1. BLE Mesh Core
* Provisioning: Node Role
* PB-ADV and PB-GATT
* Authentication OOB
* Provisioning: Provisioner Role
* PB-ADV and PB-GATT
* Authentication OOB
* Networking
* Relay
* Segmentation and Reassembly
* Key Refresh
* IV Update
* Proxy Support
* Multiple Client Models Run Simultaneously
* Support multiple client models send packets to different nodes simultaneously
* No blocking between client model and server
* NVS Storage
* Store BLE Mesh node related information in flash
* Store BLE Mesh Provisioner related information in flash
2. BLE Mesh Models
* Foundation Models
* Configuration Server Model
* Configuration Client Model
* Health Server Model
* Health Client Model
* Generic
* Generic OnOff Server
* Generic OnOff Client
* Generic Level Server
* Generic Level Client
* Generic Default Transition Time Server
* Generic Default Transition Time Client
* Generic Power OnOff Server
* Generic Power OnOff Setup Server
* Generic Power OnOff Client
* Generic Power Level Server
* Generic Power Level Setup Server
* Generic Power Level Client
* Generic Battery Server
* Generic Battery Client
* Generic Location Server
* Generic Location Setup Server
* Generic Location Client
* Generic Admin Property Server
* Generic Manufacturer Property Server
* Generic User Property Server
* Generic Client Property Server
* Generic Property Client
* Sensor Server Model
* Sensor Server
* Sensor Setup Server
* Sensor Client
* Time and Scenes
* Time Server
* Time Setup Server
* Time Client
* Scene Server
* Scene Setup Server
* Scene Client
* Scheduler Server
* Scheduler Setup Server
* Scheduler Client
* Lighting
* Light Lightness Server
* Light Lightness Setup Server
* Light Lightness Client
* Light CTL Server
* Light CTL Setup Server
* Light CTL Client
* Light CTL Temperature Server
* Light HSL Server
* Light HSL Setup Server
* Light HSL Client
* Light HSL Hue Server
* Light HSL Saturation Server
* Light xyL Server
* Light xyL Setup Server
* Light xyL Client
* Light LC Server
* Light LC Setup Server
* Light LC Client
3. BLE Mesh Applications
* BLE Mesh Node
* OnOff Client Example
* OnOff Server Example
* BLE Mesh Provisioner
* Example
* Fast Provisioning
* Vendor Fast Prov Server Model
* Vendor Fast Prov Client Model
* Examples
* Wi-Fi & BLE Mesh Coexistence
* Example
* BLE Mesh Console Commands
* Examples
port*_CRITICAL_SAFE API calls port*_CRITICAL or port*_CRITICAL_ISR
depending on the context (Non-ISR or ISR respectively).
FREERTOS_CHECK_PORT_CRITICAL_COMPLIANCE Kconfig option added
Signed-off-by: Sachin Parekh <sachin.parekh@espressif.com>
Linker script generator produces build/esp32/esp32.common.ld from
components/esp32/ld/esp32.common.ld.in
This works fine until IDF is downgraded to V3.1 which uses components/esp32/ld/esp32.common.ld and
doesn't track build/esp32/esp32.common.ld at all.
At this point, the linker runs in the build/esp32 directory and "-T esp32.common.ld" picks up the
linker script generated .ld file, which causes mis-builds.
As reported on forums: https://esp32.com/viewtopic.php?f=13&t=9684&p=40105
Previously, this compiler flag was not being applied
regardless of CONFIG_SPIRAM_CACHE_WORKAROUND setting.
Explanation: add_compile_options() only applies to
source files added after the function is run, or in
subdirectories added after the function is run. In
this case, no new source files were being added after
this function was run.
Due to a hardware limitation in ESP32, the first four bytes of some
CSI data is invalid, not the last four bytes.
Correct a mistake of CSI sub-carrier index in documentation.
Added a new structure esp_app_desc_t. It has info about firmware:
version, secure_version, project_name, time/date build and IDF version.
Added the ability to add a custom structure with a description of the firmware.
The esp_app_desc_t is located in fixed place in start of ROM secotor. It is located after structures esp_image_header_t and esp_image_segment_header_t.
app_version is filed from PROJECT_VER variable (if set in custom make file) or PROJECT_PATH/version.txt or git repo (git describe).
Add API to get app_desc from partition.
1. add network channel switch function.
- users can obtain the new channel through the event MESH_EVENT_CHANNEL_SWITCH.
- the entire network will be moved to the same channel as the router without user intervention.
- if no router is in the network, users can call esp_mesh_switch_channel() on the root side to
move the entire network to their desired channel.
2. support not configuring the network channel.
3. support not configuring the router BSSID even if the router is hidden.
4. add allow_channel_switch to mesh configuration.
- if the channel is not specified, this value will be ignored.
- if the channel is specified and this value is set, when "fail" (mesh_attempts_t) times of parent selection
or look for networks are reached, device will change to perform a full channel scan for networks that could join.
- if the channel is specified and this value is set to 0, when a root is not elected, channel switch is not allowed.
but when a root appears, the root performs a full channel scan during the process of connecting to the router,
so even allow_channel_switch is set to 0, the root may still switch channel and eventually the entire network
changes channel.
5. add allow_router_switch to mesh router configuration.
- if the BSSID of router is not specified, this value will be ignored.
- if the BSSID of router is specified and this value is set, when the router of this specified BSSID fails to be found
after "fail" (mesh_attempts_t) times, the entire network is allowed to switch to another router with the same SSID.
6. modify the root to perform a full channel scan when esp_wifi_connect().
7. support handling beacon without DS Paramter Set.