// Copyright 2017-2018 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "esp_efuse.h" #include "esp_efuse_utility.h" #include "esp_efuse_table.h" #include "stdlib.h" #include "esp_types.h" #include "rom/efuse.h" #include "assert.h" #include "esp_err.h" #include "esp_log.h" #include "soc/efuse_reg.h" #include "bootloader_random.h" #include "soc/apb_ctrl_reg.h" const static char *TAG = "efuse"; // Contains functions that provide access to efuse fields which are often used in IDF. // Returns chip version from efuse uint8_t esp_efuse_get_chip_ver(void) { uint8_t eco_bit0, eco_bit1, eco_bit2; esp_efuse_read_field_blob(ESP_EFUSE_CHIP_VER_REV1, &eco_bit0, 1); esp_efuse_read_field_blob(ESP_EFUSE_CHIP_VER_REV2, &eco_bit1, 1); eco_bit2 = (REG_READ(APB_CTRL_DATE_REG) & 0x80000000) >> 31; uint32_t combine_value = (eco_bit2 << 2) | (eco_bit1 << 1) | eco_bit0; uint8_t chip_ver = 0; switch (combine_value) { case 0: chip_ver = 0; break; case 1: chip_ver = 1; break; case 3: chip_ver = 2; break; case 7: chip_ver = 3; break; default: chip_ver = 0; break; } return chip_ver; } // Returns chip package from efuse uint32_t esp_efuse_get_pkg_ver(void) { uint32_t pkg_ver = 0; esp_efuse_read_field_blob(ESP_EFUSE_CHIP_VER_PKG, &pkg_ver, 3); return pkg_ver; } // Permanently update values written to the efuse write registers void esp_efuse_burn_new_values(void) { esp_efuse_utility_burn_efuses(); } // Reset efuse write registers void esp_efuse_reset(void) { esp_efuse_utility_reset(); } // Disable BASIC ROM Console via efuse void esp_efuse_disable_basic_rom_console(void) { if (esp_efuse_write_field_cnt(ESP_EFUSE_CONSOLE_DEBUG_DISABLE, 1) == ESP_OK) { ESP_EARLY_LOGI(TAG, "Disable BASIC ROM Console fallback via efuse..."); } } esp_err_t esp_efuse_apply_34_encoding(const uint8_t *in_bytes, uint32_t *out_words, size_t in_bytes_len) { if (in_bytes == NULL || out_words == NULL || in_bytes_len % 6 != 0) { return ESP_ERR_INVALID_ARG; } while (in_bytes_len > 0) { uint8_t out[8]; uint8_t xor = 0; uint8_t mul = 0; for (int i = 0; i < 6; i++) { xor ^= in_bytes[i]; mul += (i + 1) * __builtin_popcount(in_bytes[i]); } memcpy(out, in_bytes, 6); // Data bytes out[6] = xor; out[7] = mul; memcpy(out_words, out, 8); in_bytes_len -= 6; in_bytes += 6; out_words += 2; } return ESP_OK; } void esp_efuse_write_random_key(uint32_t blk_wdata0_reg) { uint32_t buf[8]; uint8_t raw[24]; uint32_t coding_scheme = REG_READ(EFUSE_BLK0_RDATA6_REG) & EFUSE_CODING_SCHEME_M; if (coding_scheme == EFUSE_CODING_SCHEME_VAL_NONE) { bootloader_fill_random(buf, sizeof(buf)); } else { // 3/4 Coding Scheme bootloader_fill_random(raw, sizeof(raw)); esp_err_t r = esp_efuse_apply_34_encoding(raw, buf, sizeof(raw)); (void) r; assert(r == ESP_OK); } ESP_LOGV(TAG, "Writing random values to address 0x%08x", blk_wdata0_reg); for (int i = 0; i < 8; i++) { ESP_LOGV(TAG, "EFUSE_BLKx_WDATA%d_REG = 0x%08x", i, buf[i]); REG_WRITE(blk_wdata0_reg + 4 * i, buf[i]); } bzero(buf, sizeof(buf)); bzero(raw, sizeof(raw)); } #ifdef CONFIG_EFUSE_SECURE_VERSION_EMULATE #include "../include_bootloader/bootloader_flash.h" #include "esp_flash_encrypt.h" static uint32_t esp_efuse_flash_offset = 0; static uint32_t esp_efuse_flash_size = 0; void esp_efuse_init(uint32_t offset, uint32_t size) { esp_efuse_flash_offset = offset; esp_efuse_flash_size = size; } static uint32_t emulate_secure_version_read() { uint32_t secure_version; uint32_t offset = esp_efuse_flash_offset; if (offset == 0) { ESP_LOGE(TAG, "emulate secure_version can not be used"); return 0; } const uint32_t *efuse_place_in_flash = bootloader_mmap(offset, esp_efuse_flash_size); if (!efuse_place_in_flash) { ESP_LOGE(TAG, "secure_version can not be read from (0x%x, 0x%x) flash", offset, esp_efuse_flash_size); return 0; } memcpy(&secure_version, efuse_place_in_flash, sizeof(uint32_t)); bootloader_munmap(efuse_place_in_flash); secure_version = ~secure_version; ESP_LOGV(TAG, "Read 0x%08x secure_version from flash", secure_version); return secure_version; } static void emulate_secure_version_write(uint32_t secure_version) { uint32_t secure_version_wr = ~secure_version; uint32_t offset = esp_efuse_flash_offset; if (offset == 0) { ESP_LOGE(TAG, "emulate secure_version can not be used"); return; } esp_err_t err = bootloader_flash_write(offset, &secure_version_wr, sizeof(secure_version_wr), false); if (err != ESP_OK) { ESP_LOGE(TAG, "secure_version can not be written to flash. err = 0x%x", err); } ESP_LOGV(TAG, "Write 0x%08x secure_version into flash", secure_version); } #endif // This efuse register is used whole for secure version (32 bits). #define EFUSE_BLK_RD_ANTI_ROLLBACK EFUSE_BLK3_RDATA4_REG #define EFUSE_BLK_WR_ANTI_ROLLBACK EFUSE_BLK3_WDATA4_REG uint32_t esp_efuse_read_secure_version() { #ifdef CONFIG_APP_ANTI_ROLLBACK uint32_t secure_version; #ifdef CONFIG_EFUSE_SECURE_VERSION_EMULATE secure_version = emulate_secure_version_read(); #else secure_version = REG_READ(EFUSE_BLK_RD_ANTI_ROLLBACK); #endif // CONFIG_EFUSE_SECURE_VERSION_EMULATE return __builtin_popcount(secure_version & ((1ULL << CONFIG_APP_SECURE_VERSION_SIZE_EFUSE_FIELD) - 1)); #else return 0; #endif } #ifdef CONFIG_APP_ANTI_ROLLBACK static void write_anti_rollback(uint32_t new_bits) { #ifdef CONFIG_EFUSE_SECURE_VERSION_EMULATE emulate_secure_version_write(new_bits); #else esp_efuse_reset(); REG_WRITE(EFUSE_BLK_WR_ANTI_ROLLBACK, new_bits); esp_efuse_burn_new_values(); #endif } #endif bool esp_efuse_check_secure_version(uint32_t secure_version) { uint32_t sec_ver_hw = esp_efuse_read_secure_version(); return secure_version >= sec_ver_hw; } esp_err_t esp_efuse_update_secure_version(uint32_t secure_version) { #ifdef CONFIG_APP_ANTI_ROLLBACK if (CONFIG_APP_SECURE_VERSION_SIZE_EFUSE_FIELD < secure_version) { ESP_LOGE(TAG, "Max secure version is %d. Given %d version can not be written.", CONFIG_APP_SECURE_VERSION_SIZE_EFUSE_FIELD, secure_version); return ESP_ERR_INVALID_ARG; } #ifndef CONFIG_EFUSE_SECURE_VERSION_EMULATE uint32_t coding_scheme = REG_READ(EFUSE_BLK0_RDATA6_REG) & EFUSE_CODING_SCHEME_M; if (coding_scheme != EFUSE_CODING_SCHEME_VAL_NONE) { ESP_LOGE(TAG, "Anti rollback is not supported with a 3/4 coding scheme."); return ESP_ERR_NOT_SUPPORTED; } #endif uint32_t sec_ver_hw = esp_efuse_read_secure_version(); // If secure_version is the same as in eFuse field than it is ok just go out. if (sec_ver_hw < secure_version) { uint32_t num_bit_hw = (1ULL << sec_ver_hw) - 1; uint32_t num_bit_app = (1ULL << secure_version) - 1; // Repeated programming of programmed bits is strictly forbidden uint32_t new_bits = num_bit_app - num_bit_hw; // get only new bits write_anti_rollback(new_bits); ESP_LOGI(TAG, "Anti-rollback is set. eFuse field is updated(%d).", secure_version); } else if (sec_ver_hw > secure_version) { ESP_LOGE(TAG, "Anti-rollback is not set. secure_version of app is lower that eFuse field(%d).", sec_ver_hw); return ESP_FAIL; } #endif return ESP_OK; }