// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "esp_panic.h" #include "esp_partition.h" #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH || CONFIG_ESP32_ENABLE_COREDUMP_TO_UART #include "esp_log.h" const static char *TAG = "esp_core_dump"; // TODO: allow user to set this in menuconfig or get tasks iteratively #define COREDUMP_MAX_TASKS_NUM 32 typedef esp_err_t (*esp_core_dump_write_prepare_t)(void *priv, uint32_t *data_len, int verb); typedef esp_err_t (*esp_core_dump_write_start_t)(void *priv, int verb); typedef esp_err_t (*esp_core_dump_write_end_t)(void *priv, int verb); typedef esp_err_t (*esp_core_dump_flash_write_data_t)(void *priv, void * data, uint32_t data_len, int verb); typedef struct _core_dump_write_config_t { esp_core_dump_write_prepare_t prepare; esp_core_dump_write_start_t start; esp_core_dump_write_end_t end; esp_core_dump_flash_write_data_t write; void * priv; } core_dump_write_config_t; static void esp_core_dump_write(XtExcFrame *frame, core_dump_write_config_t *write_cfg, int verb) { union { uint8_t data8[12]; uint32_t data32[3]; } rom_data; //const esp_partition_t *core_part; esp_err_t err; TaskSnapshot_t tasks[COREDUMP_MAX_TASKS_NUM]; UBaseType_t tcb_sz, task_num; uint32_t data_len = 0, i, len; //size_t off; task_num = uxTaskGetSnapshotAll(tasks, COREDUMP_MAX_TASKS_NUM, &tcb_sz); // take TCB padding into account, actual TCB size will be stored in header if (tcb_sz % sizeof(uint32_t)) len = (tcb_sz / sizeof(uint32_t) + 1) * sizeof(uint32_t); else len = tcb_sz; // header + tasknum*(tcb + stack start/end + tcb addr) data_len = 3*sizeof(uint32_t) + task_num*(len + 2*sizeof(uint32_t) + sizeof(uint32_t *)); for (i = 0; i < task_num; i++) { if (tasks[i].pxTCB == xTaskGetCurrentTaskHandle()) { // set correct stack top for current task tasks[i].pxTopOfStack = (StackType_t *)frame; if (verb) ets_printf("Current task EXIT/PC/PS/A0/SP %x %x %x %x %x\r\n", frame->exit, frame->pc, frame->ps, frame->a0, frame->a1); } else { if (verb) { XtSolFrame *task_frame = (XtSolFrame *)tasks[i].pxTopOfStack; if (task_frame->exit == 0) { ets_printf("Task EXIT/PC/PS/A0/SP %x %x %x %x %x\r\n", task_frame->exit, task_frame->pc, task_frame->ps, task_frame->a0, task_frame->a1); } else { XtExcFrame *task_frame2 = (XtExcFrame *)tasks[i].pxTopOfStack; ets_printf("Task EXIT/PC/PS/A0/SP %x %x %x %x %x\r\n", task_frame2->exit, task_frame2->pc, task_frame2->ps, task_frame2->a0, task_frame2->a1); } } } #if( portSTACK_GROWTH < 0 ) len = (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack; #else len = (uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack; #endif if (verb) { ets_printf("Stack len = %lu (%x %x)\r\n", len, tasks[i].pxTopOfStack, tasks[i].pxEndOfStack); } // take stack padding into account if (len % sizeof(uint32_t)) len = (len / sizeof(uint32_t) + 1) * sizeof(uint32_t); data_len += len; } // prepare write if (write_cfg->prepare) { err = write_cfg->prepare(write_cfg->priv, &data_len, verb); if (err != ESP_OK) { ets_printf("ERROR: Failed to prepare core dump (%d)!\r\n", err); return; } } if (verb) { ets_printf("Core dump len = %lu\r\n", data_len); } // write start if (write_cfg->start) { err = write_cfg->start(write_cfg->priv, verb); if (err != ESP_OK) { ets_printf("ERROR: Failed to start core dump (%d)!\r\n", err); return; } } // write header rom_data.data32[0] = data_len; rom_data.data32[1] = task_num; rom_data.data32[2] = tcb_sz; err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t), verb); if (err != ESP_OK) { ets_printf("ERROR: Failed to write core dump header (%d)!\r\n", err); return; } // write tasks for (i = 0; i < task_num; i++) { if (verb) { ets_printf("Dump task %x\r\n", tasks[i].pxTCB); } // save TCB address, stack base and stack top addr rom_data.data32[0] = (uint32_t)tasks[i].pxTCB; rom_data.data32[1] = (uint32_t)tasks[i].pxTopOfStack; rom_data.data32[2] = (uint32_t)tasks[i].pxEndOfStack; err = write_cfg->write(write_cfg->priv, &rom_data, 3*sizeof(uint32_t), verb); if (err != ESP_OK) { ets_printf("ERROR: Failed to write task header (%d)!\r\n", err); return; } // save TCB err = write_cfg->write(write_cfg->priv, tasks[i].pxTCB, tcb_sz, verb); if (err != ESP_OK) { ets_printf("ERROR: Failed to write TCB (%d)!\r\n", err); return; } // save task stack err = write_cfg->write(write_cfg->priv, #if( portSTACK_GROWTH < 0 ) tasks[i].pxTopOfStack, (uint32_t)tasks[i].pxEndOfStack - (uint32_t)tasks[i].pxTopOfStack #else tasks[i].pxEndOfStack, (uint32_t)tasks[i].pxTopOfStack - (uint32_t)tasks[i].pxEndOfStack #endif , verb); if (err != ESP_OK) { ets_printf("ERROR: Failed to write task stack (%d)!\r\n", err); return; } } // write end if (write_cfg->end) { err = write_cfg->end(write_cfg->priv, verb); if (err != ESP_OK) { ets_printf("ERROR: Failed to end core dump (%d)!\r\n", err); return; } } } #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH // magic numbers to control core dump data consistency #define COREDUMP_FLASH_MAGIC_START 0xE32C04EDUL #define COREDUMP_FLASH_MAGIC_END 0xE32C04EDUL typedef struct _core_dump_write_flash_data_t { uint32_t off; } core_dump_write_flash_data_t; // core dump partition start static uint32_t s_core_part_start; // core dump partition size static uint32_t s_core_part_size; static uint32_t esp_core_dump_write_flash_padded(size_t off, uint8_t *data, uint32_t data_size) { esp_err_t err; uint32_t data_len = 0, k, len; union { uint8_t data8[4]; uint32_t data32; } rom_data; data_len = (data_size / sizeof(uint32_t)) * sizeof(uint32_t); err = spi_flash_write(off, data, data_len); if (err != ESP_OK) { ets_printf("ERROR: Failed to write data to flash (%d)!\r\n", err); return 0; } len = data_size % sizeof(uint32_t); if (len) { // write last bytes with padding, actual TCB len can be retrieved by esptool from core dump header rom_data.data32 = 0; for (k = 0; k < len; k++) rom_data.data8[k] = *(data + data_len + k); err = spi_flash_write(off + data_len, &rom_data, sizeof(uint32_t)); if (err != ESP_OK) { ets_printf("ERROR: Failed to finish write data to flash (%d)!\r\n", err); return 0; } data_len += sizeof(uint32_t); } return data_len; } static esp_err_t esp_core_dump_flash_write_prepare(void *priv, uint32_t *data_len, int verb) { esp_err_t err; uint32_t sec_num; core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv; // add space for 2 magics. TODO: change to CRC if ((*data_len + 2*sizeof(uint32_t)) > s_core_part_size) { ets_printf("ERROR: Not enough space to save core dump!\r\n"); return ESP_ERR_NO_MEM; } *data_len += 2*sizeof(uint32_t); wr_data->off = 0; sec_num = *data_len / SPI_FLASH_SEC_SIZE; if (*data_len % SPI_FLASH_SEC_SIZE) sec_num++; err = spi_flash_erase_range(s_core_part_start + 0, sec_num * SPI_FLASH_SEC_SIZE); if (err != ESP_OK) { ets_printf("ERROR: Failed to erase flash (%d)!\r\n", err); return err; } return err; } static esp_err_t esp_core_dump_flash_write_word(core_dump_write_flash_data_t *wr_data, uint32_t word) { esp_err_t err = ESP_OK; uint32_t data32 = word; err = spi_flash_write(s_core_part_start + wr_data->off, &data32, sizeof(uint32_t)); if (err != ESP_OK) { ets_printf("ERROR: Failed to write to flash (%d)!\r\n", err); return err; } wr_data->off += sizeof(uint32_t); return err; } static esp_err_t esp_core_dump_flash_write_start(void *priv, int verb) { core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv; // save magic 1 return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_START); } static esp_err_t esp_core_dump_flash_write_end(void *priv, int verb) { core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv; uint32_t i; union { uint8_t data8[16]; uint32_t data32[4]; } rom_data; if (verb) { // TEST READ START esp_err_t err = spi_flash_read(s_core_part_start + 0, &rom_data, sizeof(rom_data)); if (err != ESP_OK) { ets_printf("ERROR: Failed to read flash (%d)!\r\n", err); return err; } else { ets_printf("Data from flash:\r\n"); for (i = 0; i < sizeof(rom_data)/sizeof(rom_data.data32[0]); i++) { ets_printf("%x\r\n", rom_data.data32[i]); } } // TEST READ END } // save magic 2 return esp_core_dump_flash_write_word(wr_data, COREDUMP_FLASH_MAGIC_END); } static esp_err_t esp_core_dump_flash_write_data(void *priv, void * data, uint32_t data_len, int verb) { esp_err_t err = ESP_OK; core_dump_write_flash_data_t *wr_data = (core_dump_write_flash_data_t *)priv; uint32_t len = esp_core_dump_write_flash_padded(s_core_part_start + wr_data->off, data, data_len); if (len != data_len) return ESP_FAIL; wr_data->off += len; return err; } void esp_core_dump_to_flash(XtExcFrame *frame) { core_dump_write_config_t wr_cfg; core_dump_write_flash_data_t wr_data; /* init non-OS flash access critical section */ spi_flash_guard_set(&g_flash_guard_no_os_ops); wr_cfg.prepare = esp_core_dump_flash_write_prepare; wr_cfg.start = esp_core_dump_flash_write_start; wr_cfg.end = esp_core_dump_flash_write_end; wr_cfg.write = esp_core_dump_flash_write_data; wr_cfg.priv = &wr_data; ets_printf("Save core dump to flash...\r\n"); esp_core_dump_write(frame, &wr_cfg, 0); ets_printf("Core dump has been saved to flash.\r\n"); } #endif #if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART static void esp_core_dump_b64_encode(const uint8_t *src, uint32_t src_len, uint8_t *dst) { static const char *b64 = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; int i, j, a, b, c; for (i = j = 0; i < src_len; i += 3) { a = src[i]; b = i + 1 >= src_len ? 0 : src[i + 1]; c = i + 2 >= src_len ? 0 : src[i + 2]; dst[j++] = b64[a >> 2]; dst[j++] = b64[((a & 3) << 4) | (b >> 4)]; if (i + 1 < src_len) { dst[j++] = b64[(b & 0x0F) << 2 | (c >> 6)]; } if (i + 2 < src_len) { dst[j++] = b64[c & 0x3F]; } } while (j % 4 != 0) { dst[j++] = '='; } dst[j++] = '\0'; } static esp_err_t esp_core_dump_uart_write_start(void *priv, int verb) { esp_err_t err = ESP_OK; ets_printf("================= CORE DUMP START =================\r\n"); return err; } static esp_err_t esp_core_dump_uart_write_end(void *priv, int verb) { esp_err_t err = ESP_OK; ets_printf("================= CORE DUMP END =================\r\n"); return err; } static esp_err_t esp_core_dump_uart_write_data(void *priv, void * data, uint32_t data_len, int verb) { esp_err_t err = ESP_OK; char buf[64 + 4], *addr = data; char *end = addr + data_len; while (addr < end) { size_t len = end - addr; if (len > 48) len = 48; /* Copy to stack to avoid alignment restrictions. */ char *tmp = buf + (sizeof(buf) - len); memcpy(tmp, addr, len); esp_core_dump_b64_encode((const uint8_t *)tmp, len, (uint8_t *)buf); addr += len; ets_printf("%s\r\n", buf); } return err; } void esp_core_dump_to_uart(XtExcFrame *frame) { core_dump_write_config_t wr_cfg; wr_cfg.prepare = NULL; wr_cfg.start = esp_core_dump_uart_write_start; wr_cfg.end = esp_core_dump_uart_write_end; wr_cfg.write = esp_core_dump_uart_write_data; wr_cfg.priv = NULL; ets_printf("Print core dump to uart...\r\n"); esp_core_dump_write(frame, &wr_cfg, 0); ets_printf("Core dump has been written to uart.\r\n"); } #endif void esp_core_dump_init() { #if CONFIG_ESP32_ENABLE_COREDUMP_TO_FLASH const esp_partition_t *core_part; ESP_LOGI(TAG, "Init core dump to flash"); core_part = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_COREDUMP, NULL); if (!core_part) { ESP_LOGE(TAG, "No core dump partition found!"); return; } ESP_LOGI(TAG, "Found partition '%s' @ %x %d bytes", core_part->label, core_part->address, core_part->size); s_core_part_start = core_part->address; s_core_part_size = core_part->size; #endif #if CONFIG_ESP32_ENABLE_COREDUMP_TO_UART ESP_LOGI(TAG, "Init core dump to UART"); #endif } #endif