OVMS3-idf/components/soc/esp32s2/soc_memory_layout.c

139 lines
6.9 KiB
C
Raw Normal View History

2019-12-26 07:25:24 +00:00
// Copyright 2010-2019 Espressif Systems (Shanghai) PTE LTD
2019-04-03 09:08:02 +00:00
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef BOOTLOADER_BUILD
#include <stdlib.h>
#include <stdint.h>
2019-12-26 07:25:24 +00:00
#include "sdkconfig.h"
2019-04-03 09:08:02 +00:00
#include "soc/soc.h"
#include "soc/soc_memory_layout.h"
#include "esp_heap_caps.h"
/* Memory layout for ESP32 SoC */
/*
Memory type descriptors. These describe the capabilities of a type of memory in the SoC. Each type of memory
map consist of one or more regions in the address space.
Each type contains an array of prioritised capabilities; types with later entries are only taken if earlier
ones can't fulfill the memory request.
The prioritised capabilities work roughly like this:
- For a normal malloc (MALLOC_CAP_DEFAULT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions,
finally eat into the application memory.
- For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
- Application mallocs (PIDx) will allocate IRAM first, if possible, then DRAM.
- Most other malloc caps only fit in one region anyway.
*/
const soc_memory_type_desc_t soc_memory_types[] = {
//Type 0: DRAM
{ "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }, false, false},
// Type 1: DRAM used for startup stacks
{ "DRAM", { MALLOC_CAP_8BIT|MALLOC_CAP_DEFAULT, MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA|MALLOC_CAP_32BIT, 0 }, false, true},
//Type 2: DRAM which has an alias on the I-port
{ "D/IRAM", { 0, MALLOC_CAP_DMA|MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DEFAULT, MALLOC_CAP_32BIT|MALLOC_CAP_EXEC }, true, false},
2019-04-03 09:08:02 +00:00
//Type 3: IRAM
2020-01-17 03:47:08 +00:00
//In ESP32S2, All IRAM region are available by D-port (D/IRAM).
2019-04-03 09:08:02 +00:00
{ "IRAM", { MALLOC_CAP_EXEC|MALLOC_CAP_32BIT|MALLOC_CAP_INTERNAL, 0, 0 }, false, false},
//Type 4: SPI SRAM data
//TODO, in fact, part of them support EDMA, to be supported.
{ "SPIRAM", { MALLOC_CAP_SPIRAM|MALLOC_CAP_DEFAULT, 0, MALLOC_CAP_8BIT|MALLOC_CAP_32BIT}, false, false},
};
const size_t soc_memory_type_count = sizeof(soc_memory_types)/sizeof(soc_memory_type_desc_t);
/*
Region descriptors. These describe all regions of memory available, and map them to a type in the above type.
Because of requirements in the coalescing code which merges adjacent regions, this list should always be sorted
from low to high start address.
*/
const soc_memory_region_t soc_memory_regions[] = {
#ifdef CONFIG_SPIRAM
2019-04-03 09:08:02 +00:00
{ SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH - SOC_EXTRAM_DATA_LOW, 4, 0}, //SPI SRAM, if available
#endif
2019-06-10 07:07:12 +00:00
#if CONFIG_ESP32S2_INSTRUCTION_CACHE_8KB
#if CONFIG_ESP32S2_DATA_CACHE_0KB
{ 0x3FFB2000, 0x2000, 2, 0x40022000}, //Block 1, can be use as I/D cache memory
{ 0x3FFB4000, 0x2000, 2, 0x40024000}, //Block 2, can be use as D cache memory
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
2019-06-10 07:07:12 +00:00
#elif CONFIG_ESP32S2_DATA_CACHE_8KB
{ 0x3FFB4000, 0x2000, 2, 0x40024000}, //Block 2, can be use as D cache memory
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
2019-04-03 09:08:02 +00:00
#else
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
2019-04-03 09:08:02 +00:00
#endif
#else
2019-06-10 07:07:12 +00:00
#if CONFIG_ESP32S2_DATA_CACHE_0KB
{ 0x3FFB4000, 0x2000, 2, 0x40024000}, //Block 2, can be use as D cache memory
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
2019-06-10 07:07:12 +00:00
#elif CONFIG_ESP32S2_DATA_CACHE_8KB
{ 0x3FFB6000, 0x2000, 2, 0x40026000}, //Block 3, can be use as D cache memory
2019-04-03 09:08:02 +00:00
#endif
#endif
{ 0x3FFB8000, 0x4000, 2, 0x40028000}, //Block 4, can be remapped to ROM, can be used as trace memory
{ 0x3FFBC000, 0x4000, 2, 0x4002C000}, //Block 5, can be remapped to ROM, can be used as trace memory
{ 0x3FFC0000, 0x4000, 2, 0x40030000}, //Block 6, can be used as trace memory
{ 0x3FFC4000, 0x4000, 2, 0x40034000}, //Block 7, can be used as trace memory
{ 0x3FFC8000, 0x4000, 2, 0x40038000}, //Block 8, can be used as trace memory
{ 0x3FFCC000, 0x4000, 2, 0x4003C000}, //Block 9, can be used as trace memory
2019-04-03 09:08:02 +00:00
{ 0x3FFD0000, 0x4000, 2, 0x40040000}, //Block 10, can be used as trace memory
{ 0x3FFD4000, 0x4000, 2, 0x40044000}, //Block 11, can be used as trace memory
{ 0x3FFD8000, 0x4000, 2, 0x40048000}, //Block 12, can be used as trace memory
{ 0x3FFDC000, 0x4000, 2, 0x4004C000}, //Block 13, can be used as trace memory
{ 0x3FFE0000, 0x4000, 2, 0x40050000}, //Block 14, can be used as trace memory
{ 0x3FFE4000, 0x4000, 2, 0x40054000}, //Block 15, can be used as trace memory
{ 0x3FFE8000, 0x4000, 2, 0x40058000}, //Block 16, can be used as trace memory
{ 0x3FFEC000, 0x4000, 2, 0x4005C000}, //Block 17, can be used as trace memory
{ 0x3FFF0000, 0x4000, 2, 0x40060000}, //Block 18, can be used for MAC dump, can be used as trace memory
{ 0x3FFF4000, 0x4000, 2, 0x40064000}, //Block 19, can be used for MAC dump, can be used as trace memory
{ 0x3FFF8000, 0x4000, 2, 0x40068000}, //Block 20, can be used for MAC dump, can be used as trace memory
2019-04-03 09:08:02 +00:00
{ 0x3FFFC000, 0x4000, 1, 0x4006C000}, //Block 21, can be used for MAC dump, can be used as trace memory, used for startup stack
};
const size_t soc_memory_region_count = sizeof(soc_memory_regions)/sizeof(soc_memory_region_t);
2019-12-26 07:25:24 +00:00
extern int _dram0_rtos_reserved_start;
extern int _data_start, _heap_start, _iram_start, _iram_end;
2019-04-03 09:08:02 +00:00
/* Reserved memory regions
These are removed from the soc_memory_regions array when heaps are created.
*/
//ROM data region
2019-12-26 07:25:24 +00:00
SOC_RESERVE_MEMORY_REGION((intptr_t)&_dram0_rtos_reserved_start, SOC_BYTE_ACCESSIBLE_HIGH, rom_data_region);
2019-04-03 09:08:02 +00:00
// Static data region. DRAM used by data+bss and possibly rodata
SOC_RESERVE_MEMORY_REGION((intptr_t)&_data_start, (intptr_t)&_heap_start, dram_data);
// ESP32S2 has a big D/IRAM region, the part used by code is reserved
// The address of the D/I bus are in the same order, directly shift IRAM address to get reserved DRAM address
#define I_D_OFFSET (SOC_IRAM_LOW - SOC_DRAM_LOW)
SOC_RESERVE_MEMORY_REGION((intptr_t)&_iram_start - I_D_OFFSET, (intptr_t)&_iram_end - I_D_OFFSET, iram_code);
2019-04-03 09:08:02 +00:00
#ifdef CONFIG_SPIRAM
SOC_RESERVE_MEMORY_REGION( SOC_EXTRAM_DATA_LOW, SOC_EXTRAM_DATA_HIGH, extram_data_region); //SPI RAM gets added later if needed, in spiram.c; reserve it for now
2019-04-03 09:08:02 +00:00
#endif
// Blocks 19 and 20 may be reserved for the trace memory
#if CONFIG_ESP32S2_TRACEMEM_RESERVE_DRAM > 0
SOC_RESERVE_MEMORY_REGION(0x3fffc000 - CONFIG_ESP32S2_TRACEMEM_RESERVE_DRAM, 0x3fffc000, trace_mem);
2019-04-03 09:08:02 +00:00
#endif
#endif // BOOTLOADER_BUILD