00
str = "FAST READ";
} else {
2016-08-17 15:08:22 +00:00
str = "SLOW READ";
}
ESP_LOGI(TAG, "SPI Mode : %s", str );
2016-08-17 15:08:22 +00:00
switch ( phdr->spi_size ) {
case ESP_IMAGE_FLASH_SIZE_1MB:
2016-08-17 15:08:22 +00:00
str = "1MB";
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
2016-08-17 15:08:22 +00:00
str = "2MB";
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
2016-08-17 15:08:22 +00:00
str = "4MB";
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
2016-08-17 15:08:22 +00:00
str = "8MB";
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
2016-08-17 15:08:22 +00:00
str = "16MB";
break;
default:
str = "2MB";
2016-08-17 15:08:22 +00:00
break;
}
ESP_LOGI(TAG, "SPI Flash Size : %s", str );
2016-08-17 15:08:22 +00:00
#endif
}
static void vddsdio_configure()
{
#if CONFIG_BOOTLOADER_VDDSDIO_BOOST
rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
if (cfg.enable == 1 && cfg.tieh == 0) { // VDDSDIO regulator is enabled @ 1.8V
cfg.drefh = 3;
cfg.drefm = 3;
cfg.drefl = 3;
cfg.force = 1;
rtc_vddsdio_set_config(cfg);
ets_delay_us(10); // wait for regulator to become stable
}
#endif // CONFIG_BOOTLOADER_VDDSDIO_BOOST
}
#define FLASH_CLK_IO 6
#define FLASH_CS_IO 11
#define FLASH_SPIQ_IO 7
#define FLASH_SPID_IO 8
#define FLASH_SPIWP_IO 10
#define FLASH_SPIHD_IO 9
#define FLASH_IO_MATRIX_DUMMY_40M 1
#define FLASH_IO_MATRIX_DUMMY_80M 2
static void IRAM_ATTR flash_gpio_configure()
{
int spi_cache_dummy = 0;
int drv = 2;
#if CONFIG_FLASHMODE_QIO
spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN; //qio 3
#elif CONFIG_FLASHMODE_QOUT
spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN; //qout 7
#elif CONFIG_FLASHMODE_DIO
spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN; //dio 3
#elif CONFIG_FLASHMODE_DOUT
spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN; //dout 7
#endif
/* dummy_len_plus values defined in ROM for SPI flash configuration */
extern uint8_t g_rom_spiflash_dummy_len_plus[];
#if CONFIG_ESPTOOLPY_FLASHFREQ_40M
g_rom_spiflash_dummy_len_plus[0] = FLASH_IO_MATRIX_DUMMY_40M;
g_rom_spiflash_dummy_len_plus[1] = FLASH_IO_MATRIX_DUMMY_40M;
SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + FLASH_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
#elif CONFIG_ESPTOOLPY_FLASHFREQ_80M
g_rom_spiflash_dummy_len_plus[0] = FLASH_IO_MATRIX_DUMMY_80M;
g_rom_spiflash_dummy_len_plus[1] = FLASH_IO_MATRIX_DUMMY_80M;
SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + FLASH_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
drv = 3;
#endif
uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
uint32_t pkg_ver = chip_ver & 0x7;
if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
// For ESP32D2WD the SPI pins are already configured
// flash clock signal should come from IO MUX.
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
} else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) {
// For ESP32PICOD2 the SPI pins are already configured
// flash clock signal should come from IO MUX.
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
} else if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4) {
// For ESP32PICOD4 the SPI pins are already configured
// flash clock signal should come from IO MUX.
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
} else {
const uint32_t spiconfig = ets_efuse_get_spiconfig();
if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) {
gpio_matrix_out(FLASH_CS_IO, SPICS0_OUT_IDX, 0, 0);
gpio_matrix_out(FLASH_SPIQ_IO, SPIQ_OUT_IDX, 0, 0);
gpio_matrix_in(FLASH_SPIQ_IO, SPIQ_IN_IDX, 0);
gpio_matrix_out(FLASH_SPID_IO, SPID_OUT_IDX, 0, 0);
gpio_matrix_in(FLASH_SPID_IO, SPID_IN_IDX, 0);
gpio_matrix_out(FLASH_SPIWP_IO, SPIWP_OUT_IDX, 0, 0);
gpio_matrix_in(FLASH_SPIWP_IO, SPIWP_IN_IDX, 0);
gpio_matrix_out(FLASH_SPIHD_IO, SPIHD_OUT_IDX, 0, 0);
gpio_matrix_in(FLASH_SPIHD_IO, SPIHD_IN_IDX, 0);
//select pin function gpio
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA0_U, PIN_FUNC_GPIO);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA1_U, PIN_FUNC_GPIO);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA2_U, PIN_FUNC_GPIO);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_DATA3_U, PIN_FUNC_GPIO);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CMD_U, PIN_FUNC_GPIO);
// flash clock signal should come from IO MUX.
// set drive ability for clock
PIN_FUNC_SELECT(PERIPHS_IO_MUX_SD_CLK_U, FUNC_SD_CLK_SPICLK);
SET_PERI_REG_BITS(PERIPHS_IO_MUX_SD_CLK_U, FUN_DRV, drv, FUN_DRV_S);
}
}
}
static void uart_console_configure(void)
{
#if CONFIG_CONSOLE_UART_NONE
ets_install_putc1(NULL);
ets_install_putc2(NULL);
#else // CONFIG_CONSOLE_UART_NONE
const int uart_num = CONFIG_CONSOLE_UART_NUM;
uartAttach();
ets_install_uart_printf();
// Wait for UART FIFO to be empty.
uart_tx_wait_idle(0);
#if CONFIG_CONSOLE_UART_CUSTOM
// Some constants to make the following code less upper-case
const int uart_tx_gpio = CONFIG_CONSOLE_UART_TX_GPIO;
const int uart_rx_gpio = CONFIG_CONSOLE_UART_RX_GPIO;
// Switch to the new UART (this just changes UART number used for
// ets_printf in ROM code).
uart_tx_switch(uart_num);
// If console is attached to UART1 or if non-default pins are used,
// need to reconfigure pins using GPIO matrix
if (uart_num != 0 || uart_tx_gpio != 1 || uart_rx_gpio != 3) {
// Change pin mode for GPIO1/3 from UART to GPIO
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_GPIO3);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_GPIO1);
// Route GPIO signals to/from pins
// (arrays should be optimized away by the compiler)
const uint32_t tx_idx_list[3] = { U0TXD_OUT_IDX, U1TXD_OUT_IDX, U2TXD_OUT_IDX };
const uint32_t rx_idx_list[3] = { U0RXD_IN_IDX, U1RXD_IN_IDX, U2RXD_IN_IDX };
const uint32_t tx_idx = tx_idx_list[uart_num];
const uint32_t rx_idx = rx_idx_list[uart_num];
gpio_matrix_out(uart_tx_gpio, tx_idx, 0, 0);
gpio_matrix_in(uart_rx_gpio, rx_idx, 0);
}
#endif // CONFIG_CONSOLE_UART_CUSTOM
// Set configured UART console baud rate
const int uart_baud = CONFIG_CONSOLE_UART_BAUDRATE;
uart_div_modify(uart_num, (rtc_clk_apb_freq_get() << 4) / uart_baud);
#endif // CONFIG_CONSOLE_UART_NONE
}
static void wdt_reset_cpu0_info_enable(void)
{
//We do not reset core1 info here because it didn't work before cpu1 was up. So we put it into call_start_cpu1.
DPORT_REG_SET_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_PDEBUG_ENABLE | DPORT_PRO_CPU_RECORD_ENABLE);
DPORT_REG_CLR_BIT(DPORT_PRO_CPU_RECORD_CTRL_REG, DPORT_PRO_CPU_RECORD_ENABLE);
}
static void wdt_reset_info_dump(int cpu)
{
uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0,
lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0;
char *cpu_name = cpu ? "APP" : "PRO";
if (cpu == 0) {
stat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_STATUS_REG);
pid = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PID_REG);
inst = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGINST_REG);
dstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGSTATUS_REG);
data = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGDATA_REG);
pc = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGPC_REG);
lsstat = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0STAT_REG);
lsaddr = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0ADDR_REG);
lsdata = DPORT_REG_READ(DPORT_PRO_CPU_RECORD_PDEBUGLS0DATA_REG);
} else {
stat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_STATUS_REG);
pid = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PID_REG);
inst = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGINST_REG);
dstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGSTATUS_REG);
data = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGDATA_REG);
pc = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGPC_REG);
lsstat = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0STAT_REG);
lsaddr = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0ADDR_REG);
lsdata = DPORT_REG_READ(DPORT_APP_CPU_RECORD_PDEBUGLS0DATA_REG);
}
if (DPORT_RECORD_PDEBUGINST_SZ(inst) == 0 &&
DPORT_RECORD_PDEBUGSTATUS_BBCAUSE(dstat) == DPORT_RECORD_PDEBUGSTATUS_BBCAUSE_WAITI) {
ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x (waiti mode)", cpu_name, pc);
} else {
ESP_LOGW(TAG, "WDT reset info: %s CPU PC=0x%x", cpu_name, pc);
}
ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr);
ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata);
}
static void wdt_reset_check(void)
{
int wdt_rst = 0;
RESET_REASON rst_reas[2];
rst_reas[0] = rtc_get_reset_reason(0);
rst_reas[1] = rtc_get_reset_reason(1);
if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET ||
rst_reas[0] == TGWDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) {
ESP_LOGW(TAG, "PRO CPU has been reset by WDT.");
wdt_rst = 1;
}
if (rst_reas[1] == RTCWDT_SYS_RESET || rst_reas[1] == TG0WDT_SYS_RESET || rst_reas[1] == TG1WDT_SYS_RESET ||
rst_reas[1] == TGWDT_CPU_RESET || rst_reas[1] == RTCWDT_CPU_RESET) {
ESP_LOGW(TAG, "APP CPU has been reset by WDT.");
wdt_rst = 1;
}
if (wdt_rst) {
// if reset by WDT dump info from trace port
wdt_reset_info_dump(0);
wdt_reset_info_dump(1);
}
wdt_reset_cpu0_info_enable();
}
void __assert_func(const char *file, int line, const char *func, const char *expr)
{
ESP_LOGE(TAG, "Assert failed in %s, %s:%d (%s)", func, file, line, expr);
while(1) {}
}