# This file is part of Scapy # See http://www.secdev.org/projects/scapy for more information # Copyright (C) Philippe Biondi # Enhanced by Maxence Tury # This program is published under a GPLv2 license """ Classes that implement ASN.1 data structures. """ from __future__ import absolute_import from scapy.asn1.asn1 import ASN1_Class_UNIVERSAL, ASN1_NULL, ASN1_Error, \ ASN1_Object, ASN1_INTEGER from scapy.asn1.ber import BER_tagging_dec, BER_Decoding_Error, BER_id_dec, \ BER_tagging_enc from scapy.volatile import RandInt, RandChoice, RandNum, RandString, RandOID, \ GeneralizedTime from scapy.compat import orb, raw from scapy.base_classes import BasePacket from scapy.utils import binrepr from scapy import packet from functools import reduce import scapy.modules.six as six from scapy.modules.six.moves import range class ASN1F_badsequence(Exception): pass class ASN1F_element(object): pass ########################## # Basic ASN1 Field # ########################## class ASN1F_field(ASN1F_element): holds_packets = 0 islist = 0 ASN1_tag = ASN1_Class_UNIVERSAL.ANY context = ASN1_Class_UNIVERSAL def __init__(self, name, default, context=None, implicit_tag=None, explicit_tag=None, flexible_tag=False): self.context = context self.name = name if default is None: self.default = None elif isinstance(default, ASN1_NULL): self.default = default else: self.default = self.ASN1_tag.asn1_object(default) self.flexible_tag = flexible_tag if (implicit_tag is not None) and (explicit_tag is not None): err_msg = "field cannot be both implicitly and explicitly tagged" raise ASN1_Error(err_msg) self.implicit_tag = implicit_tag self.explicit_tag = explicit_tag # network_tag gets useful for ASN1F_CHOICE self.network_tag = implicit_tag or explicit_tag or self.ASN1_tag def i2repr(self, pkt, x): return repr(x) def i2h(self, pkt, x): return x def any2i(self, pkt, x): return x def m2i(self, pkt, s): """ The good thing about safedec is that it may still decode ASN1 even if there is a mismatch between the expected tag (self.ASN1_tag) and the actual tag; the decoded ASN1 object will simply be put into an ASN1_BADTAG object. However, safedec prevents the raising of exceptions needed for ASN1F_optional processing. Thus we use 'flexible_tag', which should be False with ASN1F_optional. Regarding other fields, we might need to know whether encoding went as expected or not. Noticeably, input methods from cert.py expect certain exceptions to be raised. Hence default flexible_tag is False. """ diff_tag, s = BER_tagging_dec(s, hidden_tag=self.ASN1_tag, implicit_tag=self.implicit_tag, explicit_tag=self.explicit_tag, safe=self.flexible_tag) if diff_tag is not None: # this implies that flexible_tag was True if self.implicit_tag is not None: self.implicit_tag = diff_tag elif self.explicit_tag is not None: self.explicit_tag = diff_tag codec = self.ASN1_tag.get_codec(pkt.ASN1_codec) if self.flexible_tag: return codec.safedec(s, context=self.context) else: return codec.dec(s, context=self.context) def i2m(self, pkt, x): if x is None: return b"" if isinstance(x, ASN1_Object): if (self.ASN1_tag == ASN1_Class_UNIVERSAL.ANY or x.tag == ASN1_Class_UNIVERSAL.RAW or x.tag == ASN1_Class_UNIVERSAL.ERROR or self.ASN1_tag == x.tag): s = x.enc(pkt.ASN1_codec) else: raise ASN1_Error("Encoding Error: got %r instead of an %r for field [%s]" % (x, self.ASN1_tag, self.name)) # noqa: E501 else: s = self.ASN1_tag.get_codec(pkt.ASN1_codec).enc(x) return BER_tagging_enc(s, implicit_tag=self.implicit_tag, explicit_tag=self.explicit_tag) def extract_packet(self, cls, s): if len(s) > 0: try: c = cls(s) except ASN1F_badsequence: c = packet.Raw(s) cpad = c.getlayer(packet.Raw) s = b"" if cpad is not None: s = cpad.load del(cpad.underlayer.payload) return c, s else: return None, s def build(self, pkt): return self.i2m(pkt, getattr(pkt, self.name)) def dissect(self, pkt, s): v, s = self.m2i(pkt, s) self.set_val(pkt, v) return s def do_copy(self, x): if hasattr(x, "copy"): return x.copy() if isinstance(x, list): x = x[:] for i in range(len(x)): if isinstance(x[i], BasePacket): x[i] = x[i].copy() return x def set_val(self, pkt, val): setattr(pkt, self.name, val) def is_empty(self, pkt): return getattr(pkt, self.name) is None def get_fields_list(self): return [self] def __str__(self): return repr(self) def randval(self): return RandInt() ############################ # Simple ASN1 Fields # ############################ class ASN1F_BOOLEAN(ASN1F_field): ASN1_tag = ASN1_Class_UNIVERSAL.BOOLEAN def randval(self): return RandChoice(True, False) class ASN1F_INTEGER(ASN1F_field): ASN1_tag = ASN1_Class_UNIVERSAL.INTEGER def randval(self): return RandNum(-2**64, 2**64 - 1) class ASN1F_enum_INTEGER(ASN1F_INTEGER): def __init__(self, name, default, enum, context=None, implicit_tag=None, explicit_tag=None): ASN1F_INTEGER.__init__(self, name, default, context=context, implicit_tag=implicit_tag, explicit_tag=explicit_tag) i2s = self.i2s = {} s2i = self.s2i = {} if isinstance(enum, list): keys = range(len(enum)) else: keys = list(enum) if any(isinstance(x, six.string_types) for x in keys): i2s, s2i = s2i, i2s for k in keys: i2s[k] = enum[k] s2i[enum[k]] = k def i2m(self, pkt, s): if isinstance(s, str): s = self.s2i.get(s) return super(ASN1F_enum_INTEGER, self).i2m(pkt, s) def i2repr(self, pkt, x): if x is not None and isinstance(x, ASN1_INTEGER): r = self.i2s.get(x.val) if r: return "'%s' %s" % (r, repr(x)) return repr(x) class ASN1F_BIT_STRING(ASN1F_field): ASN1_tag = ASN1_Class_UNIVERSAL.BIT_STRING def __init__(self, name, default, default_readable=True, context=None, implicit_tag=None, explicit_tag=None): if default is not None and default_readable: default = b"".join(binrepr(orb(x)).zfill(8).encode("utf8") for x in default) # noqa: E501 ASN1F_field.__init__(self, name, default, context=context, implicit_tag=implicit_tag, explicit_tag=explicit_tag) def randval(self): return RandString(RandNum(0, 1000)) class ASN1F_STRING(ASN1F_field): ASN1_tag = ASN1_Class_UNIVERSAL.STRING def randval(self): return RandString(RandNum(0, 1000)) class ASN1F_NULL(ASN1F_INTEGER): ASN1_tag = ASN1_Class_UNIVERSAL.NULL class ASN1F_OID(ASN1F_field): ASN1_tag = ASN1_Class_UNIVERSAL.OID def randval(self): return RandOID() class ASN1F_ENUMERATED(ASN1F_enum_INTEGER): ASN1_tag = ASN1_Class_UNIVERSAL.ENUMERATED class ASN1F_UTF8_STRING(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.UTF8_STRING class ASN1F_NUMERIC_STRING(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.NUMERIC_STRING class ASN1F_PRINTABLE_STRING(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.PRINTABLE_STRING class ASN1F_T61_STRING(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.T61_STRING class ASN1F_VIDEOTEX_STRING(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.VIDEOTEX_STRING class ASN1F_IA5_STRING(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.IA5_STRING class ASN1F_UTC_TIME(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.UTC_TIME def randval(self): return GeneralizedTime() class ASN1F_GENERALIZED_TIME(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.GENERALIZED_TIME def randval(self): return GeneralizedTime() class ASN1F_ISO646_STRING(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.ISO646_STRING class ASN1F_UNIVERSAL_STRING(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.UNIVERSAL_STRING class ASN1F_BMP_STRING(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.BMP_STRING class ASN1F_SEQUENCE(ASN1F_field): # Here is how you could decode a SEQUENCE # with an unknown, private high-tag prefix : # class PrivSeq(ASN1_Packet): # ASN1_codec = ASN1_Codecs.BER # ASN1_root = ASN1F_SEQUENCE( # , # ... # , # explicit_tag=0, # flexible_tag=True) # Because we use flexible_tag, the value of the explicit_tag does not matter. # noqa: E501 ASN1_tag = ASN1_Class_UNIVERSAL.SEQUENCE holds_packets = 1 def __init__(self, *seq, **kwargs): name = "dummy_seq_name" default = [field.default for field in seq] for kwarg in ["context", "implicit_tag", "explicit_tag", "flexible_tag"]: setattr(self, kwarg, kwargs.get(kwarg)) ASN1F_field.__init__(self, name, default, context=self.context, implicit_tag=self.implicit_tag, explicit_tag=self.explicit_tag, flexible_tag=self.flexible_tag) self.seq = seq self.islist = len(seq) > 1 def __repr__(self): return "<%s%r>" % (self.__class__.__name__, self.seq) def is_empty(self, pkt): return all(f.is_empty(pkt) for f in self.seq) def get_fields_list(self): return reduce(lambda x, y: x + y.get_fields_list(), self.seq, []) def m2i(self, pkt, s): """ ASN1F_SEQUENCE behaves transparently, with nested ASN1_objects being dissected one by one. Because we use obj.dissect (see loop below) instead of obj.m2i (as we trust dissect to do the appropriate set_vals) we do not directly retrieve the list of nested objects. Thus m2i returns an empty list (along with the proper remainder). It is discarded by dissect() and should not be missed elsewhere. """ diff_tag, s = BER_tagging_dec(s, hidden_tag=self.ASN1_tag, implicit_tag=self.implicit_tag, explicit_tag=self.explicit_tag, safe=self.flexible_tag) if diff_tag is not None: if self.implicit_tag is not None: self.implicit_tag = diff_tag elif self.explicit_tag is not None: self.explicit_tag = diff_tag codec = self.ASN1_tag.get_codec(pkt.ASN1_codec) i, s, remain = codec.check_type_check_len(s) if len(s) == 0: for obj in self.seq: obj.set_val(pkt, None) else: for obj in self.seq: try: s = obj.dissect(pkt, s) except ASN1F_badsequence: break if len(s) > 0: raise BER_Decoding_Error("unexpected remainder", remaining=s) return [], remain def dissect(self, pkt, s): _, x = self.m2i(pkt, s) return x def build(self, pkt): s = reduce(lambda x, y: x + y.build(pkt), self.seq, b"") return self.i2m(pkt, s) class ASN1F_SET(ASN1F_SEQUENCE): ASN1_tag = ASN1_Class_UNIVERSAL.SET class ASN1F_SEQUENCE_OF(ASN1F_field): ASN1_tag = ASN1_Class_UNIVERSAL.SEQUENCE holds_packets = 1 islist = 1 def __init__(self, name, default, cls, context=None, implicit_tag=None, explicit_tag=None): self.cls = cls ASN1F_field.__init__(self, name, None, context=context, implicit_tag=implicit_tag, explicit_tag=explicit_tag) # noqa: E501 self.default = default def is_empty(self, pkt): return ASN1F_field.is_empty(self, pkt) def m2i(self, pkt, s): diff_tag, s = BER_tagging_dec(s, hidden_tag=self.ASN1_tag, implicit_tag=self.implicit_tag, explicit_tag=self.explicit_tag, safe=self.flexible_tag) if diff_tag is not None: if self.implicit_tag is not None: self.implicit_tag = diff_tag elif self.explicit_tag is not None: self.explicit_tag = diff_tag codec = self.ASN1_tag.get_codec(pkt.ASN1_codec) i, s, remain = codec.check_type_check_len(s) lst = [] while s: c, s = self.extract_packet(self.cls, s) lst.append(c) if len(s) > 0: raise BER_Decoding_Error("unexpected remainder", remaining=s) return lst, remain def build(self, pkt): val = getattr(pkt, self.name) if isinstance(val, ASN1_Object) and val.tag == ASN1_Class_UNIVERSAL.RAW: # noqa: E501 s = val elif val is None: s = b"" else: s = b"".join(raw(i) for i in val) return self.i2m(pkt, s) def randval(self): return packet.fuzz(self.cls()) def __repr__(self): return "<%s %s>" % (self.__class__.__name__, self.name) class ASN1F_SET_OF(ASN1F_SEQUENCE_OF): ASN1_tag = ASN1_Class_UNIVERSAL.SET class ASN1F_IPADDRESS(ASN1F_STRING): ASN1_tag = ASN1_Class_UNIVERSAL.IPADDRESS class ASN1F_TIME_TICKS(ASN1F_INTEGER): ASN1_tag = ASN1_Class_UNIVERSAL.TIME_TICKS ############################# # Complex ASN1 Fields # ############################# class ASN1F_optional(ASN1F_element): def __init__(self, field): field.flexible_tag = False self._field = field def __getattr__(self, attr): return getattr(self._field, attr) def m2i(self, pkt, s): try: return self._field.m2i(pkt, s) except (ASN1_Error, ASN1F_badsequence, BER_Decoding_Error): # ASN1_Error may be raised by ASN1F_CHOICE return None, s def dissect(self, pkt, s): try: return self._field.dissect(pkt, s) except (ASN1_Error, ASN1F_badsequence, BER_Decoding_Error): self._field.set_val(pkt, None) return s def build(self, pkt): if self._field.is_empty(pkt): return b"" return self._field.build(pkt) def any2i(self, pkt, x): return self._field.any2i(pkt, x) def i2repr(self, pkt, x): return self._field.i2repr(pkt, x) class ASN1F_CHOICE(ASN1F_field): """ Multiple types are allowed: ASN1_Packet, ASN1F_field and ASN1F_PACKET(), See layers/x509.py for examples. Other ASN1F_field instances than ASN1F_PACKET instances must not be used. """ holds_packets = 1 ASN1_tag = ASN1_Class_UNIVERSAL.ANY def __init__(self, name, default, *args, **kwargs): if "implicit_tag" in kwargs: err_msg = "ASN1F_CHOICE has been called with an implicit_tag" raise ASN1_Error(err_msg) self.implicit_tag = None for kwarg in ["context", "explicit_tag"]: setattr(self, kwarg, kwargs.get(kwarg)) ASN1F_field.__init__(self, name, None, context=self.context, explicit_tag=self.explicit_tag) self.default = default self.current_choice = None self.choices = {} self.pktchoices = {} for p in args: if hasattr(p, "ASN1_root"): # should be ASN1_Packet if hasattr(p.ASN1_root, "choices"): for k, v in six.iteritems(p.ASN1_root.choices): self.choices[k] = v # ASN1F_CHOICE recursion else: self.choices[p.ASN1_root.network_tag] = p elif hasattr(p, "ASN1_tag"): if isinstance(p, type): # should be ASN1F_field class self.choices[p.ASN1_tag] = p else: # should be ASN1F_PACKET instance self.choices[p.network_tag] = p self.pktchoices[hash(p.cls)] = (p.implicit_tag, p.explicit_tag) # noqa: E501 else: raise ASN1_Error("ASN1F_CHOICE: no tag found for one field") def m2i(self, pkt, s): """ First we have to retrieve the appropriate choice. Then we extract the field/packet, according to this choice. """ if len(s) == 0: raise ASN1_Error("ASN1F_CHOICE: got empty string") _, s = BER_tagging_dec(s, hidden_tag=self.ASN1_tag, explicit_tag=self.explicit_tag) tag, _ = BER_id_dec(s) if tag not in self.choices: if self.flexible_tag: choice = ASN1F_field else: raise ASN1_Error("ASN1F_CHOICE: unexpected field") else: choice = self.choices[tag] if hasattr(choice, "ASN1_root"): # we don't want to import ASN1_Packet in this module... return self.extract_packet(choice, s) elif isinstance(choice, type): # XXX find a way not to instantiate the ASN1F_field return choice(self.name, b"").m2i(pkt, s) else: # XXX check properly if this is an ASN1F_PACKET return choice.m2i(pkt, s) def i2m(self, pkt, x): if x is None: s = b"" else: s = raw(x) if hash(type(x)) in self.pktchoices: imp, exp = self.pktchoices[hash(type(x))] s = BER_tagging_enc(s, implicit_tag=imp, explicit_tag=exp) return BER_tagging_enc(s, explicit_tag=self.explicit_tag) def randval(self): randchoices = [] for p in six.itervalues(self.choices): if hasattr(p, "ASN1_root"): # should be ASN1_Packet class randchoices.append(packet.fuzz(p())) elif hasattr(p, "ASN1_tag"): if isinstance(p, type): # should be (basic) ASN1F_field class # noqa: E501 randchoices.append(p("dummy", None).randval()) else: # should be ASN1F_PACKET instance randchoices.append(p.randval()) return RandChoice(*randchoices) class ASN1F_PACKET(ASN1F_field): holds_packets = 1 def __init__(self, name, default, cls, context=None, implicit_tag=None, explicit_tag=None): self.cls = cls ASN1F_field.__init__(self, name, None, context=context, implicit_tag=implicit_tag, explicit_tag=explicit_tag) # noqa: E501 if cls.ASN1_root.ASN1_tag == ASN1_Class_UNIVERSAL.SEQUENCE: if implicit_tag is None and explicit_tag is None: self.network_tag = 16 | 0x20 self.default = default def m2i(self, pkt, s): diff_tag, s = BER_tagging_dec(s, hidden_tag=self.cls.ASN1_root.ASN1_tag, # noqa: E501 implicit_tag=self.implicit_tag, explicit_tag=self.explicit_tag, safe=self.flexible_tag) if diff_tag is not None: if self.implicit_tag is not None: self.implicit_tag = diff_tag elif self.explicit_tag is not None: self.explicit_tag = diff_tag p, s = self.extract_packet(self.cls, s) return p, s def i2m(self, pkt, x): if x is None: s = b"" else: s = raw(x) return BER_tagging_enc(s, implicit_tag=self.implicit_tag, explicit_tag=self.explicit_tag) def randval(self): return packet.fuzz(self.cls()) class ASN1F_BIT_STRING_ENCAPS(ASN1F_BIT_STRING): """ We may emulate simple string encapsulation with explicit_tag=0x04, but we need a specific class for bit strings because of unused bits, etc. """ holds_packets = 1 def __init__(self, name, default, cls, context=None, implicit_tag=None, explicit_tag=None): self.cls = cls ASN1F_BIT_STRING.__init__(self, name, None, context=context, implicit_tag=implicit_tag, explicit_tag=explicit_tag) self.default = default def m2i(self, pkt, s): bit_string, remain = ASN1F_BIT_STRING.m2i(self, pkt, s) if len(bit_string.val) % 8 != 0: raise BER_Decoding_Error("wrong bit string", remaining=s) p, s = self.extract_packet(self.cls, bit_string.val_readable) if len(s) > 0: raise BER_Decoding_Error("unexpected remainder", remaining=s) return p, remain def i2m(self, pkt, x): s = b"" if x is None else raw(x) s = b"".join(binrepr(orb(x)).zfill(8).encode("utf8") for x in s) return ASN1F_BIT_STRING.i2m(self, pkt, s) class ASN1F_FLAGS(ASN1F_BIT_STRING): def __init__(self, name, default, mapping, context=None, implicit_tag=None, explicit_tag=None): self.mapping = mapping ASN1F_BIT_STRING.__init__(self, name, default, default_readable=False, context=context, implicit_tag=implicit_tag, explicit_tag=explicit_tag) def get_flags(self, pkt): fbytes = getattr(pkt, self.name).val return [self.mapping[i] for i, positional in enumerate(fbytes) if positional == '1' and i < len(self.mapping)] def i2repr(self, pkt, x): if x is not None: pretty_s = ", ".join(self.get_flags(pkt)) return pretty_s + " " + repr(x) return repr(x)