OVMS3/OVMS.V3/main/ovms_metrics.cpp

2193 lines
56 KiB
C++
Raw Normal View History

/*
; Project: Open Vehicle Monitor System
; Date: 14th March 2017
;
; Changes:
; 1.0 Initial release
;
; (C) 2011 Michael Stegen / Stegen Electronics
; (C) 2011-2017 Mark Webb-Johnson
; (C) 2011 Sonny Chen @ EPRO/DX
;
; Permission is hereby granted, free of charge, to any person obtaining a copy
; of this software and associated documentation files (the "Software"), to deal
; in the Software without restriction, including without limitation the rights
; to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
; copies of the Software, and to permit persons to whom the Software is
; furnished to do so, subject to the following conditions:
;
; The above copyright notice and this permission notice shall be included in
; all copies or substantial portions of the Software.
;
; THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
; IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
; FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
; AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
; LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
; OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
; THE SOFTWARE.
*/
#include "ovms_log.h"
static const char *TAG = "metrics";
#include <stdlib.h>
#include <stdio.h>
#include <sstream>
#include <functional>
#include <map>
#include "ovms.h"
#include "ovms_metrics.h"
#include "ovms_command.h"
#include "ovms_events.h"
#include "ovms_script.h"
#include "rom/rtc.h"
#include "string.h"
using namespace std;
#define PERSISTENT_METRICS_MAGIC (('O' << 24) | ('V' << 16) | ('M' << 8) | '3')
#define PERSISTENT_VERSION 3 // increment when struct is changed
RTC_NOINIT_ATTR persistent_metrics pmetrics; // persistent storage container
#define NUM_PERSISTENT_VALUES sizeof_array(pmetrics.values)
static const char* pmetrics_reason; // reason pmetrics was zeroed
std::map<std::size_t, const char*> pmetrics_keymap // hash key → metric name map (registry)
__attribute__ ((init_priority (1800)));
OvmsMetrics MyMetrics
__attribute__ ((init_priority (1800)));
2022-11-20 15:52:49 +00:00
typedef enum : uint8_t
{
GrpNone,
GrpOther,
GrpDistance,
GrpTemp,
GrpPressure,
GrpPower,
GrpEnergy,
GrpTime,
GrpDirection,
GrpSpeed,
GrpAccel,
GrpSignal,
GrpConsumption,
GrpTorque,
// These are where a dimension group is split and allows
// easily folding the 'short distances' back onto their equivalents.
GrpDistanceShort = GrpDistance + 0x80,
GrpAccelShort = GrpAccel + 0x80
} metric_group_t;
struct OvmsUnitInfo {
const char *UnitCode; //< The UnitCode identifying the unit
const char *Label; //< The suffix to print against the value
metric_unit_t MetricUnit; //< The Metric equivalent if there is one.
metric_unit_t ImperialUnit; //< The Imperial equivalent if there is one.
metric_group_t Group; //< The conversion group it belongs to.
};
#define UNIT_GAP {NULL,NULL, UnitNotFound, UnitNotFound, GrpNone}
// Mapping for information on metric info
static const OvmsUnitInfo unit_info[int(MetricUnitLast)+1] =
{
// Unit Code Label Metric Unt Imperial Unt Unit Group
{"native", "", Native, Native, GrpNone }, // 0
{"metric", "", Native, Native, GrpNone }, // 1
{"imperial", "", Native, Native, GrpNone }, // 2
UNIT_GAP, // 3
UNIT_GAP, // 4
UNIT_GAP, // 5
UNIT_GAP, // 6
UNIT_GAP, // 7
UNIT_GAP, // 8
UNIT_GAP, // 9
{"km", "km", Native, Miles, GrpDistance }, // 10
{"miles", "M", Kilometers, Native, GrpDistance }, // 11
{"meters", "m", Native, Feet, GrpDistanceShort }, // 12
{"feet", "ft", Meters, Native, GrpDistanceShort }, // 13
UNIT_GAP, // 14
UNIT_GAP, // 15
UNIT_GAP, // 16
UNIT_GAP, // 17
UNIT_GAP, // 18
UNIT_GAP, // 19
{"celcius", "°C", Native, Fahrenheit, GrpTemp }, // 20
{"fahrenheit","°F", Celcius, Native, GrpTemp }, // 21
UNIT_GAP, // 22
UNIT_GAP, // 23
UNIT_GAP, // 24
UNIT_GAP, // 25
UNIT_GAP, // 26
UNIT_GAP, // 27
UNIT_GAP, // 28
UNIT_GAP, // 29
{"kpa", "kPa", Native, PSI, GrpPressure}, // 30
{"pa", "Pa", Native, PSI, GrpPressure}, // 31
{"psi", "psi", kPa, Native, GrpPressure}, // 32
UNIT_GAP, // 33
UNIT_GAP, // 34
UNIT_GAP, // 35
UNIT_GAP, // 36
UNIT_GAP, // 37
UNIT_GAP, // 38
UNIT_GAP, // 39
{"volts", "V", Native, Native, GrpOther }, // 40
{"amps", "A", Native, Native, GrpOther }, // 41
{"amphours", "Ah", Native, Native, GrpOther }, // 42
{"kw", "kW", Native, Native, GrpPower }, // 43
{"kwh", "kWh", Native, Native, GrpEnergy}, // 44
{"watts", "W", Native, Native, GrpPower }, // 45
{"watthours","Wh", Native, Native, GrpEnergy}, // 46
UNIT_GAP, // 47
UNIT_GAP, // 48
UNIT_GAP, // 49
{"seconds", "Sec", Native, Native, GrpTime}, // 50
{"minutes", "Min", Native, Native, GrpTime}, // 51
{"hours", "Hour", Native, Native, GrpTime}, // 52
{"utc", "UTC", Native, Native, GrpTime}, // 53
{"localtz", "local", Native, Native, GrpTime}, // 54,
UNIT_GAP,// 55
UNIT_GAP,// 56
UNIT_GAP,// 57
UNIT_GAP,// 58
UNIT_GAP,// 59
{"degrees", "°", Native, Native, GrpDirection}, // 60
{"kmph", "km/h", Native, Mph, GrpSpeed}, // 61
{"miph", "Mph", Kph, Native, GrpSpeed}, // 62
UNIT_GAP,// 63
UNIT_GAP,// 64
UNIT_GAP,// 65
UNIT_GAP,// 66
UNIT_GAP,// 67
UNIT_GAP,// 68
UNIT_GAP,// 69
UNIT_GAP,// 70
// Acceleration:
{"kmphps", "km/h/s", Native, MphPS, GrpAccel}, // 71
{"miphps", "Mph/s", KphPS, Native, GrpAccel}, // 72
{"mpss", "m/s²", Native, FeetPSS, GrpAccelShort}, // 73
{"ftpss", "ft/s²", MetersPSS, Native, GrpAccelShort}, // 74
UNIT_GAP,// 75
UNIT_GAP,// 76
UNIT_GAP,// 77
UNIT_GAP,// 78
UNIT_GAP,// 79
{"dbm", "dBm", Native, sq, GrpSignal}, // 80
{"sq", "sq", dbm, Native, GrpSignal}, // 81
UNIT_GAP,// 82
UNIT_GAP,// 83
UNIT_GAP,// 84
UNIT_GAP,// 85
UNIT_GAP,// 86
UNIT_GAP,// 87
UNIT_GAP,// 88
UNIT_GAP,// 89
{"percent", "%", Native, Native, GrpOther}, // 90
UNIT_GAP,// 91
UNIT_GAP,// 92
UNIT_GAP,// 93
UNIT_GAP,// 94
UNIT_GAP,// 95
UNIT_GAP,// 96
UNIT_GAP,// 97
UNIT_GAP,// 98
UNIT_GAP,// 99
// Energy consumption:
{"whpkm", "Wh/km", Native, WattHoursPM, GrpConsumption}, // 100
{"whpmi", "Wh/mi", WattHoursPK,Native, GrpConsumption}, // 101
{"kwhp100km","kWh/100km",Native, WattHoursPM, GrpConsumption}, // 102
{"kmpkwh", "km/kWh", Native, MPkWh, GrpConsumption}, // 103
{"mipkwh", "mi/kWh", KPkWh, Native, GrpConsumption}, // 104
UNIT_GAP,// 105
UNIT_GAP,// 106
UNIT_GAP,// 107
UNIT_GAP,// 108
UNIT_GAP,// 109
// Torque:
{"nm", "Nm", Native, Native, GrpTorque} // 110
};
#undef UNIT_GAP
static inline int mi_to_km(int mi)
{
return mi * 4023 / 2500; // mi * 1.6092
}
static inline float mi_to_km(float mi)
{
return mi * 1.609347;
}
static inline double mi_to_km(double mi)
{
return mi * 1.609347;
}
static inline int km_to_mi(int km)
{
return km * 2500 / 4023; // km / 1.6092
}
static inline float km_to_mi(float km)
{
return km * 0.6213700; // km / 1.609347;
}
static inline double km_to_mi(double km)
{
return km * 0.6213700; // 1 / 1.609347;
}
const int feet_per_mile = 5280;
// Alias for reading clarity.
template<typename T>
T pmi_to_pkm(T pmi)
{
return km_to_mi(pmi);
}
// Alias for reading clarity.
template<typename T>
T pkm_to_pmi(T pkm)
{
return mi_to_km(pkm);
}
2022-11-20 15:52:49 +00:00
/*
* Returns the group of the metric.
* simplify - Means those separated for (eventual) user config
* are folded to one metric.
*/
static metric_group_t GetMetricGroup(metric_unit_t unit)
{
uint8_t unit_i = static_cast<uint8_t>(unit);
if (unit_i <= uint8_t(MetricUnitLast))
return unit_info[unit_i].Group;
return GrpNone;
}
static inline metric_group_t GetMetricGroupSimplify(metric_unit_t unit)
{
// Removes High-bit to fold the 'Short' metrics back onto their equivalents.
return static_cast<metric_group_t>(static_cast<uint8_t>(GetMetricGroup(unit)) & 0x7f);
}
/*
* Modifies the 'to' target to match the real target (or Native for no change).
* Handles ToMetric/ToImperial conversion types.
*
* full_check takes into account whether a conversion CAN be done (used for
* printing correct labels)
*/
static void CheckTargetUnit(metric_unit_t from, metric_unit_t &to, bool full_check)
{
if (from == Other)
{
to = from;
return;
}
switch (to)
{
case Native: break;
case ToMetric:
{
uint8_t unit_i = static_cast<uint8_t>(from);
if (unit_i <= uint8_t(MetricUnitLast))
to = unit_info[unit_i].MetricUnit;
break;
}
case ToImperial:
{
uint8_t unit_i = static_cast<uint8_t>(from);
if (unit_i <= uint8_t(MetricUnitLast))
to = unit_info[unit_i].ImperialUnit;
break;
}
default:
if (to == from)
to = Native;
else if (full_check)
{
metric_group_t from_grp = GetMetricGroupSimplify(from);
if (from_grp == GrpNone || from_grp == GrpOther)
to = Native;
else if (from_grp != GetMetricGroupSimplify(to))
to = Native;
}
break;
}
}
void metrics_list(int verbosity, OvmsWriter* writer, OvmsCommand* cmd, int argc, const char* const* argv)
{
bool found = false;
bool show_staleness = false;
bool show_set = false;
bool only_persist = false;
bool display_strings = false;
2022-11-20 15:52:49 +00:00
metric_unit_t def_unit = Native;
const char* show_only = NULL;
int i;
for (i=0;i<argc;i++)
{
const char *cp = argv[i];
if (*cp != '-')
{
if (show_only != NULL)
{
cmd->PutUsage(writer);
return;
}
show_only = cp;
continue;
}
for (++cp; *cp != '\0'; ++cp)
{
switch (*cp)
{
case 'c':
show_set = true;
break;
2022-11-20 15:52:49 +00:00
case 'i':
def_unit = ToImperial;
break;
case 'm':
def_unit = ToMetric;
break;
case 'p':
only_persist = true;
break;
case 's':
show_staleness = true;
break;
case 't':
display_strings = true;
break;
default:
cmd->PutUsage(writer);
return;
}
}
}
for (OvmsMetric* m=MyMetrics.m_first; m != NULL; m=m->m_next)
{
if (only_persist && !m->m_persist)
continue;
const char *k = m->m_name;
if (show_only != NULL && strstr(k, show_only) == NULL)
continue;
found = true;
if (show_set)
{
if (m->IsDefined())
writer->printf("metrics set %s %s\n", k, m->AsString().c_str());
continue;
}
2022-11-20 15:52:49 +00:00
metric_unit_t use_unit = def_unit;
metric_unit_t my_unit = m->GetUnits();
if (my_unit == TimeUTC)
use_unit = TimeLocal;
else
{
CheckTargetUnit(my_unit, use_unit, true);
if (use_unit == Native)
use_unit = my_unit;
}
std::string v = m->AsUnitString("", use_unit);
if (show_staleness)
{
int age = m->Age();
if (age>99)
age=99;
if (v.empty())
writer->printf("[---] ",k);
else
writer->printf("[%02d%c] ", age, (m->IsStale() ? 'S' : '-' ));
}
if (v.empty())
{
writer->printf("%s\n",k);
continue;
}
// Apply (linux) "cat -t" semantics to strings
const char *s;
if (!display_strings || !m->IsString())
s = v.c_str();
else
s = display_encode(v).c_str();
writer->printf("%-40.40s %s\n", k, s);
}
if (show_only && !found)
writer->puts("Unrecognised metric name");
}
void metrics_persist(int verbosity, OvmsWriter* writer, OvmsCommand* cmd, int argc, const char* const* argv)
{
if (argc > 0)
{
if (strcmp(argv[0], "-r") != 0)
{
cmd->PutUsage(writer);
return;
}
pmetrics.magic = 0;
}
if (pmetrics.magic != PERSISTENT_METRICS_MAGIC)
writer->puts("Persistent metrics will be reset on the next boot");
writer->printf("version %d, ", pmetrics.version);
writer->printf("serial %d, ", pmetrics.serial);
if (pmetrics_reason != NULL)
writer->printf("%s caused reset, ", pmetrics_reason);
writer->printf("%d bytes, and ", pmetrics.size);
writer->printf("%d of %d slots used\n", pmetrics.used, NUM_PERSISTENT_VALUES);
}
void metrics_set(int verbosity, OvmsWriter* writer, OvmsCommand* cmd, int argc, const char* const* argv)
{
2022-11-20 15:52:49 +00:00
const char *unit = NULL;
if (argc > 2)
unit = argv[2];
if (MyMetrics.Set(argv[0],argv[1], unit))
writer->puts("Metric set");
else
writer->puts("Metric could not be set");
}
2022-11-20 15:52:49 +00:00
void metrics_get(int verbosity, OvmsWriter* writer, OvmsCommand* cmd, int argc, const char* const* argv)
{
const char *unit = NULL;
if (argc > 1)
unit = argv[1];
std::string str = MyMetrics.GetUnitStr(argv[0], unit);
writer->puts(str.c_str());
}
bool pmetrics_check()
{
bool ret = true;
if (pmetrics.magic != PERSISTENT_METRICS_MAGIC)
{
ESP_LOGE(TAG, "pmetrics_check: bad magic");
ret = false;
}
if (pmetrics.version != PERSISTENT_VERSION)
{
ESP_LOGE(TAG, "pmetrics_check: bad version");
ret = false;
}
if (pmetrics.size != sizeof(pmetrics))
{
ESP_LOGE(TAG, "pmetrics_check: bad size");
ret = false;
}
if ((pmetrics.used < 0 || pmetrics.used > NUM_PERSISTENT_VALUES))
{
ESP_LOGE(TAG, "pmetrics_check: out of range used");
ret = false;
}
for (OvmsMetric* m = MyMetrics.m_first; m != NULL; m = m->m_next)
{
if (m->m_persist && !m->CheckPersist())
{
ret = false;
break;
}
}
return ret;
}
persistent_values *pmetrics_find(const char *name)
{
int i;
persistent_values *vp;
std::size_t namehash = std::hash<std::string>{}(name);
for (i = 0, vp = pmetrics.values; i < pmetrics.used; ++i, ++vp)
{
if (vp->namehash == namehash)
return vp;
}
return NULL;
}
void pmetrics_init(bool refresh = false)
{
memset(&pmetrics, 0, sizeof(pmetrics));
pmetrics.magic = PERSISTENT_METRICS_MAGIC;
pmetrics.version = PERSISTENT_VERSION;
pmetrics.size = sizeof(persistent_metrics);
if (refresh)
{
for (OvmsMetric* m = MyMetrics.m_first; m != NULL; m = m->m_next)
m->RefreshPersist();
}
}
persistent_values *pmetrics_register(const char *name)
{
int i;
persistent_values *vp;
std::size_t namehash = std::hash<std::string>{}(name);
// check for hash collision:
auto it = pmetrics_keymap.find(namehash);
if (it != pmetrics_keymap.end() && strcmp(it->second, name) != 0)
{
ESP_LOGE(TAG, "pmetrics_register: cannot persist '%s' due to hash collision with '%s'",
name, it->second);
return NULL;
}
// find slot:
for (i = 0, vp = pmetrics.values; i < pmetrics.used; ++i, ++vp)
{
if (vp->namehash == namehash)
break;
}
// not found? assign to next free slot:
if (i >= pmetrics.used)
{
if (i >= NUM_PERSISTENT_VALUES)
{
ESP_LOGE(TAG, "pmetrics_register: no free slots, cannot persist '%s'", name);
return NULL;
}
vp->namehash = namehash;
memset(&vp->value, 0, sizeof(vp->value));
++pmetrics.used;
}
ESP_LOGD(TAG, "pmetrics_register: '%s' => slot=%d, used %d/%d",
name, i, pmetrics.used, NUM_PERSISTENT_VALUES);
pmetrics_keymap[namehash] = name;
return vp;
}
void OvmsMetrics::EventSystemShutDown(std::string event, void* data)
{
/* Check for corruption and repair of possible before shutting down */
if (!pmetrics_check())
{
ESP_LOGI(TAG, "Persistent metrics shutdown check failed");
pmetrics_init(true);
}
}
void metrics_trace(int verbosity, OvmsWriter* writer, OvmsCommand* cmd, int argc, const char* const* argv)
{
if (strcmp(cmd->GetName(),"on")==0)
MyMetrics.m_trace = true;
else
MyMetrics.m_trace = false;
writer->printf("Metric tracing is now %s\n",cmd->GetName());
}
2022-11-20 15:52:49 +00:00
void metrics_units(int verbosity, OvmsWriter* writer, OvmsCommand* cmd, int argc, const char* const* argv)
{
const char* show_only = NULL;
int i;
for (i=0;i<argc;i++)
{
const char *cp = argv[i];
if (*cp != '-')
{
if (show_only != NULL)
{
cmd->PutUsage(writer);
return;
}
show_only = cp;
continue;
}
}
bool found = false;
for (metric_unit_t unit = MetricUnitFirst; unit <= MetricUnitLast; unit = metric_unit_t(1+(uint8_t)unit))
{
const char *metric_name = OvmsMetricUnitName(unit);
if (metric_name == NULL)
continue;
if (show_only != NULL && strstr(metric_name, show_only) == NULL)
continue;
const char *metric_label = OvmsMetricUnitLabel(unit);
writer->printf("%12s : %s\n", metric_name, metric_label);
found = true;
}
if (show_only && !found)
writer->puts("Unrecognised unit name");
}
#ifdef CONFIG_OVMS_SC_JAVASCRIPT_DUKTAPE
2022-11-20 15:52:49 +00:00
static duk_ret_t DukOvmsMetricHasValue(duk_context *ctx)
{
DukContext dc(ctx);
const char *mn = duk_to_string(ctx,0);
OvmsMetric *m = MyMetrics.Find(mn);
if (!m)
return 0;
dc.Push(m->IsDefined());
return 1;
}
static duk_ret_t DukOvmsMetricValue(duk_context *ctx)
{
DukContext dc(ctx);
const char *mn = duk_to_string(ctx,0);
OvmsMetric *m = MyMetrics.Find(mn);
2022-11-20 15:52:49 +00:00
if (!m)
return 0;
bool decode = true;
const char *un = NULL;
bool has_unit = false;
if (duk_check_type_mask(ctx, 1, DUK_TYPE_MASK_BOOLEAN))
decode = duk_opt_boolean(ctx, 1, true);
else
{
un = duk_opt_string(ctx, 1, NULL);
decode = duk_opt_boolean(ctx, 2, true);
has_unit = un != NULL;
}
metric_unit_t unit = OvmsMetricUnitFromName(un);
if (m && unit != UnitNotFound)
{
if (decode)
2022-11-20 15:52:49 +00:00
m->DukPush(dc, unit);
else if (has_unit)
dc.Push(m->AsUnitString("", unit));
else
2022-11-20 15:52:49 +00:00
dc.Push(m->AsString(""));
return 1; /* one return value */
}
else
return 0;
}
static duk_ret_t DukOvmsMetricJSON(duk_context *ctx)
{
const char *mn = duk_to_string(ctx,0);
OvmsMetric *m = MyMetrics.Find(mn);
if (m)
{
duk_push_string(ctx, m->AsJSON().c_str());
return 1; /* one return value */
}
else
return 0;
}
static duk_ret_t DukOvmsMetricFloat(duk_context *ctx)
{
const char *mn = duk_to_string(ctx,0);
OvmsMetric *m = MyMetrics.Find(mn);
2022-11-20 15:52:49 +00:00
const char *un = duk_opt_string(ctx,1,NULL);
metric_unit_t unit = OvmsMetricUnitFromName(un);
if (m && unit != UnitNotFound)
{
2022-11-20 15:52:49 +00:00
duk_push_number(ctx, float2double(m->AsFloat(0, unit)));
return 1; /* one return value */
}
else
return 0;
}
static duk_ret_t DukOvmsMetricGetValues(duk_context *ctx)
{
OvmsMetric *m;
DukContext dc(ctx);
2022-11-20 15:52:49 +00:00
bool has_unit = false;
bool decode = true;
const char *un = NULL;
if (duk_check_type_mask(ctx, 1, DUK_TYPE_MASK_BOOLEAN))
decode = duk_opt_boolean(ctx, 1, true);
else
{
un = duk_opt_string(ctx, 1, NULL);
has_unit = un != NULL;
decode = duk_opt_boolean(ctx, 2, true);
}
metric_unit_t unit = OvmsMetricUnitFromName(un);
duk_idx_t obj_idx = dc.PushObject();
// helper: set object property from metric
2022-11-20 15:52:49 +00:00
auto set_metric = [&dc, obj_idx, decode, unit, has_unit](OvmsMetric *m)
{
if (decode)
2022-11-20 15:52:49 +00:00
m->DukPush(dc, unit);
else if (has_unit)
dc.Push(m->AsUnitString("", unit));
else
dc.Push(m->AsString());
dc.PutProp(obj_idx, m->m_name);
};
if (duk_is_array(ctx, 0))
{
// get metric names from array:
for (int i=0; duk_get_prop_index(ctx, 0, i); i++)
{
m = MyMetrics.Find(duk_to_string(ctx, -1));
if (m) set_metric(m);
duk_pop(ctx);
}
duk_pop(ctx);
}
else if (duk_is_object(ctx, 0))
{
// get metric names from object properties:
duk_enum(ctx, 0, 0);
while (duk_next(ctx, -1, true))
{
m = MyMetrics.Find(duk_to_string(ctx, -2));
if (m) set_metric(m);
duk_pop_2(ctx);
}
duk_pop(ctx);
}
else
{
// simple metric name substring filter:
const char *filter = duk_opt_string(ctx, 0, "");
for (m = MyMetrics.m_first; m; m = m->m_next)
{
if (*filter && !strstr(m->m_name, filter))
continue;
set_metric(m);
}
}
return 1;
}
#endif //#ifdef CONFIG_OVMS_SC_JAVASCRIPT_DUKTAPE
2022-11-20 15:52:49 +00:00
MetricCallbackEntry::MetricCallbackEntry(std::string caller, MetricCallback callback)
{
m_caller = caller;
m_callback = callback;
}
MetricCallbackEntry::~MetricCallbackEntry()
{
}
OvmsMetrics::OvmsMetrics()
{
ESP_LOGI(TAG, "Initialising METRICS (1810)");
m_nextmodifier = 1;
m_first = NULL;
m_trace = false;
// Register our commands
OvmsCommand* cmd_metric = MyCommandApp.RegisterCommand("metrics","METRICS framework");
cmd_metric->RegisterCommand("list","Show all metrics", metrics_list,
2022-11-20 15:52:49 +00:00
"[-cimpst] [<metric>]\n"
"Display a metric, show all by default\n"
"-c = display persistent metrics set commands\n"
2022-11-20 15:52:49 +00:00
"-i = display imperial units where possible\n"
"-m = display metric units where possible\n"
"-p = display only persistent metrics\n"
"-s = show metric staleness\n"
"-t = display non-printing characters and tabs in string metrics", 0, 2);
cmd_metric->RegisterCommand("persist","Show persistent metrics info", metrics_persist, "[-r]\n"
"-r = reset persistent metrics", 0, 1);
2022-11-20 15:52:49 +00:00
cmd_metric->RegisterCommand("set","Set the value of a metric",metrics_set, "<metric> <value> [<unit>]", 2, 3);
cmd_metric->RegisterCommand("get","Get the value of a metric",metrics_get, "<metric> [<unit>]", 1, 2);
cmd_metric->RegisterCommand("units","List available units",metrics_units, "[<name>]",0,1);
OvmsCommand* cmd_metrictrace = cmd_metric->RegisterCommand("trace","METRIC trace framework");
cmd_metrictrace->RegisterCommand("on","Turn metric tracing ON",metrics_trace);
cmd_metrictrace->RegisterCommand("off","Turn metric tracing OFF",metrics_trace);
#ifdef CONFIG_OVMS_SC_JAVASCRIPT_DUKTAPE
ESP_LOGI(TAG, "Expanding DUKTAPE javascript engine");
DuktapeObjectRegistration* dto = new DuktapeObjectRegistration("OvmsMetrics");
2022-11-20 15:52:49 +00:00
dto->RegisterDuktapeFunction(DukOvmsMetricHasValue, 1, "HasValue");
dto->RegisterDuktapeFunction(DukOvmsMetricValue, 3, "Value");
dto->RegisterDuktapeFunction(DukOvmsMetricJSON, 1, "AsJSON");
2022-11-20 15:52:49 +00:00
dto->RegisterDuktapeFunction(DukOvmsMetricFloat, 2, "AsFloat");
dto->RegisterDuktapeFunction(DukOvmsMetricGetValues, 3, "GetValues");
MyDuktape.RegisterDuktapeObject(dto);
#endif //#ifdef CONFIG_OVMS_SC_JAVASCRIPT_DUKTAPE
/* Initialize persistent metrics on cold boot or corruption */
if (rtc_get_reset_reason(0) == POWERON_RESET || !pmetrics_check())
pmetrics_init();
ESP_LOGI(TAG, "Persistent metrics serial %u using %d bytes, %d/%d slots used",
++pmetrics.serial, sizeof(pmetrics), pmetrics.used, NUM_PERSISTENT_VALUES);
// Register our event
#undef bind // Kludgy, but works
using std::placeholders::_1;
using std::placeholders::_2;
MyEvents.RegisterEvent(TAG, "system.shutdown",
std::bind(&OvmsMetrics::EventSystemShutDown, this, _1, _2));
}
OvmsMetrics::~OvmsMetrics()
{
for (OvmsMetric* m = m_first; m!=NULL;)
{
OvmsMetric* c = m;
m = m->m_next;
delete c;
}
}
void OvmsMetrics::RegisterMetric(OvmsMetric* metric)
{
// Quick simple check for if we are the first metric.
if (m_first == NULL)
{
m_first = metric;
return;
}
// Now, check if we are before the first
if (strcmp(m_first->m_name,metric->m_name)>=0)
{
metric->m_next = m_first;
m_first = metric;
return;
}
// Search for the correct place to insert
for (OvmsMetric*m = m_first; m!=NULL; m=m->m_next)
{
if (m->m_next == NULL)
{
m->m_next = metric;
return;
}
if (strcmp(m->m_next->m_name,metric->m_name)>=0)
{
metric->m_next = m->m_next;
m->m_next = metric;
return;
}
}
}
void OvmsMetrics::DeregisterMetric(OvmsMetric* metric)
{
if (m_first == metric)
{
m_first = metric->m_next;
delete metric;
return;
}
for (OvmsMetric* m=m_first;m!=NULL;m=m->m_next)
{
if (m->m_next == metric)
{
m->m_next = metric->m_next;
delete metric;
return;
}
}
}
2022-11-20 15:52:49 +00:00
std::string OvmsMetrics::GetUnitStr(const char* metric, const char *unit)
{
OvmsMetric* m = Find(metric);
if (m == NULL) return "(not found)";
metric_unit_t metric_unit = Native;
if (unit != NULL)
{
metric_unit_t found_unit = OvmsMetricUnitFromName(unit);
if (found_unit == UnitNotFound)
return "(invalid unit)";
metric_unit = found_unit;
}
return m->AsUnitString("(not set)", metric_unit);
}
bool OvmsMetrics::Set(const char* metric, const char* value, const char *unit)
{
OvmsMetric* m = Find(metric);
if (m == NULL) return false;
2022-11-20 15:52:49 +00:00
metric_unit_t metric_unit = Native;
if (unit != NULL)
{
metric_unit_t found_unit = OvmsMetricUnitFromName(unit);
if (found_unit == UnitNotFound)
return false;
metric_unit = found_unit;
}
2022-11-20 15:52:49 +00:00
m->SetValue(std::string(value), metric_unit);
return true;
}
bool OvmsMetrics::SetInt(const char* metric, int value)
{
OvmsMetricInt* m = (OvmsMetricInt*)Find(metric);
if (m == NULL) return false;
m->SetValue(value);
return true;
}
bool OvmsMetrics::SetBool(const char* metric, bool value)
{
OvmsMetricBool* m = (OvmsMetricBool*)Find(metric);
if (m == NULL) return false;
m->SetValue(value);
return true;
}
bool OvmsMetrics::SetFloat(const char* metric, float value)
{
OvmsMetricFloat* m = (OvmsMetricFloat*)Find(metric);
if (m == NULL) return false;
m->SetValue(value);
return true;
}
OvmsMetric* OvmsMetrics::Find(const char* metric)
{
for (OvmsMetric* m=m_first; m != NULL; m=m->m_next)
{
if (strcmp(m->m_name,metric)==0) return m;
}
return NULL;
}
OvmsMetricInt* OvmsMetrics::InitInt(const char* metric, uint16_t autostale, int value, metric_unit_t units, bool persist)
{
OvmsMetricInt *m = (OvmsMetricInt*)Find(metric);
if (m==NULL) m = new OvmsMetricInt(metric, autostale, units, persist);
if (!m->IsDefined())
m->SetValue(value);
return m;
}
OvmsMetricBool* OvmsMetrics::InitBool(const char* metric, uint16_t autostale, bool value, metric_unit_t units, bool persist)
{
OvmsMetricBool *m = (OvmsMetricBool*)Find(metric);
if (m==NULL) m = new OvmsMetricBool(metric, autostale, units, persist);
if (!m->IsDefined())
m->SetValue(value);
return m;
}
OvmsMetricFloat* OvmsMetrics::InitFloat(const char* metric, uint16_t autostale, float value, metric_unit_t units, bool persist)
{
OvmsMetricFloat *m = (OvmsMetricFloat*)Find(metric);
if (m==NULL) m = new OvmsMetricFloat(metric, autostale, units, persist);
if (!m->IsDefined())
m->SetValue(value);
return m;
}
OvmsMetricString* OvmsMetrics::InitString(const char* metric, uint16_t autostale, const char* value, metric_unit_t units)
{
OvmsMetricString *m = (OvmsMetricString*)Find(metric);
if (m==NULL) m = new OvmsMetricString(metric, autostale, units);
if (value && !m->IsDefined())
m->SetValue(value);
return m;
}
2022-11-20 15:52:49 +00:00
void OvmsMetrics::RegisterListener(std::string caller, std::string name, MetricCallback callback)
{
auto k = m_listeners.find(name);
if (k == m_listeners.end())
{
m_listeners[name] = new MetricCallbackList();
k = m_listeners.find(name);
}
if (k == m_listeners.end())
{
2022-11-20 15:52:49 +00:00
ESP_LOGE(TAG, "Problem registering metric %s for caller %s",name.c_str(),caller.c_str());
return;
}
MetricCallbackList *ml = k->second;
ml->push_back(new MetricCallbackEntry(caller,callback));
}
2022-11-20 15:52:49 +00:00
void OvmsMetrics::DeregisterListener(std::string caller)
{
MetricCallbackMap::iterator itm=m_listeners.begin();
while (itm!=m_listeners.end())
{
MetricCallbackList* ml = itm->second;
MetricCallbackList::iterator itc=ml->begin();
while (itc!=ml->end())
{
MetricCallbackEntry* ec = *itc;
if (ec->m_caller == caller)
{
itc = ml->erase(itc);
delete ec;
}
else
{
++itc;
}
}
if (ml->empty())
{
itm = m_listeners.erase(itm);
delete ml;
}
else
{
++itm;
}
}
}
void OvmsMetrics::NotifyModified(OvmsMetric* metric)
{
if (m_trace &&
strcmp(metric->m_name, "m.monotonic") != 0 &&
strcmp(metric->m_name, "m.time.utc") != 0 &&
strcmp(metric->m_name, "v.e.parktime") != 0 &&
strcmp(metric->m_name, "v.e.drivetime") != 0 &&
strcmp(metric->m_name, "v.c.time") != 0)
{
ESP_LOGI(TAG, "Modified metric %s: %s",
metric->m_name, metric->AsUnitString().c_str());
}
auto k = m_listeners.find("*");
for (int x=0;x<2;x++)
{
if (k != m_listeners.end())
{
MetricCallbackList* ml = k->second;
if (ml)
{
for (MetricCallbackList::iterator itc=ml->begin(); itc!=ml->end(); ++itc)
{
MetricCallbackEntry* ec = *itc;
ec->m_callback(metric);
}
}
}
k = m_listeners.find(metric->m_name);
}
}
size_t OvmsMetrics::RegisterModifier()
{
return m_nextmodifier++;
}
OvmsMetric::OvmsMetric(const char* name, uint16_t autostale, metric_unit_t units, bool persist)
{
m_defined = NeverDefined;
m_modified = 0;
m_name = name;
m_lastmodified = 0;
m_autostale = autostale;
m_stale = false;
m_units = units;
m_next = NULL;
m_persist = false; // only set by metrics supporting persistence
MyMetrics.RegisterMetric(this);
}
OvmsMetric::~OvmsMetric()
{
MyMetrics.DeregisterMetric(this);
// Warning: pointers to a deleted OvmsMetric can still be held locally in
// other modules. If you delete metrics, take care to inform all readers
// (i.e. by broadcasting a module shutdown event).
}
std::string OvmsMetric::AsString(const char* defvalue, metric_unit_t units, int precision)
{
return std::string(defvalue);
}
std::string OvmsMetric::AsUnitString(const char* defvalue, metric_unit_t units, int precision)
{
if (!IsDefined())
return std::string(defvalue);
2022-11-20 15:52:49 +00:00
// Need the converted unit for putting the label.
auto currentUnits = GetUnits();
CheckTargetUnit(currentUnits, units, true);
return AsString(defvalue, units, precision) + OvmsMetricUnitLabel(units==Native ? currentUnits : units);
}
std::string OvmsMetric::AsJSON(const char* defvalue, metric_unit_t units, int precision)
{
std::string buf = "\"";
buf.append(json_encode(AsString(defvalue, units, precision)));
buf.append("\"");
return buf;
}
float OvmsMetric::AsFloat(const float defvalue, metric_unit_t units)
{
return defvalue;
}
#ifdef CONFIG_OVMS_SC_JAVASCRIPT_DUKTAPE
2022-11-20 15:52:49 +00:00
void OvmsMetric::DukPush(DukContext &dc, metric_unit_t units)
{
2022-11-20 15:52:49 +00:00
dc.Push(AsString("", units));
}
#endif
2022-11-20 15:52:49 +00:00
bool OvmsMetric::SetValue(std::string value, metric_unit_t units)
{
return false;
}
bool OvmsMetric::SetValue(dbcNumber& value)
{
return false;
}
void OvmsMetric::operator=(std::string value)
{
}
uint32_t OvmsMetric::LastModified()
{
return m_lastmodified;
}
uint32_t OvmsMetric::Age()
{
return monotonictime - m_lastmodified;
}
void OvmsMetric::SetModified(bool changed)
{
if (m_defined == NeverDefined)
m_defined = FirstDefined;
else
m_defined = Defined;
m_stale = false;
m_lastmodified = monotonictime;
if (changed)
{
m_modified = ULONG_MAX;
MyMetrics.NotifyModified(this);
}
}
bool OvmsMetric::IsDefined()
{
return (m_defined != NeverDefined);
}
bool OvmsMetric::IsFirstDefined()
{
return (m_defined == FirstDefined);
}
bool OvmsMetric::IsPersistent()
{
return m_persist;
}
bool OvmsMetric::CheckPersist()
{
return true;
}
void OvmsMetric::RefreshPersist()
{
}
/**
* IsStale: check if metric value has not been set within the staleness period / since marked stale
* Note: a persistent metric won't be stale immediately after a reboot, because
* it's unknown when the value was set before the reboot. If you need to assert
* freshness, use IsFresh().
*/
bool OvmsMetric::IsStale()
{
if (m_autostale > 0)
{
if (m_lastmodified + m_autostale < monotonictime)
m_stale = true;
else
m_stale = false;
}
return m_stale;
}
/**
* IsFresh: check if metric value has been set explicitly within the staleness period / since marked stale
* Note: a persistent metric won't be fresh immediately after a reboot, because
* it's unknown when the value was set before the reboot. It needs to receive a
* live value to become fresh.
*/
bool OvmsMetric::IsFresh()
{
if (m_defined == NeverDefined)
return false;
else if (m_persist && m_defined == FirstDefined)
return false;
else
return !IsStale();
}
void OvmsMetric::SetStale(bool stale)
{
m_stale = stale;
}
void OvmsMetric::SetAutoStale(uint16_t seconds)
{
m_autostale = seconds;
}
metric_unit_t OvmsMetric::GetUnits()
{
return m_units;
}
bool OvmsMetric::IsModified(size_t modifier)
{
return m_modified & 1ul << modifier;
}
bool OvmsMetric::IsModifiedAndClear(size_t modifier)
{
unsigned long bit = 1ul << modifier;
unsigned long mod = m_modified.fetch_and(~bit);
return mod & bit;
}
void OvmsMetric::ClearModified(size_t modifier)
{
m_modified &= ~(1ul << modifier);
}
void OvmsMetric::Clear()
{
SetValue("");
m_defined = NeverDefined;
m_stale = true;
}
OvmsMetricInt::OvmsMetricInt(const char* name, uint16_t autostale, metric_unit_t units, bool persist)
: OvmsMetric(name, autostale, units, persist)
{
m_value = 0;
m_valuep = NULL;
m_persist = persist;
if (m_persist)
{
persistent_values *vp = pmetrics_register(name);
if (!vp)
{
m_persist = false;
}
else
{
m_valuep = reinterpret_cast<int*>(&vp->value);
if (m_value != *m_valuep)
{
m_value = *m_valuep;
SetModified(true);
ESP_LOGI(TAG, "persist %s = %s", name, AsUnitString().c_str());
}
}
}
}
OvmsMetricInt::~OvmsMetricInt()
{
}
bool OvmsMetricInt::CheckPersist()
{
if (!m_persist || !m_valuep || !IsDefined())
return true;
if (*m_valuep != m_value)
{
ESP_LOGE(TAG, "CheckPersist: bad value for %s", m_name);
return false;
}
persistent_values *vp = pmetrics_find(m_name);
if (vp == NULL)
{
ESP_LOGE(TAG, "CheckPersist: can't find %s", m_name);
return false;
}
if (m_valuep != reinterpret_cast<int*>(&vp->value))
{
ESP_LOGE(TAG, "CheckPersist: bad address for %s", m_name);
return false;
}
return true;
}
void OvmsMetricInt::RefreshPersist()
{
if (m_persist && m_valuep && IsDefined())
*m_valuep = m_value;
}
std::string OvmsMetricInt::AsString(const char* defvalue, metric_unit_t units, int precision)
{
if (IsDefined())
{
char buffer[33];
int value = m_value;
2022-11-20 15:52:49 +00:00
if ((units != Native)&&(units != m_units))
value = UnitConvert(m_units,units,m_value);
if (units == TimeUTC || units == TimeLocal)
{
int seconds = value % 60;
value /= 60;
int minutes = value % 60;
value /= 60;
int hours = value;
snprintf(buffer, sizeof(buffer), "%02u:%02u:%02u", hours, minutes, seconds);
}
else
itoa (value,buffer,10);
return buffer;
}
else
{
return std::string(defvalue);
}
}
std::string OvmsMetricInt::AsJSON(const char* defvalue, metric_unit_t units, int precision)
{
if (IsDefined())
return AsString(defvalue, units, precision);
else
return std::string((defvalue && *defvalue) ? defvalue : "0");
}
float OvmsMetricInt::AsFloat(const float defvalue, metric_unit_t units)
{
return (float)AsInt((int)defvalue, units);
}
int OvmsMetricInt::AsInt(const int defvalue, metric_unit_t units)
{
if (IsDefined())
{
2022-11-20 15:52:49 +00:00
if ((units != Native)&&(units != m_units))
return UnitConvert(m_units,units,m_value);
else
return m_value;
}
else
return defvalue;
}
#ifdef CONFIG_OVMS_SC_JAVASCRIPT_DUKTAPE
2022-11-20 15:52:49 +00:00
void OvmsMetricInt::DukPush(DukContext &dc, metric_unit_t units)
{
2022-11-20 15:52:49 +00:00
dc.Push(AsInt(0, units));
}
#endif
bool OvmsMetricInt::SetValue(int value, metric_unit_t units)
{
int nvalue = value;
2022-11-20 15:52:49 +00:00
if ((units != Other)&&(units != m_units))
nvalue=UnitConvert(units,m_units,value);
if (m_value != nvalue)
{
m_value = nvalue;
if (m_valuep)
*m_valuep = m_value;
SetModified(true);
return true;
}
else
{
SetModified(false);
return false;
}
}
2022-11-20 15:52:49 +00:00
bool OvmsMetricInt::SetValue(std::string value, metric_unit_t units)
{
int nvalue = atoi(value.c_str());
2022-11-20 15:52:49 +00:00
return SetValue(nvalue, units);
}
bool OvmsMetricInt::SetValue(dbcNumber& value)
{
return SetValue(value.GetSignedInteger());
}
void OvmsMetricInt::Clear()
{
SetValue(0);
OvmsMetric::Clear();
}
OvmsMetricBool::OvmsMetricBool(const char* name, uint16_t autostale, metric_unit_t units, bool persist)
: OvmsMetric(name, autostale, units, persist)
{
m_value = false;
m_valuep = NULL;
m_persist = persist;
if (m_persist)
{
persistent_values *vp = pmetrics_register(name);
if (!vp)
{
m_persist = false;
}
else
{
m_valuep = reinterpret_cast<bool*>(&vp->value);
if (m_value != *m_valuep)
{
m_value = *m_valuep;
SetModified(true);
ESP_LOGI(TAG, "persist %s = %s", name, AsUnitString().c_str());
}
}
}
}
OvmsMetricBool::~OvmsMetricBool()
{
}
bool OvmsMetricBool::CheckPersist()
{
if (!m_persist || !m_valuep || !IsDefined())
return true;
if (*m_valuep != m_value)
{
ESP_LOGE(TAG, "CheckPersist: bad value for %s", m_name);
return false;
}
persistent_values *vp = pmetrics_find(m_name);
if (vp == NULL)
{
ESP_LOGE(TAG, "CheckPersist: can't find %s", m_name);
return false;
}
if (m_valuep != reinterpret_cast<bool*>(&vp->value))
{
ESP_LOGE(TAG, "CheckPersist: bad address for %s", m_name);
return false;
}
return true;
}
void OvmsMetricBool::RefreshPersist()
{
if (m_persist && m_valuep && IsDefined())
*m_valuep = m_value;
}
std::string OvmsMetricBool::AsString(const char* defvalue, metric_unit_t units, int precision)
{
if (IsDefined())
{
if (m_value)
return std::string("yes");
else
return std::string("no");
}
else
{
return std::string(defvalue);
}
}
std::string OvmsMetricBool::AsJSON(const char* defvalue, metric_unit_t units, int precision)
{
if (IsDefined())
{
if (m_value)
return std::string("true");
else
return std::string("false");
}
else
{
if (strtobool(defvalue) == true)
return std::string("true");
else
return std::string("false");
}
}
float OvmsMetricBool::AsFloat(const float defvalue, metric_unit_t units)
{
return (float)AsBool((bool)defvalue);
}
int OvmsMetricBool::AsBool(const bool defvalue)
{
if (IsDefined())
return m_value;
else
return defvalue;
}
#ifdef CONFIG_OVMS_SC_JAVASCRIPT_DUKTAPE
2022-11-20 15:52:49 +00:00
void OvmsMetricBool::DukPush(DukContext &dc, metric_unit_t units)
{
dc.Push(m_value);
}
#endif
bool OvmsMetricBool::SetValue(bool value)
{
if (m_value != value)
{
m_value = value;
if (m_valuep)
*m_valuep = m_value;
SetModified(true);
return true;
}
else
{
SetModified(false);
return false;
}
}
2022-11-20 15:52:49 +00:00
bool OvmsMetricBool::SetValue(std::string value, metric_unit_t units)
{
bool nvalue = strtobool(value);
if (m_value != nvalue)
{
m_value = nvalue;
if (m_valuep)
*m_valuep = m_value;
SetModified(true);
return true;
}
else
{
SetModified(false);
return false;
}
}
bool OvmsMetricBool::SetValue(dbcNumber& value)
{
return SetValue((bool)value.GetUnsignedInteger());
}
void OvmsMetricBool::Clear()
{
SetValue(false);
OvmsMetric::Clear();
}
OvmsMetricFloat::OvmsMetricFloat(const char* name, uint16_t autostale, metric_unit_t units, bool persist)
: OvmsMetric(name, autostale, units, persist)
{
m_value = 0.0;
m_valuep = NULL;
m_persist = persist;
if (m_persist)
{
persistent_values *vp = pmetrics_register(name);
if (!vp)
{
m_persist = false;
}
else
{
m_valuep = reinterpret_cast<float*>(&vp->value);
if (m_value != *m_valuep)
{
m_value = *m_valuep;
SetModified(true);
ESP_LOGI(TAG, "persist %s = %s", name, AsUnitString().c_str());
}
}
}
}
OvmsMetricFloat::~OvmsMetricFloat()
{
}
bool OvmsMetricFloat::CheckPersist()
{
if (!m_persist || !m_valuep || !IsDefined())
return true;
if (*m_valuep != m_value)
{
ESP_LOGE(TAG, "CheckPersist: bad value for %s", m_name);
return false;
}
persistent_values *vp = pmetrics_find(m_name);
if (vp == NULL)
{
ESP_LOGE(TAG, "CheckPersist: can't find %s", m_name);
return false;
}
if (m_valuep != reinterpret_cast<float*>(&vp->value))
{
ESP_LOGE(TAG, "CheckPersist: bad address for %s", m_name);
return false;
}
return true;
}
void OvmsMetricFloat::RefreshPersist()
{
if (m_persist && m_valuep && IsDefined())
*m_valuep = m_value;
}
std::string OvmsMetricFloat::AsString(const char* defvalue, metric_unit_t units, int precision)
{
if (IsDefined())
{
std::ostringstream ss;
if (precision >= 0)
{
ss.precision(precision); // Set desired precision
ss << fixed;
}
if ((units != Other)&&(units != m_units))
ss << UnitConvert(m_units,units,m_value);
else
ss << m_value;
std::string s(ss.str());
return s;
}
else
{
return std::string(defvalue);
}
}
std::string OvmsMetricFloat::AsJSON(const char* defvalue, metric_unit_t units, int precision)
{
if (IsDefined())
return AsString(defvalue, units, precision);
else
return std::string((defvalue && *defvalue) ? defvalue : "0");
}
float OvmsMetricFloat::AsFloat(const float defvalue, metric_unit_t units)
{
if (IsDefined())
{
if ((units != Other)&&(units != m_units))
return UnitConvert(m_units,units,m_value);
else
return m_value;
}
else
return defvalue;
}
int OvmsMetricFloat::AsInt(const int defvalue, metric_unit_t units)
{
return (int) AsFloat((float) defvalue, units);
}
#ifdef CONFIG_OVMS_SC_JAVASCRIPT_DUKTAPE
2022-11-20 15:52:49 +00:00
void OvmsMetricFloat::DukPush(DukContext &dc, metric_unit_t units)
{
2022-11-20 15:52:49 +00:00
dc.Push(AsFloat(0, units));
}
#endif
bool OvmsMetricFloat::SetValue(float value, metric_unit_t units)
{
float nvalue = value;
if ((units != Other)&&(units != m_units)) nvalue=UnitConvert(units,m_units,value);
if (m_value != nvalue)
{
m_value = nvalue;
if (m_valuep)
*m_valuep = m_value;
SetModified(true);
return true;
}
else
{
SetModified(false);
return false;
}
}
2022-11-20 15:52:49 +00:00
bool OvmsMetricFloat::SetValue(std::string value, metric_unit_t units)
{
float nvalue = atof(value.c_str());
2022-11-20 15:52:49 +00:00
return SetValue(nvalue, units);
}
bool OvmsMetricFloat::SetValue(dbcNumber& value)
{
return SetValue((float)value.GetDouble());
}
void OvmsMetricFloat::Clear()
{
SetValue(0);
OvmsMetric::Clear();
}
OvmsMetricString::OvmsMetricString(const char* name, uint16_t autostale, metric_unit_t units, bool persist)
: OvmsMetric(name, autostale, units, persist)
{
}
OvmsMetricString::~OvmsMetricString()
{
}
std::string OvmsMetricString::AsString(const char* defvalue, metric_unit_t units, int precision)
{
if (IsDefined())
{
OvmsMutexLock lock(&m_mutex);
return m_value;
}
else
{
return std::string(defvalue);
}
}
#ifdef CONFIG_OVMS_SC_JAVASCRIPT_DUKTAPE
2022-11-20 15:52:49 +00:00
void OvmsMetricString::DukPush(DukContext &dc, metric_unit_t units)
{
OvmsMutexLock lock(&m_mutex);
dc.Push(m_value);
}
#endif
2022-11-20 15:52:49 +00:00
bool OvmsMetricString::SetValue(std::string value, metric_unit_t units)
{
if (m_mutex.Lock())
{
bool modified = false;
if (m_value.compare(value)!=0)
{
m_value = value;
modified = true;
}
m_mutex.Unlock();
SetModified(modified);
return modified;
}
return false;
}
void OvmsMetricString::Clear()
{
SetValue("");
OvmsMetric::Clear();
}
const char* OvmsMetricUnitLabel(metric_unit_t units)
{
2022-11-20 15:52:49 +00:00
uint8_t unit_i = static_cast<uint8_t>(units);
if (unit_i > uint8_t(MetricUnitLast))
return "";
const char *res = unit_info[unit_i].Label;
if (res == NULL)
return "";
return res;
}
const char* OvmsMetricUnitName(metric_unit_t units)
{
uint8_t unit_i = static_cast<uint8_t>(units);
if (unit_i > uint8_t(MetricUnitLast))
return NULL;
return unit_info[unit_i].UnitCode;
}
metric_unit_t OvmsMetricUnitFromName(const char* unit)
{
if (unit == NULL || unit[0] == '\0')
return Native;
for (metric_unit_t metric = MetricUnitFirst; metric <= MetricUnitLast; metric = metric_unit_t(1+(uint8_t)metric))
{
const char * name = unit_info[(uint8_t)metric].UnitCode;
if (name != NULL && strcasecmp(name,unit) == 0)
return metric;
}
2022-11-20 15:52:49 +00:00
return UnitNotFound;
}
int UnitConvert(metric_unit_t from, metric_unit_t to, int value)
{
2022-11-20 15:52:49 +00:00
CheckTargetUnit(from, to, false);
if (to == Native)
return value;
switch (from)
{
case Kilometers:
switch (to)
{
case Miles: return km_to_mi(value);
case Meters: return value*1000;
case Feet: return km_to_mi(value) * feet_per_mile;
default: break;
}
case Miles:
switch (to)
{
case Kilometers: return mi_to_km(value);
case Meters: return mi_to_km(value*1000);
case Feet: return value * feet_per_mile;
default: break;
}
case Meters:
switch (to)
{
case Miles: return km_to_mi(value)/1000;
case Kilometers: return value/1000;
case Feet: return km_to_mi( value * feet_per_mile)/ 1000;
default: break;
}
case Feet:
switch (to)
{
case Kilometers: return mi_to_km(value)/feet_per_mile;
case Meters: return (mi_to_km(value*1000)/feet_per_mile);
case Miles: return value / feet_per_mile;
default: break;
}
case KphPS:
2022-11-20 15:52:49 +00:00
switch (to)
{
case MphPS: return km_to_mi(value);
case MetersPSS: return value * 10 /36;
case FeetPSS: return km_to_mi(value*feet_per_mile)/3600;
default: break;
}
case MphPS:
2022-11-20 15:52:49 +00:00
switch (to)
{
case KphPS: return mi_to_km(value);
case MetersPSS: return mi_to_km(value*10)/36;
case FeetPSS: return value*feet_per_mile/3600;
default: break;
}
case MetersPSS:
2022-11-20 15:52:49 +00:00
switch (to)
{
case KphPS: return (value*36) / 10;
case MphPS: return km_to_mi(value * 36) / 10;
case FeetPSS: return km_to_mi(value*feet_per_mile);
default: break;
}
case FeetPSS:
switch (to)
{
case KphPS: return (mi_to_km(value * 36 )/(feet_per_mile*10));
case MphPS: return value *3600/feet_per_mile;
case MetersPSS: return mi_to_km(value/feet_per_mile)*1000;
default: break;
}
case kW:
if (to == Watts) return (value*1000);
break;
case Watts:
if (to == kW) return (value/1000);
break;
case kWh:
if (to == WattHours) return (value*1000);
break;
case WattHours:
if (to == kWh) return (value/1000);
break;
case WattHoursPK:
switch (to)
{
case WattHoursPM: return pkm_to_pmi(value);
case kWhP100K: return value / 10;
case KPkWh: return value ? static_cast<int>(1000.0 / value) : 0;
case MPkWh: return value ? static_cast<int>(km_to_mi(1000.0 / value)) : 0;
default: break;
}
case WattHoursPM:
switch (to)
{
case WattHoursPK: return pmi_to_pkm(value);
case kWhP100K: return pmi_to_pkm(value) / 10;
case KPkWh: return value ? static_cast<int>(mi_to_km(1000.0 / value)) : 0;
case MPkWh: return value ? static_cast<int>(1000.0 / value) : 0;
default: break;
}
break;
case kWhP100K:
switch (to)
{
case WattHoursPM: return pkm_to_pmi(value * 10);
case WattHoursPK: return value * 10;
case KPkWh: return value ? static_cast<int>(100.0 / value) : 0;
case MPkWh: return value ? static_cast<int>(km_to_mi(100.0 / value)) : 0;
default: break;
}
case KPkWh:
switch (to)
{
case WattHoursPM: return value ? static_cast<int>(1000.0 / km_to_mi(float(value))) : 0;
case WattHoursPK: return value ? static_cast<int>(1/(1000.0 * value)) : 0;
case kWhP100K: return value ? static_cast<int>(100.0/value) : 0;
case MPkWh: return km_to_mi(value);
default: break;
}
case MPkWh:
switch (to)
{
case WattHoursPM: return value ? 1000/value : 0;
case WattHoursPK: return value ? static_cast<int>(1000 / mi_to_km(float(value))) : 0;
case kWhP100K: return value ? static_cast<int>(100.0/mi_to_km(float(value))) : 0;
case KPkWh: return mi_to_km(value);
default: break;
}
case Celcius:
if (to == Fahrenheit) return ((value*9)/5) + 32;
break;
case Fahrenheit:
if (to == Celcius) return ((value-32)*5)/9;
break;
case kPa:
if (to == Pa) return value*1000;
else if (to == PSI) return int((float)value * 0.14503773773020923);
break;
case Pa:
if (to == kPa) return value/1000;
else if (to == PSI) return int((float)value * 0.00014503773773020923);
break;
case PSI:
if (to == kPa) return int((float)value * 6.894757293168361);
else if (to == Pa) return int((float)value * 0.006894757293168361);
break;
case Seconds:
if (to == Minutes) return value/60;
else if (to == Hours) return value/3600;
break;
case Minutes:
if (to == Seconds || to == TimeUTC || to == TimeLocal) return value*60;
else if (to == Hours) return value/60;
break;
case Hours:
if (to == Seconds || to == TimeUTC || to == TimeLocal) return value*3600;
else if (to == Minutes) return value*60;
break;
case TimeUTC:
if (to == TimeLocal)
{
time_t now;
time(&now);
now -= now % (24*60*60); // Back to midnight UTC
now += value; // The target time today
struct tm* tmu = localtime(&now);
return (tmu->tm_hour * 60 + tmu->tm_min) * 60 + tmu->tm_sec;
}
else if (to == Minutes) return value/60;
else if (to == Hours) return value/3600;
break;
case Kph:
if (to == Mph) return km_to_mi(value);
break;
case Mph:
if (to == Kph) return mi_to_km(value);
break;
case dbm:
if (to == sq) return (value <= -51) ? ((value + 113)/2) : 0;
break;
case sq:
if (to == dbm) return (value <= 31) ? (-113 + (value*2)) : 0;
break;
default:
return value;
}
return value;
}
float UnitConvert(metric_unit_t from, metric_unit_t to, float value)
{
2022-11-20 15:52:49 +00:00
CheckTargetUnit(from, to, false);
if (to == Native)
return value;
switch (from)
{
case Kilometers:
switch (to)
{
case Miles: return km_to_mi(value);
case Meters: return value*1000;
case Feet: return km_to_mi(value) * feet_per_mile;
default: break;
}
case Miles:
switch (to)
{
case Kilometers: return mi_to_km(value);
case Meters: return (mi_to_km(value)*1000);
case Feet: return value * feet_per_mile;
default: break;
}
case Meters:
switch (to)
{
case Miles: return km_to_mi(value/1000);
case Kilometers: return value/1000;
case Feet: return km_to_mi(value/1000) * feet_per_mile;
default: break;
}
case Feet:
switch (to)
{
case Kilometers: return mi_to_km(value/feet_per_mile);
case Meters: return (mi_to_km(value/feet_per_mile)*1000);
case Miles: return value / feet_per_mile;
default: break;
}
case KphPS:
2022-11-20 15:52:49 +00:00
switch (to)
{
case MphPS: return km_to_mi(value);
case MetersPSS: return value/3.6;
case FeetPSS: return km_to_mi(value)*feet_per_mile/3600;
default: break;
}
case MphPS:
2022-11-20 15:52:49 +00:00
switch (to)
{
case KphPS: return mi_to_km(value);
case MetersPSS: return mi_to_km(value)/3.6;
case FeetPSS: return value*feet_per_mile/3600;
default: break;
}
case MetersPSS:
2022-11-20 15:52:49 +00:00
switch (to)
{
case KphPS: return (value*3.6);
case MphPS: return km_to_mi(value)*3.6;
case FeetPSS: return km_to_mi(value)*feet_per_mile;
default: break;
}
case FeetPSS:
switch (to)
{
case KphPS: return (mi_to_km(value/feet_per_mile)*3.6);
case MphPS: return value *3600/feet_per_mile;
case MetersPSS: return mi_to_km(value/feet_per_mile)*1000;
default: break;
}
case kW:
if (to == Watts) return (value*1000);
break;
case Watts:
if (to == kW) return (value/1000);
break;
case kWh:
if (to == WattHours) return (value*1000);
break;
case WattHours:
if (to == kWh) return (value/1000);
break;
case WattHoursPK:
switch (to)
{
case WattHoursPM: return pkm_to_pmi(value);
case kWhP100K: return value / 10;
case KPkWh: return value ? 1000.0 / value : 0;
case MPkWh: return value ? (km_to_mi(1000.0 / value)) : 0;
default: break;
}
case WattHoursPM:
switch (to)
{
case WattHoursPK: return pmi_to_pkm(value);
case kWhP100K: return pmi_to_pkm(value) / 10;
case KPkWh: return value ? (mi_to_km(1000.0 / value)) : 0;
case MPkWh: return value ? (1000.0 / value) : 0;
default: break;
}
break;
case kWhP100K:
switch (to)
{
case WattHoursPM: return pkm_to_pmi(value * 10);
case WattHoursPK: return value * 10;
case KPkWh: return value ? (100.0 / value) : 0;
case MPkWh: return value ? km_to_mi(100.0 / value) : 0;
default: break;
}
case Celcius:
if (to == Fahrenheit) return ((value*9)/5) + 32;
break;
case Fahrenheit:
if (to == Celcius) return ((value-32)*5)/9;
break;
case kPa:
if (to == Pa) return value*1000;
else if (to == PSI) return value * 0.14503773773020923;
break;
case Pa:
if (to == kPa) return value/1000;
else if (to == PSI) return value * 0.00014503773773020923;
break;
case PSI:
if (to == kPa) return value * 6.894757293168361;
else if (to == Pa) return value * 0.006894757293168361;
break;
case Seconds:
if (to == Minutes) return value/60;
else if (to == Hours) return value/3600;
break;
case Minutes:
if (to == Seconds) return value*60;
else if (to == Hours) return value/60;
break;
case Hours:
if (to == Seconds) return value*3600;
else if (to == Minutes) return value*60;
break;
case Kph:
if (to == Mph) return km_to_mi(value);
break;
case Mph:
if (to == Kph) return mi_to_km(value);
break;
case dbm:
if (to == sq) return int((value <= -51) ? ((value + 113)/2) : 0);
break;
case sq:
if (to == dbm) return int((value <= 31) ? (-113 + (value*2)) : 0);
break;
default:
return value;
}
return value;
}