/* * Copyright (C) 2015-2019 Jonathan Naylor, G4KLX * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include "YSFControl.h" #include "Utils.h" #include "Sync.h" #include "Log.h" #include #include #include #include // #define DUMP_YSF CYSFControl::CYSFControl(const std::string& callsign, bool selfOnly, CYSFNetwork* network, CDisplay* display, unsigned int timeout, bool duplex, bool lowDeviation, bool remoteGateway, CRSSIInterpolator* rssiMapper) : m_callsign(NULL), m_selfCallsign(NULL), m_selfOnly(selfOnly), m_network(network), m_display(display), m_duplex(duplex), m_lowDeviation(lowDeviation), m_remoteGateway(remoteGateway), m_dgIdEnabled(false), m_dgIdValue(0U), m_queue(5000U, "YSF Control"), m_rfState(RS_RF_LISTENING), m_netState(RS_NET_IDLE), m_rfTimeoutTimer(1000U, timeout), m_netTimeoutTimer(1000U, timeout), m_packetTimer(1000U, 0U, 200U), m_networkWatchdog(1000U, 0U, 1500U), m_elapsed(), m_rfFrames(0U), m_netFrames(0U), m_netLost(0U), m_rfErrs(0U), m_rfBits(1U), m_netErrs(0U), m_netBits(1U), m_rfSource(NULL), m_rfDest(NULL), m_netSource(NULL), m_netDest(NULL), m_lastFICH(), m_netN(0U), m_rfPayload(), m_netPayload(), m_rssiMapper(rssiMapper), m_rssi(0U), m_maxRSSI(0U), m_minRSSI(0U), m_aveRSSI(0U), m_rssiCount(0U), m_enabled(true), m_fp(NULL) { assert(display != NULL); assert(rssiMapper != NULL); m_rfPayload.setUplink(callsign); m_rfPayload.setDownlink(callsign); m_netPayload.setDownlink(callsign); m_netSource = new unsigned char[YSF_CALLSIGN_LENGTH]; m_netDest = new unsigned char[YSF_CALLSIGN_LENGTH]; m_callsign = new unsigned char[YSF_CALLSIGN_LENGTH]; std::string node = callsign; node.resize(YSF_CALLSIGN_LENGTH, ' '); for (unsigned int i = 0U; i < YSF_CALLSIGN_LENGTH; i++) m_callsign[i] = node.at(i); m_selfCallsign = new unsigned char[YSF_CALLSIGN_LENGTH]; ::memset(m_selfCallsign, 0x00U, YSF_CALLSIGN_LENGTH); for (unsigned int i = 0U; i < callsign.length(); i++) m_selfCallsign[i] = callsign.at(i); } CYSFControl::~CYSFControl() { delete[] m_netSource; delete[] m_netDest; delete[] m_callsign; delete[] m_selfCallsign; } void CYSFControl::setDGId(bool on, unsigned char value) { m_dgIdEnabled = on; m_dgIdValue = value; } bool CYSFControl::writeModem(unsigned char *data, unsigned int len) { assert(data != NULL); if (!m_enabled) return false; unsigned char type = data[0U]; if (type == TAG_LOST && m_rfState == RS_RF_AUDIO) { if (m_rssi != 0U) LogMessage("YSF, transmission lost, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount); else LogMessage("YSF, transmission lost, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits)); writeEndRF(); return false; } if (type == TAG_LOST && m_rfState == RS_RF_REJECTED) { m_rfState = RS_RF_LISTENING; return false; } if (type == TAG_LOST) { m_rfState = RS_RF_LISTENING; return false; } // Have we got RSSI bytes on the end? if (len == (YSF_FRAME_LENGTH_BYTES + 4U)) { uint16_t raw = 0U; raw |= (data[122U] << 8) & 0xFF00U; raw |= (data[123U] << 0) & 0x00FFU; // Convert the raw RSSI to dBm int rssi = m_rssiMapper->interpolate(raw); if (rssi != 0) LogDebug("YSF, raw RSSI: %u, reported RSSI: %d dBm", raw, rssi); // RSSI is always reported as positive m_rssi = (rssi >= 0) ? rssi : -rssi; if (m_rssi > m_minRSSI) m_minRSSI = m_rssi; if (m_rssi < m_maxRSSI) m_maxRSSI = m_rssi; m_aveRSSI += m_rssi; m_rssiCount++; } CYSFFICH fich; bool valid = fich.decode(data + 2U); if (valid) m_lastFICH = fich; // Validate the DG-ID value if enabled if (m_dgIdEnabled) { unsigned char value = m_lastFICH.getDGId(); if (value != m_dgIdValue) return false; } #ifdef notdef // Stop repeater packets coming through, unless we're acting as a remote gateway if (m_remoteGateway) { unsigned char mr = m_lastFICH.getMR(); if (mr != YSF_MR_BUSY) return false; } else { unsigned char mr = m_lastFICH.getMR(); if (mr == YSF_MR_BUSY) return false; } #endif unsigned char dt = m_lastFICH.getDT(); bool ret = false; switch (dt) { case YSF_DT_VOICE_FR_MODE: ret = processVWData(valid, data); break; case YSF_DT_VD_MODE1: case YSF_DT_VD_MODE2: ret = processDNData(valid, data); break; case YSF_DT_DATA_FR_MODE: ret = processFRData(valid, data); break; default: break; } return ret; } bool CYSFControl::processVWData(bool valid, unsigned char *data) { unsigned char fi = m_lastFICH.getFI(); if (valid && fi == YSF_FI_HEADER) { if (m_rfState == RS_RF_LISTENING) { bool valid = m_rfPayload.processHeaderData(data + 2U); if (!valid) return false; m_rfSource = m_rfPayload.getSource(); if (m_selfOnly) { bool ret = checkCallsign(m_rfSource); if (!ret) { LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource); m_rfState = RS_RF_REJECTED; return false; } } unsigned char cm = m_lastFICH.getCM(); if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2) m_rfDest = (unsigned char*)"ALL "; else m_rfDest = m_rfPayload.getDest(); m_rfFrames = 0U; m_rfErrs = 0U; m_rfBits = 1U; m_rfTimeoutTimer.start(); m_rfState = RS_RF_AUDIO; m_minRSSI = m_rssi; m_maxRSSI = m_rssi; m_aveRSSI = m_rssi; m_rssiCount = 1U; #if defined(DUMP_YSF) openFile(); #endif m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " "); LogMessage("YSF, received RF header from %10.10s to %10.10s", m_rfSource, m_rfDest); CSync::addYSFSync(data + 2U); CYSFFICH fich = m_lastFICH; fich.encode(data + 2U); data[0U] = TAG_DATA; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); #if defined(DUMP_YSF) writeFile(data + 2U); #endif if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } m_rfFrames++; m_display->writeFusionRSSI(m_rssi); return true; } } else if (valid && fi == YSF_FI_TERMINATOR) { if (m_rfState == RS_RF_REJECTED) { m_rfState = RS_RF_LISTENING; } else if (m_rfState == RS_RF_AUDIO) { m_rfPayload.processHeaderData(data + 2U); CSync::addYSFSync(data + 2U); CYSFFICH fich = m_lastFICH; fich.encode(data + 2U); data[0U] = TAG_EOT; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); #if defined(DUMP_YSF) writeFile(data + 2U); #endif if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } m_rfFrames++; if (m_rssi != 0U) LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount); else LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits)); writeEndRF(); } } else { if (m_rfState == RS_RF_AUDIO) { // If valid is false, update the m_lastFICH for this transmission if (!valid) { // XXX Check these values m_lastFICH.setFT(0U); m_lastFICH.setFN(0U); } CSync::addYSFSync(data + 2U); CYSFFICH fich = m_lastFICH; unsigned char fn = fich.getFN(); unsigned char ft = fich.getFT(); if (fn != 0U || ft != 1U) { // The first packet after the header is odd, don't try and regenerate it unsigned int errors = m_rfPayload.processVoiceFRModeAudio(data + 2U); m_rfErrs += errors; m_rfBits += 720U; m_display->writeFusionBER(float(errors) / 7.2F); LogDebug("YSF, V Mode 3, seq %u, AMBE FEC %u/720 (%.1f%%)", m_rfFrames % 128, errors, float(errors) / 7.2F); } fich.encode(data + 2U); data[0U] = TAG_DATA; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } #if defined(DUMP_YSF) writeFile(data + 2U); #endif m_rfFrames++; m_display->writeFusionRSSI(m_rssi); return true; } } return false; } bool CYSFControl::processDNData(bool valid, unsigned char *data) { unsigned char fi = m_lastFICH.getFI(); if (valid && fi == YSF_FI_HEADER) { if (m_rfState == RS_RF_LISTENING) { bool valid = m_rfPayload.processHeaderData(data + 2U); if (!valid) return false; m_rfSource = m_rfPayload.getSource(); if (m_selfOnly) { bool ret = checkCallsign(m_rfSource); if (!ret) { LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource); m_rfState = RS_RF_REJECTED; return false; } } unsigned char cm = m_lastFICH.getCM(); if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2) m_rfDest = (unsigned char*)"ALL "; else m_rfDest = m_rfPayload.getDest(); m_rfFrames = 0U; m_rfErrs = 0U; m_rfBits = 1U; m_rfTimeoutTimer.start(); m_rfState = RS_RF_AUDIO; m_minRSSI = m_rssi; m_maxRSSI = m_rssi; m_aveRSSI = m_rssi; m_rssiCount = 1U; #if defined(DUMP_YSF) openFile(); #endif m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " "); LogMessage("YSF, received RF header from %10.10s to %10.10s", m_rfSource, m_rfDest); CSync::addYSFSync(data + 2U); CYSFFICH fich = m_lastFICH; fich.encode(data + 2U); data[0U] = TAG_DATA; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); #if defined(DUMP_YSF) writeFile(data + 2U); #endif if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } m_rfFrames++; m_display->writeFusionRSSI(m_rssi); return true; } } else if (valid && fi == YSF_FI_TERMINATOR) { if (m_rfState == RS_RF_REJECTED) { m_rfState = RS_RF_LISTENING; } else if (m_rfState == RS_RF_AUDIO) { m_rfPayload.processHeaderData(data + 2U); CSync::addYSFSync(data + 2U); CYSFFICH fich = m_lastFICH; fich.encode(data + 2U); data[0U] = TAG_EOT; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); #if defined(DUMP_YSF) writeFile(data + 2U); #endif if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } m_rfFrames++; if (m_rssi != 0U) LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits), m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount); else LogMessage("YSF, received RF end of transmission, %.1f seconds, BER: %.1f%%", float(m_rfFrames) / 10.0F, float(m_rfErrs * 100U) / float(m_rfBits)); writeEndRF(); } } else { if (m_rfState == RS_RF_AUDIO) { // If valid is false, update the m_lastFICH for this transmission if (!valid) { unsigned char ft = m_lastFICH.getFT(); unsigned char fn = m_lastFICH.getFN() + 1U; if (fn > ft) fn = 0U; m_lastFICH.setFN(fn); } CSync::addYSFSync(data + 2U); unsigned char fn = m_lastFICH.getFN(); unsigned char dt = m_lastFICH.getDT(); switch (dt) { case YSF_DT_VD_MODE1: { m_rfPayload.processVDMode1Data(data + 2U, fn); unsigned int errors = m_rfPayload.processVDMode1Audio(data + 2U); m_rfErrs += errors; m_rfBits += 235U; m_display->writeFusionBER(float(errors) / 2.35F); LogDebug("YSF, V/D Mode 1, seq %u, AMBE FEC %u/235 (%.1f%%)", m_rfFrames % 128, errors, float(errors) / 2.35F); } break; case YSF_DT_VD_MODE2: { m_rfPayload.processVDMode2Data(data + 2U, fn); unsigned int errors = m_rfPayload.processVDMode2Audio(data + 2U); m_rfErrs += errors; m_rfBits += 405U; m_display->writeFusionBER(float(errors) / 4.05F); LogDebug("YSF, V/D Mode 2, seq %u, Repetition FEC %u/405 (%.1f%%)", m_rfFrames % 128, errors, float(errors) / 4.05F); } break; default: break; } CYSFFICH fich = m_lastFICH; fich.encode(data + 2U); data[0U] = TAG_DATA; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } #if defined(DUMP_YSF) writeFile(data + 2U); #endif m_rfFrames++; m_display->writeFusionRSSI(m_rssi); return true; } else if (valid && m_rfState == RS_RF_LISTENING) { // Only use clean frames for late entry. unsigned char fn = m_lastFICH.getFN(); unsigned char dt = m_lastFICH.getDT(); switch (dt) { case YSF_DT_VD_MODE1: valid = m_rfPayload.processVDMode1Data(data + 2U, fn); break; case YSF_DT_VD_MODE2: valid = m_rfPayload.processVDMode2Data(data + 2U, fn); break; default: valid = false; break; } if (!valid) return false; unsigned char cm = m_lastFICH.getCM(); if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2) m_rfDest = (unsigned char*)"ALL "; else m_rfDest = m_rfPayload.getDest(); m_rfSource = m_rfPayload.getSource(); if (m_rfSource == NULL || m_rfDest == NULL) return false; if (m_selfOnly) { bool ret = checkCallsign(m_rfSource); if (!ret) { LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource); m_rfState = RS_RF_REJECTED; return false; } } m_rfFrames = 0U; m_rfErrs = 0U; m_rfBits = 1U; m_rfTimeoutTimer.start(); m_rfState = RS_RF_AUDIO; m_minRSSI = m_rssi; m_maxRSSI = m_rssi; m_aveRSSI = m_rssi; m_rssiCount = 1U; #if defined(DUMP_YSF) openFile(); #endif // Build a new header and transmit it unsigned char buffer[YSF_FRAME_LENGTH_BYTES + 2U]; CSync::addYSFSync(buffer + 2U); CYSFFICH fich = m_lastFICH; fich.setFI(YSF_FI_HEADER); fich.encode(buffer + 2U); unsigned char csd1[20U], csd2[20U]; memcpy(csd1 + YSF_CALLSIGN_LENGTH, m_rfSource, YSF_CALLSIGN_LENGTH); memset(csd2, ' ', YSF_CALLSIGN_LENGTH + YSF_CALLSIGN_LENGTH); if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2) memset(csd1 + 0U, '*', YSF_CALLSIGN_LENGTH); else memcpy(csd1 + 0U, m_rfDest, YSF_CALLSIGN_LENGTH); CYSFPayload payload; payload.writeHeader(buffer + 2U, csd1, csd2); buffer[0U] = TAG_DATA; buffer[1U] = 0x00U; writeNetwork(buffer, m_rfFrames % 128U); if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(buffer + 2U); writeQueueRF(buffer); } #if defined(DUMP_YSF) writeFile(buffer + 2U); #endif m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " "); LogMessage("YSF, received RF late entry from %10.10s to %10.10s", m_rfSource, m_rfDest); CSync::addYSFSync(data + 2U); fich = m_lastFICH; fich.encode(data + 2U); data[0U] = TAG_DATA; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } #if defined(DUMP_YSF) writeFile(data + 2U); #endif m_rfFrames++; m_display->writeFusionRSSI(m_rssi); return true; } } return false; } bool CYSFControl::processFRData(bool valid, unsigned char *data) { unsigned char fi = m_lastFICH.getFI(); if (valid && fi == YSF_FI_HEADER) { if (m_rfState == RS_RF_LISTENING) { m_rfPayload.reset(); // These variables are free'd by YSFPayload m_rfSource = NULL; m_rfDest = NULL; valid = m_rfPayload.processHeaderData(data + 2U); if (!valid) return false; m_rfSource = m_rfPayload.getSource(); if (m_selfOnly) { bool ret = checkCallsign(m_rfSource); if (!ret) { LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource); m_rfState = RS_RF_REJECTED; return false; } } unsigned char cm = m_lastFICH.getCM(); if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2) m_rfDest = (unsigned char*)"ALL "; else m_rfDest = m_rfPayload.getDest(); m_rfFrames = 0U; m_rfState = RS_RF_DATA; m_minRSSI = m_rssi; m_maxRSSI = m_rssi; m_aveRSSI = m_rssi; m_rssiCount = 1U; #if defined(DUMP_YSF) openFile(); #endif m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " "); LogMessage("YSF, received RF header from %10.10s to %10.10s", m_rfSource, m_rfDest); CSync::addYSFSync(data + 2U); CYSFFICH fich = m_lastFICH; fich.encode(data + 2U); data[0U] = TAG_DATA; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); #if defined(DUMP_YSF) writeFile(data + 2U); #endif if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } m_rfFrames++; m_display->writeFusionRSSI(m_rssi); return true; } } else if (valid && fi == YSF_FI_TERMINATOR) { if (m_rfState == RS_RF_REJECTED) { m_rfState = RS_RF_LISTENING; } else if (m_rfState == RS_RF_DATA) { m_rfPayload.processHeaderData(data + 2U); CSync::addYSFSync(data + 2U); CYSFFICH fich = m_lastFICH; fich.encode(data + 2U); data[0U] = TAG_EOT; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); #if defined(DUMP_YSF) writeFile(data + 2U); #endif if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } m_rfFrames++; if (m_rssi != 0U) LogMessage("YSF, received RF end of transmission, %.1f seconds, RSSI: -%u/-%u/-%u dBm", float(m_rfFrames) / 10.0F, m_minRSSI, m_maxRSSI, m_aveRSSI / m_rssiCount); else LogMessage("YSF, received RF end of transmission, %.1f seconds", float(m_rfFrames) / 10.0F); writeEndRF(); } } else { if (m_rfState == RS_RF_LISTENING) { // If during listening we get data we rebuild header and get the data unsigned char fi = m_lastFICH.getFI(); if (fi == YSF_FI_COMMUNICATIONS) { m_rfPayload.processHeaderData(data + 2U); m_rfSource = m_rfPayload.getSource(); if (m_rfSource == NULL) { LogMessage("Error m_rfSource line 784 YSFControl"); return false; } if (m_selfOnly) { bool ret = checkCallsign(m_rfSource); if (!ret) { LogMessage("YSF, invalid access attempt from %10.10s", m_rfSource); m_rfState = RS_RF_REJECTED; return false; } } unsigned char cm = m_lastFICH.getCM(); if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2) m_rfDest = (unsigned char*)"ALL "; else m_rfDest = m_rfPayload.getDest(); m_rfFrames = 0U; m_rfState = RS_RF_DATA; m_minRSSI = m_rssi; m_maxRSSI = m_rssi; m_aveRSSI = m_rssi; m_rssiCount = 1U; #if defined(DUMP_YSF) openFile(); #endif m_display->writeFusion((char*)m_rfSource, (char*)m_rfDest, "R", " "); LogMessage("YSF, received Picture data from %10.10s to %10.10s", m_rfSource, m_rfDest); } } if (m_rfState == RS_RF_DATA) { // If valid is false, update the m_lastFICH for this transmission if (!valid) { unsigned char ft = m_lastFICH.getFT(); unsigned char fn = m_lastFICH.getFN() + 1U; if (fn > ft) fn = 0U; m_lastFICH.setFN(fn); } CSync::addYSFSync(data + 2U); unsigned char fn = m_lastFICH.getFN(); m_rfPayload.processDataFRModeData(data + 2U, fn); CYSFFICH fich = m_lastFICH; fich.encode(data + 2U); data[0U] = TAG_DATA; data[1U] = 0x00U; writeNetwork(data, m_rfFrames % 128U); if (m_duplex) { fich.setMR(m_remoteGateway ? YSF_MR_NOT_BUSY : YSF_MR_BUSY); fich.setDev(m_lowDeviation); fich.encode(data + 2U); writeQueueRF(data); } #if defined(DUMP_YSF) writeFile(data + 2U); #endif m_rfFrames++; m_display->writeFusionRSSI(m_rssi); return true; } } return false; } unsigned int CYSFControl::readModem(unsigned char* data) { assert(data != NULL); if (m_queue.isEmpty()) return 0U; unsigned char len = 0U; m_queue.getData(&len, 1U); m_queue.getData(data, len); return len; } void CYSFControl::writeEndRF() { m_rfState = RS_RF_LISTENING; m_rfTimeoutTimer.stop(); if (m_netState == RS_NET_IDLE) { m_display->clearFusion(); if (m_network != NULL) m_network->reset(); } #if defined(DUMP_YSF) closeFile(); #endif } void CYSFControl::writeEndNet() { m_netState = RS_NET_IDLE; m_netTimeoutTimer.stop(); m_networkWatchdog.stop(); m_packetTimer.stop(); m_netPayload.reset(); m_display->clearFusion(); if (m_network != NULL) m_network->reset(); } void CYSFControl::writeNetwork() { unsigned char data[200U]; unsigned int length = m_network->read(data); if (length == 0U) return; if (!m_enabled) return; if (m_rfState != RS_RF_LISTENING && m_netState == RS_NET_IDLE) return; m_networkWatchdog.start(); bool gateway = ::memcmp(data + 4U, m_callsign, YSF_CALLSIGN_LENGTH) == 0; unsigned char n = (data[34U] & 0xFEU) >> 1; bool end = (data[34U] & 0x01U) == 0x01U; if (!m_netTimeoutTimer.isRunning()) { if (end) return; ::memcpy(m_netSource, data + 14U, YSF_CALLSIGN_LENGTH); ::memcpy(m_netDest, data + 24U, YSF_CALLSIGN_LENGTH); if (::memcmp(m_netSource, " ", 10U) != 0 && ::memcmp(m_netDest, " ", 10U) != 0) { m_display->writeFusion((char*)m_netSource, (char*)m_netDest, "N", (char*)(data + 4U)); LogMessage("YSF, received network data from %10.10s to %10.10s at %10.10s", m_netSource, m_netDest, data + 4U); } m_netTimeoutTimer.start(); m_netPayload.reset(); m_packetTimer.start(); m_elapsed.start(); m_netState = RS_NET_AUDIO; m_netFrames = 0U; m_netLost = 0U; m_netErrs = 0U; m_netBits = 1U; m_netN = 0U; } else { // Check for duplicate frames, if we can if (m_netN == n) return; } data[33U] = end ? TAG_EOT : TAG_DATA; data[34U] = 0x00U; CYSFFICH fich; bool valid = fich.decode(data + 35U); if (valid) { unsigned char dt = fich.getDT(); unsigned char fn = fich.getFN(); unsigned char ft = fich.getFT(); unsigned char fi = fich.getFI(); unsigned char cm = fich.getCM(); if (::memcmp(m_netDest, " ", YSF_CALLSIGN_LENGTH) == 0) { if (cm == YSF_CM_GROUP1 || cm == YSF_CM_GROUP2) ::memcpy(m_netDest, "ALL ", YSF_CALLSIGN_LENGTH); } if (m_remoteGateway) { fich.setVoIP(false); fich.setMR(YSF_MR_DIRECT); } else { fich.setVoIP(true); fich.setMR(YSF_MR_BUSY); } fich.setDev(m_lowDeviation); fich.encode(data + 35U); // Set the downlink callsign switch (fi) { case YSF_FI_HEADER: { bool ok = m_netPayload.processHeaderData(data + 35U); if (ok) processNetCallsigns(data); } break; case YSF_FI_TERMINATOR: m_netPayload.processHeaderData(data + 35U); break; case YSF_FI_COMMUNICATIONS: switch (dt) { case YSF_DT_VD_MODE1: { bool ok = m_netPayload.processVDMode1Data(data + 35U, fn, gateway); if (ok) processNetCallsigns(data); unsigned int errors = m_netPayload.processVDMode1Audio(data + 35U); m_netErrs += errors; m_netBits += 235U; } break; case YSF_DT_VD_MODE2: { bool ok = m_netPayload.processVDMode2Data(data + 35U, fn, gateway); if (ok) processNetCallsigns(data); unsigned int errors = m_netPayload.processVDMode2Audio(data + 35U); m_netErrs += errors; m_netBits += 135U; } break; case YSF_DT_DATA_FR_MODE: m_netPayload.processDataFRModeData(data + 35U, fn, gateway); break; case YSF_DT_VOICE_FR_MODE: if (fn != 0U || ft != 1U) { // The first packet after the header is odd, don't try and regenerate it unsigned int errors = m_netPayload.processVoiceFRModeAudio(data + 35U); m_netErrs += errors; m_netBits += 720U; } break; default: break; } break; default: break; } } writeQueueNet(data + 33U); m_packetTimer.start(); m_netFrames++; m_netN = n; if (end) { LogMessage("YSF, received network end of transmission, %.1f seconds, %u%% packet loss, BER: %.1f%%", float(m_netFrames) / 10.0F, (m_netLost * 100U) / m_netFrames, float(m_netErrs * 100U) / float(m_netBits)); writeEndNet(); } } void CYSFControl::clock(unsigned int ms) { if (m_network != NULL) writeNetwork(); m_rfTimeoutTimer.clock(ms); m_netTimeoutTimer.clock(ms); if (m_netState == RS_NET_AUDIO) { m_networkWatchdog.clock(ms); if (m_networkWatchdog.hasExpired()) { LogMessage("YSF, network watchdog has expired, %.1f seconds, %u%% packet loss, BER: %.1f%%", float(m_netFrames) / 10.0F, (m_netLost * 100U) / m_netFrames, float(m_netErrs * 100U) / float(m_netBits)); writeEndNet(); } } } void CYSFControl::writeQueueRF(const unsigned char *data) { assert(data != NULL); if (m_netState != RS_NET_IDLE) return; if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired()) return; unsigned char len = YSF_FRAME_LENGTH_BYTES + 2U; unsigned int space = m_queue.freeSpace(); if (space < (len + 1U)) { LogError("YSF, overflow in the System Fusion RF queue"); return; } m_queue.addData(&len, 1U); m_queue.addData(data, len); } void CYSFControl::writeQueueNet(const unsigned char *data) { assert(data != NULL); if (m_netTimeoutTimer.isRunning() && m_netTimeoutTimer.hasExpired()) return; unsigned char len = YSF_FRAME_LENGTH_BYTES + 2U; unsigned int space = m_queue.freeSpace(); if (space < (len + 1U)) { LogError("YSF, overflow in the System Fusion RF queue"); return; } m_queue.addData(&len, 1U); m_queue.addData(data, len); } void CYSFControl::writeNetwork(const unsigned char *data, unsigned int count) { assert(data != NULL); if (m_network == NULL) return; if (m_rfTimeoutTimer.isRunning() && m_rfTimeoutTimer.hasExpired()) return; m_network->write(m_rfSource, m_rfDest, data + 2U, count, data[0U] == TAG_EOT); } bool CYSFControl::openFile() { if (m_fp != NULL) return true; time_t t; ::time(&t); struct tm* tm = ::localtime(&t); char name[100U]; ::sprintf(name, "YSF_%04d%02d%02d_%02d%02d%02d.ambe", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); m_fp = ::fopen(name, "wb"); if (m_fp == NULL) return false; ::fwrite("YSF", 1U, 3U, m_fp); return true; } bool CYSFControl::writeFile(const unsigned char* data) { if (m_fp == NULL) return false; ::fwrite(data, 1U, YSF_FRAME_LENGTH_BYTES, m_fp); return true; } void CYSFControl::closeFile() { if (m_fp != NULL) { ::fclose(m_fp); m_fp = NULL; } } bool CYSFControl::checkCallsign(const unsigned char* callsign) const { return ::memcmp(callsign, m_selfCallsign, ::strlen((char*)m_selfCallsign)) == 0; } void CYSFControl::processNetCallsigns(const unsigned char* data) { assert(data != NULL); if (::memcmp(m_netSource, " ", 10U) == 0 || ::memcmp(m_netDest, " ", 10U) == 0) { if (::memcmp(m_netSource, " ", YSF_CALLSIGN_LENGTH) == 0) { unsigned char* source = m_netPayload.getSource(); if (source != NULL) ::memcpy(m_netSource, source, YSF_CALLSIGN_LENGTH); } if (::memcmp(m_netDest, " ", YSF_CALLSIGN_LENGTH) == 0) { unsigned char* dest = m_netPayload.getDest(); if (dest != NULL) ::memcpy(m_netDest, dest, YSF_CALLSIGN_LENGTH); } if (::memcmp(m_netSource, " ", 10U) != 0 && ::memcmp(m_netDest, " ", 10U) != 0) { m_display->writeFusion((char*)m_netSource, (char*)m_netDest, "N", (char*)(data + 4U)); LogMessage("YSF, received network data from %10.10s to %10.10s at %10.10s", m_netSource, m_netDest, data + 4U); } } } bool CYSFControl::isBusy() const { return m_rfState != RS_RF_LISTENING || m_netState != RS_NET_IDLE; } void CYSFControl::enable(bool enabled) { if (!enabled && m_enabled) { m_queue.clear(); // Reset the RF section m_rfState = RS_RF_LISTENING; m_rfTimeoutTimer.stop(); m_rfPayload.reset(); // These variables are free'd by YSFPayload m_rfSource = NULL; m_rfDest = NULL; // Reset the networking section m_netState = RS_NET_IDLE; m_netTimeoutTimer.stop(); m_networkWatchdog.stop(); m_packetTimer.stop(); m_netPayload.reset(); } m_enabled = enabled; }