On the ESP32S2, rtc_clk_cal(RTC_CAL_RTC_MUX) measures the frequency
of the 90kHz RTC clock regardless of the selected slow clock
frequency. Keep track which clock is selected and pass the argument
to rtc_clk_cal accordingly.
fix clock choices
update rtc 32k xtal code for s2
missed api in rtc.h
bootloader_clock: update for S2
1. use spi functions in rom
2. remove unnecessary GPIO configurations.
3. remove unnecessary dummy settings.
4. enable dummy out function
5. flash and psram have independent timing setting registers.
6. no need to set 1.9v for LDO in 80Mhz
7. set IO driver ability to 1 by default.
8. no need to use GPIO matrix on esp32s2, IO MUX is recommended
9. enable spi clock mode and IO mode settings
1. Delete bootloader_clock_get_rated_freq_mhz, esp32s2 do not need it right now
2. Remove bootloader_flash_gpio_config () because it has the same function as bootloader_flash_dummy_config
* Don't bother checking the chip revision if it looks like the partition
doesn't really contain an app
* Don't print the "info" level about the revision & min revision unless
we're in the bootloader (otherwise it gets printed at random times
during the OTA process)
bootloader_random_enable() and bootloader_random_disable() functions
can be used in app.
This MR added the protection for shared CLK_EN and RST_EN registers.
and all ECDSA to be disabled if secure boot is not enabled
Previously if ECDSA disabled in config then secure_boot_signatures.c would
fail to build (whether or not secure boot was enabled).
To avoid breaking apps that might be using the signature scheme with custom OTA
without enabling secure boot signatures in config, this change just disables
this functionality if unavailable in mbedTLS config.
Possible fix for root cause of https://github.com/espressif/esp-idf/pull/3703
Commit 8cd04c80 has added a dependency of efuse component on
esp_clk_apb_freq, however there was no definition of this function in
the bootloader context.
Reported at https://esp32.com/viewtopic.php?f=13&t=12035
This saves time when waking up from deep sleep, but potentially decreases
the security of the system. If the application able to modify itself
(especially areas that are loaded into RAM) in flash while running
without crashing or is modifies the cached bits of information about
what was last booted from the bootloader, this could cause security
issues if the user does a "deep sleep reset" since the full validation
is skipped.
Signed-off-by: Tim Nordell <tim.nordell@nimbelink.com>
No need to take this step if we are not doing image validation. The
obfuscation only buys us a tiny bit of "security" anyways since the
main parts of flash are memory mapped, too. This saves a little bit of
wake-up time when waking up from deep sleep when the
BOOTLOADER_SKIP_VALIDATE_IN_DEEP_SLEEP option is set.
Signed-off-by: Tim Nordell <tim.nordell@nimbelink.com>