1. Modify esp_bt_controller_mem_release() to release BTDM BSS and Data to heap if
ESP_BT_MODE_BTDM mode is passed to it
2. Add a new API esp_bt_mem_release() which internally calls
esp_bt_controller_mem_release() with the provided mode and then if mode
is ESP_BT_MODE_BTDM, releases BT BSS and Data to heap.
Background:
For Wi-Fi and BT/BLE applications, for e.g. the usecase is like when
Bluetooth is used for provisioning and once the device is connected to the Wi-Fi
AP, we can turn off Bluetooth completely. In such scenarios, it should be possible to
reclaim all the memory of Bluetooth. Although, currently this does not
happen.
Experiment:
Made the following modifications to examples/bluetooth/gatt_server :
1. Added support of simple_wifi to it
2. Moved all the bluetooth related code under CONFIG_BT_ENABLED config
option
3. Calculated the free heap in 2 similar scenarios:
i. Disabled BT (CONFIG_BT_ENABLED undefined) and checked the free
heap after STA connected
ii. Kept BT enabled and disabled it after STA connected and checked
the free heap
Ideally, the numbers for i., ii. above should have been similar. But
there was a delta of almost 30-31K. (i. > ii.)
4. Through make size-components checked the common BSS for libbta.a and libbtdm_app.a
and found it to be almost 30K. Data is around 1K
Solution:
1. Modified the linker script to mark the BSS and Data for these libraries and
free it when ESP_BT_MODE_BTDM mode is passed to mem release APIs.
2. Verified that the free heap is comparable for i. and ii. above.
Note: It is known that once this is done, Bluetooth can only be used
again post reboot.
Signed-off-by: Hrishikesh Dhayagude <hrishi@espressif.com>
* Fixes some "noreturn" functions in bootloader utils which did return (causing fatal CPU
exceptions).
* Marks bootloader entry as "noreturn", preventing "user code done" from stalling boot
Partial fix for https://github.com/espressif/esp-idf/issues/1814 TW20016
(Comprehensive fix for this issue will be enabling WDT during bootloader, coming shortly.)
1. Move channel to the first row of the table.
2. Remove the condition of HT20/HT40 for they are determined by
secondary channel.
3. Clean up the CSI table.
Fixed the error division on zero.
Also fixed range CONFIG_ESP32_RTC_CLK_CAL_CYCLES in Kconfig.
Fixed a overflow error by TIMG in the function rtc_clk_cal_internal. This error was due to a limit in values TIMG_RTC_CALI_MAX=0x7FFF (to write the slowclk_cycles) and TIMG_RTC_CALI_VALUE=0x1FFFFFF (to read xtal_cycles). Added assert finctions.
Closes https://github.com/espressif/esp-idf/issues/2147
1. Add reading psram EID.
2. Configure different clock mode for different EID.
3. add API to get psram size and voltage.
4. Remove unnecessary VSPI claim.
For 32MBit@1.8V and 64MBit@3.3V psram, there should be 2 extra clock cycles after CS get high level.
For 64MBit@1.8 psram, we can just use standard SPI protocol to drive the psram. We also need to increase the HOLD time for CS in this case.
EID for psram:
32MBit 1.8v: 0x20
64MBit 1.8v: 0x26
64MBit 3.3v: 0x46
Since 94250e42a0, UART output is suspended when entering sleep mode
(deep or light sleep). This makes sense for light sleep, where sleep
normally takes small amount of time, and flushing the UART would add
a lot of latency. But this breaks existing behaviour for deep sleep,
where UART output was previously sent out before entering sleep mode.
Closes https://github.com/espressif/esp-idf/issues/2145
remote_ip was declared to be a pointer to an address that was
overwritten in later stage thus changing the address pointed by remote_ip
esp_smartconfig.h : Fixed a typo. station_config to wifi_config_t
Signed-off-by: Sachin Parekh <sachin.parekh@espressif.com>
components/esp32/ipc.c: In function 'esp_ipc_init':
components/esp32/ipc.c:82:31: error: '%d' directive writing between 1 and 11 bytes into a region of size 5 [-Werror=format-overflow=]
sprintf(task_name,"ipc%d",i);
^~
components/esp32/ipc.c:82:27: note: directive argument in the range [-2147483648, 1]
sprintf(task_name,"ipc%d",i);
^~~~~~~
components/esp32/ipc.c:82:9: note: 'sprintf' output between 5 and 15 bytes into a destination of size 8
sprintf(task_name,"ipc%d",i);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~
INTERRUPT and CCOUNT registers will change outside of program control.
Making the inline assembly used to read these registers volatile
indicates this fact to the compiler.
Fixes https://github.com/espressif/esp-idf/issues/2127
1. fix BLE connection missing in coex mode
2. modify other parameters to make coex priority more reasonable
3. fix modem sleep procedure trap cause Wifi disable RF when BT is
working. Such cause that BR/EDR is difficult to be connected, BLE
connection stability decrease and so on.
4. modify BR/EDR coexist duration to imrove BR/EDR connect success
ratio.
5. Due to the hardware coexist bug, BLE scan interval/window should
be less than 0x100(about 160ms). Therefore, it will cause BLE cannot
scan any advertising packet while WiFi have higher priority
behaviour(such like RX beacon, scan, TX/RX VO packets and etc.).
1. add APIs to set/get announce interval values.
2. add API to enable/disable the min rate to 6Mbps for data packages.
3. add APIs to set/get RSSI threshold values.
4. fix ap_loss.
Since commit 94250e4, EXT0 wakeup mechanism, when wakeup level was set
to 0, started waking up chip immediately after entering deep sleep.
This failure was triggered in that commit by a change of
RTC_CNTL_MIN_SLP_VAL (i.e. minimum time in sleep mode until wakeup
can happen) from 128 cycles to 2 cycles.
The reason for this behaviour is related to the way input enable (IE)
signal going into an RTC pad is obtained:
PAD_IE = (SLP_SEL) ? SLP_IE & CHIP_SLEEP : IE,
where SLP_IE, SLP_SEL, and IE are bits of an RTC_IO register related
to the given pad. CHIP_SLEEP is the signal indicating that chip has
entered sleep mode.
The code in prepare_ext{0,1}_wakeup did not enable IE, but did enable
SLP_SEL and SLP_IE. This meant that until CHIP_SLEEP went high, PAD_IE
was 0, hence the input from the pad read 0 even if external signal
was 1. CHIP_SLEEP went high on the 2nd cycle of sleep. So when
RTC_CNTL_MIN_SLP_VAL was set to 2, the input signal from the pad was
latched as 0 at the moment when CHIP_SLEEP went high, causing EXT0
wakeup with level 0 to trigger.
This commit changes the way PAD_IE is enabled: SLP_SEL and SLP_IE are
no longer used, and IE is set to 1. If EXT0 wakeup is used, RTC_IO is
not powered down, so IE signal stays 1 both before CHIP_SLEEP goes
high and after. If EXT1 wakeup is used, RTC_IO may be powered down.
However prepare_ext1_wakeup enables Hold on the pad, locking states
of all the control signals, including IE.
Closes https://github.com/espressif/esp-idf/issues/1931
Closes https://github.com/espressif/esp-idf/issues/2043
Previously the loop in esp_timer_impl_set_alarm was necessary to catch
the case when timer count wraps around (goes from 2^32 - 1 to 0).
Since ALARM_OVERFLOW_VAL was reduced from 2^32 - 1 to 0xefffffff,
this is no longer necessary.
Fixes https://github.com/espressif/esp-idf/issues/1891
Allows you to move the partition table, it gives more space for the bootloader.
Added a new utility - parttool.py. This utility can search for the offset and/or size of the partitions by name and type/subtype. Use for getting APP_OFFSET and PHY_DATA_OFFSET.
The linker(esp32.bootloader.ld) made changes that allow you to write a custom bootloader code more.
TW14125
Before entering the deep sleep, the RTC and FRC counters are synchronized. Updating the boot_time.
Added a unit test for this case.
Fixed warnings for MULTIPLE_STAGES
Closes https://github.com/espressif/esp-idf/issues/1840
1. Fix the WiFi/BT coexist bug
2. Fix WPA2 enterprise example crash bug
3. Add size and version check for crypto type struct
4. Add MD5 check for crypto type header file