OVMS3-idf/components/efuse/src/esp_efuse_fields.c

261 lines
8.0 KiB
C

// Copyright 2017-2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "esp_efuse.h"
#include "esp_efuse_utility.h"
#include "esp_efuse_table.h"
#include "stdlib.h"
#include "esp_types.h"
#include "rom/efuse.h"
#include "assert.h"
#include "esp_err.h"
#include "esp_log.h"
#include "soc/efuse_reg.h"
#include "bootloader_random.h"
#include "soc/apb_ctrl_reg.h"
const static char *TAG = "efuse";
// Contains functions that provide access to efuse fields which are often used in IDF.
// Returns chip version from efuse
uint8_t esp_efuse_get_chip_ver(void)
{
uint8_t eco_bit0, eco_bit1, eco_bit2;
esp_efuse_read_field_blob(ESP_EFUSE_CHIP_VER_REV1, &eco_bit0, 1);
esp_efuse_read_field_blob(ESP_EFUSE_CHIP_VER_REV2, &eco_bit1, 1);
eco_bit2 = (REG_READ(APB_CTRL_DATE_REG) & 0x80000000) >> 31;
uint32_t combine_value = (eco_bit2 << 2) | (eco_bit1 << 1) | eco_bit0;
uint8_t chip_ver = 0;
switch (combine_value) {
case 0:
chip_ver = 0;
break;
case 1:
chip_ver = 1;
break;
case 3:
chip_ver = 2;
break;
case 7:
chip_ver = 3;
break;
default:
chip_ver = 0;
break;
}
return chip_ver;
}
// Returns chip package from efuse
uint32_t esp_efuse_get_pkg_ver(void)
{
uint32_t pkg_ver = 0;
esp_efuse_read_field_blob(ESP_EFUSE_CHIP_VER_PKG, &pkg_ver, 3);
return pkg_ver;
}
// Permanently update values written to the efuse write registers
void esp_efuse_burn_new_values(void)
{
esp_efuse_utility_burn_efuses();
}
// Reset efuse write registers
void esp_efuse_reset(void)
{
esp_efuse_utility_reset();
}
// Disable BASIC ROM Console via efuse
void esp_efuse_disable_basic_rom_console(void)
{
if (esp_efuse_write_field_cnt(ESP_EFUSE_CONSOLE_DEBUG_DISABLE, 1) == ESP_OK) {
ESP_EARLY_LOGI(TAG, "Disable BASIC ROM Console fallback via efuse...");
}
}
esp_err_t esp_efuse_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len)
{
if (in_bytes == NULL || out_words == NULL || in_bytes_len % 6 != 0) {
return ESP_ERR_INVALID_ARG;
}
while (in_bytes_len > 0) {
uint8_t out[8];
uint8_t xor = 0;
uint8_t mul = 0;
for (int i = 0; i < 6; i++) {
xor ^= in_bytes[i];
mul += (i + 1) * __builtin_popcount(in_bytes[i]);
}
memcpy(out, in_bytes, 6); // Data bytes
out[6] = xor;
out[7] = mul;
memcpy(out_words, out, 8);
in_bytes_len -= 6;
in_bytes += 6;
out_words += 2;
}
return ESP_OK;
}
void esp_efuse_write_random_key(uint32_t blk_wdata0_reg)
{
uint32_t buf[8];
uint8_t raw[24];
uint32_t coding_scheme = REG_READ(EFUSE_BLK0_RDATA6_REG) & EFUSE_CODING_SCHEME_M;
if (coding_scheme == EFUSE_CODING_SCHEME_VAL_NONE) {
bootloader_fill_random(buf, sizeof(buf));
} else { // 3/4 Coding Scheme
bootloader_fill_random(raw, sizeof(raw));
esp_err_t r = esp_efuse_apply_34_encoding(raw, buf, sizeof(raw));
(void) r;
assert(r == ESP_OK);
}
ESP_LOGV(TAG, "Writing random values to address 0x%08x", blk_wdata0_reg);
for (int i = 0; i < 8; i++) {
ESP_LOGV(TAG, "EFUSE_BLKx_WDATA%d_REG = 0x%08x", i, buf[i]);
REG_WRITE(blk_wdata0_reg + 4 * i, buf[i]);
}
bzero(buf, sizeof(buf));
bzero(raw, sizeof(raw));
}
#ifdef CONFIG_EFUSE_SECURE_VERSION_EMULATE
#include "../include_bootloader/bootloader_flash.h"
#include "esp_flash_encrypt.h"
static uint32_t esp_efuse_flash_offset = 0;
static uint32_t esp_efuse_flash_size = 0;
void esp_efuse_init(uint32_t offset, uint32_t size)
{
esp_efuse_flash_offset = offset;
esp_efuse_flash_size = size;
}
static uint32_t emulate_secure_version_read()
{
uint32_t secure_version;
uint32_t offset = esp_efuse_flash_offset;
if (offset == 0) {
ESP_LOGE(TAG, "emulate secure_version can not be used");
return 0;
}
const uint32_t *efuse_place_in_flash = bootloader_mmap(offset, esp_efuse_flash_size);
if (!efuse_place_in_flash) {
ESP_LOGE(TAG, "secure_version can not be read from (0x%x, 0x%x) flash", offset, esp_efuse_flash_size);
return 0;
}
memcpy(&secure_version, efuse_place_in_flash, sizeof(uint32_t));
bootloader_munmap(efuse_place_in_flash);
secure_version = ~secure_version;
ESP_LOGV(TAG, "Read 0x%08x secure_version from flash", secure_version);
return secure_version;
}
static void emulate_secure_version_write(uint32_t secure_version)
{
uint32_t secure_version_wr = ~secure_version;
uint32_t offset = esp_efuse_flash_offset;
if (offset == 0) {
ESP_LOGE(TAG, "emulate secure_version can not be used");
return;
}
esp_err_t err = bootloader_flash_write(offset, &secure_version_wr, sizeof(secure_version_wr), false);
if (err != ESP_OK) {
ESP_LOGE(TAG, "secure_version can not be written to flash. err = 0x%x", err);
}
ESP_LOGV(TAG, "Write 0x%08x secure_version into flash", secure_version);
}
#endif
// This efuse register is used whole for secure version (32 bits).
#define EFUSE_BLK_RD_ANTI_ROLLBACK EFUSE_BLK3_RDATA4_REG
#define EFUSE_BLK_WR_ANTI_ROLLBACK EFUSE_BLK3_WDATA4_REG
uint32_t esp_efuse_read_secure_version()
{
#ifdef CONFIG_APP_ANTI_ROLLBACK
uint32_t secure_version;
#ifdef CONFIG_EFUSE_SECURE_VERSION_EMULATE
secure_version = emulate_secure_version_read();
#else
secure_version = REG_READ(EFUSE_BLK_RD_ANTI_ROLLBACK);
#endif // CONFIG_EFUSE_SECURE_VERSION_EMULATE
return __builtin_popcount(secure_version & ((1ULL << CONFIG_APP_SECURE_VERSION_SIZE_EFUSE_FIELD) - 1));
#else
return 0;
#endif
}
#ifdef CONFIG_APP_ANTI_ROLLBACK
static void write_anti_rollback(uint32_t new_bits)
{
#ifdef CONFIG_EFUSE_SECURE_VERSION_EMULATE
emulate_secure_version_write(new_bits);
#else
esp_efuse_reset();
REG_WRITE(EFUSE_BLK_WR_ANTI_ROLLBACK, new_bits);
esp_efuse_burn_new_values();
#endif
}
#endif
bool esp_efuse_check_secure_version(uint32_t secure_version)
{
uint32_t sec_ver_hw = esp_efuse_read_secure_version();
return secure_version >= sec_ver_hw;
}
esp_err_t esp_efuse_update_secure_version(uint32_t secure_version)
{
#ifdef CONFIG_APP_ANTI_ROLLBACK
if (CONFIG_APP_SECURE_VERSION_SIZE_EFUSE_FIELD < secure_version) {
ESP_LOGE(TAG, "Max secure version is %d. Given %d version can not be written.", CONFIG_APP_SECURE_VERSION_SIZE_EFUSE_FIELD, secure_version);
return ESP_ERR_INVALID_ARG;
}
#ifndef CONFIG_EFUSE_SECURE_VERSION_EMULATE
uint32_t coding_scheme = REG_READ(EFUSE_BLK0_RDATA6_REG) & EFUSE_CODING_SCHEME_M;
if (coding_scheme != EFUSE_CODING_SCHEME_VAL_NONE) {
ESP_LOGE(TAG, "Anti rollback is not supported with a 3/4 coding scheme.");
return ESP_ERR_NOT_SUPPORTED;
}
#endif
uint32_t sec_ver_hw = esp_efuse_read_secure_version();
// If secure_version is the same as in eFuse field than it is ok just go out.
if (sec_ver_hw < secure_version) {
uint32_t num_bit_hw = (1ULL << sec_ver_hw) - 1;
uint32_t num_bit_app = (1ULL << secure_version) - 1;
// Repeated programming of programmed bits is strictly forbidden
uint32_t new_bits = num_bit_app - num_bit_hw; // get only new bits
write_anti_rollback(new_bits);
ESP_LOGI(TAG, "Anti-rollback is set. eFuse field is updated(%d).", secure_version);
} else if (sec_ver_hw > secure_version) {
ESP_LOGE(TAG, "Anti-rollback is not set. secure_version of app is lower that eFuse field(%d).", sec_ver_hw);
return ESP_FAIL;
}
#endif
return ESP_OK;
}