This commit resolves a blocking in esp_aes_block function.
Introduce:
The problem was in the fact that AES is switched off at the moment when he should give out the processed data. But because of the disabled, the operation can not be completed successfully, there is an infinite hang. The reason for this behavior is that the registers for controlling the inclusion of AES, SHA, MPI have shared registers and they were not protected from sharing.
Fix some related issue with shared using of AES SHA RSA accelerators.
Closes: https://github.com/espressif/esp-idf/issues/2295#issuecomment-432898137
When light sleep is finished on one CPU, it is possible that the other
CPU will enter light sleep again very soon, before interrupts on the
first CPU get a chance to run. To avoid such situation, set a flag
for the other CPU to skip light sleep attempt.
Tickless idle/light sleep procedure had a bug in single core mode.
Consider the flow of events:
1. Idle task runs and calls vApplicationIdleHook
2. This calls esp_vApplicationIdleHook, which calls esp_pm_impl_idle_hook, and pm lock for RTOS on the current core is released.
3. Then esp_vApplicationIdleHook calls esp_pm_impl_waiti, which checks that s_entered_light_sleep[core_id]==false and goes into waiti state.
4. Some interrupt happens, calls esp_pm_impl_isr_hook, which takes pm lock for RTOS. PM state goes back to CPU_FREQ_MAX.
5. Once the interrupt is over, vApplicationIdleHook returns, and Idle task continues to run, finally reaching the call to vApplicationSleep.
6. vApplicationSleep does not enter light sleep, because esp_pm_impl_isr_hook has already changed PM state from IDLE to CPU_FREQ_MAX.
This didn’t happen in dual core mode, because waiti state of one CPU was interrupted by CCOMPARE update interrupt from the other CPU, in which case PM lock for FreeRTOS was not taken.
Fix by inverting the meaning of the flag (for convenience) and only setting it to true when vApplicationSleep actually fails to enter light sleep.
Having two different spinlocks is problematic due to possibly
different order in which the locks will be taken. Changing the order
would require significant restructuring of kernel code which is
undesirable.
An additional place where taking xTickCountMutex was needed was in
vApplicationSleep function. Not taking xTickCountMutex resulted in
other CPU sometimes possibly advancing tick count while light sleep
entry/exit was happening. Taking xTickCountMutex in addition to
xTaskQueueMutex has shown a problem that in different code paths,
these two spinlocks could be taken in different order, leading to
(unlikely, but possible) deadlocks.
1. When WIFI task or other high priority task blocks the Bluetooth task, ACL RX buffer will use up, ACL RX buffer ptr will point to null and will never point to a valid adress. Causing errors in Bluetooth.
2. hcimsgs.h used whether flow control is on or off