esp32s2: fix enabling 32k XTAL clock

On the ESP32S2, rtc_clk_cal(RTC_CAL_RTC_MUX) measures the frequency
of the 90kHz RTC clock regardless of the selected slow clock
frequency. Keep track which clock is selected and pass the argument
to rtc_clk_cal accordingly.

fix clock choices

update rtc 32k xtal code for s2

missed api in rtc.h

bootloader_clock: update for S2
This commit is contained in:
Ivan Grokhotkov 2020-02-12 18:09:17 +01:00
parent 74ac618287
commit 490bf29767
5 changed files with 116 additions and 44 deletions

View file

@ -54,9 +54,8 @@ void bootloader_clock_configure(void)
rtc_clk_config_t clk_cfg = RTC_CLK_CONFIG_DEFAULT();
#if CONFIG_IDF_TARGET_ESP32
clk_cfg.xtal_freq = CONFIG_ESP32_XTAL_FREQ;
#elif CONFIG_IDF_TARGET_ESP32S2
clk_cfg.xtal_freq = RTC_XTAL_FREQ_40M;
#endif
/* ESP32-S2 doesn't have XTAL_FREQ choice, always 40MHz */
clk_cfg.cpu_freq_mhz = cpu_freq_mhz;
clk_cfg.slow_freq = rtc_clk_slow_freq_get();
clk_cfg.fast_freq = rtc_clk_fast_freq_get();
@ -66,11 +65,20 @@ void bootloader_clock_configure(void)
* part of the start up time by enabling 32k XTAL early.
* App startup code will wait until the oscillator has started up.
*/
#ifdef CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS
/* TODO: move the clock option into esp_system, so that this doesn't have
* to continue:
*/
#if CONFIG_ESP32_RTC_CLK_SRC_EXT_CRYS
if (!rtc_clk_32k_enabled()) {
rtc_clk_32k_bootstrap(CONFIG_ESP32_RTC_XTAL_BOOTSTRAP_CYCLES);
}
#endif
#if CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS
if (!rtc_clk_32k_enabled()) {
rtc_clk_32k_bootstrap(0);
}
#endif
}
#ifdef BOOTLOADER_BUILD

View file

@ -431,10 +431,31 @@ menu "ESP32S2-specific"
help
Choose which clock is used as RTC clock source.
- "Internal 90kHz oscillator" option provides lowest deep sleep current
consumption, and does not require extra external components. However
frequency stability with respect to temperature is poor, so time may
drift in deep/light sleep modes.
- "External 32kHz crystal" provides better frequency stability, at the
expense of slightly higher (1uA) deep sleep current consumption.
- "External 32kHz oscillator" allows using 32kHz clock generated by an
external circuit. In this case, external clock signal must be connected
to 32K_XP pin. Amplitude should be <1.2V in case of sine wave signal,
and <1V in case of square wave signal. Common mode voltage should be
0.1 < Vcm < 0.5Vamp, where Vamp is the signal amplitude.
Additionally, 1nF capacitor must be connected between 32K_XN pin and
ground. 32K_XN pin can not be used as a GPIO in this case.
- "Internal 8MHz oscillator divided by 256" option results in higher
deep sleep current (by 5uA) but has better frequency stability than
the internal 90kHz oscillator. It does not require external components.
config ESP32S2_RTC_CLK_SRC_INT_RC
bool "Internal 150kHz RC oscillator"
bool "Internal 90kHz RC oscillator"
config ESP32S2_RTC_CLK_SRC_EXT_CRYS
bool "External 32kHz crystal"
config ESP32S2_RTC_CLK_SRC_EXT_OSC
bool "External 32kHz oscillator at 32K_XP pin"
config ESP32S2_RTC_CLK_SRC_INT_8MD256
bool "Internal 8MHz oscillator, divided by 256 (~32kHz)"
endchoice
config ESP32S2_RTC_CLK_CAL_CYCLES

View file

@ -44,10 +44,29 @@
#define MHZ (1000000)
static void select_rtc_slow_clk(rtc_slow_freq_t slow_clk);
/* Lower threshold for a reasonably-looking calibration value for a 32k XTAL.
* The ideal value (assuming 32768 Hz frequency) is 1000000/32768*(2**19) = 16*10^6.
*/
#define MIN_32K_XTAL_CAL_VAL 15000000L
/* Indicates that this 32k oscillator gets input from external oscillator, rather
* than a crystal.
*/
#define EXT_OSC_FLAG BIT(3)
/* This is almost the same as rtc_slow_freq_t, except that we define
* an extra enum member for the external 32k oscillator.
* For convenience, lower 2 bits should correspond to rtc_slow_freq_t values.
*/
typedef enum {
SLOW_CLK_RTC = RTC_SLOW_FREQ_RTC, //!< Internal 90 kHz RC oscillator
SLOW_CLK_32K_XTAL = RTC_SLOW_FREQ_32K_XTAL, //!< External 32 kHz XTAL
SLOW_CLK_8MD256 = RTC_SLOW_FREQ_8MD256, //!< Internal 8 MHz RC oscillator, divided by 256
SLOW_CLK_32K_EXT_OSC = RTC_SLOW_FREQ_32K_XTAL | EXT_OSC_FLAG //!< External 32k oscillator connected to 32K_XP pin
} slow_clk_sel_t;
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk);
// g_ticks_us defined in ROMs for PRO CPU
extern uint32_t g_ticks_per_us_pro;
static const char *TAG = "clk";
@ -72,8 +91,12 @@ void esp_clk_init(void)
rtc_wdt_protect_on();
#endif
#ifdef CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS
select_rtc_slow_clk(RTC_SLOW_FREQ_32K_XTAL);
#if defined(CONFIG_ESP32S2_RTC_CLK_SRC_EXT_CRYS)
select_rtc_slow_clk(SLOW_CLK_32K_XTAL);
#elif defined(CONFIG_ESP32S2_RTC_CLK_SRC_EXT_OSC)
select_rtc_slow_clk(SLOW_CLK_32K_EXT_OSC);
#elif defined(CONFIG_ESP32S2_RTC_CLK_SRC_INT_8MD256)
select_rtc_slow_clk(SLOW_CLK_8MD256);
#else
select_rtc_slow_clk(RTC_SLOW_FREQ_RTC);
#endif
@ -106,28 +129,29 @@ void esp_clk_init(void)
int IRAM_ATTR esp_clk_cpu_freq(void)
{
return g_ticks_per_us_pro * 1000000;
return ets_get_cpu_frequency() * 1000000;
}
int IRAM_ATTR esp_clk_apb_freq(void)
{
return MIN(g_ticks_per_us_pro, 80) * 1000000;
return MIN(ets_get_cpu_frequency(), 80) * 1000000;
}
void IRAM_ATTR ets_update_cpu_frequency(uint32_t ticks_per_us)
{
/* Update scale factors used by ets_delay_us */
g_ticks_per_us_pro = ticks_per_us;
}
static void select_rtc_slow_clk(rtc_slow_freq_t slow_clk)
static void select_rtc_slow_clk(slow_clk_sel_t slow_clk)
{
rtc_slow_freq_t rtc_slow_freq = slow_clk & RTC_CNTL_ANA_CLK_RTC_SEL_V;
uint32_t cal_val = 0;
uint32_t wait = 0;
const uint32_t warning_timeout = 3 /* sec */ * 32768 /* Hz */ / (2 * SLOW_CLK_CAL_CYCLES);
bool changing_clock_to_150k = false;
/* number of times to repeat 32k XTAL calibration
* before giving up and switching to the internal RC
*/
#ifdef CONFIG_IDF_TARGET_ESP32
int retry_32k_xtal = 1; /* don't change the behavior for the ESP32 */
#else
int retry_32k_xtal = 3;
#endif
do {
if (slow_clk == RTC_SLOW_FREQ_32K_XTAL) {
if (rtc_slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
/* 32k XTAL oscillator needs to be enabled and running before it can
* be used. Hardware doesn't have a direct way of checking if the
* oscillator is running. Here we use rtc_clk_cal function to count
@ -136,22 +160,26 @@ static void select_rtc_slow_clk(rtc_slow_freq_t slow_clk)
* will time out, returning 0.
*/
ESP_EARLY_LOGD(TAG, "waiting for 32k oscillator to start up");
rtc_clk_32k_enable(true);
cal_val = rtc_clk_cal(RTC_CAL_32K_XTAL, SLOW_CLK_CAL_CYCLES);
if (cal_val == 0 || cal_val < 15000000L) {
ESP_EARLY_LOGE(TAG, "RTC: Not found External 32 kHz XTAL. Switching to Internal 150 kHz RC chain");
slow_clk = RTC_SLOW_FREQ_RTC;
changing_clock_to_150k = true;
if (slow_clk == SLOW_CLK_32K_XTAL) {
rtc_clk_32k_enable(true);
} else if (slow_clk == SLOW_CLK_32K_EXT_OSC) {
rtc_clk_32k_enable_external();
}
// When SLOW_CLK_CAL_CYCLES is set to 0, clock calibration will not be performed at startup.
if (SLOW_CLK_CAL_CYCLES > 0) {
cal_val = rtc_clk_cal(RTC_CAL_32K_XTAL, SLOW_CLK_CAL_CYCLES);
if (cal_val == 0 || cal_val < MIN_32K_XTAL_CAL_VAL) {
if (retry_32k_xtal-- > 0) {
continue;
}
ESP_EARLY_LOGW(TAG, "32 kHz XTAL not found, switching to internal 90 kHz oscillator");
rtc_slow_freq = RTC_SLOW_FREQ_RTC;
}
}
} else if (rtc_slow_freq == RTC_SLOW_FREQ_8MD256) {
rtc_clk_8m_enable(true, true);
}
rtc_clk_slow_freq_set(slow_clk);
if (changing_clock_to_150k == true && wait > 1) {
// This helps when there are errors when switching the clock from External 32 kHz XTAL to Internal 150 kHz RC chain.
rtc_clk_32k_enable(false);
uint32_t min_bootstrap = 5; // Min bootstrapping for continue switching the clock.
rtc_clk_32k_bootstrap(min_bootstrap);
rtc_clk_32k_enable(true);
}
rtc_clk_slow_freq_set(rtc_slow_freq);
if (SLOW_CLK_CAL_CYCLES > 0) {
/* TODO: 32k XTAL oscillator has some frequency drift at startup.
@ -162,9 +190,6 @@ static void select_rtc_slow_clk(rtc_slow_freq_t slow_clk)
const uint64_t cal_dividend = (1ULL << RTC_CLK_CAL_FRACT) * 1000000ULL;
cal_val = (uint32_t) (cal_dividend / rtc_clk_slow_freq_get_hz());
}
if (++wait % warning_timeout == 0) {
ESP_EARLY_LOGW(TAG, "still waiting for source selection RTC");
}
} while (cal_val == 0);
ESP_EARLY_LOGD(TAG, "RTC_SLOW_CLK calibration value: %d", cal_val);
esp_clk_slowclk_cal_set(cal_val);

View file

@ -325,6 +325,11 @@ void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq);
*/
void rtc_clk_32k_enable(bool en);
/**
* @brief Configure 32 kHz XTAL oscillator to accept external clock signal
*/
void rtc_clk_32k_enable_external(void);
/**
* @brief Get the state of 32k XTAL oscillator
* @return true if 32k XTAL oscillator has been enabled

View file

@ -57,6 +57,8 @@ void rtc_clk_32k_enable_internal(x32k_config_t cfg)
void rtc_clk_32k_enable(bool enable)
{
if (enable) {
SET_PERI_REG_MASK(RTC_IO_XTAL_32P_PAD_REG, RTC_IO_X32P_MUX_SEL);
SET_PERI_REG_MASK(RTC_IO_XTAL_32N_PAD_REG, RTC_IO_X32N_MUX_SEL);
x32k_config_t cfg = X32K_CONFIG_DEFAULT();
rtc_clk_32k_enable_internal(cfg);
} else {
@ -65,8 +67,22 @@ void rtc_clk_32k_enable(bool enable)
}
}
void rtc_clk_32k_enable_external(void)
{
SET_PERI_REG_MASK(RTC_IO_XTAL_32P_PAD_REG, RTC_IO_X32P_MUX_SEL);
SET_PERI_REG_MASK(RTC_IO_XTAL_32N_PAD_REG, RTC_IO_X32N_MUX_SEL);
/* TODO: external 32k source may need different settings */
x32k_config_t cfg = X32K_CONFIG_DEFAULT();
rtc_clk_32k_enable_internal(cfg);
}
void rtc_clk_32k_bootstrap(uint32_t cycle)
{
/* No special bootstrapping needed for ESP32-S2, 'cycle' argument is to keep the signature
* same as for the ESP32. Just enable the XTAL here.
*/
(void) cycle;
rtc_clk_32k_enable(true);
}
bool rtc_clk_32k_enabled(void)
@ -76,11 +92,8 @@ bool rtc_clk_32k_enabled(void)
bool xtal_xpd_sw = (xtal_conf & RTC_CNTL_XTAL32K_XPD_FORCE) >> RTC_CNTL_XTAL32K_XPD_FORCE_S;
/* If xtal xpd software control is on */
bool xtal_xpd_st = (xtal_conf & RTC_CNTL_XPD_XTAL_32K) >> RTC_CNTL_XPD_XTAL_32K_S;
if (xtal_xpd_sw & !xtal_xpd_st) {
return false;
} else {
return true;
}
bool disabled = xtal_xpd_sw && !xtal_xpd_st;
return !disabled;
}
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)