/* ; Project: Open Vehicle Monitor System ; Date: 15th Apr 2022 ; ; (C) 2022 Carsten Schmiemann ; ; Permission is hereby granted, free of charge, to any person obtaining a copy ; of this software and associated documentation files (the "Software"), to deal ; in the Software without restriction, including without limitation the rights ; to use, copy, modify, merge, publish, distribute, sublicense, and/or sell ; copies of the Software, and to permit persons to whom the Software is ; furnished to do so, subject to the following conditions: ; ; The above copyright notice and this permission notice shall be included in ; all copies or substantial portions of the Software. ; ; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR ; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, ; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER ; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, ; OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN ; THE SOFTWARE. */ #include "vehicle_renaultzoe_ph2_obd.h" void OvmsVehicleRenaultZoePh2OBD::IncomingEVC(uint16_t type, uint16_t pid, const char* data, uint16_t len) { switch (pid) { case 0x2006: { //Odometer (Total Vehicle Distance) StandardMetrics.ms_v_pos_odometer->SetValue((float) CAN_UINT24(0), Kilometers); //ESP_LOGD(TAG, "2006 EVC ms_v_pos_odometer: %d", CAN_UINT24(0)); break; } case 0x2003: { //Vehicle Speed StandardMetrics.ms_v_pos_speed->SetValue((float) (CAN_UINT(0) * 0.01), KphPS); //ESP_LOGD(TAG, "2003 EVC ms_v_pos_speed: %f", CAN_UINT(0) * 0.01); break; } case 0x2005: { //12V Battery Voltage StandardMetrics.ms_v_charge_12v_voltage->SetValue((float) (CAN_UINT(0) * 0.01), Volts); //ESP_LOGD(TAG, "2005 EVC ms_v_charge_12v_voltage: %f", CAN_UINT(0) * 0.01); break; } case 0x21CF: { //Inverter status --- Main switch for polling and driving state //ESP_LOGD(TAG, "21CF EVC mt_inv_status: %d", CAN_NIBL(0)); if (CAN_NIBL(0) == 1) { mt_inv_status->SetValue("Inverter off"); //StandardMetrics.ms_v_env_on->SetValue(false); //StandardMetrics.ms_v_env_awake->SetValue(false); } else if (CAN_NIBL(0) == 2) { mt_inv_status->SetValue("Inverter on"); //StandardMetrics.ms_v_env_on->SetValue(true); //StandardMetrics.ms_v_env_awake->SetValue(true); StandardMetrics.ms_v_door_chargeport->SetValue(false); } else if (CAN_NIBL(0) == 3) { mt_inv_status->SetValue("Inverter decharging"); //StandardMetrics.ms_v_env_on->SetValue(false); //StandardMetrics.ms_v_env_awake->SetValue(false); } else if (CAN_NIBL(0) == 4) { mt_inv_status->SetValue("Inverter alternator mode"); //StandardMetrics.ms_v_env_on->SetValue(false); //StandardMetrics.ms_v_env_awake->SetValue(false); } else if (CAN_NIBL(0) == 5) { mt_inv_status->SetValue("Inverter ready to sleep"); //StandardMetrics.ms_v_env_on->SetValue(false); //StandardMetrics.ms_v_env_awake->SetValue(false); } else { mt_inv_status->SetValue("Inverter state unknown"); } break; } case 0x2218: { // Ambient temperature StandardMetrics.ms_v_env_temp->SetValue((float) (CAN_UINT(0) * 0.1 - 273), Celcius); //ESP_LOGD(TAG, "2218 EVC ms_v_env_temp: %f", (CAN_UINT(0) * 0.1 - 273)); break; } case 0x2A09: { // Power consumption by consumer mt_bat_aux_power_consumer->SetValue((float) CAN_UINT(0) * 10, Watts); //ESP_LOGD(TAG, "2A09 EVC mt_bat_aux_power_consumer: %d", CAN_UINT(0) * 10); break; } case 0x2191: { // Power consumption by ptc mt_bat_aux_power_ptc->SetValue((float) CAN_UINT(0) * 10, Watts); //ESP_LOGD(TAG, "2191 EVC mt_bat_aux_power_ptc: %d", CAN_UINT(0) * 10); break; } case 0x2B85: { // Charge plug preset //ESP_LOGD(TAG, "2B85 EVC Charge plug present: %d", CAN_NIBL(0)); if (CAN_NIBL(0) == 1) { StandardMetrics.ms_v_charge_pilot->SetValue(true); if (!CarPluggedIn) { ESP_LOGI(TAG, "Charge cable plugged in"); CarPluggedIn = true; } } if (CAN_NIBL(0) == 0) { StandardMetrics.ms_v_charge_pilot->SetValue(false); if (CarPluggedIn) { ESP_LOGI(TAG, "Charge cable plugged out"); CarPluggedIn = false; StandardMetrics.ms_v_door_chargeport->SetValue(false); } } break; } case 0x2B6D: { // Charge MMI States, will be polled every 30s even car is off, because free frames are unreliable //ESP_LOGD(TAG, "2B6D Charge MMI States RAW: %d", CAN_NIBL(0)); if (CAN_NIBL(0) == 0) { StandardMetrics.ms_v_charge_state->SetValue("stopped"); StandardMetrics.ms_v_charge_substate->SetValue("stopped"); StandardMetrics.ms_v_charge_inprogress->SetValue(false); //ESP_LOGD(TAG, "2B6D Charge MMI States : No Charge"); } if (CAN_NIBL(0) == 1) { StandardMetrics.ms_v_charge_state->SetValue("timerwait"); StandardMetrics.ms_v_charge_substate->SetValue("timerwait"); //ESP_LOGD(TAG, "2B6D Charge MMI States : Waiting for a planned charge"); } if (CAN_NIBL(0) == 2) { StandardMetrics.ms_v_charge_state->SetValue("done"); StandardMetrics.ms_v_charge_substate->SetValue("stopped"); StandardMetrics.ms_v_charge_inprogress->SetValue(false); //ESP_LOGD(TAG, "2B6D Charge MMI States : Ended charge"); } if (CAN_NIBL(0) == 3) { StandardMetrics.ms_v_charge_state->SetValue("charging"); StandardMetrics.ms_v_charge_substate->SetValue("onrequest"); StandardMetrics.ms_v_charge_inprogress->SetValue(true); //ESP_LOGD(TAG, "2B6D Charge MMI States : Charge in progress"); } if (CAN_NIBL(0) == 4) { StandardMetrics.ms_v_charge_state->SetValue("stopped"); StandardMetrics.ms_v_charge_substate->SetValue("interrupted"); StandardMetrics.ms_v_charge_inprogress->SetValue(false); //ESP_LOGD(TAG, "2B6D Charge MMI States : Charge failure"); } if (CAN_NIBL(0) == 5) { StandardMetrics.ms_v_charge_state->SetValue("stopped"); StandardMetrics.ms_v_charge_substate->SetValue("powerwait"); StandardMetrics.ms_v_charge_inprogress->SetValue(false); //ESP_LOGD(TAG, "2B6D Charge MMI States : Waiting for current charge"); } if (CAN_NIBL(0) == 6) { StandardMetrics.ms_v_door_chargeport->SetValue(true); //ESP_LOGD(TAG, "2B6D Charge MMI States : Chargeport opened"); ESP_LOGI(TAG, "Chargedoor opened"); } if (CAN_NIBL(0) == 8) { StandardMetrics.ms_v_charge_state->SetValue("prepare"); StandardMetrics.ms_v_charge_substate->SetValue("powerwait"); StandardMetrics.ms_v_charge_inprogress->SetValue(false); //ESP_LOGD(TAG, "2B6D Charge MMI States : Charge preparation"); } if (!mt_bus_awake->AsBool()) { ZoeWakeUp(); } break; } case 0x2B7A: { // Charge type //ESP_LOGD(TAG, "2B7A EVC Charge type: %d", (CAN_NIBL(0))); if (CAN_NIBL(0) == 0) { StandardMetrics.ms_v_charge_type->SetValue("undefined"); } if (CAN_NIBL(0) == 1 || CAN_NIBL(0) == 2) { StandardMetrics.ms_v_charge_type->SetValue("type2"); StandardMetrics.ms_v_charge_mode->SetValue("standard"); } if (CAN_NIBL(0) == 3) { StandardMetrics.ms_v_charge_type->SetValue("chademo"); StandardMetrics.ms_v_charge_mode->SetValue("performance"); } if (CAN_NIBL(0) == 4) { StandardMetrics.ms_v_charge_type->SetValue("ccs"); StandardMetrics.ms_v_charge_mode->SetValue("performance"); } break; } case 0x3064: { // Motor rpm StandardMetrics.ms_v_mot_rpm->SetValue((float) (CAN_UINT(0))); //ESP_LOGD(TAG, "3064 EVC ms_v_mot_rpm: %d", (CAN_UINT(0))); break; } case 0x300F: { // AC charging power available mt_main_power_available->SetValue((float) (CAN_UINT(0) * 0.025), kW); //ESP_LOGD(TAG, "300F EVC mt_main_power_available: %f", (CAN_UINT(0) * 0.025)); break; } case 0x300D: { // AC input current StandardMetrics.ms_v_charge_current->SetValue((float) (CAN_UINT(0) * 0.1), Amps); //Power factor measured with a Janitza UMG512 Class A power analyser to get more precision //Only three phases measurement at the moment if (StandardMetrics.ms_v_charge_current->AsFloat() > 19.0f) { ACInputPowerFactor = 1.0; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 18.0f) { ACInputPowerFactor = 0.997; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 17.0f) { ACInputPowerFactor = 0.99; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 16.0f) { ACInputPowerFactor = 0.978; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 15.0f) { ACInputPowerFactor = 0.948; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 14.0f) { ACInputPowerFactor = 0.931; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 13.0f) { ACInputPowerFactor = 0.916; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 12.0f) { ACInputPowerFactor = 0.902; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 11.0f) { ACInputPowerFactor = 0.888; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 10.0f) { ACInputPowerFactor = 0.905; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 9.0f) { ACInputPowerFactor = 0.929; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 8.0f) { ACInputPowerFactor = 0.901; } else if (StandardMetrics.ms_v_charge_current->AsFloat() > 7.0f) { ACInputPowerFactor = 0.775; } else if (StandardMetrics.ms_v_charge_current->AsFloat() < 6.0f && StandardMetrics.ms_v_charge_inprogress->AsBool(false)) { ACInputPowerFactor = 0.05; } if (StandardMetrics.ms_v_charge_type->AsString() == "type2" && mt_main_phases_num->AsFloat() == 3 && StandardMetrics.ms_v_charge_inprogress->AsBool(false)) { StandardMetrics.ms_v_charge_power->SetValue((StandardMetrics.ms_v_charge_current->AsFloat() * StandardMetrics.ms_v_charge_voltage->AsFloat() * ACInputPowerFactor * 1.732f) * 0.001, kW); } else if (StandardMetrics.ms_v_charge_type->AsString() == "type2" && (mt_main_phases_num->AsFloat() == 2 || mt_main_phases_num->AsFloat() == 1)) { StandardMetrics.ms_v_charge_power->SetValue((StandardMetrics.ms_v_charge_current->AsFloat() * StandardMetrics.ms_v_charge_voltage->AsFloat() * ACInputPowerFactor) * 0.001, kW); } else if (StandardMetrics.ms_v_charge_type->AsString() == "type2") { StandardMetrics.ms_v_charge_power->SetValue(0); } //ESP_LOGD(TAG, "300D EVC mt_main_current: %f", (CAN_UINT(0) * 0.1)); break; } case 0x300B: { // AC phases used //ESP_LOGD(TAG, "300B EVC mt_main_phases: %d", (CAN_NIBL(0))); if (CAN_NIBL(0) == 0) { mt_main_phases->SetValue("one phase"); mt_main_phases_num->SetValue(1); } if (CAN_NIBL(0) == 1) { mt_main_phases->SetValue("two phase"); mt_main_phases_num->SetValue(2); } if (CAN_NIBL(0) == 2) { mt_main_phases->SetValue("three phase"); mt_main_phases_num->SetValue(3); } if (CAN_NIBL(0) == 3) { mt_main_phases->SetValue("not detected"); mt_main_phases_num->SetValue(0); } break; } case 0x2B8A: { // AC mains voltage StandardMetrics.ms_v_charge_voltage->SetValue((float) (CAN_UINT(0) * 0.5), Volts); //ESP_LOGD(TAG, "2B8A EVC ms_v_charge_voltage: %f", (CAN_UINT(0) * 0.5)); break; } case 0x21CD: { // User SOC mt_bat_user_soc->SetValue((float) (CAN_UINT(0)), Percentage); //ESP_LOGD(TAG, "21CD EVC mt_bat_user_soc: %f", (float) CAN_UINT(0)); break; } default: { char *buf = NULL; size_t rlen = len, offset = 0; do { rlen = FormatHexDump(&buf, data + offset, rlen, 16); offset += 16; ESP_LOGW(TAG, "OBD2: unhandled reply from EVC [%02x %02x]: %s", type, pid, buf ? buf : "-"); } while (rlen); if (buf) free(buf); break; } } }