#include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SECURE_FLASH_ENC_ENABLED static void test_encrypted_write(size_t offset, const uint8_t *data, size_t length); static void test_encrypted_write_new_impl(size_t offset, const uint8_t *data, size_t length); static void verify_erased_flash(size_t offset, size_t length); static size_t start; static void setup_tests(void) { if (start == 0) { const esp_partition_t *part = get_test_data_partition(); start = part->address; printf("Test data partition @ 0x%x\n", start); } } TEST_CASE("test 16 byte encrypted writes", "[flash_encryption][test_env=UT_T1_FlashEncryption]") { setup_tests(); TEST_ASSERT_EQUAL_HEX(ESP_OK, spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE)); uint8_t fortyeight_bytes[0x30]; // 0, 1, 2, 3, 4... 47 for(int i = 0; i < sizeof(fortyeight_bytes); i++) { fortyeight_bytes[i] = i; } /* Verify unaligned start or length fails */ TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_ARG, spi_flash_write_encrypted(start+1, fortyeight_bytes, 32)); TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_SIZE, spi_flash_write_encrypted(start, fortyeight_bytes, 15)); /* ensure nothing happened to the flash yet */ verify_erased_flash(start, 0x20); /* Write 32 byte block, this is the "normal" encrypted write */ test_encrypted_write(start, fortyeight_bytes, 0x20); verify_erased_flash(start + 0x20, 0x20); /* Slip in an unaligned spi_flash_read_encrypted() test */ uint8_t buf[0x10]; spi_flash_read_encrypted(start+0x10, buf, 0x10); TEST_ASSERT_EQUAL_HEX8_ARRAY(fortyeight_bytes+0x10, buf, 16); /* Write 16 bytes unaligned */ test_encrypted_write(start + 0x30, fortyeight_bytes, 0x10); /* the 16 byte regions before and after the 16 bytes we just wrote should still be 0xFF */ verify_erased_flash(start + 0x20, 0x10); verify_erased_flash(start + 0x40, 0x10); /* Write 48 bytes starting at a 32-byte aligned offset */ test_encrypted_write(start + 0x40, fortyeight_bytes, 0x30); /* 16 bytes after this write should still be 0xFF -unencrypted- */ verify_erased_flash(start + 0x70, 0x10); /* Write 48 bytes starting at a 16-byte aligned offset */ test_encrypted_write(start + 0x90, fortyeight_bytes, 0x30); /* 16 bytes after this write should still be 0xFF -unencrypted- */ verify_erased_flash(start + 0x120, 0x10); } static void test_encrypted_write(size_t offset, const uint8_t *data, size_t length) { uint8_t readback[length]; printf("encrypt %d bytes at 0x%x\n", length, offset); TEST_ASSERT_EQUAL_HEX(ESP_OK, spi_flash_write_encrypted(offset, data, length)); TEST_ASSERT_EQUAL_HEX(ESP_OK, spi_flash_read_encrypted(offset, readback, length)); TEST_ASSERT_EQUAL_HEX8_ARRAY(data, readback, length); } TEST_CASE("test 16 byte encrypted writes (esp_flash)", "[flash_encryption][esp_flash_enc][test_env=UT_T1_FlashEncryption]") { setup_tests(); TEST_ASSERT_EQUAL_HEX(ESP_OK, spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE)); uint8_t fortyeight_bytes[0x30]; // 0, 1, 2, 3, 4... 47 for(int i = 0; i < sizeof(fortyeight_bytes); i++) { fortyeight_bytes[i] = i; } /* Verify unaligned start or length fails */ TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_ARG, esp_flash_write_encrypted(NULL, start+1, fortyeight_bytes, 32)); TEST_ASSERT_EQUAL_HEX(ESP_ERR_INVALID_SIZE, esp_flash_write_encrypted(NULL, start, fortyeight_bytes, 15)); /* ensure nothing happened to the flash yet */ verify_erased_flash(start, 0x20); /* Write 32 byte block, this is the "normal" encrypted write */ test_encrypted_write_new_impl(start, fortyeight_bytes, 0x20); verify_erased_flash(start + 0x20, 0x20); /* Slip in an unaligned esp_flash_read_encrypted() test */ uint8_t buf[0x10]; esp_flash_read_encrypted(NULL, start+0x10, buf, 0x10); TEST_ASSERT_EQUAL_HEX8_ARRAY(fortyeight_bytes+0x10, buf, 16); /* Write 16 bytes unaligned */ test_encrypted_write_new_impl(start + 0x30, fortyeight_bytes, 0x10); /* the 16 byte regions before and after the 16 bytes we just wrote should still be 0xFF */ verify_erased_flash(start + 0x20, 0x10); verify_erased_flash(start + 0x40, 0x10); /* Write 48 bytes starting at a 32-byte aligned offset */ test_encrypted_write_new_impl(start + 0x40, fortyeight_bytes, 0x30); /* 16 bytes after this write should still be 0xFF -unencrypted- */ verify_erased_flash(start + 0x70, 0x10); /* Write 48 bytes starting at a 16-byte aligned offset */ test_encrypted_write_new_impl(start + 0x90, fortyeight_bytes, 0x30); /* 16 bytes after this write should still be 0xFF -unencrypted- */ verify_erased_flash(start + 0x120, 0x10); } static void test_encrypted_write_new_impl(size_t offset, const uint8_t *data, size_t length) { uint8_t readback[length]; printf("encrypt %d bytes at 0x%x\n", length, offset); TEST_ASSERT_EQUAL_HEX(ESP_OK, esp_flash_write_encrypted(NULL, offset, data, length)); TEST_ASSERT_EQUAL_HEX(ESP_OK, esp_flash_read_encrypted(NULL, offset, readback, length)); TEST_ASSERT_EQUAL_HEX8_ARRAY(data, readback, length); } static void verify_erased_flash(size_t offset, size_t length) { uint8_t readback[length]; printf("verify erased 0x%x - 0x%x\n", offset, offset + length); TEST_ASSERT_EQUAL_HEX(ESP_OK, spi_flash_read(offset, readback, length)); for (int i = 0; i < length; i++) { char message[32]; sprintf(message, "unerased flash @ 0x%08x", offset + i); TEST_ASSERT_EQUAL_HEX_MESSAGE(0xFF, readback[i], message); } } TEST_CASE("test read & write random encrypted data", "[flash_encryption][test_env=UT_T1_FlashEncryption]") { const int MAX_LEN = 192; //buffer to hold the read data WORD_ALIGNED_ATTR uint8_t buffer_to_write[MAX_LEN+4]; //test with unaligned buffer uint8_t* data_buf = &buffer_to_write[3]; setup_tests(); esp_err_t err = spi_flash_erase_sector(start / SPI_FLASH_SEC_SIZE); TEST_ESP_OK(err); //initialize the buffer to compare uint8_t *cmp_buf = heap_caps_malloc(SPI_FLASH_SEC_SIZE, MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_INTERNAL); assert(((intptr_t)cmp_buf % 4) == 0); err = spi_flash_read_encrypted(start, cmp_buf, SPI_FLASH_SEC_SIZE); TEST_ESP_OK(err); srand(789); uint32_t offset = 0; do { //the encrypted write only works at 16-byte boundary int skip = (rand() % 4) * 16; int len = ((rand() % (MAX_LEN/16)) + 1) * 16; for (int i = 0; i < MAX_LEN; i++) { data_buf[i] = rand(); } offset += skip; if (offset + len > SPI_FLASH_SEC_SIZE) { if (offset > SPI_FLASH_SEC_SIZE) { break; } len = SPI_FLASH_SEC_SIZE - offset; } printf("write %d bytes to 0x%08x...\n", len, start + offset); err = spi_flash_write_encrypted(start + offset, data_buf, len); TEST_ESP_OK(err); memcpy(cmp_buf + offset, data_buf, len); offset += len; } while (offset < SPI_FLASH_SEC_SIZE); offset = 0; do { int len = ((rand() % (MAX_LEN/16)) + 1) * 16; if (offset + len > SPI_FLASH_SEC_SIZE) { len = SPI_FLASH_SEC_SIZE - offset; } err = spi_flash_read_encrypted(start + offset, data_buf, len); TEST_ESP_OK(err); printf("compare %d bytes at 0x%08x...\n", len, start + offset); TEST_ASSERT_EQUAL_HEX8_ARRAY(cmp_buf + offset, data_buf, len); offset += len; } while (offset < SPI_FLASH_SEC_SIZE); free(cmp_buf); } #endif // CONFIG_SECURE_FLASH_ENC_ENABLED