OVMS3-idf/components/driver/test/test_pwm.c
michael 4220752aed ut: Move tests back from "esp32" subfolder
DISABLED_FOR_TARGETS macros are used

Partly revert "ci: disable unavailable tests for esp32s2beta"

This partly reverts commit 76a3a5fb48.

Partly revert "ci: disable UTs for esp32s2beta without runners"

This partly reverts commit eb158e9a22.

Partly revert "fix unit test and examples for s2beta"

This partly reverts commit 9baa7826be.

Partly revert "efuse: Add support for esp32s2beta"

This partly reverts commit db84ba868c.
2020-01-06 17:13:53 +08:00

789 lines
30 KiB
C

/**
* To test PWM, use the PCNT to calculateit to judge it work right or not.
* e.g: judge the start and stop.
* If started right, the PCNT will count the pulse.
* If stopped right, the PCNT will count no pulse.
*
*
* test environment UT_T1_MCPWM:
* 1. connect GPIO4 to GPIO5
* 2. connect GPIO13 to GPIO12
* 3. connect GPIO27 to GPIO14
*
* all of case separate different timer to test in case that one case cost too much time
*/
#include <stdio.h>
#include "esp_system.h"
#include "driver/pcnt.h"
#include "unity.h"
#include "test_utils.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "soc/rtc.h"
#include "soc/soc_caps.h"
#ifdef SOC_MCPWM_SUPPORTED
#include "soc/mcpwm_periph.h"
#include "driver/mcpwm.h"
#define GPIO_PWMA_OUT 4
#define GPIO_PWMB_OUT 13
#define GPIO_CAP_IN 27
#define GPIO_SYNC_IN 27
#define GPIO_FAULT_IN 27
#define CAP_SIG_NUM 14
#define SYN_SIG_NUM 14
#define FAULT_SIG_NUM 14
#define GPIO_PWMA_PCNT_INPUT 5
#define GPIO_PWMB_PCNT_INPUT 12
#define PCNT_CTRL_FLOATING_IO1 25
#define PCNT_CTRL_FLOATING_IO2 26
#define CAP0_INT_EN BIT(27)
#define CAP1_INT_EN BIT(28)
#define CAP2_INT_EN BIT(29)
#define INITIAL_DUTY 10.0
#define MCPWM_GPIO_INIT 0
#define HIGHEST_LIMIT 10000
#define LOWEST_LIMIT -10000
static mcpwm_dev_t *MCPWM[2] = {&MCPWM0, &MCPWM1};
static xQueueHandle cap_queue;
static volatile int cap0_times = 0;
static volatile int cap1_times = 0;
static volatile int cap2_times = 0;
typedef struct {
uint32_t capture_signal;
mcpwm_capture_signal_t sel_cap_signal;
} capture;
static const char TAG[] = "test_pwm";
const static mcpwm_io_signals_t pwma[] = {MCPWM0A, MCPWM1A, MCPWM2A};
const static mcpwm_io_signals_t pwmb[] = {MCPWM0B, MCPWM1B, MCPWM2B};
const static mcpwm_fault_signal_t fault_sig_array[] = {MCPWM_SELECT_F0, MCPWM_SELECT_F1, MCPWM_SELECT_F2};
const static mcpwm_io_signals_t fault_io_sig_array[] = {MCPWM_FAULT_0, MCPWM_FAULT_1, MCPWM_FAULT_2};
const static mcpwm_sync_signal_t sync_sig_array[] = {MCPWM_SELECT_SYNC0, MCPWM_SELECT_SYNC1, MCPWM_SELECT_SYNC2};
const static mcpwm_io_signals_t sync_io_sig_array[] = {MCPWM_SYNC_0, MCPWM_SYNC_1, MCPWM_SYNC_2};
const static mcpwm_capture_signal_t cap_sig_array[] = {MCPWM_SELECT_CAP0, MCPWM_SELECT_CAP1, MCPWM_SELECT_CAP2};
const static mcpwm_io_signals_t cap_io_sig_array[] = {MCPWM_CAP_0, MCPWM_CAP_1, MCPWM_CAP_2};
// universal settings of mcpwm
static void mcpwm_basic_config(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
mcpwm_io_signals_t mcpwm_a = pwma[timer];
mcpwm_io_signals_t mcpwm_b = pwmb[timer];
mcpwm_gpio_init(unit, mcpwm_a, GPIO_PWMA_OUT);
mcpwm_gpio_init(unit, mcpwm_b, GPIO_PWMB_OUT);
mcpwm_config_t pwm_config = {
.frequency = 1000,
.cmpr_a = 50.0, //duty cycle of PWMxA = 50.0%
.cmpr_b = 50.0, //duty cycle of PWMxb = 50.0%
.counter_mode = MCPWM_UP_COUNTER,
.duty_mode = MCPWM_DUTY_MODE_0,
};
mcpwm_init(unit, timer, &pwm_config);
}
static void pcnt_init(int pulse_gpio_num, int ctrl_gpio_num)
{
pcnt_config_t pcnt_config = {
.pulse_gpio_num = pulse_gpio_num,
.ctrl_gpio_num = ctrl_gpio_num,
.channel = PCNT_CHANNEL_0,
.unit = PCNT_UNIT_0,
.pos_mode = PCNT_COUNT_INC,
.neg_mode = PCNT_COUNT_DIS,
.lctrl_mode = PCNT_MODE_REVERSE,
.hctrl_mode = PCNT_MODE_KEEP,
.counter_h_lim = HIGHEST_LIMIT,
.counter_l_lim = LOWEST_LIMIT,
};
TEST_ESP_OK(pcnt_unit_config(&pcnt_config));
}
// initialize the PCNT
// PCNT is used to count the MCPWM pulse
static int16_t pcnt_count(int pulse_gpio_num, int ctrl_gpio_num, int last_time)
{
pcnt_config_t pcnt_config = {
.pulse_gpio_num = pulse_gpio_num,
.ctrl_gpio_num = ctrl_gpio_num,
.channel = PCNT_CHANNEL_0,
.unit = PCNT_UNIT_0,
.pos_mode = PCNT_COUNT_INC,
.neg_mode = PCNT_COUNT_DIS,
.lctrl_mode = PCNT_MODE_REVERSE,
.hctrl_mode = PCNT_MODE_KEEP,
.counter_h_lim = HIGHEST_LIMIT,
.counter_l_lim = LOWEST_LIMIT,
};
TEST_ESP_OK(pcnt_unit_config(&pcnt_config));
int16_t test_counter;
TEST_ESP_OK(pcnt_counter_pause(PCNT_UNIT_0));
TEST_ESP_OK(pcnt_counter_clear(PCNT_UNIT_0));
TEST_ESP_OK(pcnt_counter_resume(PCNT_UNIT_0));
TEST_ESP_OK(pcnt_get_counter_value(PCNT_UNIT_0, &test_counter));
printf("COUNT (before): %d\n", test_counter);
vTaskDelay(last_time / portTICK_RATE_MS);
TEST_ESP_OK(pcnt_get_counter_value(PCNT_UNIT_0, &test_counter));
printf("COUNT (after): %d\n", test_counter);
return test_counter;
}
// judge the counting value right or not in specific error
static void judge_count_value(int allow_error ,int expect_freq)
{
int16_t countA, countB;
countA = pcnt_count(GPIO_PWMA_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1, 1000);
countB = pcnt_count(GPIO_PWMB_PCNT_INPUT, PCNT_CTRL_FLOATING_IO2, 1000);
TEST_ASSERT_INT16_WITHIN(allow_error, countA, expect_freq);
TEST_ASSERT_INT16_WITHIN(allow_error, countB, expect_freq);
}
// test the duty configuration
static void timer_duty_test(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
mcpwm_basic_config(unit, timer);
vTaskDelay(1000 / portTICK_RATE_MS); // stay this status for a while so that can view its waveform by logic anylyzer
TEST_ESP_OK(mcpwm_set_duty(unit, timer, MCPWM_OPR_A, (INITIAL_DUTY * 1)));
TEST_ESP_OK(mcpwm_set_duty(unit, timer, MCPWM_OPR_B, (INITIAL_DUTY * 2)));
TEST_ASSERT_EQUAL_INT(mcpwm_get_duty(unit, timer, MCPWM_OPR_A), INITIAL_DUTY * 1);
TEST_ASSERT_EQUAL_INT(mcpwm_get_duty(unit, timer, MCPWM_OPR_B), INITIAL_DUTY * 2);
vTaskDelay(100 / portTICK_RATE_MS); // stay this status for a while so that can view its waveform by logic anylyzer
mcpwm_set_duty(unit, timer, MCPWM_OPR_A, 55.5f);
mcpwm_set_duty_type(unit, timer, MCPWM_OPR_A, MCPWM_DUTY_MODE_0);
printf("mcpwm check = %f\n", mcpwm_get_duty(unit, timer, MCPWM_OPR_A));
mcpwm_set_duty_in_us(unit, timer, MCPWM_OPR_B, 500);
printf("mcpwm check = %f\n", mcpwm_get_duty(unit, timer, MCPWM_OPR_B));
vTaskDelay(100 / portTICK_RATE_MS); // stay this status for a while so that can view its waveform by logic anylyzer
mcpwm_stop(unit, timer);
}
// test the start and stop function work or not
static void start_stop_test(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
mcpwm_basic_config(unit, timer);
judge_count_value(2, 1000);
TEST_ESP_OK(mcpwm_stop(unit, timer));
vTaskDelay(10 / portTICK_RATE_MS); // wait for a while, stop totally
judge_count_value(0, 0);
TEST_ESP_OK(mcpwm_start(unit, timer));
vTaskDelay(10 / portTICK_RATE_MS); // wait for a while, start totally
judge_count_value(2, 1000);
}
// test the deadtime
static void deadtime_test(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
mcpwm_basic_config(unit, timer);
mcpwm_deadtime_type_t deadtime_type[8] = {MCPWM_BYPASS_RED, MCPWM_BYPASS_FED, MCPWM_ACTIVE_HIGH_MODE,
MCPWM_ACTIVE_LOW_MODE, MCPWM_ACTIVE_HIGH_COMPLIMENT_MODE, MCPWM_ACTIVE_LOW_COMPLIMENT_MODE,
MCPWM_ACTIVE_RED_FED_FROM_PWMXA, MCPWM_ACTIVE_RED_FED_FROM_PWMXB};
for(int i=0; i<8; i++) {
mcpwm_deadtime_enable(unit, timer, deadtime_type[i], 1000, 1000);
vTaskDelay(100 / portTICK_RATE_MS);
mcpwm_deadtime_disable(unit, timer);
//add a small gap between tests to make the waveform more clear
mcpwm_stop(unit, timer);
vTaskDelay(10);
mcpwm_start(unit, timer);
}
}
/**
* there are two kind of methods to set the carrier:
* 1. by mcpwm_carrier_init
* 2. by different single setting function
*/
static void carrier_with_set_function_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_carrier_out_ivt_t invert_or_not,
uint8_t period, uint8_t duty, uint8_t os_width)
{
// no inversion and no one shot
mcpwm_basic_config(unit, timer);
TEST_ESP_OK(mcpwm_carrier_enable(unit, timer));
TEST_ESP_OK(mcpwm_carrier_set_period(unit, timer, period)); //carrier revolution
TEST_ESP_OK(mcpwm_carrier_set_duty_cycle(unit, timer, duty)); // carrier duty
judge_count_value(500, 50000/5.6);
// with invert
TEST_ESP_OK(mcpwm_carrier_output_invert(unit, timer, invert_or_not));
vTaskDelay(2000 / portTICK_RATE_MS);
}
static void carrier_with_configuration_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_carrier_os_t oneshot_or_not,
mcpwm_carrier_out_ivt_t invert_or_not, uint8_t period, uint8_t duty,
uint8_t os_width)
{
mcpwm_basic_config(unit, timer);
mcpwm_carrier_config_t chop_config;
chop_config.carrier_period = period; //carrier period = (period + 1)*800ns
chop_config.carrier_duty = duty; // carrier duty cycle, carrier_duty should be less then 8(increment every 12.5%). carrier duty = (3)*12.5%
chop_config.carrier_os_mode = oneshot_or_not; //If one shot mode is enabled then set pulse width, if disabled no need to set pulse width
chop_config.pulse_width_in_os = os_width; //pulse width of first pulse in one shot mode = (carrier period)*(pulse_width_in_os + 1), should be less then 16.first pulse width = (3 + 1)*carrier_period
chop_config.carrier_ivt_mode = invert_or_not; //output signal inversion enable
mcpwm_carrier_init(unit, timer, &chop_config);
if(!oneshot_or_not) {
// the pwm frequency is 1000
// the carrrier duration in one second is 500ms
// the carrier wave count is: 500ms/carrier_period = 500ms/(period + 1)*800ns
// = 62500/(period + 1)
judge_count_value(500, 62500/(period + 1));
} else {
judge_count_value(500, 40000/((period + 1))); // (500-500*0.125*3)/((period + 1)*800)
}
TEST_ESP_OK(mcpwm_carrier_disable(unit, timer));
judge_count_value(2, 1000);
}
static void get_action_level(mcpwm_fault_input_level_t input_sig, mcpwm_action_on_pwmxa_t action_a, mcpwm_action_on_pwmxb_t action_b, int freq, int allow_err)
{
if(action_a == MCPWM_NO_CHANGE_IN_MCPWMXA) {
TEST_ASSERT_INT16_WITHIN(allow_err, pcnt_count(GPIO_PWMA_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1, 1000), freq);
} else if(action_a == MCPWM_FORCE_MCPWMXA_LOW) {
TEST_ASSERT(gpio_get_level(GPIO_PWMA_PCNT_INPUT) == 0);
} else if(action_a == MCPWM_FORCE_MCPWMXA_HIGH) {
TEST_ASSERT(gpio_get_level(GPIO_PWMA_PCNT_INPUT) == 1);
}else {
int level = gpio_get_level(GPIO_PWMA_PCNT_INPUT);
vTaskDelay(100 / portTICK_RATE_MS);
TEST_ASSERT(gpio_get_level(GPIO_PWMA_PCNT_INPUT) == level);
}
if(action_b == MCPWM_NO_CHANGE_IN_MCPWMXB) {
TEST_ASSERT_INT16_WITHIN(allow_err, pcnt_count(GPIO_PWMB_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1, 1000), freq);
} else if(action_b == MCPWM_FORCE_MCPWMXB_LOW) {
TEST_ASSERT(gpio_get_level(GPIO_PWMB_PCNT_INPUT) == 0);
} else if(action_b == MCPWM_FORCE_MCPWMXB_HIGH) {
TEST_ASSERT(gpio_get_level(GPIO_PWMB_PCNT_INPUT) == 1);
}else {
int level = gpio_get_level(GPIO_PWMB_PCNT_INPUT);
vTaskDelay(100 / portTICK_RATE_MS);
TEST_ASSERT(gpio_get_level(GPIO_PWMB_PCNT_INPUT) == level);
}
}
// test the fault event
static void cycle_fault_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_fault_signal_t fault_sig,
mcpwm_fault_input_level_t input_sig, mcpwm_io_signals_t fault_io,
mcpwm_action_on_pwmxa_t action_a, mcpwm_action_on_pwmxb_t action_b)
{
gpio_config_t gp;
gp.intr_type = GPIO_INTR_DISABLE;
gp.mode = GPIO_MODE_OUTPUT;
gp.pin_bit_mask = (1ULL << FAULT_SIG_NUM);
gpio_config(&gp); // gpio configure should be more previous than mcpwm configuration
gpio_set_level(FAULT_SIG_NUM, !input_sig);
pcnt_init(GPIO_PWMA_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1);
pcnt_init(GPIO_PWMB_PCNT_INPUT, PCNT_CTRL_FLOATING_IO2);
mcpwm_basic_config(unit, timer);
mcpwm_gpio_init(unit, fault_io, GPIO_FAULT_IN);
// cycle mode, it can be triggered more than once
printf("cyc test:\n");
gpio_set_level(FAULT_SIG_NUM, !input_sig);
TEST_ESP_OK(mcpwm_fault_init(unit, input_sig, fault_sig));
TEST_ESP_OK(mcpwm_fault_set_cyc_mode(unit, timer, fault_sig, action_a, action_b));
vTaskDelay(1000 / portTICK_RATE_MS);
gpio_set_level(FAULT_SIG_NUM, input_sig); // trigger the fault event
vTaskDelay(1000 / portTICK_RATE_MS);
get_action_level(input_sig, action_a, action_b, 1000, 5);
TEST_ESP_OK(mcpwm_fault_deinit(unit, fault_sig));
}
static void oneshot_fault_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_fault_signal_t fault_sig,
mcpwm_fault_input_level_t input_sig, mcpwm_io_signals_t fault_io,
mcpwm_action_on_pwmxa_t action_a, mcpwm_action_on_pwmxb_t action_b)
{
gpio_config_t gp;
gp.intr_type = GPIO_INTR_DISABLE;
gp.mode = GPIO_MODE_OUTPUT;
gp.pin_bit_mask = (1ULL << FAULT_SIG_NUM);
gpio_config(&gp); // gpio configure should be more previous than mcpwm configuration
gpio_set_level(FAULT_SIG_NUM, !input_sig);
pcnt_init(GPIO_PWMA_PCNT_INPUT, PCNT_CTRL_FLOATING_IO1);
pcnt_init(GPIO_PWMB_PCNT_INPUT, PCNT_CTRL_FLOATING_IO2);
mcpwm_basic_config(unit, timer);
mcpwm_gpio_init(unit, fault_io, GPIO_FAULT_IN);
// one shot mode, it just can be triggered once
TEST_ESP_OK(mcpwm_fault_init(unit, input_sig, fault_sig));
TEST_ESP_OK(mcpwm_fault_set_oneshot_mode(unit, timer, fault_sig, action_a, action_b));
vTaskDelay(10 / portTICK_RATE_MS);
// trigger it
gpio_set_level(FAULT_SIG_NUM, input_sig);
vTaskDelay(10 / portTICK_RATE_MS);
get_action_level(input_sig, action_a, action_b, 1000, 5);
TEST_ESP_OK(mcpwm_fault_deinit(unit, fault_sig));
}
// test the sync event
static void sync_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_sync_signal_t sync_sig, mcpwm_io_signals_t sync_io)
{
gpio_config_t gp;
gp.intr_type = GPIO_INTR_DISABLE;
gp.mode = GPIO_MODE_OUTPUT;
gp.pin_bit_mask = (1ULL << SYN_SIG_NUM);
gpio_config(&gp);
gpio_set_level(SYN_SIG_NUM, 0);
mcpwm_io_signals_t mcpwm_a = pwma[timer];
mcpwm_io_signals_t mcpwm_b = pwmb[timer];
mcpwm_gpio_init(unit, mcpwm_a, GPIO_PWMA_OUT);
mcpwm_gpio_init(unit, mcpwm_b, GPIO_PWMB_OUT);
mcpwm_gpio_init(unit, sync_io, GPIO_SYNC_IN);
mcpwm_config_t pwm_config = {
.frequency = 1000,
.cmpr_a = 50.0, //duty cycle of PWMxA = 50.0%
.cmpr_b = 50.0, //duty cycle of PWMxb = 50.0%
.counter_mode = MCPWM_UP_COUNTER,
.duty_mode = MCPWM_DUTY_MODE_0,
};
mcpwm_init(unit, timer, &pwm_config);
gpio_pulldown_en(GPIO_SYNC_IN);
mcpwm_sync_enable(unit, timer, sync_sig, 200);
//wait for some pulses before sync
vTaskDelay(10);
gpio_set_level(SYN_SIG_NUM, 1);
vTaskDelay(100 / portTICK_RATE_MS);
gpio_set_level(SYN_SIG_NUM, 0);
mcpwm_sync_disable(unit, timer);
vTaskDelay(100 / portTICK_RATE_MS);
}
/**
* use interruption to test the capture event
* there are two kinds of methods to trigger the capture event:
* 1. high level trigger
* 2. low level trigger
*/
static volatile int flag = 0;
// once capture event happens, will show it
static void disp_captured_signal(void *arg)
{
uint32_t *current_cap_value = (uint32_t *)malloc(sizeof(uint32_t) * CAP_SIG_NUM);
uint32_t *previous_cap_value = (uint32_t *)malloc(sizeof(uint32_t) * CAP_SIG_NUM);
capture evt;
for (int i=0; i<1000; i++) {
xQueueReceive(cap_queue, &evt, portMAX_DELAY);
if (evt.sel_cap_signal == MCPWM_SELECT_CAP0) {
current_cap_value[0] = evt.capture_signal - previous_cap_value[0];
previous_cap_value[0] = evt.capture_signal;
current_cap_value[0] = (current_cap_value[0] / 10000) * (10000000000 / rtc_clk_apb_freq_get());
printf("CAP0 : %d us\n", current_cap_value[0]);
cap0_times++;
}
if (evt.sel_cap_signal == MCPWM_SELECT_CAP1) {
current_cap_value[1] = evt.capture_signal - previous_cap_value[1];
previous_cap_value[1] = evt.capture_signal;
current_cap_value[1] = (current_cap_value[1] / 10000) * (10000000000 / rtc_clk_apb_freq_get());
printf("CAP1 : %d us\n", current_cap_value[1]);
cap1_times++;
}
if (evt.sel_cap_signal == MCPWM_SELECT_CAP2) {
current_cap_value[2] = evt.capture_signal - previous_cap_value[2];
previous_cap_value[2] = evt.capture_signal;
current_cap_value[2] = (current_cap_value[2] / 10000) * (10000000000 / rtc_clk_apb_freq_get());
printf("CAP2 : %d us\n", current_cap_value[2]);
cap2_times++;
}
}
free(current_cap_value);
free(previous_cap_value);
vTaskDelete(NULL);
}
// mcpwm event
static void IRAM_ATTR isr_handler(void *arg)
{
mcpwm_unit_t unit = (mcpwm_unit_t)arg;
uint32_t mcpwm_intr_status;
capture evt;
mcpwm_intr_status = MCPWM[unit]->int_st.val; //Read interrupt status
if (mcpwm_intr_status & CAP0_INT_EN) { //Check for interrupt on rising edge on CAP0 signal
evt.capture_signal = mcpwm_capture_signal_get_value(unit, MCPWM_SELECT_CAP0); //get capture signal counter value
evt.sel_cap_signal = MCPWM_SELECT_CAP0;
xQueueSendFromISR(cap_queue, &evt, NULL);
}
if (mcpwm_intr_status & CAP1_INT_EN) { //Check for interrupt on rising edge on CAP0 signal
evt.capture_signal = mcpwm_capture_signal_get_value(unit, MCPWM_SELECT_CAP1); //get capture signal counter value
evt.sel_cap_signal = MCPWM_SELECT_CAP1;
xQueueSendFromISR(cap_queue, &evt, NULL);
}
if (mcpwm_intr_status & CAP2_INT_EN) { //Check for interrupt on rising edge on CAP0 signal
evt.capture_signal = mcpwm_capture_signal_get_value(unit, MCPWM_SELECT_CAP2); //get capture signal counter value
evt.sel_cap_signal = MCPWM_SELECT_CAP2;
xQueueSendFromISR(cap_queue, &evt, NULL);
}
MCPWM[unit]->int_clr.val = mcpwm_intr_status;
}
// the produce the capture triggering signal to trigger the capture event
static void gpio_test_signal(void *arg)
{
printf("intializing test signal...\n");
gpio_config_t gp = {};
gp.intr_type = GPIO_INTR_DISABLE;
gp.mode = GPIO_MODE_OUTPUT;
gp.pin_bit_mask = 1ULL << CAP_SIG_NUM;
gpio_config(&gp);
for (int i=0; i<1000; i++) {
//here the period of test signal is 20ms
gpio_set_level(CAP_SIG_NUM, 1); //Set high
vTaskDelay(10); //delay of 10ms
gpio_set_level(CAP_SIG_NUM, 0); //Set low
vTaskDelay(10); //delay of 10ms
}
flag = 1;
vTaskDelete(NULL);
}
// capture event test function
static void capture_test(mcpwm_unit_t unit, mcpwm_timer_t timer, mcpwm_capture_on_edge_t cap_edge)
{
// initialize the capture times
cap0_times = 0;
cap1_times = 0;
cap2_times = 0;
//each timer test the capture sig with the same id with it.
mcpwm_io_signals_t cap_io = cap_io_sig_array[timer];
mcpwm_capture_signal_t cap_sig = cap_sig_array[timer];
mcpwm_gpio_init(unit, cap_io, GPIO_CAP_IN);
cap_queue = xQueueCreate(1, sizeof(capture));
xTaskCreate(disp_captured_signal, "mcpwm_config", 4096, (void *)unit, 5, NULL);
xTaskCreate(gpio_test_signal, "gpio_test_signal", 4096, NULL, 5, NULL);
mcpwm_capture_enable(unit, cap_sig, cap_edge, 0);
MCPWM[unit]->int_ena.val = CAP0_INT_EN | CAP1_INT_EN | CAP2_INT_EN; //Enable interrupt on CAP0, CAP1 and CAP2 signal
mcpwm_isr_register(unit, isr_handler, (void *)unit, ESP_INTR_FLAG_IRAM, NULL);
while(flag != 1) {
vTaskDelay(10 / portTICK_RATE_MS);
}
if(cap_sig == MCPWM_SELECT_CAP0) {
TEST_ASSERT(1000 == cap0_times);
} else if(cap_sig == MCPWM_SELECT_CAP1) {
TEST_ASSERT(1000 == cap1_times);
}else {
TEST_ASSERT(1000 == cap2_times);
}
flag = 0; // set flag to 0 that it can be used in other case
mcpwm_capture_disable(unit, cap_sig);
}
/**
* duty test:
* 1. mcpwm_set_duty
* 2. mcpwm_get_duty
*
* This case's phenomenon should be viewed by logic analyzer
* so set it ignore
*/
TEST_CASE("MCPWM timer0 duty test and each timer works or not test(logic analyzer)", "[mcpwm][ignore]")
{
timer_duty_test(MCPWM_UNIT_0, MCPWM_TIMER_0);
timer_duty_test(MCPWM_UNIT_1, MCPWM_TIMER_0);
}
TEST_CASE("MCPWM timer1 duty test and each timer works or not test(logic analyzer)", "[mcpwm][ignore]")
{
timer_duty_test(MCPWM_UNIT_0, MCPWM_TIMER_1);
timer_duty_test(MCPWM_UNIT_1, MCPWM_TIMER_1);
}
TEST_CASE("MCPWM timer2 duty test and each timer works or not test(logic analyzer)", "[mcpwm][ignore]")
{
timer_duty_test(MCPWM_UNIT_0, MCPWM_TIMER_2);
timer_duty_test(MCPWM_UNIT_1, MCPWM_TIMER_2);
}
// the deadtime configuration test
// use the logic analyzer to make sure it goes right
TEST_CASE("MCPWM timer0 deadtime configuration(logic analyzer)", "[mcpwm][ignore]")
{
deadtime_test(MCPWM_UNIT_0, MCPWM_TIMER_0);
deadtime_test(MCPWM_UNIT_1, MCPWM_TIMER_0);
}
TEST_CASE("MCPWM timer1 deadtime configuration(logic analyzer)", "[mcpwm][ignore]")
{
deadtime_test(MCPWM_UNIT_0, MCPWM_TIMER_1);
deadtime_test(MCPWM_UNIT_1, MCPWM_TIMER_1);
}
TEST_CASE("MCPWM timer2 deadtime configuration(logic analyzer)", "[mcpwm][ignore]")
{
deadtime_test(MCPWM_UNIT_0, MCPWM_TIMER_2);
deadtime_test(MCPWM_UNIT_1, MCPWM_TIMER_2);
}
TEST_CASE("MCPWM timer0 start and stop test", "[mcpwm][test_env=UT_T1_MCPWM]")
{
start_stop_test(MCPWM_UNIT_0, MCPWM_TIMER_0);
start_stop_test(MCPWM_UNIT_1, MCPWM_TIMER_0);
}
// mcpwm start and stop test
TEST_CASE("MCPWM timer1 start and stop test", "[mcpwm][test_env=UT_T1_MCPWM]")
{
start_stop_test(MCPWM_UNIT_0, MCPWM_TIMER_1);
start_stop_test(MCPWM_UNIT_1, MCPWM_TIMER_1);
}
TEST_CASE("MCPWM timer2 start and stop test", "[mcpwm][test_env=UT_T1_MCPWM]")
{
start_stop_test(MCPWM_UNIT_0, MCPWM_TIMER_2);
start_stop_test(MCPWM_UNIT_1, MCPWM_TIMER_2);
}
TEST_CASE("MCPWM timer0 carrier test with set function", "[mcpwm][test_env=UT_T1_MCPWM]")
{
carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_0,
MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3);
carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_0,
MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3);
carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_0,
MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3);
carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_0,
MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3);
}
TEST_CASE("MCPWM timer1 carrier test with set function", "[mcpwm][test_env=UT_T1_MCPWM]")
{
carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_1,
MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3);
carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_1,
MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3);
carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_1,
MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3);
carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_1,
MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3);
}
TEST_CASE("MCPWM timer2 carrier test with set function", "[mcpwm][test_env=UT_T1_MCPWM]")
{
carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_2,
MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3);
carrier_with_set_function_test(MCPWM_UNIT_0, MCPWM_TIMER_2,
MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3);
carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_2,
MCPWM_CARRIER_OUT_IVT_DIS, 6, 3, 3);
carrier_with_set_function_test(MCPWM_UNIT_1, MCPWM_TIMER_2,
MCPWM_CARRIER_OUT_IVT_EN, 6, 3, 3);
}
static void test_carrier_with_config_func(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
mcpwm_carrier_os_t oneshot[2] = {MCPWM_ONESHOT_MODE_DIS, MCPWM_ONESHOT_MODE_EN};
mcpwm_carrier_out_ivt_t invert[2] = {MCPWM_CARRIER_OUT_IVT_DIS, MCPWM_CARRIER_OUT_IVT_EN};
ESP_LOGI(TAG, "test unit%d timer%d", unit, timer);
for(int i=0; i<2; i++){
for(int j=0; j<2; j++) {
printf("i=%d, j=%d\n", i, j);
carrier_with_configuration_test(unit, timer, oneshot[i], invert[j], 6, 3, 3);
}
}
}
TEST_CASE("MCPWM timer0 carrier test with configuration function", "[mcpwm][test_env=UT_T1_MCPWM][timeout=120]")
{
test_carrier_with_config_func(MCPWM_UNIT_0, MCPWM_TIMER_0);
test_carrier_with_config_func(MCPWM_UNIT_1, MCPWM_TIMER_0);
}
TEST_CASE("MCPWM timer1 carrier test with configuration function", "[mcpwm][test_env=UT_T1_MCPWM][timeout=120]") {
test_carrier_with_config_func(MCPWM_UNIT_0, MCPWM_TIMER_1);
test_carrier_with_config_func(MCPWM_UNIT_1, MCPWM_TIMER_1);
}
TEST_CASE("MCPWM timer2 carrier test with configuration function", "[mcpwm][test_env=UT_T1_MCPWM][timeout=120]")
{
test_carrier_with_config_func(MCPWM_UNIT_0, MCPWM_TIMER_2);
test_carrier_with_config_func(MCPWM_UNIT_1, MCPWM_TIMER_2);
}
/**
* Fault event:
* Just support high level triggering
* There are two types fault event:
* 1. one-shot: it just can be triggered once, its effect is forever and it will never be changed although the fault signal change
* 2. cycle: it can be triggered more than once, it will changed just as the fault signal changes. If set it triggered by high level,
* when the fault signal is high level, the event will be triggered. But the event will disappear as the fault signal disappears
*/
void test_cycle_fault(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
// API just supports the high level trigger now, so comment it
// mcpwm_fault_input_level_t fault_input[2] = {MCPWM_LOW_LEVEL_TGR, MCPWM_HIGH_LEVEL_TGR};
mcpwm_action_on_pwmxa_t action_a[4] = {MCPWM_NO_CHANGE_IN_MCPWMXA, MCPWM_FORCE_MCPWMXA_LOW, MCPWM_FORCE_MCPWMXA_HIGH, MCPWM_TOG_MCPWMXA};
mcpwm_action_on_pwmxb_t action_b[4] = {MCPWM_NO_CHANGE_IN_MCPWMXB, MCPWM_FORCE_MCPWMXB_LOW, MCPWM_FORCE_MCPWMXB_HIGH, MCPWM_TOG_MCPWMXB};
ESP_LOGI(TAG, "test unit%d timer%d", unit, timer);
//each timer test the fault sig with the same id with it.
mcpwm_fault_signal_t fault_sig = fault_sig_array[timer];
mcpwm_io_signals_t fault_io_sig = fault_io_sig_array[timer];
for(int i=0; i<4; i++){
for(int j=0; j<4; j++) {
printf("i=%d, j=%d\n",i, j);
cycle_fault_test(unit, timer, fault_sig, MCPWM_HIGH_LEVEL_TGR, fault_io_sig, action_a[i], action_b[j]);
}
}
}
TEST_CASE("MCPWM timer0 cycle fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=180]")
{
test_cycle_fault(MCPWM_UNIT_0, MCPWM_TIMER_0);
test_cycle_fault(MCPWM_UNIT_1, MCPWM_TIMER_0);
}
TEST_CASE("MCPWM timer1 cycle fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=180]")
{
test_cycle_fault(MCPWM_UNIT_0, MCPWM_TIMER_1);
test_cycle_fault(MCPWM_UNIT_1, MCPWM_TIMER_1);
}
TEST_CASE("MCPWM timer2 cycle fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=180]")
{
test_cycle_fault(MCPWM_UNIT_0, MCPWM_TIMER_2);
test_cycle_fault(MCPWM_UNIT_1, MCPWM_TIMER_2);
}
static void test_oneshot_fault(mcpwm_unit_t unit, mcpwm_timer_t timer)
{
// API just supports the high level trigger now, so comment it
// mcpwm_fault_input_level_t fault_input[2] = {MCPWM_LOW_LEVEL_TGR, MCPWM_HIGH_LEVEL_TGR};
mcpwm_action_on_pwmxa_t action_a[4] = {MCPWM_NO_CHANGE_IN_MCPWMXA, MCPWM_FORCE_MCPWMXA_LOW, MCPWM_FORCE_MCPWMXA_HIGH, MCPWM_TOG_MCPWMXA};
mcpwm_action_on_pwmxb_t action_b[4] = {MCPWM_NO_CHANGE_IN_MCPWMXB, MCPWM_FORCE_MCPWMXB_LOW, MCPWM_FORCE_MCPWMXB_HIGH, MCPWM_TOG_MCPWMXB};
//each timer test the fault sig with the same id with it.
mcpwm_fault_signal_t fault_sig = fault_sig_array[timer];
mcpwm_io_signals_t fault_io_sig = fault_io_sig_array[timer];
ESP_LOGI(TAG, "test pwm unit%d, timer%d fault_sig%d", unit, timer, fault_sig);
for(int i=0; i<4; i++){
for(int j=0; j<4; j++) {
printf("action (%d, %d)\n", i, j);
oneshot_fault_test(unit, timer, fault_sig, MCPWM_HIGH_LEVEL_TGR, fault_io_sig, action_a[i], action_b[j]);
}
}
}
TEST_CASE("MCPWM timer0 one shot fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]")
{
test_oneshot_fault(MCPWM_UNIT_0, MCPWM_TIMER_0);
test_oneshot_fault(MCPWM_UNIT_1, MCPWM_TIMER_0);
}
TEST_CASE("MCPWM timer1 one shot fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]")
{
test_oneshot_fault(MCPWM_UNIT_0, MCPWM_TIMER_1);
test_oneshot_fault(MCPWM_UNIT_1, MCPWM_TIMER_1);
}
TEST_CASE("MCPWM timer2 one shot fault test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]")
{
test_oneshot_fault(MCPWM_UNIT_0, MCPWM_TIMER_2);
test_oneshot_fault(MCPWM_UNIT_1, MCPWM_TIMER_2);
}
static void test_sync(mcpwm_timer_t timer)
{
//each timer test the sync sig with the same id with it.
mcpwm_sync_signal_t sync_sig = sync_sig_array[timer];
mcpwm_io_signals_t sync_io_sig = sync_io_sig_array[timer];
sync_test(MCPWM_UNIT_0, timer, sync_sig, sync_io_sig);
TEST_ESP_OK(mcpwm_stop(MCPWM_UNIT_0, timer)); // make sure can view the next sync signal clearly
vTaskDelay(100 / portTICK_RATE_MS);
TEST_ESP_OK(mcpwm_start(MCPWM_UNIT_0, timer));
sync_test(MCPWM_UNIT_1, timer, sync_sig, sync_io_sig);
}
// need to view its phenomenon in logic analyzer
// set it ignore
TEST_CASE("MCPWM timer0 sync test(logic analyzer)", "[mcpwm][ignore]")
{
test_sync(MCPWM_TIMER_0);
}
// need to view its phenomenon in logic analyzer
// set it ignore
TEST_CASE("MCPWM timer1 sync test(logic analyzer)", "[mcpwm][ignore]")
{
test_sync(MCPWM_TIMER_1);
}
// need to view its phenomenon in logic analyzer
// set it ignore
TEST_CASE("MCPWM timer2 sync test(logic analyzer)", "[mcpwm][ignore]")
{
test_sync(MCPWM_TIMER_2);
}
TEST_CASE("MCPWM unit0, timer0 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]")
{
capture_test(MCPWM_UNIT_0, MCPWM_TIMER_0, MCPWM_POS_EDGE);
}
TEST_CASE("MCPWM unit0, timer1 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]")
{
capture_test(MCPWM_UNIT_0, MCPWM_TIMER_1, MCPWM_POS_EDGE);
}
TEST_CASE("MCPWM unit0, timer2 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]")
{
capture_test(MCPWM_UNIT_0, MCPWM_TIMER_2, MCPWM_POS_EDGE);
}
TEST_CASE("MCPWM unit1, timer0 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]")
{
capture_test(MCPWM_UNIT_1, MCPWM_TIMER_0, MCPWM_NEG_EDGE);
}
TEST_CASE("MCPWM unit1, timer1 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]")
{
capture_test(MCPWM_UNIT_1, MCPWM_TIMER_1, MCPWM_POS_EDGE);
}
TEST_CASE("MCPWM unit1, timer2 capture test", "[mcpwm][test_env=UT_T1_MCPWM][timeout=60]")
{
capture_test(MCPWM_UNIT_1, MCPWM_TIMER_2, MCPWM_POS_EDGE);
}
#endif