OVMS3-idf/components/spi_flash/test/test_flash_encryption.c
Michael (XIAO Xufeng) 2660cb82ae spi_flash: support to verify written encrypted data
Also add unit test for encrypted_read
2019-10-30 05:49:50 +00:00

233 lines
8 KiB
C

#include <stdio.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/semphr.h>
#include <unity.h>
#include <test_utils.h>
#include <esp_spi_flash.h>
#include <esp_attr.h>
#include <esp_flash_encrypt.h>
#include <string.h>
#ifdef CONFIG_SECURE_FLASH_ENC_ENABLED
static void test_encrypted_write(size_t offset, const uint8_t *data, size_t length);
static void test_encrypted_write_new_impl(size_t offset, const uint8_t *data, size_t length);
static void verify_erased_flash(size_t offset, size_t length);
static size_t start;
static void setup_tests(void)
{
if (start == 0) {
const esp_partition_t *part = get_test_data_partition();
start = part->address;
printf("Test data partition @ 0x%x\n", start);
}
}
TEST_CASE("test 16 byte encrypted writes", "[flash_encryption][test_env=UT_T1_FlashEncryption]")
{
setup_tests();
TEST_ASSERT_EQUAL_HEX(ESP_OK,
spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE));
uint8_t fortyeight_bytes[0x30]; // 0, 1, 2, 3, 4... 47
for(int i = 0; i < sizeof(fortyeight_bytes); i++) {
fortyeight_bytes[i] = i;
}
/* Verify unaligned start or length fails */
TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_ARG,
spi_flash_write_encrypted(start+1, fortyeight_bytes, 32));
TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_SIZE,
spi_flash_write_encrypted(start, fortyeight_bytes, 15));
/* ensure nothing happened to the flash yet */
verify_erased_flash(start, 0x20);
/* Write 32 byte block, this is the "normal" encrypted write */
test_encrypted_write(start, fortyeight_bytes, 0x20);
verify_erased_flash(start + 0x20, 0x20);
/* Slip in an unaligned spi_flash_read_encrypted() test */
uint8_t buf[0x10];
spi_flash_read_encrypted(start+0x10, buf, 0x10);
TEST_ASSERT_EQUAL_HEX8_ARRAY(fortyeight_bytes+0x10, buf, 16);
/* Write 16 bytes unaligned */
test_encrypted_write(start + 0x30, fortyeight_bytes, 0x10);
/* the 16 byte regions before and after the 16 bytes we just wrote should still be 0xFF */
verify_erased_flash(start + 0x20, 0x10);
verify_erased_flash(start + 0x40, 0x10);
/* Write 48 bytes starting at a 32-byte aligned offset */
test_encrypted_write(start + 0x40, fortyeight_bytes, 0x30);
/* 16 bytes after this write should still be 0xFF -unencrypted- */
verify_erased_flash(start + 0x70, 0x10);
/* Write 48 bytes starting at a 16-byte aligned offset */
test_encrypted_write(start + 0x90, fortyeight_bytes, 0x30);
/* 16 bytes after this write should still be 0xFF -unencrypted- */
verify_erased_flash(start + 0x120, 0x10);
}
static void test_encrypted_write(size_t offset, const uint8_t *data, size_t length)
{
uint8_t readback[length];
printf("encrypt %d bytes at 0x%x\n", length, offset);
TEST_ASSERT_EQUAL_HEX(ESP_OK,
spi_flash_write_encrypted(offset, data, length));
TEST_ASSERT_EQUAL_HEX(ESP_OK,
spi_flash_read_encrypted(offset, readback, length));
TEST_ASSERT_EQUAL_HEX8_ARRAY(data, readback, length);
}
TEST_CASE("test 16 byte encrypted writes (esp_flash)", "[flash_encryption][esp_flash_enc][test_env=UT_T1_FlashEncryption]")
{
setup_tests();
TEST_ASSERT_EQUAL_HEX(ESP_OK,
spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE));
uint8_t fortyeight_bytes[0x30]; // 0, 1, 2, 3, 4... 47
for(int i = 0; i < sizeof(fortyeight_bytes); i++) {
fortyeight_bytes[i] = i;
}
/* Verify unaligned start or length fails */
TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_ARG,
esp_flash_write_encrypted(NULL, start+1, fortyeight_bytes, 32));
TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_SIZE,
esp_flash_write_encrypted(NULL, start, fortyeight_bytes, 15));
/* ensure nothing happened to the flash yet */
verify_erased_flash(start, 0x20);
/* Write 32 byte block, this is the "normal" encrypted write */
test_encrypted_write_new_impl(start, fortyeight_bytes, 0x20);
verify_erased_flash(start + 0x20, 0x20);
/* Slip in an unaligned esp_flash_read_encrypted() test */
uint8_t buf[0x10];
esp_flash_read_encrypted(NULL, start+0x10, buf, 0x10);
TEST_ASSERT_EQUAL_HEX8_ARRAY(fortyeight_bytes+0x10, buf, 16);
/* Write 16 bytes unaligned */
test_encrypted_write_new_impl(start + 0x30, fortyeight_bytes, 0x10);
/* the 16 byte regions before and after the 16 bytes we just wrote should still be 0xFF */
verify_erased_flash(start + 0x20, 0x10);
verify_erased_flash(start + 0x40, 0x10);
/* Write 48 bytes starting at a 32-byte aligned offset */
test_encrypted_write_new_impl(start + 0x40, fortyeight_bytes, 0x30);
/* 16 bytes after this write should still be 0xFF -unencrypted- */
verify_erased_flash(start + 0x70, 0x10);
/* Write 48 bytes starting at a 16-byte aligned offset */
test_encrypted_write_new_impl(start + 0x90, fortyeight_bytes, 0x30);
/* 16 bytes after this write should still be 0xFF -unencrypted- */
verify_erased_flash(start + 0x120, 0x10);
}
static void test_encrypted_write_new_impl(size_t offset, const uint8_t *data, size_t length)
{
uint8_t readback[length];
printf("encrypt %d bytes at 0x%x\n", length, offset);
TEST_ASSERT_EQUAL_HEX(ESP_OK,
esp_flash_write_encrypted(NULL, offset, data, length));
TEST_ASSERT_EQUAL_HEX(ESP_OK,
esp_flash_read_encrypted(NULL, offset, readback, length));
TEST_ASSERT_EQUAL_HEX8_ARRAY(data, readback, length);
}
static void verify_erased_flash(size_t offset, size_t length)
{
uint8_t readback[length];
printf("verify erased 0x%x - 0x%x\n", offset, offset + length);
TEST_ASSERT_EQUAL_HEX(ESP_OK,
spi_flash_read(offset, readback, length));
for (int i = 0; i < length; i++) {
char message[32];
sprintf(message, "unerased flash @ 0x%08x", offset + i);
TEST_ASSERT_EQUAL_HEX_MESSAGE(0xFF, readback[i], message);
}
}
TEST_CASE("test read & write random encrypted data", "[flash_encryption][test_env=UT_T1_FlashEncryption]")
{
const int MAX_LEN = 192;
//buffer to hold the read data
WORD_ALIGNED_ATTR uint8_t buffer_to_write[MAX_LEN+4];
//test with unaligned buffer
uint8_t* data_buf = &buffer_to_write[3];
setup_tests();
esp_err_t err = spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE);
TEST_ESP_OK(err);
//initialize the buffer to compare
uint8_t *cmp_buf = heap_caps_malloc(SPI_FLASH_SEC_SIZE, MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL);
assert(((intptr_t)cmp_buf % 4) == 0);
err = spi_flash_read_encrypted(start, cmp_buf, SPI_FLASH_SEC_SIZE);
TEST_ESP_OK(err);
srand(789);
uint32_t offset = 0;
do {
//the encrypted write only works at 16-byte boundary
int skip = (rand() % 4) * 16;
int len = ((rand() % (MAX_LEN/16)) + 1) * 16;
for (int i = 0; i < MAX_LEN; i++) {
data_buf[i] = rand();
}
offset += skip;
if (offset + len > SPI_FLASH_SEC_SIZE) {
if (offset > SPI_FLASH_SEC_SIZE) {
break;
}
len = SPI_FLASH_SEC_SIZE - offset;
}
printf("write %d bytes to 0x%08x...\n", len, start + offset);
err = spi_flash_write_encrypted(start + offset, data_buf, len);
TEST_ESP_OK(err);
memcpy(cmp_buf + offset, data_buf, len);
offset += len;
} while (offset < SPI_FLASH_SEC_SIZE);
offset = 0;
do {
int len = ((rand() % (MAX_LEN/16)) + 1) * 16;
if (offset + len > SPI_FLASH_SEC_SIZE) {
len = SPI_FLASH_SEC_SIZE - offset;
}
err = spi_flash_read_encrypted(start + offset, data_buf, len);
TEST_ESP_OK(err);
printf("compare %d bytes at 0x%08x...\n", len, start + offset);
TEST_ASSERT_EQUAL_HEX8_ARRAY(cmp_buf + offset, data_buf, len);
offset += len;
} while (offset < SPI_FLASH_SEC_SIZE);
free(cmp_buf);
}
#endif // CONFIG_SECURE_FLASH_ENC_ENABLED