OVMS3-idf/components/esp32/core_dump.c

438 lines
14 KiB
C
Raw Normal View History

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "esp_panic.h"
#include "esp_partition.h"
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH || CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
#include "esp_log.h"
const static char *TAG = "esp_core_dump";
// TODO: allow user to set this in menuconfig or get tasks iteratively
#define COREDUMP_MAX_TASKS_NUM 32
typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len, int verb);
typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv, int verb);
typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv, int verb);
typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len, int verb);
typedef struct _core_dump_write_config_t
{
esp_core_dump_write_prepare_t prepare;
esp_core_dump_write_start_t start;
esp_core_dump_write_end_t end;
esp_core_dump_flash_write_data_t write;
void * priv;
} core_dump_write_config_t;
static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg, int verb)
{
union
{
uint8_t data8[12];
uint32_t data32[3];
} rom_data;
//const esp_partition_t *core_part;
esp_err_t err;
TaskSnapshot_t tasks[COREDUMP_MAX_TASKS_NUM];
UBaseType_t tcb_sz, task_num;
uint32_t data_len = 0, i, len;
//size_t off;
task_num = uxTaskGetSnapshotAll(tasks, COREDUMP_MAX_TASKS_NUM, &tcb_sz);
// take TCB padding into account, actual TCB size will be stored in header
if (tcb_sz % sizeof(uint32_t))
len = (tcb_sz / sizeof(uint32_t) + 1) * sizeof(uint32_t);
else
len = tcb_sz;
// header + tasknum*(tcb + stack start/end + tcb addr)
data_len = 3*sizeof(uint32_t) + task_num*(len + 2*sizeof(uint32_t) + sizeof(uint32_t *));
for (i = 0; i < task_num; i++) {
if (tasks[i].pxTCB == xTaskGetCurrentTaskHandle()) {
// set correct stack top for current task
tasks[i].pxTopOfStack = (StackType_t *)frame;
if (verb)
ets_printf("Current task EXIT/PC/PS/A0/SP %x %x %x %x %x\r\n", frame->exit, frame->pc, frame->ps, frame->a0, frame->a1);
}
else {
if (verb) {
XtSolFrame *task_frame = (XtSolFrame *)tasks[i].pxTopOfStack;
if (task_frame->exit == 0) {
ets_printf("Task EXIT/PC/PS/A0/SP %x %x %x %x %x\r\n", task_frame->exit, task_frame->pc, task_frame->ps, task_frame->a0, task_frame->a1);
}
else {
XtExcFrame *task_frame2 = (XtExcFrame *)tasks[i].pxTopOfStack;
ets_printf("Task EXIT/PC/PS/A0/SP %x %x %x %x %x\r\n", task_frame2->exit, task_frame2->pc, task_frame2->ps, task_frame2->a0, task_frame2->a1);
}
}
}
#if( portSTACK_GROWTH < 0 )
len = (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack;
#else
len = (uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack;
#endif
if (verb) {
ets_printf("Stack len = %lu (%x %x)\r\n", len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack);
}
// take stack padding into account
if (len % sizeof(uint32_t))
len = (len / sizeof(uint32_t) + 1) * sizeof(uint32_t);
data_len += len;
}
// prepare write
if (write_cfg->prepare) {
err = write_cfg->prepare(write_cfg->priv, &data_len, verb);
if (err != ESP_OK) {
ets_printf("ERROR: Failed to prepare core dump (%d)!\r\n", err);
return;
}
}
if (verb) {
ets_printf("Core dump len = %lu\r\n", data_len);
}
// write start
if (write_cfg->start) {
err = write_cfg->start(write_cfg->priv, verb);
if (err != ESP_OK) {
ets_printf("ERROR: Failed to start core dump (%d)!\r\n", err);
return;
}
}
// write header
rom_data.data32[0] = data_len;
rom_data.data32[1] = task_num;
rom_data.data32[2] = tcb_sz;
err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t), verb);
if (err != ESP_OK) {
ets_printf("ERROR: Failed to write core dump header (%d)!\r\n", err);
return;
}
// write tasks
for (i = 0; i < task_num; i++) {
if (verb) {
ets_printf("Dump task %x\r\n", tasks[i].pxTCB);
}
// save TCB address, stack base and stack top addr
rom_data.data32[0] = (uint32_t)tasks[i].pxTCB;
rom_data.data32[1] = (uint32_t)tasks[i].pxTopOfStack;
rom_data.data32[2] = (uint32_t)tasks[i].pxEndOfStack;
err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t), verb);
if (err != ESP_OK) {
ets_printf("ERROR: Failed to write task header (%d)!\r\n", err);
return;
}
// save TCB
err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz, verb);
if (err != ESP_OK) {
ets_printf("ERROR: Failed to write TCB (%d)!\r\n", err);
return;
}
// save task stack
err = write_cfg->write(write_cfg->priv,
#if( portSTACK_GROWTH < 0 )
tasks[i].pxTopOfStack,
(uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack
#else
tasks[i].pxEndOfStack,
(uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack
#endif
, verb);
if (err != ESP_OK) {
ets_printf("ERROR: Failed to write task stack (%d)!\r\n", err);
return;
}
}
// write end
if (write_cfg->end) {
err = write_cfg->end(write_cfg->priv, verb);
if (err != ESP_OK) {
ets_printf("ERROR: Failed to end core dump (%d)!\r\n", err);
return;
}
}
}
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
// magic numbers to control core dump data consistency
#define COREDUMP_FLASH_MAGIC_START 0xE32C04EDUL
#define COREDUMP_FLASH_MAGIC_END 0xE32C04EDUL
typedef struct _core_dump_write_flash_data_t
{
uint32_t off;
} core_dump_write_flash_data_t;
// core dump partition start
static uint32_t s_core_part_start;
// core dump partition size
static uint32_t s_core_part_size;
static uint32_t esp_core_dump_write_flash_padded(size_t off, uint8_t *data, uint32_t data_size)
{
esp_err_t err;
uint32_t data_len = 0, k, len;
union
{
uint8_t data8[4];
uint32_t data32;
} rom_data;
data_len = (data_size / sizeof(uint32_t)) * sizeof(uint32_t);
err = spi_flash_write(off, data, data_len);
if (err != ESP_OK) {
ets_printf("ERROR: Failed to write data to flash (%d)!\r\n", err);
return 0;
}
len = data_size % sizeof(uint32_t);
if (len) {
// write last bytes with padding, actual TCB len can be retrieved by esptool from core dump header
rom_data.data32 = 0;
for (k = 0; k < len; k++)
rom_data.data8[k] = *(data + data_len + k);
err = spi_flash_write(off + data_len, &rom_data, sizeof(uint32_t));
if (err != ESP_OK) {
ets_printf("ERROR: Failed to finish write data to flash (%d)!\r\n", err);
return 0;
}
data_len += sizeof(uint32_t);
}
return data_len;
}
static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len, int verb)
{
esp_err_t err;
uint32_t sec_num;
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
// add space for 2 magics. TODO: change to CRC
if ((*data_len + 2*sizeof(uint32_t)) > s_core_part_size) {
ets_printf("ERROR: Not enough space to save core dump!\r\n");
return ESP_ERR_NO_MEM;
}
*data_len += 2*sizeof(uint32_t);
wr_data->off = 0;
sec_num = *data_len / SPI_FLASH_SEC_SIZE;
if (*data_len % SPI_FLASH_SEC_SIZE)
sec_num++;
err = spi_flash_erase_range(s_core_part_start + 0, sec_num * SPI_FLASH_SEC_SIZE);
if (err != ESP_OK) {
ets_printf("ERROR: Failed to erase flash (%d)!\r\n", err);
return err;
}
return err;
}
static esp_err_t esp_core_dump_flash_write_word(core_dump_write_flash_data_t *wr_data, uint32_t word)
{
esp_err_t err = ESP_OK;
uint32_t data32 = word;
err = spi_flash_write(s_core_part_start + wr_data->off, &data32, sizeof(uint32_t));
if (err != ESP_OK) {
ets_printf("ERROR: Failed to write to flash (%d)!\r\n", err);
return err;
}
wr_data->off += sizeof(uint32_t);
return err;
}
static esp_err_t esp_core_dump_flash_write_start(void *priv, int verb)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
// save magic 1
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_START);
}
static esp_err_t esp_core_dump_flash_write_end(void *priv, int verb)
{
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
uint32_t i;
union
{
uint8_t data8[16];
uint32_t data32[4];
} rom_data;
if (verb) {
// TEST READ START
esp_err_t err = spi_flash_read(s_core_part_start + 0, &rom_data, sizeof(rom_data));
if (err != ESP_OK) {
ets_printf("ERROR: Failed to read flash (%d)!\r\n", err);
return err;
}
else {
ets_printf("Data from flash:\r\n");
for (i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) {
ets_printf("%x\r\n", rom_data.data32[i]);
}
}
// TEST READ END
}
// save magic 2
return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_END);
}
static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len, int verb)
{
esp_err_t err = ESP_OK;
core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv;
uint32_t len = esp_core_dump_write_flash_padded(s_core_part_start + wr_data->off, data, data_len);
if (len != data_len)
return ESP_FAIL;
wr_data->off += len;
return err;
}
void esp_core_dump_to_flash(XtExcFrame *frame)
{
core_dump_write_config_t wr_cfg;
core_dump_write_flash_data_t wr_data;
/* init non-OS flash access critical section */
spi_flash_guard_set(&g_flash_guard_no_os_ops);
wr_cfg.prepare = esp_core_dump_flash_write_prepare;
wr_cfg.start = esp_core_dump_flash_write_start;
wr_cfg.end = esp_core_dump_flash_write_end;
wr_cfg.write = esp_core_dump_flash_write_data;
wr_cfg.priv = &wr_data;
ets_printf("Save core dump to flash...\r\n");
esp_core_dump_write(frame, &wr_cfg, 0);
ets_printf("Core dump has been saved to flash.\r\n");
}
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) {
static const char *b64 =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
int i, j, a, b, c;
for (i = j = 0; i < src_len; i += 3) {
a = src[i];
b = i + 1 >= src_len ? 0 : src[i + 1];
c = i + 2 >= src_len ? 0 : src[i + 2];
dst[j++] = b64[a >> 2];
dst[j++] = b64[((a & 3) << 4) | (b >> 4)];
if (i + 1 < src_len) {
dst[j++] = b64[(b & 0x0F) << 2 | (c >> 6)];
}
if (i + 2 < src_len) {
dst[j++] = b64[c & 0x3F];
}
}
while (j % 4 != 0) {
dst[j++] = '=';
}
dst[j++] = '\0';
}
static esp_err_t esp_core_dump_uart_write_start(void *priv, int verb)
{
esp_err_t err = ESP_OK;
ets_printf("================= CORE DUMP START =================\r\n");
return err;
}
static esp_err_t esp_core_dump_uart_write_end(void *priv, int verb)
{
esp_err_t err = ESP_OK;
ets_printf("================= CORE DUMP END =================\r\n");
return err;
}
static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len, int verb)
{
esp_err_t err = ESP_OK;
char buf[64 + 4], *addr = data;
char *end = addr + data_len;
while (addr < end) {
size_t len = end - addr;
if (len > 48) len = 48;
/* Copy to stack to avoid alignment restrictions. */
char *tmp = buf + (sizeof(buf) - len);
memcpy(tmp, addr, len);
esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf);
addr += len;
ets_printf("%s\r\n", buf);
}
return err;
}
void esp_core_dump_to_uart(XtExcFrame *frame)
{
core_dump_write_config_t wr_cfg;
wr_cfg.prepare = NULL;
wr_cfg.start = esp_core_dump_uart_write_start;
wr_cfg.end = esp_core_dump_uart_write_end;
wr_cfg.write = esp_core_dump_uart_write_data;
wr_cfg.priv = NULL;
ets_printf("Print core dump to uart...\r\n");
esp_core_dump_write(frame, &wr_cfg, 0);
ets_printf("Core dump has been written to uart.\r\n");
}
#endif
void esp_core_dump_init()
{
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH
const esp_partition_t *core_part;
ESP_LOGI(TAG, "Init core dump to flash");
core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL);
if (!core_part) {
ESP_LOGE(TAG, "No core dump partition found!");
return;
}
ESP_LOGI(TAG, "Found partition '%s' @ %x %d bytes", core_part->label, core_part->address, core_part->size);
s_core_part_start = core_part->address;
s_core_part_size = core_part->size;
#endif
#if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART
ESP_LOGI(TAG, "Init core dump to UART");
#endif
}
#endif