All peripheral clocks are default enabled after chip is powered on.
When CPU starts, if reset reason is CPU reset, disable those clocks
that are not enabled before reset. Otherwise, disable all those
useless clocks.
These peripheral clocks must be enabled when the peripherals are
initialized and disabled when they are deinitialized.
If two different types of SHA hashes were active in the hardware
concurrently, a race condition meant the SHA unit could be incorrectly
reset leading to all-zero results.
If scheduler switches cores in narrow window during esp_dport_access_stall_other_cpu_start(), could cause the stall
interrupt to occur on the running CPU - halting the CPU until WDT cleans up.
Related to https://github.com/espressif/esp-idf/issues/630
1. add sens_struct.h
2. add definition of RTCCNTL and RTCIO
3. modify touch pad examples
4. update example code.
5. add comments add option in menuconfig
6. fix issue that pad index 8 and 9 are mismatched
7. add touch_pad_read_filtered() api to get value filtered by iir filter
8. modify touch pad isr func
9. Make the items in perihperal.ld in the sequence of address
10. delete Kconfig for touch pad
11. add touchpad filter APIs to adjust the filter
12. add touch_pad into index.rst
13. add touch_pad in Doxyfile
14. add touch_pad.rst
Previously VFS driver for UART could only use simple non-blocking
functions to read from and write to the UART. UART driver provides more
complex blocking and interrupt-driven functions, which can be used
instead.
This commit adds optional support for using UART driver's functions.
Also added is a more flexible mechanism for configuring newline
conversion rules on input and output.
This commit also fixes a bug that all UARTs shared one static variable
used as a character buffer in newline conversion code. This variable is
changed to be per-UART.
1. Hello World application shows no footprint difference before and
after this change
2. examples/ethernet/ethernet application compiles properly (can't
test with my board)
This is no longer required since the functions automatically get
pulled in based on the usage. A quick summary of footprint
comparisions before and after these set of patches is shown below:
Hello-World: (simplified for readability)
old Total image size:~ 104902 bytes (.bin may be padded larger)
old Total image size:~ 105254 bytes (.bin may be padded larger)
Per-archive contributions to ELF file:
Archive File DRAM .data & .bss IRAM Flash code & rodata Total
old libesp32.a 1973 177 4445 3939 2267 12801
new libesp32.a 1973 185 4473 3939 2267 12837
new libnvs_flash.a 0 92 0 274 8 374
new libstdc++.a 0 0 0 24 0 24
For some reason, nvs_flash.a (~400bytes) gets pulled in (particularly
the nvs_flash_init() function).
Power-Save: (simplified for readability)
old Total image size:~ 421347 bytes (.bin may be padded larger)
old Total image size:~ 421235 bytes (.bin may be padded larger)
old libtcpip_adapter.a 0 81 0 1947 115 2143
new libtcpip_adapter.a 0 69 0 1897 115 2081
The size actually shrinks a bit, since the AP interface function
doesn't get pulled in.
Since only the used interface's start function gets called, it pulls
in only the functions that are required in the current application,
thereby saving footprint.
Restart being a lower-layer system-level function, needn't depend on
the higher level Wi-Fi libraries.
This also enables us to get rid of one more WIFI_ENABLED ifdef check
For config-only components, component.mk should now contain "COMPONENT_CONFIG_ONLY := 1"
Also refactored some of the generation of linker paths, library list. This required cleaning up the way the bootloader
project works, it's now mostly independent from the parent.