When two CPUs read the area of the DPORT and the area of the APB, the result is corrupted for the CPU that read the APB area.
And another CPU has valid data.
The method of eliminating this error.
Before reading the registers of the DPORT, make a preliminary reading of the APB register.
In this case, the joint access of the two CPUs to the registers of the APB and the DPORT is successful.
1. Bootloader reads SPI configuration from bin header, so that the burning configuration can be different with compiling configuration.
2. Psram mode init will overwrite original flash speed mode, so that users can change psram and flash speed after OTA. 3. Flash read mode(QIO/DIO…) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
4. Add read flash ID function, and save flash ID in g_rom_flashchip
5. Set drive ability for all related GPIOs
6. Check raise VDDSDIO voltage in 80Mhz mode
7. Add check flash ID and update settings in bootloader
8. Read flash ID once and keep in global variable
9. Read flash image header once and reuse the result
Tested cases:
1. Test new and old version of bootloader
boot Flash 20M —> app Flash 80M + Psram 80M
boot Flash 40M —> app Flash 80M + Psram 80M
boot Flash 80M —> app Flash 80M + Psram 80M
boot Flash 20M —> app Flash 80M + Psram 40M
boot Flash 40M —> app Flash 80M + Psram 40M
boot Flash 80M —> app Flash 80M + Psram 40M
boot Flash 20M —> app Flash 40M + Psram 40M
boot Flash 40M —> app Flash 40M + Psram 40M
boot Flash 80M —> app Flash 40M + Psram 40M 2. Working after esp_restart reboot.
The files updated according to code review discussions.
In the sleep_modes.c removed immidiate disable of ULP mode and leave just trigger deactivation.
The esp_sleep.h is updated to have the same defines for source as esp_sleep_wakeup_cause_t.
Updated documentation in sleep_modes.rst file to include cross references.
Some minor changes in test_sleep.c unit test.
(TW#18952)
Closes https://github.com/espressif/esp-idf/issues/1677
Added function esp_sleep_disable_wakeup_source() to deactivate wakeup trigger for selected source.
Updated documentation for this function in sleep_modes.rst file.
Updated unit test to check this functionality for light sleep.
The test_sleep.c unit test is updated to add reliability for unit testing.
(TW#18952)
Closes https://github.com/espressif/esp-idf/issues/1677
The timer wakeup function once activated cannot be disabled later using existing api. If user wants to use different wakeup sources after first sleep but it does not work. This change disables timer wakeup trigger in configuration that will be set into appropriate RTC registers in esp_light_sleep_start() function.
Added function esp_sleep_disable_wakeup_source() to deactivate wakeup trigger for selected source.
Updated documentation for this function in sleep_modes.rst file to pass make html.
Updated unit test to check this functionality for light sleep.
The test_sleep.c unit test is updated to add reliability for auto unit testing.
(TW#18952)
Closes https://github.com/espressif/esp-idf/issues/1677
tools/gen_esp_err_to_name.py generates
components/esp32/esp_err_to_name.c for lookup of the error codes from
all of the IDF project and easily identify all codes in one place
A function to change "in IRAM" status for an existing interrupt handle, without going through free/allocate of the interrupt.
mOS HW timer implementation requires this to make HW timers safe to re-set from an IRAM ISR.
Renamed the internal rc to __err_rc to avoid clashes with local variables.
This code would not do the expected thing with the original ESP_ERROR_CHECK macro:
esp_err_t my_func(esp_err_t x)
{
assert(x == 23);
}
esp_err_t rc = 23; //some value that is important fo the user
ESP_ERROR_CHECK(my_func(rc));
The macro will expand to:
esp_err_t rc = (my_func(rc));
And the code will assert, as my_func will receive a random value - whatever is in the internal macro rc temp variable. This is due to the C weirdness of allowing this code:
int x = x; //x has a random value.
This commit reverts the revert on the new task watchdog API. It also
fixes the following bug which caused the reversion.
- sdkconfig TASK_WDT_TIMEOUT_S has been reverted from the unit of ms back to the
unit of seconds. Fixes bug where projects using the new API without rebuilding sdkconfig
would cause the old default value of 5 to be interpreted in ms.
This commit also adds the following features to the task watchdog
- Updated idle hook registration to be compatible with dual core hooks
- Updated dual core hooks to support deregistration for cpu
- Legacy mode has been removed and esp_task_wdt_feed() is now replaced by
esp_task_wdt_reset(). esp_task_wdt_feed() is deprecated
- Idle hooks to reset are now registered/deregistered when the idle tasks are
added/deleted from the Task Watchdog instead of at Task Watchdog init/deinit
- Updated example
Some frameworks based on ESP-IDF need to be able to decide whether to
initialize SPI RAM after the application has started. This change splits
out part of esp_spiram_init which manipulate cache MMU into a separate
function. Applications can disable cache, call esp_spiram_init_cache,
re-enable cache, and then call esp_spiram_init.
Disabling and re-enabling the cache can be achieved using functions
provided in esp_spi_flash.h.
This commit fixes bugs with the dual core changes to freeRTOS tick and idle hooks.
Interrupt watchdog now registers tick hooks to both cores.
API for cross core tick and idle hook registration were also added
Legacy API of task watchdog used the same function esp_task_wdt_feed() to add
and feed a task. This caused issues of implicitly adding a task to the wdt list
if the function was used in shared code.
The new API introduces init, adding, feeding, deleting, deinit functions. Tasks
must now be explicitly added to the task watchdog using their handles. Deletion
must also be explicit using task handles. This resolves the issue of implicit
task additions to the task watchdog due to shared code calling
esp_task_wdt_feed().
Task watchdog is now fully configurable at runtime by calling the init and
deinit functions.
Also added functions to get the handles of idle tasks of the other core. This
helps when adding idle tasks to the watchdog at run time.
Configuring the task watchdog using menu config is still available, however
menu config will only result in calling the init and add functions for idle
tasks shortly after the scheduler starts.
Menu config also allows for using legacy behavior, however the legacy behavior
willcall the new API functions but with slight variations to make them legacy
compatible.
Documentation and example have also been updated
gcov_rtio.c headers updated to prevent error of freertos header files being
included in the wrong order.
Resolves issue TW#13265
ESPNOW is a kind of WiFi communication bettween WiFi devices, no
matter they are connected to each other or not. Once two WiFi
devices are paired, they can send data to or receive data from
each other. The data is transmitted in action frame which can
be encrypted with CCMP method. ESPNOW also support mutilcast frame
transmitting.
All peripheral clocks are default enabled after chip is powered on.
When CPU starts, if reset reason is CPU reset, disable those clocks
that are not enabled before reset. Otherwise, disable all those
useless clocks.
These peripheral clocks must be enabled when the peripherals are
initialized and disabled when they are deinitialized.
1. Hello World application shows no footprint difference before and
after this change
2. examples/ethernet/ethernet application compiles properly (can't
test with my board)
This is no longer required since the functions automatically get
pulled in based on the usage. A quick summary of footprint
comparisions before and after these set of patches is shown below:
Hello-World: (simplified for readability)
old Total image size:~ 104902 bytes (.bin may be padded larger)
old Total image size:~ 105254 bytes (.bin may be padded larger)
Per-archive contributions to ELF file:
Archive File DRAM .data & .bss IRAM Flash code & rodata Total
old libesp32.a 1973 177 4445 3939 2267 12801
new libesp32.a 1973 185 4473 3939 2267 12837
new libnvs_flash.a 0 92 0 274 8 374
new libstdc++.a 0 0 0 24 0 24
For some reason, nvs_flash.a (~400bytes) gets pulled in (particularly
the nvs_flash_init() function).
Power-Save: (simplified for readability)
old Total image size:~ 421347 bytes (.bin may be padded larger)
old Total image size:~ 421235 bytes (.bin may be padded larger)
old libtcpip_adapter.a 0 81 0 1947 115 2143
new libtcpip_adapter.a 0 69 0 1897 115 2081
The size actually shrinks a bit, since the AP interface function
doesn't get pulled in.
Restart being a lower-layer system-level function, needn't depend on
the higher level Wi-Fi libraries.
This also enables us to get rid of one more WIFI_ENABLED ifdef check
Because of errata related to BOD reset function, brownout is handled as follows:
- attach an ISR to brownout interrupt
- when ISR happens, print a message and do a software restart
- esp_restart_nonos enables RTC watchdog, so if restart fails,
there will be one more attempt to restart (using the RTC
watchdog)
Implements support for system level traces compatible with SEGGER
SystemView tool on top of ESP32 application tracing module.
That kind of traces can help to analyse program's behaviour.
SystemView can show timeline of tasks/ISRs execution, context switches,
statistics related to the CPUs' load distribution etc.
Also this commit adds useful feature to ESP32 application tracing module:
- Trace data buffering is implemented to handle temporary peaks of events load
Small changes to clock calibration value will cause increasing errors
the longer the device runs. Consider the case of deep sleep, assuming
that RTC counter is used for timekeeping:
- before sleep:
time_before = rtc_counter * calibration_val
- after sleep:
time_after = (rtc_counter + sleep_count) * (calibration_val + epsilon)
where 'epsilon' is a small estimation error of 'calibration_val'.
The apparent sleep duration thus will be:
time_after - time_before = sleep_count * (calibration_val + epsilon)
+ rtc_counter * epsilon
Second term on the right hand side is the error in time difference
estimation, it is proportional to the total system runtime (rtc_counter).
To avoid this issue, this change makes RTC_SLOW_CLK calibration value
persistent across restarts. This allows the calibration value update to
be preformed, while keeping time after update same as before the update.
DPORT access protection can not work when the other CPU is stalled.
Writes to DPORT registers in esp_restart caused the program to hang due
to access protection, and the reset happened due to RTC_WDT, not SW_RST.
This change adds esp_dport_access_int_deinit function and calls it from
esp_restart once the other core is stalled.
add API to get chip info
This change adds an API to get chip info, such as chip model, enabled capabilities, size of embedded flash, silicon revision.
Hello_world example is modified to print out the information about the chip. The example is also simplified by moving all code into the main task.
Ref TW12031.
See merge request !549
Optimize configuration of base MAC address
Application developer can call APIs to configure base MAC address
instead of using menuconfig.
See merge request !744
component/esp32 : fix dualcore bug
1. When dual core cpu run access DPORT register, must do protection.
2. If access DPORT register, must use DPORT_REG_READ/DPORT_REG_WRITE and DPORT_XXX register operation macro.
See merge request !742
1. When dual core cpu run access DPORT register, must do protection.
2. If access DPORT register, must use DPORT_REG_READ/DPORT_REG_WRITE and DPORT_XXX register operation macro.
optimize scan before station connecting to AP
1. Store the information of AP(ssid, password, bssid, channel, etc)
into nvs when station connects to AP successfully. If station
connects to the same AP next time, it will scan the stored channel of the AP
first.
2. Add a parameter of channel for scanning before connecting to AP.
If the channel is set to 0, station will scan full channels. If it
is set to 1~13, station will only scan the channel.
See merge request !704
1. Store the information of AP(ssid, password, bssid, channel, etc)
into nvs when station connects to AP successfully. If station
connects to the same AP next time, it will scan the stored channel of the AP
first.
2. Add a parameter of channel for scanning before connecting to AP.
If it is set to 1~13, station will scan starting from the channel.
If the channel of AP is unknown, set it to 0.