OVMS3-idf/components/soc/src/esp32s2/rtc_clk.c
Ivan Grokhotkov 490bf29767 esp32s2: fix enabling 32k XTAL clock
On the ESP32S2, rtc_clk_cal(RTC_CAL_RTC_MUX) measures the frequency
of the 90kHz RTC clock regardless of the selected slow clock
frequency. Keep track which clock is selected and pass the argument
to rtc_clk_cal accordingly.

fix clock choices

update rtc 32k xtal code for s2

missed api in rtc.h

bootloader_clock: update for S2
2020-02-17 17:33:56 +01:00

546 lines
19 KiB
C

// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <assert.h>
#include <stdlib.h>
#include "sdkconfig.h"
#include "esp32s2/rom/ets_sys.h"
#include "esp32s2/rom/rtc.h"
#include "esp32s2/rom/uart.h"
#include "esp32s2/rom/gpio.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/rtc_io_reg.h"
#include "soc/sens_reg.h"
#include "soc/dport_reg.h"
#include "soc/efuse_reg.h"
#include "soc/syscon_reg.h"
#include "i2c_rtc_clk.h"
#include "soc_log.h"
#include "rtc_clk_common.h"
#include "sdkconfig.h"
#include "xtensa/core-macros.h"
static const char *TAG = "rtc_clk";
#define RTC_PLL_FREQ_320M 320
#define RTC_PLL_FREQ_480M 480
// Current PLL frequency, in MHZ (320 or 480). Zero if PLL is not enabled.
static int s_cur_pll_freq;
static void rtc_clk_cpu_freq_to_8m(void);
void rtc_clk_32k_enable_internal(x32k_config_t cfg)
{
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DAC_XTAL_32K, cfg.dac);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DRES_XTAL_32K, cfg.dres);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DGM_XTAL_32K, cfg.dgm);
REG_SET_FIELD(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_DBUF_XTAL_32K, cfg.dbuf);
SET_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XPD_XTAL_32K);
}
void rtc_clk_32k_enable(bool enable)
{
if (enable) {
SET_PERI_REG_MASK(RTC_IO_XTAL_32P_PAD_REG, RTC_IO_X32P_MUX_SEL);
SET_PERI_REG_MASK(RTC_IO_XTAL_32N_PAD_REG, RTC_IO_X32N_MUX_SEL);
x32k_config_t cfg = X32K_CONFIG_DEFAULT();
rtc_clk_32k_enable_internal(cfg);
} else {
SET_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XTAL32K_XPD_FORCE);
CLEAR_PERI_REG_MASK(RTC_CNTL_EXT_XTL_CONF_REG, RTC_CNTL_XPD_XTAL_32K);
}
}
void rtc_clk_32k_enable_external(void)
{
SET_PERI_REG_MASK(RTC_IO_XTAL_32P_PAD_REG, RTC_IO_X32P_MUX_SEL);
SET_PERI_REG_MASK(RTC_IO_XTAL_32N_PAD_REG, RTC_IO_X32N_MUX_SEL);
/* TODO: external 32k source may need different settings */
x32k_config_t cfg = X32K_CONFIG_DEFAULT();
rtc_clk_32k_enable_internal(cfg);
}
void rtc_clk_32k_bootstrap(uint32_t cycle)
{
/* No special bootstrapping needed for ESP32-S2, 'cycle' argument is to keep the signature
* same as for the ESP32. Just enable the XTAL here.
*/
(void) cycle;
rtc_clk_32k_enable(true);
}
bool rtc_clk_32k_enabled(void)
{
uint32_t xtal_conf = READ_PERI_REG(RTC_CNTL_EXT_XTL_CONF_REG);
/* If xtal xpd is controlled by software */
bool xtal_xpd_sw = (xtal_conf & RTC_CNTL_XTAL32K_XPD_FORCE) >> RTC_CNTL_XTAL32K_XPD_FORCE_S;
/* If xtal xpd software control is on */
bool xtal_xpd_st = (xtal_conf & RTC_CNTL_XPD_XTAL_32K) >> RTC_CNTL_XPD_XTAL_32K_S;
bool disabled = xtal_xpd_sw && !xtal_xpd_st;
return !disabled;
}
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
{
if (clk_8m_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
/* no need to wait once enabled by software */
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CK8M_ENABLE_WAIT_DEFAULT);
ets_delay_us(DELAY_8M_ENABLE);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
}
/* d256 should be independent configured with 8M
* Maybe we can split this function into 8m and dmd256
*/
if (d256_en) {
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
} else {
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
}
}
bool rtc_clk_8m_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0;
}
bool rtc_clk_8md256_enabled(void)
{
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0;
}
void rtc_clk_apll_enable(bool enable, uint32_t sdm0, uint32_t sdm1, uint32_t sdm2, uint32_t o_div)
{
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD, enable ? 0 : 1);
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU, enable ? 1 : 0);
if (enable) {
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM2, sdm2);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM0, sdm0);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM1, sdm1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, APLL_SDM_STOP_VAL_1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, APLL_SDM_STOP_VAL_2_REV1);
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_OUTPUT_DIV, o_div);
/* calibration */
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_1);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_2);
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_3);
/* wait for calibration end */
while (!(I2C_READREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_CAL_END))) {
/* use ets_delay_us so the RTC bus doesn't get flooded */
ets_delay_us(1);
}
}
}
void rtc_clk_set_xtal_wait(void)
{
/*
the `xtal_wait` time need 1ms, so we need calibrate slow clk period,
and `RTC_CNTL_XTL_BUF_WAIT` depend on it.
*/
rtc_slow_freq_t slow_clk_freq = rtc_clk_slow_freq_get();
rtc_slow_freq_t rtc_slow_freq_x32k = RTC_SLOW_FREQ_32K_XTAL;
rtc_slow_freq_t rtc_slow_freq_8MD256 = RTC_SLOW_FREQ_8MD256;
rtc_cal_sel_t cal_clk = RTC_CAL_RTC_MUX;
if (slow_clk_freq == (rtc_slow_freq_x32k)) {
cal_clk = RTC_CAL_32K_XTAL;
} else if (slow_clk_freq == rtc_slow_freq_8MD256) {
cal_clk = RTC_CAL_8MD256;
}
uint32_t slow_clk_period = rtc_clk_cal(cal_clk, 2000);
uint32_t xtal_wait_1ms = 100;
if (slow_clk_period) {
xtal_wait_1ms = (1000 << RTC_CLK_CAL_FRACT) / slow_clk_period;
}
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_XTL_BUF_WAIT, xtal_wait_1ms);
}
void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, slow_freq);
/* Why we need to connect this clock to digital?
* Or maybe this clock should be connected to digital when xtal 32k clock is enabled instead?
*/
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN,
(slow_freq == RTC_SLOW_FREQ_32K_XTAL) ? 1 : 0);
/* The clk_8m_d256 will be closed when rtc_state in SLEEP,
so if the slow_clk is 8md256, clk_8m must be force power on
*/
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_FORCE_PU, (slow_freq == RTC_SLOW_FREQ_8MD256) ? 1 : 0);
rtc_clk_set_xtal_wait();
ets_delay_us(DELAY_SLOW_CLK_SWITCH);
}
rtc_slow_freq_t rtc_clk_slow_freq_get(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
}
uint32_t rtc_clk_slow_freq_get_hz(void)
{
switch (rtc_clk_slow_freq_get()) {
case RTC_SLOW_FREQ_RTC: return RTC_SLOW_CLK_FREQ_90K;
case RTC_SLOW_FREQ_32K_XTAL: return RTC_SLOW_CLK_FREQ_32K;
case RTC_SLOW_FREQ_8MD256: return RTC_SLOW_CLK_FREQ_8MD256;
}
return 0;
}
void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq)
{
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, fast_freq);
ets_delay_us(DELAY_FAST_CLK_SWITCH);
}
rtc_fast_freq_t rtc_clk_fast_freq_get(void)
{
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL);
}
static void rtc_clk_bbpll_disable(void)
{
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
s_cur_pll_freq = 0;
}
static void rtc_clk_bbpll_enable(void)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BB_I2C_FORCE_PD |
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
}
void rtc_clk_bbpll_configure(rtc_xtal_freq_t xtal_freq, int pll_freq)
{
uint8_t div_ref;
uint8_t div7_0;
uint8_t dr1;
uint8_t dr3;
uint8_t dchgp;
uint8_t dcur;
assert(xtal_freq == RTC_XTAL_FREQ_40M);
if (pll_freq == RTC_PLL_FREQ_480M) {
/* Clear this register to let the digital part know 480M PLL is used */
SET_PERI_REG_MASK(DPORT_CPU_PER_CONF_REG, DPORT_PLL_FREQ_SEL);
/* Configure 480M PLL */
div_ref = 0;
div7_0 = 8;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 4;
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x6B);
} else {
/* Clear this register to let the digital part know 320M PLL is used */
CLEAR_PERI_REG_MASK(DPORT_CPU_PER_CONF_REG, DPORT_PLL_FREQ_SEL);
/* Configure 320M PLL */
div_ref = 0;
div7_0 = 4;
dr1 = 0;
dr3 = 0;
dchgp = 5;
dcur = 5;
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_MODE_HF, 0x69);
}
uint8_t i2c_bbpll_lref = (dchgp << I2C_BBPLL_OC_DCHGP_LSB) | (div_ref);
uint8_t i2c_bbpll_div_7_0 = div7_0;
uint8_t i2c_bbpll_dcur = (2 << I2C_BBPLL_OC_DLREF_SEL_LSB ) | (1 << I2C_BBPLL_OC_DHREF_SEL_LSB) | dcur;
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_REF_DIV, i2c_bbpll_lref);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
I2C_WRITEREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_OC_DR1, dr1);
I2C_WRITEREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_OC_DR3, dr3);
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
// Enable calibration by software
I2C_WRITEREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_IR_CAL_ENX_CAP, 1);
for (int ext_cap = 0; ext_cap < 16; ext_cap++) {
uint8_t cal_result;
I2C_WRITEREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_IR_CAL_EXT_CAP, ext_cap);
cal_result = I2C_READREG_MASK_RTC(I2C_BBPLL, I2C_BBPLL_OR_CAL_CAP);
if (cal_result == 0) {
break;
}
if (ext_cap == 15) {
SOC_LOGE(TAG, "BBPLL SOFTWARE CAL FAIL");
abort();
}
}
s_cur_pll_freq = pll_freq;
}
/**
* Switch to one of PLL-based frequencies. Current frequency can be XTAL or PLL.
* PLL must already be enabled.
* @param cpu_freq new CPU frequency
*/
static void rtc_clk_cpu_freq_to_pll_mhz(int cpu_freq_mhz)
{
int dbias = DIG_DBIAS_80M_160M;
int per_conf = DPORT_CPUPERIOD_SEL_80;
if (cpu_freq_mhz == 80) {
/* nothing to do */
} else if (cpu_freq_mhz == 160) {
per_conf = DPORT_CPUPERIOD_SEL_160;
} else if (cpu_freq_mhz == 240) {
dbias = DIG_DBIAS_240M;
per_conf = DPORT_CPUPERIOD_SEL_240;
} else {
SOC_LOGE(TAG, "invalid frequency");
abort();
}
REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, per_conf);
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_PRE_DIV_CNT, 0);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, dbias);
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL, DPORT_SOC_CLK_SEL_PLL);
rtc_clk_apb_freq_update(80 * MHZ);
ets_update_cpu_frequency(cpu_freq_mhz);
}
bool rtc_clk_cpu_freq_mhz_to_config(uint32_t freq_mhz, rtc_cpu_freq_config_t* out_config)
{
uint32_t source_freq_mhz;
rtc_cpu_freq_src_t source;
uint32_t divider;
uint32_t real_freq_mhz;
uint32_t xtal_freq = (uint32_t) rtc_clk_xtal_freq_get();
if (freq_mhz <= xtal_freq) {
divider = xtal_freq / freq_mhz;
real_freq_mhz = (xtal_freq + divider / 2) / divider; /* round */
if (real_freq_mhz != freq_mhz) {
// no suitable divider
return false;
}
source_freq_mhz = xtal_freq;
source = RTC_CPU_FREQ_SRC_XTAL;
} else if (freq_mhz == 80) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_480M;
divider = 6;
} else if (freq_mhz == 160) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_480M;
divider = 3;
} else if (freq_mhz == 240) {
real_freq_mhz = freq_mhz;
source = RTC_CPU_FREQ_SRC_PLL;
source_freq_mhz = RTC_PLL_FREQ_480M;
divider = 2;
} else {
// unsupported frequency
return false;
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.div = divider,
.source_freq_mhz = source_freq_mhz,
.freq_mhz = real_freq_mhz
};
return true;
}
void rtc_clk_cpu_freq_set_config(const rtc_cpu_freq_config_t* config)
{
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
uint32_t soc_clk_sel = REG_GET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL);
if (soc_clk_sel != DPORT_SOC_CLK_SEL_XTAL) {
rtc_clk_cpu_freq_to_xtal(xtal_freq, 1);
}
if (soc_clk_sel == DPORT_SOC_CLK_SEL_PLL) {
rtc_clk_bbpll_disable();
}
if (config->source == RTC_CPU_FREQ_SRC_XTAL) {
if (config->div > 1) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
}
} else if (config->source == RTC_CPU_FREQ_SRC_PLL) {
rtc_clk_bbpll_enable();
rtc_clk_bbpll_configure(rtc_clk_xtal_freq_get(), config->source_freq_mhz);
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else if (config->source == RTC_CPU_FREQ_SRC_8M) {
rtc_clk_cpu_freq_to_8m();
}
}
void rtc_clk_cpu_freq_get_config(rtc_cpu_freq_config_t* out_config)
{
rtc_cpu_freq_src_t source;
uint32_t source_freq_mhz;
uint32_t div;
uint32_t freq_mhz;
uint32_t soc_clk_sel = REG_GET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL);
switch (soc_clk_sel) {
case DPORT_SOC_CLK_SEL_XTAL: {
source = RTC_CPU_FREQ_SRC_XTAL;
div = REG_GET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_PRE_DIV_CNT) + 1;
source_freq_mhz = (uint32_t) rtc_clk_xtal_freq_get();
freq_mhz = source_freq_mhz / div;
}
break;
case DPORT_SOC_CLK_SEL_PLL: {
source = RTC_CPU_FREQ_SRC_PLL;
uint32_t cpuperiod_sel = DPORT_REG_GET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL);
uint32_t pllfreq_sel = DPORT_REG_GET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_PLL_FREQ_SEL);
source_freq_mhz = (pllfreq_sel) ? RTC_PLL_FREQ_480M : RTC_PLL_FREQ_320M;
if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_80) {
div = (source_freq_mhz == RTC_PLL_FREQ_480M) ? 6 : 4;
freq_mhz = 80;
} else if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_160) {
div = (source_freq_mhz == RTC_PLL_FREQ_480M) ? 3 : 2;
div = 3;
freq_mhz = 160;
} else if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_240) {
div = 2;
freq_mhz = 240;
} else {
SOC_LOGE(TAG, "unsupported frequency configuration");
abort();
}
break;
}
case DPORT_SOC_CLK_SEL_8M:
source = RTC_CPU_FREQ_SRC_8M;
source_freq_mhz = 8;
div = 1;
freq_mhz = source_freq_mhz;
break;
case DPORT_SOC_CLK_SEL_APLL:
default:
SOC_LOGE(TAG, "unsupported frequency configuration");
abort();
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.source_freq_mhz = source_freq_mhz,
.div = div,
.freq_mhz = freq_mhz
};
}
void rtc_clk_cpu_freq_set_config_fast(const rtc_cpu_freq_config_t* config)
{
if (config->source == RTC_CPU_FREQ_SRC_XTAL) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
} else if (config->source == RTC_CPU_FREQ_SRC_PLL &&
s_cur_pll_freq == config->source_freq_mhz) {
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else {
/* fallback */
rtc_clk_cpu_freq_set_config(config);
}
}
void rtc_clk_cpu_freq_set_xtal(void)
{
int freq_mhz = (int) rtc_clk_xtal_freq_get();
rtc_clk_cpu_freq_to_xtal(freq_mhz, 1);
rtc_clk_bbpll_disable();
}
/**
* Switch to XTAL frequency. Does not disable the PLL.
*/
void rtc_clk_cpu_freq_to_xtal(int freq, int div)
{
ets_update_cpu_frequency(freq);
/* Set divider from XTAL to APB clock. Need to set divider to 1 (reg. value 0) first. */
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_PRE_DIV_CNT, 0);
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_PRE_DIV_CNT, div - 1);
/* no need to adjust the REF_TICK */
/* switch clock source */
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL, DPORT_SOC_CLK_SEL_XTAL);
rtc_clk_apb_freq_update(freq * MHZ);
/* lower the voltage */
if (freq <= 2) {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_2M);
} else {
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
}
}
static void rtc_clk_cpu_freq_to_8m(void)
{
ets_update_cpu_frequency(8);
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_PRE_DIV_CNT, 0);
REG_SET_FIELD(DPORT_SYSCLK_CONF_REG, DPORT_SOC_CLK_SEL, DPORT_SOC_CLK_SEL_8M);
rtc_clk_apb_freq_update(RTC_FAST_CLK_FREQ_8M);
}
rtc_xtal_freq_t rtc_clk_xtal_freq_get(void)
{
uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
if (!clk_val_is_valid(xtal_freq_reg)) {
SOC_LOGW(TAG, "invalid RTC_XTAL_FREQ_REG value: 0x%08x", xtal_freq_reg);
return RTC_XTAL_FREQ_40M;
}
return reg_val_to_clk_val(xtal_freq_reg);
}
void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq)
{
WRITE_PERI_REG(RTC_XTAL_FREQ_REG, clk_val_to_reg_val(xtal_freq));
}
void rtc_clk_apb_freq_update(uint32_t apb_freq)
{
WRITE_PERI_REG(RTC_APB_FREQ_REG, clk_val_to_reg_val(apb_freq >> 12));
}
uint32_t rtc_clk_apb_freq_get(void)
{
uint32_t freq_hz = reg_val_to_clk_val(READ_PERI_REG(RTC_APB_FREQ_REG)) << 12;
// round to the nearest MHz
freq_hz += MHZ / 2;
uint32_t remainder = freq_hz % MHZ;
return freq_hz - remainder;
}
void rtc_clk_divider_set(uint32_t div)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD);
REG_SET_FIELD(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV, div);
SET_PERI_REG_MASK(RTC_CNTL_SLOW_CLK_CONF_REG, RTC_CNTL_ANA_CLK_DIV_VLD);
}
void rtc_clk_8m_divider_set(uint32_t div)
{
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD);
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, div);
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL_VLD);
}
/* Name used in libphy.a:phy_chip_v7.o
* TODO: update the library to use rtc_clk_xtal_freq_get
*/
rtc_xtal_freq_t rtc_get_xtal(void) __attribute__((alias("rtc_clk_xtal_freq_get")));