MMDVMHost-Private/YSFControl.cpp
2020-06-18 13:45:37 +01:00

1234 lines
28 KiB
C++

/*
* Copyright (C) 2015-2019 Jonathan Naylor, G4KLX
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include "YSFControl.h"
#include "Utils.h"
#include "Sync.h"
#include "Log.h"
#include <cstdio>
#include <cassert>
#include <cstring>
#include <ctime>
// #define DUMP_YSF
CYSFControl::CYSFControl(const std::string& callsign, bool selfOnly, CYSFNetwork* network, CDisplay* display, unsigned int timeout, bool duplex, bool lowDeviation, bool remoteGateway, CRSSIInterpolator* rssiMapper) :
m_callsign(NULL),
m_selfCallsign(NULL),
m_selfOnly(selfOnly),
m_network(network),
m_display(display),
m_duplex(duplex),
m_lowDeviation(lowDeviation),
m_remoteGateway(remoteGateway),
m_dgIdEnabled(false),
m_dgIdValue(0U),
m_queue(5000U, "YSF Control"),
m_rfState(RS_RF_LISTENING),
m_netState(RS_NET_IDLE),
m_rfTimeoutTimer(1000U, timeout),
m_netTimeoutTimer(1000U, timeout),
m_packetTimer(1000U, 0U, 200U),
m_networkWatchdog(1000U, 0U, 1500U),
m_elapsed(),
m_rfFrames(0U),
m_netFrames(0U),
m_netLost(0U),
m_rfErrs(0U),
m_rfBits(1U),
m_netErrs(0U),
m_netBits(1U),
m_rfSource(NULL),
m_rfDest(NULL),
m_netSource(NULL),
m_netDest(NULL),
m_lastFICH(),
m_netN(0U),
m_rfPayload(),
m_netPayload(),
m_rssiMapper(rssiMapper),
m_rssi(0U),
m_maxRSSI(0U),
m_minRSSI(0U),
m_aveRSSI(0U),
m_rssiCount(0U),
m_enabled(true),
m_fp(NULL)
{
assert(display != NULL);
assert(rssiMapper != NULL);
m_rfPayload.setUplink(callsign);
m_rfPayload.setDownlink(callsign);
m_netPayload.setDownlink(callsign);
m_netSource = new unsigned char[YSF_CALLSIGN_LENGTH];
m_netDest = new unsigned char[YSF_CALLSIGN_LENGTH];
m_callsign = new unsigned char[YSF_CALLSIGN_LENGTH];
std::string node = callsign;
node.resize(YSF_CALLSIGN_LENGTH, ' ');
for (unsigned int i = 0U; i < YSF_CALLSIGN_LENGTH; i++)
m_callsign[i] = node.at(i);
m_selfCallsign = new unsigned char[YSF_CALLSIGN_LENGTH];
::memset(m_selfCallsign, 0x00U, YSF_CALLSIGN_LENGTH);
for (unsigned int i = 0U; i < callsign.length(); i++)
m_selfCallsign[i] = callsign.at(i);
}
CYSFControl::~CYSFControl()
{
delete[] m_netSource;
delete[] m_netDest;
delete[] m_callsign;
delete[] m_selfCallsign;
}
void CYSFControl::setDGId(bool on, unsigned char value)
{
m_dgIdEnabled = on;
m_dgIdValue = value;
}
bool CYSFControl::writeModem(unsigned char *data, unsigned int len)
{
assert(data != NULL);
if (!m_enabled)
return false;
unsigned char type = data[0U];
if (type == TAG_LOST && m_rfState == RS_RF_AUDIO) {
if (m_rssi != 0U)
LogMessage("YSF, transmission lost, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
else
LogMessage("YSF, transmission lost, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits));
writeEndRF();
return false;
}
if (type == TAG_LOST && m_rfState == RS_RF_REJECTED) {
m_rfState = RS_RF_LISTENING;
return false;
}
if (type == TAG_LOST) {
m_rfState = RS_RF_LISTENING;
return false;
}
// Have we got RSSI bytes on the end?
if (len == (YSF_FRAME_LENGTH_BYTES + 4U)) {
uint16_t raw = 0U;
raw |= (data[122U] << 8) & 0xFF00U;
raw |= (data[123U] << 0) & 0x00FFU;
// Convert the raw RSSI to dBm
int rssi = m_rssiMapper->interpolate(raw);
if (rssi != 0)
LogDebug("YSF, raw RSSI: %u, reported RSSI: %d dBm", raw, rssi);
// RSSI is always reported as positive
m_rssi = (rssi >= 0) ? rssi : -rssi;
if (m_rssi > m_minRSSI)
m_minRSSI = m_rssi;
if (m_rssi < m_maxRSSI)
m_maxRSSI = m_rssi;
m_aveRSSI += m_rssi;
m_rssiCount++;
}
CYSFFICH fich;
bool valid = fich.decode(data + 2U);
if (valid)
m_lastFICH = fich;
// Validate the DG-ID value if enabled
if (m_dgIdEnabled) {
unsigned char value = m_lastFICH.getDGId();
if (value != m_dgIdValue)
return false;
}
#ifdef notdef
// Stop repeater packets coming through, unless we're acting as a remote gateway
if (m_remoteGateway) {
unsigned char mr = m_lastFICH.getMR();
if (mr != YSF_MR_BUSY)
return false;
} else {
unsigned char mr = m_lastFICH.getMR();
if (mr == YSF_MR_BUSY)
return false;
}
#endif
unsigned char dt = m_lastFICH.getDT();
bool ret = false;
switch (dt) {
case YSF_DT_VOICE_FR_MODE:
ret = processVWData(valid, data);
break;
case YSF_DT_VD_MODE1:
case YSF_DT_VD_MODE2:
ret = processDNData(valid, data);
break;
case YSF_DT_DATA_FR_MODE:
ret = processFRData(valid, data);
break;
default:
break;
}
return ret;
}
bool CYSFControl::processVWData(bool valid, unsigned char *data)
{
unsigned char fi = m_lastFICH.getFI();
if (valid && fi == YSF_FI_HEADER) {
if (m_rfState == RS_RF_LISTENING) {
bool valid = m_rfPayload.processHeaderData(data + 2U);
if (!valid)
return false;
m_rfSource = m_rfPayload.getSource();
if (m_selfOnly) {
bool ret = checkCallsign(m_rfSource);
if (!ret) {
LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource);
m_rfState = RS_RF_REJECTED;
return false;
}
}
unsigned char cm = m_lastFICH.getCM();
if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2)
m_rfDest = (unsigned char*)"ALL ";
else
m_rfDest = m_rfPayload.getDest();
m_rfFrames = 0U;
m_rfErrs = 0U;
m_rfBits = 1U;
m_rfTimeoutTimer.start();
m_rfState = RS_RF_AUDIO;
m_minRSSI = m_rssi;
m_maxRSSI = m_rssi;
m_aveRSSI = m_rssi;
m_rssiCount = 1U;
#if defined(DUMP_YSF)
openFile();
#endif
m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " ");
LogMessage("YSF, received RF header from %10.10s to %10.10s", m_rfSource, m_rfDest);
CSync::addYSFSync(data + 2U);
CYSFFICH fich = m_lastFICH;
fich.encode(data + 2U);
data[0U] = TAG_DATA;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
m_rfFrames++;
m_display->writeFusionRSSI(m_rssi);
return true;
}
} else if (valid && fi == YSF_FI_TERMINATOR) {
if (m_rfState == RS_RF_REJECTED) {
m_rfState = RS_RF_LISTENING;
} else if (m_rfState == RS_RF_AUDIO) {
m_rfPayload.processHeaderData(data + 2U);
CSync::addYSFSync(data + 2U);
CYSFFICH fich = m_lastFICH;
fich.encode(data + 2U);
data[0U] = TAG_EOT;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
m_rfFrames++;
if (m_rssi != 0U)
LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
else
LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits));
writeEndRF();
}
} else {
if (m_rfState == RS_RF_AUDIO) {
// If valid is false, update the m_lastFICH for this transmission
if (!valid) {
// XXX Check these values
m_lastFICH.setFT(0U);
m_lastFICH.setFN(0U);
}
CSync::addYSFSync(data + 2U);
CYSFFICH fich = m_lastFICH;
unsigned char fn = fich.getFN();
unsigned char ft = fich.getFT();
if (fn != 0U || ft != 1U) {
// The first packet after the header is odd, don't try and regenerate it
unsigned int errors = m_rfPayload.processVoiceFRModeAudio(data + 2U);
m_rfErrs += errors;
m_rfBits += 720U;
m_display->writeFusionBER(float(errors) / 7.2F);
LogDebug("YSF, V Mode 3, seq %u, AMBE FEC %u/720 (%.1f%%)", m_rfFrames % 128, errors, float(errors) / 7.2F);
}
fich.encode(data + 2U);
data[0U] = TAG_DATA;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
m_rfFrames++;
m_display->writeFusionRSSI(m_rssi);
return true;
}
}
return false;
}
bool CYSFControl::processDNData(bool valid, unsigned char *data)
{
unsigned char fi = m_lastFICH.getFI();
if (valid && fi == YSF_FI_HEADER) {
if (m_rfState == RS_RF_LISTENING) {
bool valid = m_rfPayload.processHeaderData(data + 2U);
if (!valid)
return false;
m_rfSource = m_rfPayload.getSource();
if (m_selfOnly) {
bool ret = checkCallsign(m_rfSource);
if (!ret) {
LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource);
m_rfState = RS_RF_REJECTED;
return false;
}
}
unsigned char cm = m_lastFICH.getCM();
if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2)
m_rfDest = (unsigned char*)"ALL ";
else
m_rfDest = m_rfPayload.getDest();
m_rfFrames = 0U;
m_rfErrs = 0U;
m_rfBits = 1U;
m_rfTimeoutTimer.start();
m_rfState = RS_RF_AUDIO;
m_minRSSI = m_rssi;
m_maxRSSI = m_rssi;
m_aveRSSI = m_rssi;
m_rssiCount = 1U;
#if defined(DUMP_YSF)
openFile();
#endif
m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " ");
LogMessage("YSF, received RF header from %10.10s to %10.10s", m_rfSource, m_rfDest);
CSync::addYSFSync(data + 2U);
CYSFFICH fich = m_lastFICH;
fich.encode(data + 2U);
data[0U] = TAG_DATA;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
m_rfFrames++;
m_display->writeFusionRSSI(m_rssi);
return true;
}
} else if (valid && fi == YSF_FI_TERMINATOR) {
if (m_rfState == RS_RF_REJECTED) {
m_rfState = RS_RF_LISTENING;
} else if (m_rfState == RS_RF_AUDIO) {
m_rfPayload.processHeaderData(data + 2U);
CSync::addYSFSync(data + 2U);
CYSFFICH fich = m_lastFICH;
fich.encode(data + 2U);
data[0U] = TAG_EOT;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
m_rfFrames++;
if (m_rssi != 0U)
LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
else
LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits));
writeEndRF();
}
} else {
if (m_rfState == RS_RF_AUDIO) {
// If valid is false, update the m_lastFICH for this transmission
if (!valid) {
unsigned char ft = m_lastFICH.getFT();
unsigned char fn = m_lastFICH.getFN() + 1U;
if (fn > ft)
fn = 0U;
m_lastFICH.setFN(fn);
}
CSync::addYSFSync(data + 2U);
unsigned char fn = m_lastFICH.getFN();
unsigned char dt = m_lastFICH.getDT();
switch (dt) {
case YSF_DT_VD_MODE1: {
m_rfPayload.processVDMode1Data(data + 2U, fn);
unsigned int errors = m_rfPayload.processVDMode1Audio(data + 2U);
m_rfErrs += errors;
m_rfBits += 235U;
m_display->writeFusionBER(float(errors) / 2.35F);
LogDebug("YSF, V/D Mode 1, seq %u, AMBE FEC %u/235 (%.1f%%)", m_rfFrames % 128, errors, float(errors) / 2.35F);
}
break;
case YSF_DT_VD_MODE2: {
m_rfPayload.processVDMode2Data(data + 2U, fn);
unsigned int errors = m_rfPayload.processVDMode2Audio(data + 2U);
m_rfErrs += errors;
m_rfBits += 405U;
m_display->writeFusionBER(float(errors) / 4.05F);
LogDebug("YSF, V/D Mode 2, seq %u, Repetition FEC %u/405 (%.1f%%)", m_rfFrames % 128, errors, float(errors) / 4.05F);
}
break;
default:
break;
}
CYSFFICH fich = m_lastFICH;
fich.encode(data + 2U);
data[0U] = TAG_DATA;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
m_rfFrames++;
m_display->writeFusionRSSI(m_rssi);
return true;
} else if (valid && m_rfState == RS_RF_LISTENING) {
// Only use clean frames for late entry.
unsigned char fn = m_lastFICH.getFN();
unsigned char dt = m_lastFICH.getDT();
switch (dt) {
case YSF_DT_VD_MODE1:
valid = m_rfPayload.processVDMode1Data(data + 2U, fn);
break;
case YSF_DT_VD_MODE2:
valid = m_rfPayload.processVDMode2Data(data + 2U, fn);
break;
default:
valid = false;
break;
}
if (!valid)
return false;
unsigned char cm = m_lastFICH.getCM();
if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2)
m_rfDest = (unsigned char*)"ALL ";
else
m_rfDest = m_rfPayload.getDest();
m_rfSource = m_rfPayload.getSource();
if (m_rfSource == NULL || m_rfDest == NULL)
return false;
if (m_selfOnly) {
bool ret = checkCallsign(m_rfSource);
if (!ret) {
LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource);
m_rfState = RS_RF_REJECTED;
return false;
}
}
m_rfFrames = 0U;
m_rfErrs = 0U;
m_rfBits = 1U;
m_rfTimeoutTimer.start();
m_rfState = RS_RF_AUDIO;
m_minRSSI = m_rssi;
m_maxRSSI = m_rssi;
m_aveRSSI = m_rssi;
m_rssiCount = 1U;
#if defined(DUMP_YSF)
openFile();
#endif
// Build a new header and transmit it
unsigned char buffer[YSF_FRAME_LENGTH_BYTES + 2U];
CSync::addYSFSync(buffer + 2U);
CYSFFICH fich = m_lastFICH;
fich.setFI(YSF_FI_HEADER);
fich.encode(buffer + 2U);
unsigned char csd1[20U], csd2[20U];
memcpy(csd1 + YSF_CALLSIGN_LENGTH, m_rfSource, YSF_CALLSIGN_LENGTH);
memset(csd2, ' ', YSF_CALLSIGN_LENGTH + YSF_CALLSIGN_LENGTH);
if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2)
memset(csd1 + 0U, '*', YSF_CALLSIGN_LENGTH);
else
memcpy(csd1 + 0U, m_rfDest, YSF_CALLSIGN_LENGTH);
CYSFPayload payload;
payload.writeHeader(buffer + 2U, csd1, csd2);
buffer[0U] = TAG_DATA;
buffer[1U] = 0x00U;
writeNetwork(buffer, m_rfFrames % 128U);
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(buffer + 2U);
writeQueueRF(buffer);
}
#if defined(DUMP_YSF)
writeFile(buffer + 2U);
#endif
m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " ");
LogMessage("YSF, received RF late entry from %10.10s to %10.10s", m_rfSource, m_rfDest);
CSync::addYSFSync(data + 2U);
fich = m_lastFICH;
fich.encode(data + 2U);
data[0U] = TAG_DATA;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
m_rfFrames++;
m_display->writeFusionRSSI(m_rssi);
return true;
}
}
return false;
}
bool CYSFControl::processFRData(bool valid, unsigned char *data)
{
unsigned char fi = m_lastFICH.getFI();
if (valid && fi == YSF_FI_HEADER) {
if (m_rfState == RS_RF_LISTENING) {
m_rfPayload.reset();
// These variables are free'd by YSFPayload
m_rfSource = NULL;
m_rfDest = NULL;
valid = m_rfPayload.processHeaderData(data + 2U);
if (!valid)
return false;
m_rfSource = m_rfPayload.getSource();
if (m_selfOnly) {
bool ret = checkCallsign(m_rfSource);
if (!ret) {
LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource);
m_rfState = RS_RF_REJECTED;
return false;
}
}
unsigned char cm = m_lastFICH.getCM();
if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2)
m_rfDest = (unsigned char*)"ALL ";
else
m_rfDest = m_rfPayload.getDest();
m_rfFrames = 0U;
m_rfState = RS_RF_DATA;
m_minRSSI = m_rssi;
m_maxRSSI = m_rssi;
m_aveRSSI = m_rssi;
m_rssiCount = 1U;
#if defined(DUMP_YSF)
openFile();
#endif
m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " ");
LogMessage("YSF, received RF header from %10.10s to %10.10s", m_rfSource, m_rfDest);
CSync::addYSFSync(data + 2U);
CYSFFICH fich = m_lastFICH;
fich.encode(data + 2U);
data[0U] = TAG_DATA;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
m_rfFrames++;
m_display->writeFusionRSSI(m_rssi);
return true;
}
} else if (valid && fi == YSF_FI_TERMINATOR) {
if (m_rfState == RS_RF_REJECTED) {
m_rfState = RS_RF_LISTENING;
} else if (m_rfState == RS_RF_DATA) {
m_rfPayload.processHeaderData(data + 2U);
CSync::addYSFSync(data + 2U);
CYSFFICH fich = m_lastFICH;
fich.encode(data + 2U);
data[0U] = TAG_EOT;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
m_rfFrames++;
if (m_rssi != 0U)
LogMessage("YSF, received RF end of transmission, %.1f seconds, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 10.0F, m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount);
else
LogMessage("YSF, received RF end of transmission, %.1f seconds", float(m_rfFrames) / 10.0F);
writeEndRF();
}
} else {
if (m_rfState == RS_RF_LISTENING) {
// If during listening we get data we rebuild header and get the data
unsigned char fi = m_lastFICH.getFI();
if (fi == YSF_FI_COMMUNICATIONS) {
m_rfPayload.processHeaderData(data + 2U);
m_rfSource = m_rfPayload.getSource();
if (m_rfSource == NULL) {
LogMessage("Error m_rfSource line 784 YSFControl");
return false;
}
if (m_selfOnly) {
bool ret = checkCallsign(m_rfSource);
if (!ret) {
LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource);
m_rfState = RS_RF_REJECTED;
return false;
}
}
unsigned char cm = m_lastFICH.getCM();
if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2)
m_rfDest = (unsigned char*)"ALL ";
else
m_rfDest = m_rfPayload.getDest();
m_rfFrames = 0U;
m_rfState = RS_RF_DATA;
m_minRSSI = m_rssi;
m_maxRSSI = m_rssi;
m_aveRSSI = m_rssi;
m_rssiCount = 1U;
#if defined(DUMP_YSF)
openFile();
#endif
m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " ");
LogMessage("YSF, received Picture data from %10.10s to %10.10s", m_rfSource, m_rfDest);
}
}
if (m_rfState == RS_RF_DATA) {
// If valid is false, update the m_lastFICH for this transmission
if (!valid) {
unsigned char ft = m_lastFICH.getFT();
unsigned char fn = m_lastFICH.getFN() + 1U;
if (fn > ft)
fn = 0U;
m_lastFICH.setFN(fn);
}
CSync::addYSFSync(data + 2U);
unsigned char fn = m_lastFICH.getFN();
m_rfPayload.processDataFRModeData(data + 2U, fn);
CYSFFICH fich = m_lastFICH;
fich.encode(data + 2U);
data[0U] = TAG_DATA;
data[1U] = 0x00U;
writeNetwork(data, m_rfFrames % 128U);
if (m_duplex) {
fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY);
fich.setDev(m_lowDeviation);
fich.encode(data + 2U);
writeQueueRF(data);
}
#if defined(DUMP_YSF)
writeFile(data + 2U);
#endif
m_rfFrames++;
m_display->writeFusionRSSI(m_rssi);
return true;
}
}
return false;
}
unsigned int CYSFControl::readModem(unsigned char* data)
{
assert(data != NULL);
if (m_queue.isEmpty())
return 0U;
unsigned char len = 0U;
m_queue.getData(&len, 1U);
m_queue.getData(data, len);
return len;
}
void CYSFControl::writeEndRF()
{
m_rfState = RS_RF_LISTENING;
m_rfTimeoutTimer.stop();
if (m_netState == RS_NET_IDLE) {
m_display->clearFusion();
if (m_network != NULL)
m_network->reset();
}
#if defined(DUMP_YSF)
closeFile();
#endif
}
void CYSFControl::writeEndNet()
{
m_netState = RS_NET_IDLE;
m_netTimeoutTimer.stop();
m_networkWatchdog.stop();
m_packetTimer.stop();
m_netPayload.reset();
m_display->clearFusion();
if (m_network != NULL)
m_network->reset();
}
void CYSFControl::writeNetwork()
{
unsigned char data[200U];
unsigned int length = m_network->read(data);
if (length == 0U)
return;
if (!m_enabled)
return;
if (m_rfState != RS_RF_LISTENING && m_netState == RS_NET_IDLE)
return;
m_networkWatchdog.start();
bool gateway = ::memcmp(data + 4U, m_callsign, YSF_CALLSIGN_LENGTH) == 0;
unsigned char n = (data[34U] & 0xFEU) >> 1;
bool end = (data[34U] & 0x01U) == 0x01U;
if (!m_netTimeoutTimer.isRunning()) {
if (end)
return;
::memcpy(m_netSource, data + 14U, YSF_CALLSIGN_LENGTH);
::memcpy(m_netDest, data + 24U, YSF_CALLSIGN_LENGTH);
if (::memcmp(m_netSource, " ", 10U) != 0 && ::memcmp(m_netDest, " ", 10U) != 0) {
m_display->writeFusion((char*)m_netSource, (char*)m_netDest, "N", (char*)(data + 4U));
LogMessage("YSF, received network data from %10.10s to %10.10s at %10.10s", m_netSource, m_netDest, data + 4U);
}
m_netTimeoutTimer.start();
m_netPayload.reset();
m_packetTimer.start();
m_elapsed.start();
m_netState = RS_NET_AUDIO;
m_netFrames = 0U;
m_netLost = 0U;
m_netErrs = 0U;
m_netBits = 1U;
m_netN = 0U;
} else {
// Check for duplicate frames, if we can
if (m_netN == n)
return;
}
data[33U] = end ? TAG_EOT : TAG_DATA;
data[34U] = 0x00U;
CYSFFICH fich;
bool valid = fich.decode(data + 35U);
if (valid) {
unsigned char dt = fich.getDT();
unsigned char fn = fich.getFN();
unsigned char ft = fich.getFT();
unsigned char fi = fich.getFI();
unsigned char cm = fich.getCM();
if (::memcmp(m_netDest, " ", YSF_CALLSIGN_LENGTH) == 0) {
if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2)
::memcpy(m_netDest, "ALL ", YSF_CALLSIGN_LENGTH);
}
if (m_remoteGateway) {
fich.setVoIP(false);
fich.setMR(YSF_MR_DIRECT);
} else {
fich.setVoIP(true);
fich.setMR(YSF_MR_BUSY);
}
fich.setDev(m_lowDeviation);
fich.encode(data + 35U);
// Set the downlink callsign
switch (fi) {
case YSF_FI_HEADER: {
bool ok = m_netPayload.processHeaderData(data + 35U);
if (ok)
processNetCallsigns(data);
}
break;
case YSF_FI_TERMINATOR:
m_netPayload.processHeaderData(data + 35U);
break;
case YSF_FI_COMMUNICATIONS:
switch (dt) {
case YSF_DT_VD_MODE1: {
bool ok = m_netPayload.processVDMode1Data(data + 35U, fn, gateway);
if (ok)
processNetCallsigns(data);
unsigned int errors = m_netPayload.processVDMode1Audio(data + 35U);
m_netErrs += errors;
m_netBits += 235U;
}
break;
case YSF_DT_VD_MODE2: {
bool ok = m_netPayload.processVDMode2Data(data + 35U, fn, gateway);
if (ok)
processNetCallsigns(data);
unsigned int errors = m_netPayload.processVDMode2Audio(data + 35U);
m_netErrs += errors;
m_netBits += 135U;
}
break;
case YSF_DT_DATA_FR_MODE:
m_netPayload.processDataFRModeData(data + 35U, fn, gateway);
break;
case YSF_DT_VOICE_FR_MODE:
if (fn != 0U || ft != 1U) {
// The first packet after the header is odd, don't try and regenerate it
unsigned int errors = m_netPayload.processVoiceFRModeAudio(data + 35U);
m_netErrs += errors;
m_netBits += 720U;
}
break;
default:
break;
}
break;
default:
break;
}
}
writeQueueNet(data + 33U);
m_packetTimer.start();
m_netFrames++;
m_netN = n;
if (end) {
LogMessage("YSF, received network end of transmission, %.1f seconds, %u%% packet loss, BER: %.1f%%", float(m_netFrames) / 10.0F, (m_netLost * 100U) / m_netFrames, float(m_netErrs * 100U) / float(m_netBits));
writeEndNet();
}
}
void CYSFControl::clock(unsigned int ms)
{
if (m_network != NULL)
writeNetwork();
m_rfTimeoutTimer.clock(ms);
m_netTimeoutTimer.clock(ms);
if (m_netState == RS_NET_AUDIO) {
m_networkWatchdog.clock(ms);
if (m_networkWatchdog.hasExpired()) {
LogMessage("YSF, network watchdog has expired, %.1f seconds, %u%% packet loss, BER: %.1f%%", float(m_netFrames) / 10.0F, (m_netLost * 100U) / m_netFrames, float(m_netErrs * 100U) / float(m_netBits));
writeEndNet();
}
}
}
void CYSFControl::writeQueueRF(const unsigned char *data)
{
assert(data != NULL);
if (m_netState != RS_NET_IDLE)
return;
if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired())
return;
unsigned char len = YSF_FRAME_LENGTH_BYTES + 2U;
unsigned int space = m_queue.freeSpace();
if (space < (len + 1U)) {
LogError("YSF, overflow in the System Fusion RF queue");
return;
}
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
void CYSFControl::writeQueueNet(const unsigned char *data)
{
assert(data != NULL);
if (m_netTimeoutTimer.isRunning() && m_netTimeoutTimer.hasExpired())
return;
unsigned char len = YSF_FRAME_LENGTH_BYTES + 2U;
unsigned int space = m_queue.freeSpace();
if (space < (len + 1U)) {
LogError("YSF, overflow in the System Fusion RF queue");
return;
}
m_queue.addData(&len, 1U);
m_queue.addData(data, len);
}
void CYSFControl::writeNetwork(const unsigned char *data, unsigned int count)
{
assert(data != NULL);
if (m_network == NULL)
return;
if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired())
return;
m_network->write(m_rfSource, m_rfDest, data + 2U, count, data[0U] == TAG_EOT);
}
bool CYSFControl::openFile()
{
if (m_fp != NULL)
return true;
time_t t;
::time(&t);
struct tm* tm = ::localtime(&t);
char name[100U];
::sprintf(name, "YSF_%04d%02d%02d_%02d%02d%02d.ambe", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec);
m_fp = ::fopen(name, "wb");
if (m_fp == NULL)
return false;
::fwrite("YSF", 1U, 3U, m_fp);
return true;
}
bool CYSFControl::writeFile(const unsigned char* data)
{
if (m_fp == NULL)
return false;
::fwrite(data, 1U, YSF_FRAME_LENGTH_BYTES, m_fp);
return true;
}
void CYSFControl::closeFile()
{
if (m_fp != NULL) {
::fclose(m_fp);
m_fp = NULL;
}
}
bool CYSFControl::checkCallsign(const unsigned char* callsign) const
{
return ::memcmp(callsign, m_selfCallsign, ::strlen((char*)m_selfCallsign)) == 0;
}
void CYSFControl::processNetCallsigns(const unsigned char* data)
{
assert(data != NULL);
if (::memcmp(m_netSource, " ", 10U) == 0 || ::memcmp(m_netDest, " ", 10U) == 0) {
if (::memcmp(m_netSource, " ", YSF_CALLSIGN_LENGTH) == 0) {
unsigned char* source = m_netPayload.getSource();
if (source != NULL)
::memcpy(m_netSource, source, YSF_CALLSIGN_LENGTH);
}
if (::memcmp(m_netDest, " ", YSF_CALLSIGN_LENGTH) == 0) {
unsigned char* dest = m_netPayload.getDest();
if (dest != NULL)
::memcpy(m_netDest, dest, YSF_CALLSIGN_LENGTH);
}
if (::memcmp(m_netSource, " ", 10U) != 0 && ::memcmp(m_netDest, " ", 10U) != 0) {
m_display->writeFusion((char*)m_netSource, (char*)m_netDest, "N", (char*)(data + 4U));
LogMessage("YSF, received network data from %10.10s to %10.10s at %10.10s", m_netSource, m_netDest, data + 4U);
}
}
}
bool CYSFControl::isBusy() const
{
return m_rfState != RS_RF_LISTENING || m_netState != RS_NET_IDLE;
}
void CYSFControl::enable(bool enabled)
{
if (!enabled && m_enabled) {
m_queue.clear();
// Reset the RF section
m_rfState = RS_RF_LISTENING;
m_rfTimeoutTimer.stop();
m_rfPayload.reset();
// These variables are free'd by YSFPayload
m_rfSource = NULL;
m_rfDest = NULL;
// Reset the networking section
m_netState = RS_NET_IDLE;
m_netTimeoutTimer.stop();
m_networkWatchdog.stop();
m_packetTimer.stop();
m_netPayload.reset();
}
m_enabled = enabled;
}