OVMS3-idf/components/esp32/hwcrypto/sha.c
Tian Hao 26a3cb93c7 component/soc : move dport access header files to soc
1. move dport access header files to soc
2. reduce dport register write protection. Only protect read operation
2017-05-09 18:06:00 +08:00

290 lines
7.7 KiB
C

/*
* ESP32 hardware accelerated SHA1/256/512 implementation
* based on mbedTLS FIPS-197 compliant version.
*
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
/*
* The SHA-1 standard was published by NIST in 1993.
*
* http://www.itl.nist.gov/fipspubs/fip180-1.htm
*/
#include <string.h>
#include <stdio.h>
#include <sys/lock.h>
#include <byteswap.h>
#include <assert.h>
#include "hwcrypto/sha.h"
#include "rom/ets_sys.h"
#include "soc/dport_reg.h"
#include "soc/hwcrypto_reg.h"
inline static uint32_t SHA_LOAD_REG(esp_sha_type sha_type) {
return SHA_1_LOAD_REG + sha_type * 0x10;
}
inline static uint32_t SHA_BUSY_REG(esp_sha_type sha_type) {
return SHA_1_BUSY_REG + sha_type * 0x10;
}
inline static uint32_t SHA_START_REG(esp_sha_type sha_type) {
return SHA_1_START_REG + sha_type * 0x10;
}
inline static uint32_t SHA_CONTINUE_REG(esp_sha_type sha_type) {
return SHA_1_CONTINUE_REG + sha_type * 0x10;
}
/* Single lock for SHA engine memory block
*/
static _lock_t memory_block_lock;
typedef struct {
_lock_t lock;
bool in_use;
} sha_engine_state;
/* Pointer to state of each concurrent SHA engine.
Indexes:
0 = SHA1
1 = SHA2_256
2 = SHA2_384 or SHA2_512
*/
static sha_engine_state engine_states[3];
/* Index into the sha_engine_state array */
inline static size_t sha_engine_index(esp_sha_type type) {
switch(type) {
case SHA1:
return 0;
case SHA2_256:
return 1;
default:
return 2;
}
}
/* Return digest length (in bytes) for a given SHA type */
inline static size_t sha_length(esp_sha_type type) {
switch(type) {
case SHA1:
return 20;
case SHA2_256:
return 32;
case SHA2_384:
return 48;
case SHA2_512:
return 64;
default:
return 0;
}
}
/* Return block size (in bytes) for a given SHA type */
inline static size_t block_length(esp_sha_type type) {
switch(type) {
case SHA1:
case SHA2_256:
return 64;
case SHA2_384:
case SHA2_512:
return 128;
default:
return 0;
}
}
void esp_sha_lock_memory_block(void)
{
_lock_acquire(&memory_block_lock);
}
void esp_sha_unlock_memory_block(void)
{
_lock_release(&memory_block_lock);
}
/* Lock to hold when changing SHA engine state,
allows checking of sha_engines_all_idle()
*/
static _lock_t state_change_lock;
inline static bool sha_engines_all_idle() {
return !engine_states[0].in_use
&& !engine_states[1].in_use
&& !engine_states[2].in_use;
}
static void esp_sha_lock_engine_inner(sha_engine_state *engine);
bool esp_sha_try_lock_engine(esp_sha_type sha_type)
{
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
if(_lock_try_acquire(&engine->lock) != 0) {
/* This SHA engine is already in use */
return false;
} else {
esp_sha_lock_engine_inner(engine);
return true;
}
}
void esp_sha_lock_engine(esp_sha_type sha_type)
{
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
_lock_acquire(&engine->lock);
esp_sha_lock_engine_inner(engine);
}
static void esp_sha_lock_engine_inner(sha_engine_state *engine)
{
_lock_acquire(&state_change_lock);
if (sha_engines_all_idle()) {
/* Enable SHA hardware */
DPORT_REG_SET_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_SHA);
/* also clear reset on secure boot, otherwise SHA is held in reset */
DPORT_REG_CLR_BIT(DPORT_PERI_RST_EN_REG,
DPORT_PERI_EN_SHA
| DPORT_PERI_EN_SECUREBOOT);
ets_sha_enable();
}
_lock_release(&state_change_lock);
assert( !engine->in_use && "in_use flag should be cleared" );
engine->in_use = true;
}
void esp_sha_unlock_engine(esp_sha_type sha_type)
{
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
_lock_acquire(&state_change_lock);
assert( engine->in_use && "in_use flag should be set" );
engine->in_use = false;
if (sha_engines_all_idle()) {
/* Disable SHA hardware */
/* Don't assert reset on secure boot, otherwise AES is held in reset */
DPORT_REG_SET_BIT(DPORT_PERI_RST_EN_REG, DPORT_PERI_EN_SHA);
DPORT_REG_CLR_BIT(DPORT_PERI_CLK_EN_REG, DPORT_PERI_EN_SHA);
}
_lock_release(&state_change_lock);
_lock_release(&engine->lock);
}
void esp_sha_wait_idle(void)
{
while(REG_READ(SHA_1_BUSY_REG) == 1) {}
while(REG_READ(SHA_256_BUSY_REG) == 1) {}
while(REG_READ(SHA_384_BUSY_REG) == 1) {}
while(REG_READ(SHA_512_BUSY_REG) == 1) {}
}
void esp_sha_read_digest_state(esp_sha_type sha_type, void *digest_state)
{
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
assert(engine->in_use && "SHA engine should be locked" );
esp_sha_lock_memory_block();
esp_sha_wait_idle();
REG_WRITE(SHA_LOAD_REG(sha_type), 1);
while(REG_READ(SHA_BUSY_REG(sha_type)) == 1) { }
uint32_t *digest_state_words = (uint32_t *)digest_state;
uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
if(sha_type == SHA2_384 || sha_type == SHA2_512) {
/* for these ciphers using 64-bit states, swap each pair of words */
for(int i = 0; i < sha_length(sha_type)/4; i += 2) {
digest_state_words[i+1] = reg_addr_buf[i];
digest_state_words[i]= reg_addr_buf[i+1];
}
} else {
memcpy(digest_state_words, reg_addr_buf, sha_length(sha_type));
}
asm volatile ("memw");
esp_sha_unlock_memory_block();
}
void esp_sha_block(esp_sha_type sha_type, const void *data_block, bool is_first_block)
{
sha_engine_state *engine = &engine_states[sha_engine_index(sha_type)];
assert(engine->in_use && "SHA engine should be locked" );
esp_sha_lock_memory_block();
esp_sha_wait_idle();
/* Fill the data block */
uint32_t *reg_addr_buf = (uint32_t *)(SHA_TEXT_BASE);
uint32_t *data_words = (uint32_t *)data_block;
for (int i = 0; i < block_length(sha_type) / 4; i++) {
reg_addr_buf[i] = __bswap_32(data_words[i]);
}
asm volatile ("memw");
if(is_first_block) {
REG_WRITE(SHA_START_REG(sha_type), 1);
} else {
REG_WRITE(SHA_CONTINUE_REG(sha_type), 1);
}
esp_sha_unlock_memory_block();
/* Note: deliberately not waiting for this operation to complete,
as a performance tweak - delay waiting until the next time we need the SHA
unit, instead.
*/
}
void esp_sha(esp_sha_type sha_type, const unsigned char *input, size_t ilen, unsigned char *output)
{
size_t block_len = block_length(sha_type);
esp_sha_lock_engine(sha_type);
SHA_CTX ctx;
ets_sha_init(&ctx);
while(ilen > 0) {
size_t chunk_len = (ilen > block_len) ? block_len : ilen;
esp_sha_lock_memory_block();
esp_sha_wait_idle();
ets_sha_update(&ctx, sha_type, input, chunk_len * 8);
esp_sha_unlock_memory_block();
input += chunk_len;
ilen -= chunk_len;
}
esp_sha_lock_memory_block();
esp_sha_wait_idle();
ets_sha_finish(&ctx, sha_type, output);
esp_sha_unlock_memory_block();
esp_sha_unlock_engine(sha_type);
}