OVMS3-idf/components/soc/esp32/include/soc/sens_struct.h
huub 4aac441e46 soc:Added names to anonymous register structs
For typedef volatile struct in components/soc/esp32/include/soc

Merges https://github.com/espressif/esp-idf/pull/3199
2019-04-03 03:09:44 +00:00

328 lines
11 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _SOC_SENS_STRUCT_H_
#define _SOC_SENS_STRUCT_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef volatile struct sens_dev_s {
union {
struct {
uint32_t sar1_clk_div: 8;
uint32_t sar1_sample_cycle: 8;
uint32_t sar1_sample_bit: 2;
uint32_t sar1_clk_gated: 1;
uint32_t sar1_sample_num: 8;
uint32_t sar1_dig_force: 1; /*1: ADC1 is controlled by the digital controller 0: RTC controller*/
uint32_t sar1_data_inv: 1;
uint32_t reserved29: 3;
};
uint32_t val;
} sar_read_ctrl;
uint32_t sar_read_status1; /**/
union {
struct {
uint32_t sar_amp_wait1:16;
uint32_t sar_amp_wait2:16;
};
uint32_t val;
} sar_meas_wait1;
union {
struct {
uint32_t sar_amp_wait3: 16;
uint32_t force_xpd_amp: 2;
uint32_t force_xpd_sar: 2;
uint32_t sar2_rstb_wait: 8;
uint32_t reserved28: 4;
};
uint32_t val;
} sar_meas_wait2;
union {
struct {
uint32_t xpd_sar_amp_fsm: 4;
uint32_t amp_rst_fb_fsm: 4;
uint32_t amp_short_ref_fsm: 4;
uint32_t amp_short_ref_gnd_fsm: 4;
uint32_t xpd_sar_fsm: 4;
uint32_t sar_rstb_fsm: 4;
uint32_t sar2_xpd_wait: 8;
};
uint32_t val;
} sar_meas_ctrl;
uint32_t sar_read_status2; /**/
uint32_t ulp_cp_sleep_cyc0; /**/
uint32_t ulp_cp_sleep_cyc1; /**/
uint32_t ulp_cp_sleep_cyc2; /**/
uint32_t ulp_cp_sleep_cyc3; /**/
uint32_t ulp_cp_sleep_cyc4; /**/
union {
struct {
uint32_t sar1_bit_width: 2;
uint32_t sar2_bit_width: 2;
uint32_t sar2_en_test: 1;
uint32_t sar2_pwdet_cct: 3;
uint32_t ulp_cp_force_start_top: 1;
uint32_t ulp_cp_start_top: 1;
uint32_t sarclk_en: 1;
uint32_t pc_init: 11;
uint32_t sar2_stop: 1;
uint32_t sar1_stop: 1;
uint32_t sar2_pwdet_en: 1;
uint32_t reserved25: 7;
};
uint32_t val;
} sar_start_force;
union {
struct {
uint32_t mem_wr_addr_init: 11;
uint32_t mem_wr_addr_size: 11;
uint32_t rtc_mem_wr_offst_clr: 1;
uint32_t reserved23: 9;
};
uint32_t val;
} sar_mem_wr_ctrl;
uint32_t sar_atten1; /**/
uint32_t sar_atten2; /**/
union {
struct {
uint32_t i2c_slave_addr1: 11;
uint32_t i2c_slave_addr0: 11;
uint32_t meas_status: 8;
uint32_t reserved30: 2;
};
uint32_t val;
} sar_slave_addr1;
union {
struct {
uint32_t i2c_slave_addr3:11;
uint32_t i2c_slave_addr2:11;
uint32_t reserved22: 10;
};
uint32_t val;
} sar_slave_addr2;
union {
struct {
uint32_t i2c_slave_addr5:11;
uint32_t i2c_slave_addr4:11;
uint32_t tsens_out: 8;
uint32_t tsens_rdy_out: 1;
uint32_t reserved31: 1;
};
uint32_t val;
} sar_slave_addr3;
union {
struct {
uint32_t i2c_slave_addr7:11;
uint32_t i2c_slave_addr6:11;
uint32_t i2c_rdata: 8;
uint32_t i2c_done: 1;
uint32_t reserved31: 1;
};
uint32_t val;
} sar_slave_addr4;
union {
struct {
uint32_t tsens_xpd_wait: 12;
uint32_t tsens_xpd_force: 1;
uint32_t tsens_clk_inv: 1;
uint32_t tsens_clk_gated: 1;
uint32_t tsens_in_inv: 1;
uint32_t tsens_clk_div: 8;
uint32_t tsens_power_up: 1;
uint32_t tsens_power_up_force: 1;
uint32_t tsens_dump_out: 1;
uint32_t reserved27: 5;
};
uint32_t val;
} sar_tctrl;
union {
struct {
uint32_t sar_i2c_ctrl: 28;
uint32_t sar_i2c_start: 1;
uint32_t sar_i2c_start_force: 1;
uint32_t reserved30: 2;
};
uint32_t val;
} sar_i2c_ctrl;
union {
struct {
uint32_t meas1_data_sar: 16;
uint32_t meas1_done_sar: 1;
uint32_t meas1_start_sar: 1;
uint32_t meas1_start_force: 1; /*1: ADC1 is controlled by the digital or RTC controller 0: Ulp coprocessor*/
uint32_t sar1_en_pad: 12;
uint32_t sar1_en_pad_force: 1; /*1: Data ports are controlled by the digital or RTC controller 0: Ulp coprocessor*/
};
uint32_t val;
} sar_meas_start1;
union {
struct {
uint32_t touch_meas_delay:16;
uint32_t touch_xpd_wait: 8;
uint32_t touch_out_sel: 1;
uint32_t touch_out_1en: 1;
uint32_t xpd_hall_force: 1; /*1: Power of hall sensor is controlled by the digital or RTC controller 0: Ulp coprocessor*/
uint32_t hall_phase_force: 1; /*1: Phase of hall sensor is controlled by the digital or RTC controller 0: Ulp coprocessor*/
uint32_t reserved28: 4;
};
uint32_t val;
} sar_touch_ctrl1;
union {
struct {
uint32_t l_thresh: 16;
uint32_t h_thresh: 16;
};
uint32_t val;
} touch_thresh[5];
union {
struct {
uint32_t l_val: 16;
uint32_t h_val: 16;
};
uint32_t val;
} touch_meas[5];
union {
struct {
uint32_t touch_meas_en: 10;
uint32_t touch_meas_done: 1;
uint32_t touch_start_fsm_en: 1;
uint32_t touch_start_en: 1;
uint32_t touch_start_force: 1;
uint32_t touch_sleep_cycles:16;
uint32_t touch_meas_en_clr: 1;
uint32_t reserved31: 1;
};
uint32_t val;
} sar_touch_ctrl2;
uint32_t reserved_88;
union {
struct {
uint32_t touch_pad_worken:10;
uint32_t touch_pad_outen2:10;
uint32_t touch_pad_outen1:10;
uint32_t reserved30: 2;
};
uint32_t val;
} sar_touch_enable;
union {
struct {
uint32_t sar2_clk_div: 8;
uint32_t sar2_sample_cycle: 8;
uint32_t sar2_sample_bit: 2;
uint32_t sar2_clk_gated: 1;
uint32_t sar2_sample_num: 8;
uint32_t sar2_pwdet_force: 1; /*1: ADC2 is controlled by PWDET 0: digital or RTC controller*/
uint32_t sar2_dig_force: 1; /*1: ADC2 is controlled by the digital controller 0: RTC controller*/
uint32_t sar2_data_inv: 1;
uint32_t reserved30: 2;
};
uint32_t val;
} sar_read_ctrl2;
union {
struct {
uint32_t meas2_data_sar: 16;
uint32_t meas2_done_sar: 1;
uint32_t meas2_start_sar: 1;
uint32_t meas2_start_force: 1; /*1: ADC2 is controlled by the digital or RTC controller 0: Ulp coprocessor*/
uint32_t sar2_en_pad: 12;
uint32_t sar2_en_pad_force: 1; /*1: Data ports are controlled by the digital or RTC controller 0: Ulp coprocessor*/
};
uint32_t val;
} sar_meas_start2;
union {
struct {
uint32_t sw_fstep: 16;
uint32_t sw_tone_en: 1;
uint32_t debug_bit_sel: 5;
uint32_t dac_dig_force: 1;
uint32_t dac_clk_force_low: 1;
uint32_t dac_clk_force_high: 1;
uint32_t dac_clk_inv: 1;
uint32_t reserved26: 6;
};
uint32_t val;
} sar_dac_ctrl1;
union {
struct {
uint32_t dac_dc1: 8;
uint32_t dac_dc2: 8;
uint32_t dac_scale1: 2;
uint32_t dac_scale2: 2;
uint32_t dac_inv1: 2;
uint32_t dac_inv2: 2;
uint32_t dac_cw_en1: 1;
uint32_t dac_cw_en2: 1;
uint32_t reserved26: 6;
};
uint32_t val;
} sar_dac_ctrl2;
union {
struct {
uint32_t sar1_dac_xpd_fsm: 4;
uint32_t sar1_dac_xpd_fsm_idle: 1;
uint32_t xpd_sar_amp_fsm_idle: 1;
uint32_t amp_rst_fb_fsm_idle: 1;
uint32_t amp_short_ref_fsm_idle: 1;
uint32_t amp_short_ref_gnd_fsm_idle: 1;
uint32_t xpd_sar_fsm_idle: 1;
uint32_t sar_rstb_fsm_idle: 1;
uint32_t sar2_rstb_force: 2;
uint32_t amp_rst_fb_force: 2;
uint32_t amp_short_ref_force: 2;
uint32_t amp_short_ref_gnd_force: 2;
uint32_t reserved19: 13;
};
uint32_t val;
} sar_meas_ctrl2;
uint32_t reserved_a4;
uint32_t reserved_a8;
uint32_t reserved_ac;
uint32_t reserved_b0;
uint32_t reserved_b4;
uint32_t reserved_b8;
uint32_t reserved_bc;
uint32_t reserved_c0;
uint32_t reserved_c4;
uint32_t reserved_c8;
uint32_t reserved_cc;
uint32_t reserved_d0;
uint32_t reserved_d4;
uint32_t reserved_d8;
uint32_t reserved_dc;
uint32_t reserved_e0;
uint32_t reserved_e4;
uint32_t reserved_e8;
uint32_t reserved_ec;
uint32_t reserved_f0;
uint32_t reserved_f4;
uint32_t sar_nouse; /**/
union {
struct {
uint32_t sar_date: 28;
uint32_t reserved28: 4;
};
uint32_t val;
} sardate;
} sens_dev_t;
extern sens_dev_t SENS;
#ifdef __cplusplus
}
#endif
#endif /* _SOC_SENS_STRUCT_H_ */