Add cross-core int to accelerate task being awoken from another CPU.
This adds a per-CPU interrupt that can be used to poke the CPU to go do something. In this case all that is implemented is a request to yield the current task, used in case a CPU unblocks a task that runs on another CPU. This gets rid of the limitation that inter-CPU communication using queues, muxes etc can take up to a FreeRTOS tick to happen.
Specs!
Sending an in in a queue of length 1 (essentially a semaphore) as quickly as possible (just a small delay in the sender, to make sure the receiver task gets swapped out) for 10 seconds. Number indicates the amount of ints transferred
Old code:
CPU0->CPU0: 42986
CPU0->CPU1,: 2999
New code:
CPU0->CPU0: 42868
CPU0->CPU1: 62073
See merge request !155
- spaces->tabs in tasks.c
- update vfs_uart.c to use per-UART locks
- add license to vfs_uart.c
- allocate separate streams for stdout, stdin, stderr, so that they can be independently reassigned
- fix build system test failure
Feature/wdts
This adds two watchdogs to esp-idf:
- An interrupt watchdog. Kicks in if the FreeRTOS timer interupt on either the PRO_CPU or (when configured) the APP CPU isn't called for a configurable time. Panics, displaying which CPU caused the problem and the registers that may lead to the offending code.
- A task watchdog. A task has to feed it every once in a while. If not, it will print the name of the offending tasks, as well as the tasks currently running on both CPUs, and optionally panic.
Also adds a panic reason to the panic call, as well as fixes the panic code a bit.
See merge request !148
The customers need to get information about AP that associated with ESP32 station,
these information includes RSSI, channel number etc, so add this new API
1. Modify sta to station in comments
2. Modify esp_wifi_get_ap_num to esp_wifi_scan_get_ap_num
3. Modify esp_wifi_get_ap_list to esp_wifi_scan_get_ap_records
1. Modify comments for esp_wifi_internal_tx
2. Fix delay time error in esp32_tx_flow_ctrl which is found in code review,
modify _wait_delay init value from 0 to 1
Some small fixes
- Kill unused uxReturn in task.c, https://github.com/espressif/esp-idf/issues/48
- Line end conversion in gpio.c
- Move heap_alloc_caps.h so components can also use it
See merge request !135
esp32: Bootloader wake deep sleep stub
App can contain a stub program resident in RTC fast memory. Bootloader
will load the stub on initial boot. If the device wakes from deep sleep,
the stub is run immediately (before any other data is loaded, etc.)
To implement a custom wake stub, implement a function in your program:
```
void RTC_IRAM_ATTR esp_wake_deep_sleep(void)
{
esp_default_wake_deep_sleep();
// other wake logic
}
```
... and it will replace the default implementation.
See merge request !78
We reserve 4KB Slow RTC memory to save RF calibation result and BT NVS data.
If not all these Slow RTC momory Blocks are used, we will open the other parts.
App can contain a stub program resident in RTC fast memory. Bootloader
will load the stub on initial boot. If the device wakes from deep sleep,
the stub is run immediately (before any other data is loaded, etc.)
To implement a custom wake stub, implement a function in your program:
```
void RTC_IRAM_ATTR esp_wake_deep_sleep(void)
{
esp_default_wake_deep_sleep();
// other wake logic
}
```
... and it will replace the default implementation.
While this may reduce esp_wifi.h file readability for people who don't have a "go to definition" function in their editors, this is needed to decouple esp_wifi and esp_event headers, and possibly other headers which may use wifi types in the future.
This change separates definitions in esp_event.h and functions in event.c into several parts:
- event structure definitions (esp_event.h)
- default implementations of event handlers (event_default_handlers.c)
- default implementation of event loop (event_loop.c, esp_event_loop.h)
Purpose of this change is to allow applications choose their own poison:
- full control of event loop at the expense of more bootstrap code
- pre-defined event task firing event callbacks, but less code in app_main.c
This change removes implicit WiFi/BT initialization from startup code.
"main" task is started once essential part of startup code is complete.
This task calls application-provided "int main(void)" function, which can call WiFi/BT init functions if necessary.