OVMS3-idf/tools/esp_prov/README.md
Anurag Kar 9c0ee28670 wifi_provisioning : Added Wi-Fi Scan list feature to Provisioning Manager
List of changes in components/wifi_provisioning:
* Manager version is now v1.1
* .proto files and protocomm handler added for sending Wi-Fi scan command and receiving scan results
* Implemented handlers for wifi_scan protocomm endpoint
* Update manager context data structure to hold scan state and results
* scheme_softap now runs Wi-Fi in APSTA mode
* Wi-Fi is started in AP mode when provisioning is started. This is necessary for scan list to work
* Docs updates with information about new wifi_scan endpoint

List of changes in tools/esp_prov:
* Added functions for sending and receiving protobuf messages compatible with wifi_scan protocomm endpoint
* Added feature to display/refresh scan results and accept user selection at runtime
* New functions:
  * get_version() : only returns the protocol version string
  * has_capability() : check is a capability is present according to proto-ver response
* wifi_scan feature is provided only if the `wifi_scan` capability is present

Other changes:
* Replace recursive mutex with plain mutex
* assert on return value of mutex give / take calls
* replace all calls with macros ACQUIRE_LOCK and RELEASE_LOCK
* some checks added in scanning related private APIs
* free and nullify scanning context and state if service is stopped while ongoing scan
2019-06-26 05:24:20 +00:00

108 lines
5.8 KiB
Markdown

# ESP Provisioning Tool
# NAME
`esp_prov` - A python based utility for testing the provisioning examples over a host
# SYNOPSIS
```
python esp_prov.py --transport < mode of provisioning : softap \ ble \ console > --sec_ver < Security version 0 / 1 > [ Optional parameters... ]
```
# DESCRIPTION
Usage of `esp-prov` assumes that the provisioning app has specific protocomm endpoints active. These endpoints are active in the provisioning examples and accept specific protobuf data structures:
| Endpoint Name | URI (HTTP server on ip:port) | Description |
|---------------|------------------------------|-----------------------------------------------------------|
| prov-session | http://ip:port/prov-session | Security endpoint used for session establishment |
| prov-config | http://ip:port/prov-config | Endpoint used for configuring Wi-Fi credentials on device |
| proto-ver | http://ip:port/proto-ver | Version endpoint for checking protocol compatibility |
| prov-scan | http://ip:port/prov-scan | Endpoint used for scanning Wi-Fi APs |
| custom-config | http://ip:port/custom-config | Optional endpoint for configuring custom credentials |
# PARAMETERS
* `--help`
Print the list of options along with brief descriptions
* `--verbose`, `-v`
Sets the verbosity level of output log
* `--transport <mode>`
Three options are available:
* `softap`
For SoftAP + HTTPD based provisioning. This assumes that the device is running in Wi-Fi SoftAP mode and hosts an HTTP server supporting specific endpoint URIs. Also client needs to connect to the device softAP network before running `esp_prov`
* `ble`
For BLE based provisioning (Linux support only. In Windows/macOS it redirects to console). This assumes that the provisioning endpoints are active on the device with specific BLE service UUIDs
* `console`
For debugging via console based provisioning. The client->device commands are printed to STDOUT and device->client messages are accepted via STDIN. This is to be used when device is accepting provisioning commands on UART console.
* `--ssid <AP SSID>` (Optional)
For specifying the SSID of the Wi-Fi AP to which the device is to connect after provisioning. If not provided, scanning is initiated and scan results, as seen by the device, are displayed, of which an SSID can be picked and the corresponding password specified.
* `--passphrase <AP Password>` (Optional)
For specifying the password of the Wi-Fi AP to which the device is to connect after provisioning. Only used when corresponding SSID is provided using `--ssid`
* `--sec_ver <Security version number>`
For specifying version of protocomm endpoint security to use. For now two versions are supported:
* `0` for `protocomm_security0`
* `1` for `protocomm_security1`
* `--pop <Proof of possession string>` (Optional)
For specifying optional Proof of Possession string to use for protocomm endpoint security version 1. This option is ignored when security version 0 is in use
* `--softap_endpoint <softap_ip:port>` (Optional) (Default `192.168.4.1:80`)
For specifying the IP and port of the HTTP server on which provisioning app is running. The client must connect to the device SoftAP prior to running `esp_prov`
* `--ble_devname <BLE device name>` (Optional)
For specifying name of the BLE device to which connection is to be established prior to starting provisioning process. This is only used when `--transport ble` is specified, else it is ignored. Since connection with BLE is supported only on Linux, so this option is again ignored for other platforms
* `--custom_config` (Optional)
This flag assumes the provisioning app has an endpoint called `custom-config`. Use `--custom_info` and `--custom_ver` options to specify the fields accepted by this endpoint
* `--custom_info <some string>` (Optional) (Only use along with `--custom_config`)
For specifying an information string to be sent to the `custom-config` endpoint during provisioning
* `--custom_ver <some integer>` (Optional) (Only use along with `--custom_config`)
For specifying a version number (int) to be sent to the `custom-config` endpoint during provisioning
# AVAILABILITY
`esp_prov` is intended as a cross-platform tool, but currently BLE communication functionality is only available on Linux (via BlueZ and DBus)
For android, a provisioning tool along with source code is available [here](https://github.com/espressif/esp-idf-provisioning-android)
On macOS and Windows, running with `--transport ble` option falls back to console mode, ie. write data and target UUID are printed to STDOUT and read data is input through STDIN. Users are free to use their app of choice to connect to the BLE device, send the write data to the target characteristic and read from it.
## Dependencies
This requires the following python libraries to run (included in requirements.txt):
* `future`
* `protobuf`
* `cryptography`
Run `pip install -r $IDF_PATH/tools/esp_prov/requirements.txt`
Note :
* The packages listed in requirements.txt are limited only to the ones needed AFTER fully satisfying the requirements of ESP-IDF
* BLE communication is only supported on Linux (via Bluez and DBus), therefore, the dependencies for this have been made optional
## Optional Dependencies (Linux Only)
These dependencies are for enabling communication with BLE devices using Bluez and DBus on Linux:
* `dbus-python`
Run `pip install -r $IDF_PATH/tools/esp_prov/requirements_linux_extra.txt`
# EXAMPLE USAGE
Please refer to the README.md files with the examples present under `$IDF_PATH/examples/provisioning/`, namely:
* `ble_prov`
* `softap_prov`
* `custom_config`
* `console_prov`
Each of these examples use specific options of the `esp_prov` tool and give an overview to simple as well as advanced usage scenarios.