The requirements of pin capabilites is different for spi master and
slave. The master needs CS, SCLK, MOSI to be output-able, while slave
needs MISO to be output-able.
Previous code is for master only.
This commit allows to place other 3 pins than MISO on input-only pins
for slaves. Refactoring for spi_common is also included.
Resolves https://github.com/espressif/esp-idf/issues/2455
The requirements of pin capabilites is different for spi master and
slave. The master needs CS, SCLK, MOSI to be output-able, while slave
needs MISO to be output-able.
Previous code is for master only.
This commit allows to place other 3 pins than MISO on input-only pins
for slaves. Refactoring for spi_common is also included.
Resolves https://github.com/espressif/esp-idf/issues/2455
New unit tests added
------------------------
**Local:** Local test uses the GPIO matrix to connect the master and the
slave on the same board. When the master needs the iomux, the master
uses the GPIOs of its own, the slave connect to the pins by GPIO matrix;
When the slave needs the iomux, the slave uses the GPIOs of its own, the
master connects to the pins by GPIO matrix.
- Provide a new unit test which performs freq scanning in mode 0. It
scans frequency of 1M, 8M, 9M and all frequency steps up to the maximum
frequency allowed.
**M & S**: Master & slave tests performs the test with two boards. The
master and slave use iomux or gpio matrix according to the config.
- Provide a new unit test which performs freq scanning in mode 0. It
scans frequency of 1M, 8M, 9M and all frequency steps up to the maximum
frequency allowed.
- Provide a new unit test which performs mode test with significant
frequencies. It tests mode 0,1,2,3 with low frequency, and the maximum
frequency allowed.
Paremeterized Test Framework
-----------------------------
The SPI has a lot of parameters, which works in the same process.
This framework provides a way to easily test different parameter sets.
The framework can work in two different ways:
- local test: which requires only one board to perform the test - master
& slave test: which generates two sub test items which uses the same
config set to cooperate to perform the test.
The user defines a (pair if master/slave) set of init/deinit/loop
functions. Then the test framework will call init once, then call loop
several times with different configurations, then call deinit.
Then a unit test can be appended by add a parameter group, and pass it into
a macro.
The DMA cannot receive data correctly when the buffer address is not
WORD aligned. Currently we only check whether the buffer is in the DRAM
region.
The DMA always write in WORDs, so the length arguments should also be
multiples of 32 bits.
A check is added to see whether the buffer is WORD aligned and has valid
length.
New unity component can be used for testing other applications.
Upstream version of Unity is included as a submodule.
Utilities specific to ESP-IDF unit tests (partitions, leak checking
setup/teardown functions, etc) are kept only in unit-test-app.
Kconfig options are added to allow disabling certain Unity features.
This change adds a check for compatibility between the nvs version
found on nvs flash and the one assumed by running code during nvs
initialization. Any mismatch is reported to the user using new error
code ESP_ERR_NVS_NEW_VERSION_FOUND.
The test is previously disabled for the requirement of external
connection. Now the signals are connected by internal connections.
Also change the failure logic of the test.