vfs_uart: refactor to have static context structure

This commit is contained in:
Michael (XIAO Xufeng) 2019-06-20 01:18:20 +08:00
parent cf2ba210ef
commit b5c3ac0ec2

View file

@ -33,6 +33,22 @@
// Token signifying that no character is available
#define NONE -1
#if CONFIG_NEWLIB_STDOUT_LINE_ENDING_CRLF
# define DEFAULT_TX_MODE ESP_LINE_ENDINGS_CRLF
#elif CONFIG_NEWLIB_STDOUT_LINE_ENDING_CR
# define DEFAULT_TX_MODE ESP_LINE_ENDINGS_CR
#else
# define DEFAULT_TX_MODE ESP_LINE_ENDINGS_LF
#endif
#if CONFIG_NEWLIB_STDIN_LINE_ENDING_CRLF
# define DEFAULT_RX_MODE ESP_LINE_ENDINGS_CRLF
#elif CONFIG_NEWLIB_STDIN_LINE_ENDING_CR
# define DEFAULT_RX_MODE ESP_LINE_ENDINGS_CR
#else
# define DEFAULT_RX_MODE ESP_LINE_ENDINGS_LF
#endif
// UART write bytes function type
typedef void (*tx_func_t)(int, int);
// UART read bytes function type
@ -46,33 +62,55 @@ static int uart_rx_char(int fd);
static void uart_tx_char_via_driver(int fd, int c);
static int uart_rx_char_via_driver(int fd);
// Pointers to UART peripherals
static uart_dev_t* s_uarts[UART_NUM] = {
&UART0,
&UART1,
typedef struct {
// Pointers to UART peripherals
uart_dev_t* uart;
// One-character buffer used for newline conversion code, per UART
int peek_char;
// per-UART locks, lazily initialized
_lock_t read_lock;
_lock_t write_lock;
// Per-UART non-blocking flag. Note: default implementation does not honor this
// flag, all reads are non-blocking. This option becomes effective if UART
// driver is used.
bool non_blocking;
// Newline conversion mode when transmitting
esp_line_endings_t tx_mode;
// Newline conversion mode when receiving
esp_line_endings_t rx_mode;
// Functions used to write bytes to UART. Default to "basic" functions.
tx_func_t tx_func;
// Functions used to read bytes from UART. Default to "basic" functions.
rx_func_t rx_func;
} vfs_uart_context_t;
#define VFS_CTX_DEFAULT_VAL(uart_dev) (vfs_uart_context_t) {\
.uart = (uart_dev),\
.peek_char = NONE,\
.tx_mode = DEFAULT_TX_MODE,\
.rx_mode = DEFAULT_RX_MODE,\
.tx_func = uart_tx_char,\
.rx_func = uart_rx_char,\
}
//If the context should be dynamically initialized, remove this structure
//and point s_ctx to allocated data.
static vfs_uart_context_t s_context[UART_NUM] = {
VFS_CTX_DEFAULT_VAL(&UART0),
VFS_CTX_DEFAULT_VAL(&UART1),
#if UART_NUM > 2
&UART2
VFS_CTX_DEFAULT_VAL(&UART2),
#endif
};
// One-character buffer used for newline conversion code, per UART
static int s_peek_char[UART_NUM] = {
NONE,
NONE,
static vfs_uart_context_t* s_ctx[UART_NUM] = {
&s_context[0],
&s_context[1],
#if UART_NUM > 2
NONE
&s_context[2],
#endif
};
// per-UART locks, lazily initialized
static _lock_t s_uart_read_locks[UART_NUM];
static _lock_t s_uart_write_locks[UART_NUM];
// Per-UART non-blocking flag. Note: default implementation does not honor this
// flag, all reads are non-blocking. This option becomes effective if UART
// driver is used.
static bool s_non_blocking[UART_NUM];
/* Lock ensuring that uart_select is used from only one task at the time */
static _lock_t s_one_select_lock;
@ -84,47 +122,9 @@ static fd_set *_readfds_orig = NULL;
static fd_set *_writefds_orig = NULL;
static fd_set *_errorfds_orig = NULL;
// Newline conversion mode when transmitting
static esp_line_endings_t s_tx_mode =
#if CONFIG_NEWLIB_STDOUT_LINE_ENDING_CRLF
ESP_LINE_ENDINGS_CRLF;
#elif CONFIG_NEWLIB_STDOUT_LINE_ENDING_CR
ESP_LINE_ENDINGS_CR;
#else
ESP_LINE_ENDINGS_LF;
#endif
// Newline conversion mode when receiving
static esp_line_endings_t s_rx_mode[UART_NUM] = { [0 ... UART_NUM-1] =
#if CONFIG_NEWLIB_STDIN_LINE_ENDING_CRLF
ESP_LINE_ENDINGS_CRLF
#elif CONFIG_NEWLIB_STDIN_LINE_ENDING_CR
ESP_LINE_ENDINGS_CR
#else
ESP_LINE_ENDINGS_LF
#endif
};
static void uart_end_select();
// Functions used to write bytes to UART. Default to "basic" functions.
static tx_func_t s_uart_tx_func[UART_NUM] = {
&uart_tx_char,
&uart_tx_char,
#if UART_NUM > 2
&uart_tx_char
#endif
};
// Functions used to read bytes from UART. Default to "basic" functions.
static rx_func_t s_uart_rx_func[UART_NUM] = {
&uart_rx_char,
&uart_rx_char,
#if UART_NUM > 2
&uart_rx_char
#endif
};
static int uart_open(const char * path, int flags, int mode)
{
@ -143,14 +143,14 @@ static int uart_open(const char * path, int flags, int mode)
return fd;
}
s_non_blocking[fd] = ((flags & O_NONBLOCK) == O_NONBLOCK);
s_ctx[fd]->non_blocking = ((flags & O_NONBLOCK) == O_NONBLOCK);
return fd;
}
static void uart_tx_char(int fd, int c)
{
uart_dev_t* uart = s_uarts[fd];
uart_dev_t* uart = s_ctx[fd]->uart;
while (uart->status.txfifo_cnt >= 127) {
;
}
@ -165,7 +165,7 @@ static void uart_tx_char_via_driver(int fd, int c)
static int uart_rx_char(int fd)
{
uart_dev_t* uart = s_uarts[fd];
uart_dev_t* uart = s_ctx[fd]->uart;
if (uart->status.rxfifo_cnt == 0) {
return NONE;
}
@ -175,7 +175,7 @@ static int uart_rx_char(int fd)
static int uart_rx_char_via_driver(int fd)
{
uint8_t c;
int timeout = s_non_blocking[fd] ? 0 : portMAX_DELAY;
int timeout = s_ctx[fd]->non_blocking ? 0 : portMAX_DELAY;
int n = uart_read_bytes(fd, &c, 1, timeout);
if (n <= 0) {
return NONE;
@ -191,18 +191,18 @@ static ssize_t uart_write(int fd, const void * data, size_t size)
* a dedicated UART lock if two streams (stdout and stderr) point to the
* same UART.
*/
_lock_acquire_recursive(&s_uart_write_locks[fd]);
_lock_acquire_recursive(&s_ctx[fd]->write_lock);
for (size_t i = 0; i < size; i++) {
int c = data_c[i];
if (c == '\n' && s_tx_mode != ESP_LINE_ENDINGS_LF) {
s_uart_tx_func[fd](fd, '\r');
if (s_tx_mode == ESP_LINE_ENDINGS_CR) {
if (c == '\n' && s_ctx[fd]->tx_mode != ESP_LINE_ENDINGS_LF) {
s_ctx[fd]->tx_func(fd, '\r');
if (s_ctx[fd]->tx_mode == ESP_LINE_ENDINGS_CR) {
continue;
}
}
s_uart_tx_func[fd](fd, c);
s_ctx[fd]->tx_func(fd, c);
}
_lock_release_recursive(&s_uart_write_locks[fd]);
_lock_release_recursive(&s_ctx[fd]->write_lock);
return size;
}
@ -213,19 +213,19 @@ static ssize_t uart_write(int fd, const void * data, size_t size)
static int uart_read_char(int fd)
{
/* return character from peek buffer, if it is there */
if (s_peek_char[fd] != NONE) {
int c = s_peek_char[fd];
s_peek_char[fd] = NONE;
if (s_ctx[fd]->peek_char != NONE) {
int c = s_ctx[fd]->peek_char;
s_ctx[fd]->peek_char = NONE;
return c;
}
return s_uart_rx_func[fd](fd);
return s_ctx[fd]->rx_func(fd);
}
/* Push back a character; it will be returned by next call to uart_read_char */
static void uart_return_char(int fd, int c)
{
assert(s_peek_char[fd] == NONE);
s_peek_char[fd] = c;
assert(s_ctx[fd]->peek_char == NONE);
s_ctx[fd]->peek_char = c;
}
static ssize_t uart_read(int fd, void* data, size_t size)
@ -233,13 +233,13 @@ static ssize_t uart_read(int fd, void* data, size_t size)
assert(fd >=0 && fd < 3);
char *data_c = (char *) data;
size_t received = 0;
_lock_acquire_recursive(&s_uart_read_locks[fd]);
_lock_acquire_recursive(&s_ctx[fd]->read_lock);
while (received < size) {
int c = uart_read_char(fd);
if (c == '\r') {
if (s_rx_mode[fd] == ESP_LINE_ENDINGS_CR) {
if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CR) {
c = '\n';
} else if (s_rx_mode[fd] == ESP_LINE_ENDINGS_CRLF) {
} else if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CRLF) {
/* look ahead */
int c2 = uart_read_char(fd);
if (c2 == NONE) {
@ -266,7 +266,7 @@ static ssize_t uart_read(int fd, void* data, size_t size)
break;
}
}
_lock_release_recursive(&s_uart_read_locks[fd]);
_lock_release_recursive(&s_ctx[fd]->read_lock);
if (received > 0) {
return received;
}
@ -292,11 +292,11 @@ static int uart_fcntl(int fd, int cmd, int arg)
assert(fd >=0 && fd < 3);
int result = 0;
if (cmd == F_GETFL) {
if (s_non_blocking[fd]) {
if (s_ctx[fd]->non_blocking) {
result |= O_NONBLOCK;
}
} else if (cmd == F_SETFL) {
s_non_blocking[fd] = (arg & O_NONBLOCK) != 0;
s_ctx[fd]->non_blocking = (arg & O_NONBLOCK) != 0;
} else {
// unsupported operation
result = -1;
@ -329,9 +329,9 @@ static int uart_access(const char *path, int amode)
static int uart_fsync(int fd)
{
assert(fd >= 0 && fd < 3);
_lock_acquire_recursive(&s_uart_write_locks[fd]);
_lock_acquire_recursive(&s_ctx[fd]->write_lock);
uart_tx_wait_idle((uint8_t) fd);
_lock_release_recursive(&s_uart_write_locks[fd]);
_lock_release_recursive(&s_ctx[fd]->write_lock);
return 0;
}
@ -500,11 +500,11 @@ static int uart_tcsetattr(int fd, int optional_actions, const struct termios *p)
}
if (p->c_iflag & IGNCR) {
s_rx_mode[fd] = ESP_LINE_ENDINGS_CRLF;
s_ctx[fd]->rx_mode = ESP_LINE_ENDINGS_CRLF;
} else if (p->c_iflag & ICRNL) {
s_rx_mode[fd] = ESP_LINE_ENDINGS_CR;
s_ctx[fd]->rx_mode = ESP_LINE_ENDINGS_CR;
} else {
s_rx_mode[fd] = ESP_LINE_ENDINGS_LF;
s_ctx[fd]->rx_mode = ESP_LINE_ENDINGS_LF;
}
// output line endings are not supported because there is no alternative in termios for converting LF to CR
@ -683,9 +683,9 @@ static int uart_tcgetattr(int fd, struct termios *p)
memset(p, 0, sizeof(struct termios));
if (s_rx_mode[fd] == ESP_LINE_ENDINGS_CRLF) {
if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CRLF) {
p->c_iflag |= IGNCR;
} else if (s_rx_mode[fd] == ESP_LINE_ENDINGS_CR) {
} else if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CR) {
p->c_iflag |= ICRNL;
}
@ -942,31 +942,33 @@ void esp_vfs_dev_uart_register()
void esp_vfs_dev_uart_set_rx_line_endings(esp_line_endings_t mode)
{
for (int i = 0; i < UART_NUM; ++i) {
s_rx_mode[i] = mode;
s_ctx[i]->rx_mode = mode;
}
}
void esp_vfs_dev_uart_set_tx_line_endings(esp_line_endings_t mode)
{
s_tx_mode = mode;
for (int i = 0; i < UART_NUM; ++i) {
s_ctx[i]->tx_mode = mode;
}
}
void esp_vfs_dev_uart_use_nonblocking(int uart_num)
{
_lock_acquire_recursive(&s_uart_read_locks[uart_num]);
_lock_acquire_recursive(&s_uart_write_locks[uart_num]);
s_uart_tx_func[uart_num] = uart_tx_char;
s_uart_rx_func[uart_num] = uart_rx_char;
_lock_release_recursive(&s_uart_write_locks[uart_num]);
_lock_release_recursive(&s_uart_read_locks[uart_num]);
_lock_acquire_recursive(&s_ctx[uart_num]->read_lock);
_lock_acquire_recursive(&s_ctx[uart_num]->write_lock);
s_ctx[uart_num]->tx_func = uart_tx_char;
s_ctx[uart_num]->rx_func = uart_rx_char;
_lock_release_recursive(&s_ctx[uart_num]->write_lock);
_lock_release_recursive(&s_ctx[uart_num]->read_lock);
}
void esp_vfs_dev_uart_use_driver(int uart_num)
{
_lock_acquire_recursive(&s_uart_read_locks[uart_num]);
_lock_acquire_recursive(&s_uart_write_locks[uart_num]);
s_uart_tx_func[uart_num] = uart_tx_char_via_driver;
s_uart_rx_func[uart_num] = uart_rx_char_via_driver;
_lock_release_recursive(&s_uart_write_locks[uart_num]);
_lock_release_recursive(&s_uart_read_locks[uart_num]);
_lock_acquire_recursive(&s_ctx[uart_num]->read_lock);
_lock_acquire_recursive(&s_ctx[uart_num]->write_lock);
s_ctx[uart_num]->tx_func = uart_tx_char_via_driver;
s_ctx[uart_num]->rx_func = uart_rx_char_via_driver;
_lock_release_recursive(&s_ctx[uart_num]->write_lock);
_lock_release_recursive(&s_ctx[uart_num]->read_lock);
}