OVMS3/OVMS.V3/components/vehicle_renaultzoe_ph2_obd/src/EVC_pids.cpp

276 lines
12 KiB
C++

/*
; Project: Open Vehicle Monitor System
; Date: 15th Apr 2022
;
; (C) 2022 Carsten Schmiemann
;
; Permission is hereby granted, free of charge, to any person obtaining a copy
; of this software and associated documentation files (the "Software"), to deal
; in the Software without restriction, including without limitation the rights
; to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
; copies of the Software, and to permit persons to whom the Software is
; furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
; OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
; THE SOFTWARE.
*/
#include "vehicle_renaultzoe_ph2_obd.h"
void OvmsVehicleRenaultZoePh2OBD::IncomingEVC(uint16_t type, uint16_t pid, const char* data, uint16_t len) {
switch (pid) {
case 0x2006: { //Odometer (Total Vehicle Distance)
StandardMetrics.ms_v_pos_odometer->SetValue((float) CAN_UINT24(0), Kilometers);
//ESP_LOGD(TAG, "2006 EVC ms_v_pos_odometer: %d", CAN_UINT24(0));
break;
}
case 0x2003: { //Vehicle Speed
StandardMetrics.ms_v_pos_speed->SetValue((float) (CAN_UINT(0) * 0.01), KphPS);
//ESP_LOGD(TAG, "2003 EVC ms_v_pos_speed: %f", CAN_UINT(0) * 0.01);
break;
}
case 0x2005: { //12V Battery Voltage
StandardMetrics.ms_v_charge_12v_voltage->SetValue((float) (CAN_UINT(0) * 0.01), Volts);
//ESP_LOGD(TAG, "2005 EVC ms_v_charge_12v_voltage: %f", CAN_UINT(0) * 0.01);
break;
}
case 0x21CF: { //Inverter status --- Main switch for polling and driving state
//ESP_LOGD(TAG, "21CF EVC mt_inv_status: %d", CAN_NIBL(0));
if (CAN_NIBL(0) == 1) {
mt_inv_status->SetValue("Inverter off");
//StandardMetrics.ms_v_env_on->SetValue(false);
//StandardMetrics.ms_v_env_awake->SetValue(false);
} else if (CAN_NIBL(0) == 2) {
mt_inv_status->SetValue("Inverter on");
//StandardMetrics.ms_v_env_on->SetValue(true);
//StandardMetrics.ms_v_env_awake->SetValue(true);
StandardMetrics.ms_v_door_chargeport->SetValue(false);
} else if (CAN_NIBL(0) == 3) {
mt_inv_status->SetValue("Inverter decharging");
//StandardMetrics.ms_v_env_on->SetValue(false);
//StandardMetrics.ms_v_env_awake->SetValue(false);
} else if (CAN_NIBL(0) == 4) {
mt_inv_status->SetValue("Inverter alternator mode");
//StandardMetrics.ms_v_env_on->SetValue(false);
//StandardMetrics.ms_v_env_awake->SetValue(false);
} else if (CAN_NIBL(0) == 5) {
mt_inv_status->SetValue("Inverter ready to sleep");
//StandardMetrics.ms_v_env_on->SetValue(false);
//StandardMetrics.ms_v_env_awake->SetValue(false);
} else {
mt_inv_status->SetValue("Inverter state unknown");
}
break;
}
case 0x2218: { // Ambient temperature
StandardMetrics.ms_v_env_temp->SetValue((float) (CAN_UINT(0) * 0.1 - 273), Celcius);
//ESP_LOGD(TAG, "2218 EVC ms_v_env_temp: %f", (CAN_UINT(0) * 0.1 - 273));
break;
}
case 0x2A09: { // Power consumption by consumer
mt_bat_aux_power_consumer->SetValue((float) CAN_UINT(0) * 10, Watts);
//ESP_LOGD(TAG, "2A09 EVC mt_bat_aux_power_consumer: %d", CAN_UINT(0) * 10);
break;
}
case 0x2191: { // Power consumption by ptc
mt_bat_aux_power_ptc->SetValue((float) CAN_UINT(0) * 10, Watts);
//ESP_LOGD(TAG, "2191 EVC mt_bat_aux_power_ptc: %d", CAN_UINT(0) * 10);
break;
}
case 0x2B85: { // Charge plug preset
//ESP_LOGD(TAG, "2B85 EVC Charge plug present: %d", CAN_NIBL(0));
if (CAN_NIBL(0) == 1) {
StandardMetrics.ms_v_charge_pilot->SetValue(true);
if (!CarPluggedIn) {
ESP_LOGI(TAG, "Charge cable plugged in");
CarPluggedIn = true;
}
}
if (CAN_NIBL(0) == 0) {
StandardMetrics.ms_v_charge_pilot->SetValue(false);
if (CarPluggedIn) {
ESP_LOGI(TAG, "Charge cable plugged out");
CarPluggedIn = false;
StandardMetrics.ms_v_door_chargeport->SetValue(false);
}
}
break;
}
case 0x2B6D: { // Charge MMI States, will be polled every 30s even car is off, because free frames are unreliable
//ESP_LOGD(TAG, "2B6D Charge MMI States RAW: %d", CAN_NIBL(0));
if (CAN_NIBL(0) == 0) {
StandardMetrics.ms_v_charge_state->SetValue("stopped");
StandardMetrics.ms_v_charge_substate->SetValue("stopped");
StandardMetrics.ms_v_charge_inprogress->SetValue(false);
//ESP_LOGD(TAG, "2B6D Charge MMI States : No Charge");
}
if (CAN_NIBL(0) == 1) {
StandardMetrics.ms_v_charge_state->SetValue("timerwait");
StandardMetrics.ms_v_charge_substate->SetValue("timerwait");
//ESP_LOGD(TAG, "2B6D Charge MMI States : Waiting for a planned charge");
}
if (CAN_NIBL(0) == 2) {
StandardMetrics.ms_v_charge_state->SetValue("done");
StandardMetrics.ms_v_charge_substate->SetValue("stopped");
StandardMetrics.ms_v_charge_inprogress->SetValue(false);
//ESP_LOGD(TAG, "2B6D Charge MMI States : Ended charge");
}
if (CAN_NIBL(0) == 3) {
StandardMetrics.ms_v_charge_state->SetValue("charging");
StandardMetrics.ms_v_charge_substate->SetValue("onrequest");
StandardMetrics.ms_v_charge_inprogress->SetValue(true);
//ESP_LOGD(TAG, "2B6D Charge MMI States : Charge in progress");
}
if (CAN_NIBL(0) == 4) {
StandardMetrics.ms_v_charge_state->SetValue("stopped");
StandardMetrics.ms_v_charge_substate->SetValue("interrupted");
StandardMetrics.ms_v_charge_inprogress->SetValue(false);
//ESP_LOGD(TAG, "2B6D Charge MMI States : Charge failure");
}
if (CAN_NIBL(0) == 5) {
StandardMetrics.ms_v_charge_state->SetValue("stopped");
StandardMetrics.ms_v_charge_substate->SetValue("powerwait");
StandardMetrics.ms_v_charge_inprogress->SetValue(false);
//ESP_LOGD(TAG, "2B6D Charge MMI States : Waiting for current charge");
}
if (CAN_NIBL(0) == 6) {
StandardMetrics.ms_v_door_chargeport->SetValue(true);
//ESP_LOGD(TAG, "2B6D Charge MMI States : Chargeport opened");
ESP_LOGI(TAG, "Chargedoor opened");
}
if (CAN_NIBL(0) == 8) {
StandardMetrics.ms_v_charge_state->SetValue("prepare");
StandardMetrics.ms_v_charge_substate->SetValue("powerwait");
StandardMetrics.ms_v_charge_inprogress->SetValue(false);
//ESP_LOGD(TAG, "2B6D Charge MMI States : Charge preparation");
}
if (!mt_bus_awake->AsBool()) {
ZoeWakeUp();
}
break;
}
case 0x2B7A: { // Charge type
//ESP_LOGD(TAG, "2B7A EVC Charge type: %d", (CAN_NIBL(0)));
if (CAN_NIBL(0) == 0) {
StandardMetrics.ms_v_charge_type->SetValue("undefined");
}
if (CAN_NIBL(0) == 1 || CAN_NIBL(0) == 2) {
StandardMetrics.ms_v_charge_type->SetValue("type2");
StandardMetrics.ms_v_charge_mode->SetValue("standard");
}
if (CAN_NIBL(0) == 3) {
StandardMetrics.ms_v_charge_type->SetValue("chademo");
StandardMetrics.ms_v_charge_mode->SetValue("performance");
}
if (CAN_NIBL(0) == 4) {
StandardMetrics.ms_v_charge_type->SetValue("ccs");
StandardMetrics.ms_v_charge_mode->SetValue("performance");
}
break;
}
case 0x3064: { // Motor rpm
StandardMetrics.ms_v_mot_rpm->SetValue((float) (CAN_UINT(0)));
//ESP_LOGD(TAG, "3064 EVC ms_v_mot_rpm: %d", (CAN_UINT(0)));
break;
}
case 0x300F: { // AC charging power available
mt_main_power_available->SetValue((float) (CAN_UINT(0) * 0.025), kW);
//ESP_LOGD(TAG, "300F EVC mt_main_power_available: %f", (CAN_UINT(0) * 0.025));
break;
}
case 0x300D: { // AC input current
StandardMetrics.ms_v_charge_current->SetValue((float) (CAN_UINT(0) * 0.1), Amps);
//Power factor measured with a Janitza UMG512 Class A power analyser to get more precision
//Only three phases measurement at the moment
if (StandardMetrics.ms_v_charge_current->AsFloat() > 19.0f) {
ACInputPowerFactor = 1.0;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 18.0f) {
ACInputPowerFactor = 0.997;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 17.0f) {
ACInputPowerFactor = 0.99;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 16.0f) {
ACInputPowerFactor = 0.978;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 15.0f) {
ACInputPowerFactor = 0.948;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 14.0f) {
ACInputPowerFactor = 0.931;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 13.0f) {
ACInputPowerFactor = 0.916;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 12.0f) {
ACInputPowerFactor = 0.902;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 11.0f) {
ACInputPowerFactor = 0.888;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 10.0f) {
ACInputPowerFactor = 0.905;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 9.0f) {
ACInputPowerFactor = 0.929;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 8.0f) {
ACInputPowerFactor = 0.901;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() > 7.0f) {
ACInputPowerFactor = 0.775;
} else if (StandardMetrics.ms_v_charge_current->AsFloat() < 6.0f && StandardMetrics.ms_v_charge_inprogress->AsBool(false)) {
ACInputPowerFactor = 0.05;
}
if (StandardMetrics.ms_v_charge_type->AsString() == "type2" && mt_main_phases_num->AsFloat() == 3 && StandardMetrics.ms_v_charge_inprogress->AsBool(false)) {
StandardMetrics.ms_v_charge_power->SetValue((StandardMetrics.ms_v_charge_current->AsFloat() * StandardMetrics.ms_v_charge_voltage->AsFloat() * ACInputPowerFactor * 1.732f) * 0.001, kW);
} else if (StandardMetrics.ms_v_charge_type->AsString() == "type2" && (mt_main_phases_num->AsFloat() == 2 || mt_main_phases_num->AsFloat() == 1)) {
StandardMetrics.ms_v_charge_power->SetValue((StandardMetrics.ms_v_charge_current->AsFloat() * StandardMetrics.ms_v_charge_voltage->AsFloat() * ACInputPowerFactor) * 0.001, kW);
} else if (StandardMetrics.ms_v_charge_type->AsString() == "type2") {
StandardMetrics.ms_v_charge_power->SetValue(0);
}
//ESP_LOGD(TAG, "300D EVC mt_main_current: %f", (CAN_UINT(0) * 0.1));
break;
}
case 0x300B: { // AC phases used
//ESP_LOGD(TAG, "300B EVC mt_main_phases: %d", (CAN_NIBL(0)));
if (CAN_NIBL(0) == 0) {
mt_main_phases->SetValue("one phase");
mt_main_phases_num->SetValue(1);
}
if (CAN_NIBL(0) == 1) {
mt_main_phases->SetValue("two phase");
mt_main_phases_num->SetValue(2);
}
if (CAN_NIBL(0) == 2) {
mt_main_phases->SetValue("three phase");
mt_main_phases_num->SetValue(3);
}
if (CAN_NIBL(0) == 3) {
mt_main_phases->SetValue("not detected");
mt_main_phases_num->SetValue(0);
}
break;
}
case 0x2B8A: { // AC mains voltage
StandardMetrics.ms_v_charge_voltage->SetValue((float) (CAN_UINT(0) * 0.5), Volts);
//ESP_LOGD(TAG, "2B8A EVC ms_v_charge_voltage: %f", (CAN_UINT(0) * 0.5));
break;
}
case 0x21CD: { // User SOC
mt_bat_user_soc->SetValue((float) (CAN_UINT(0)), Percentage);
//ESP_LOGD(TAG, "21CD EVC mt_bat_user_soc: %f", (float) CAN_UINT(0));
break;
}
default: {
char *buf = NULL;
size_t rlen = len, offset = 0;
do {
rlen = FormatHexDump(&buf, data + offset, rlen, 16);
offset += 16;
ESP_LOGW(TAG, "OBD2: unhandled reply from EVC [%02x %02x]: %s", type, pid, buf ? buf : "-");
} while (rlen);
if (buf)
free(buf);
break;
}
}
}