PowerAnalyzer/.piolibdeps/eeprom_ID2284/eeprom.h
Carsten Schmiemann 0748877113 Update gitignore
2018-08-29 00:24:09 +02:00

561 lines
15 KiB
C++

#ifndef __EEPROM__H_
#define __EEPROM__H_
/***********************************************************
Author: Bernard Borredon
Date : 21 decembre 2015
Version: 1.3
- Correct write(uint32_t address, int8_t data[], uint32_t length) for eeprom >= T24C32.
Tested with 24C02, 24C08, 24C16, 24C64, 24C256, 24C512, 24C1025 on LPC1768 (mbed online and µVision V5.16a).
- Correct main test.
Date : 12 decembre 2013
Version: 1.2
- Update api documentation
Date: 11 december 2013
Version: 1.1
- Change address parameter size form uint16_t to uint32_t (error for eeprom > 24C256).
- Change size parameter size from uint16_t to uint32_t (error for eeprom > 24C256).
- Add EEPROM name as a private static const char array.
- Add function getName.
- Add a test program.
Date: 27 december 2011
Version: 1.0
************************************************************/
// Includes
#include <string>
#include "mbed.h"
// Example
/*
#include <string>
#include "mbed.h"
#include "eeprom.h"
#define EEPROM_ADDR 0x0 // I2c EEPROM address is 0x00
#define SDA p9 // I2C SDA pin
#define SCL p10 // I2C SCL pin
#define MIN(X,Y) ((X) < (Y) ? (X) : (Y))
#define MAX(X,Y) ((X) > (Y) ? (X) : (Y))
DigitalOut led2(LED2);
typedef struct _MyData {
int16_t sdata;
int32_t idata;
float fdata;
} MyData;
static void myerror(std::string msg)
{
printf("Error %s\n",msg.c_str());
exit(1);
}
void eeprom_test(void)
{
EEPROM ep(SDA,SCL,EEPROM_ADDR,EEPROM::T24C64); // 24C64 eeprom with sda = p9 and scl = p10
uint8_t data[256],data_r[256];
int8_t ival;
uint16_t s;
int16_t sdata,sdata_r;
int32_t ldata[1024];
int32_t eeprom_size,max_size;
uint32_t addr;
int32_t idata,idata_r;
uint32_t i,j,k,l,t,id;
float fdata,fdata_r;
MyData md,md_r;
eeprom_size = ep.getSize();
max_size = MIN(eeprom_size,256);
printf("Test EEPROM I2C model %s of %d bytes\n\n",ep.getName(),eeprom_size);
// Test sequential read byte (max_size first bytes)
for(i = 0;i < max_size;i++) {
ep.read(i,ival);
data_r[i] = ival;
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
}
printf("Test sequential read %d first bytes :\n",max_size);
for(i = 0;i < max_size/16;i++) {
for(j = 0;j < 16;j++) {
addr = i * 16 + j;
printf("%3d ",(uint8_t)data_r[addr]);
}
printf("\n");
}
// Test sequential read byte (max_size last bytes)
for(i = 0;i < max_size;i++) {
addr = eeprom_size - max_size + i;
ep.read(addr,ival);
data_r[i] = ival;
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
}
printf("\nTest sequential read %d last bytes :\n",max_size);
for(i = 0;i < max_size/16;i++) {
for(j = 0;j < 16;j++) {
addr = i * 16 + j;
printf("%3d ",(uint8_t)data_r[addr]);
}
printf("\n");
}
// Test write byte (max_size first bytes)
for(i = 0;i < max_size;i++)
data[i] = i;
for(i = 0;i < max_size;i++) {
ep.write(i,(int8_t)data[i]);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
}
// Test read byte (max_size first bytes)
for(i = 0;i < max_size;i++) {
ep.read(i,(int8_t&)ival);
data_r[i] = (uint8_t)ival;
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
}
printf("\nTest write and read %d first bytes :\n",max_size);
for(i = 0;i < max_size/16;i++) {
for(j = 0;j < 16;j++) {
addr = i * 16 + j;
printf("%3d ",(uint8_t)data_r[addr]);
}
printf("\n");
}
// Test current address read byte (max_size first bytes)
ep.read((uint32_t)0,(int8_t&)ival); // current address is 0
data_r[0] = (uint8_t)ival;
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
for(i = 1;i < max_size;i++) {
ep.read((int8_t&)ival);
data_r[i] = (uint8_t)ival;
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
}
printf("\nTest current address read %d first bytes :\n",max_size);
for(i = 0;i < max_size/16;i++) {
for(j = 0;j < 16;j++) {
addr = i * 16 + j;
printf("%3d ",(uint8_t)data_r[addr]);
}
printf("\n");
}
// Test sequential read byte (first max_size bytes)
ep.read((uint32_t)0,(int8_t *)data_r,(uint32_t) max_size);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
printf("\nTest sequential read %d first bytes :\n",max_size);
for(i = 0;i < max_size/16;i++) {
for(j = 0;j < 16;j++) {
addr = i * 16 + j;
printf("%3d ",(uint8_t)data_r[addr]);
}
printf("\n");
}
// Test write short, long, float
sdata = -15202;
addr = eeprom_size - 16;
ep.write(addr,(int16_t)sdata); // short write at address eeprom_size - 16
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
idata = 45123;
addr = eeprom_size - 12;
ep.write(addr,(int32_t)idata); // long write at address eeprom_size - 12
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
fdata = -12.26;
addr = eeprom_size - 8;
ep.write(addr,(float)fdata); // float write at address eeprom_size - 8
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
// Test read short, long, float
printf("\nTest write and read short (%d), long (%d), float (%f) :\n",
sdata,idata,fdata);
ep.read((uint32_t)(eeprom_size - 16),(int16_t&)sdata_r);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
printf("sdata %d\n",sdata_r);
ep.read((uint32_t)(eeprom_size - 12),(int32_t&)idata_r);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
printf("idata %d\n",idata_r);
ep.read((uint32_t)(eeprom_size - 8),fdata_r);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
printf("fdata %f\n",fdata_r);
// Test read and write a structure
md.sdata = -15203;
md.idata = 45124;
md.fdata = -12.27;
ep.write((uint32_t)(eeprom_size - 32),(void *)&md,sizeof(md)); // write a structure eeprom_size - 32
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
printf("\nTest write and read a structure (%d %d %f) :\n",md.sdata,md.idata,md.fdata);
ep.read((uint32_t)(eeprom_size - 32),(void *)&md_r,sizeof(md_r));
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
printf("md.sdata %d\n",md_r.sdata);
printf("md.idata %d\n",md_r.idata);
printf("md.fdata %f\n",md_r.fdata);
// Test read and write of an array of the first max_size bytes
for(i = 0;i < max_size;i++)
data[i] = max_size - i - 1;
ep.write((uint32_t)(0),data,(uint32_t)max_size);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
ep.read((uint32_t)(0),data_r,(uint32_t)max_size);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
printf("\nTest write and read an array of the first %d bytes :\n",max_size);
for(i = 0;i < max_size/16;i++) {
for(j = 0;j < 16;j++) {
addr = i * 16 + j;
printf("%3d ",(uint8_t)data_r[addr]);
}
printf("\n");
}
printf("\n");
// Test write and read an array of int32
s = eeprom_size / 4; // size of eeprom in int32
int ldata_size = sizeof(ldata) / 4; // size of data array in int32
l = s / ldata_size; // loop index
// size of read / write in bytes
t = eeprom_size;
if(t > ldata_size * 4)
t = ldata_size * 4;
printf("Test write and read an array of %d int32 (write entire memory) :\n",t/4);
// Write entire eeprom
if(l) {
for(k = 0;k < l;k++) {
for(i = 0;i < ldata_size;i++)
ldata[i] = ldata_size * k + i;
addr = k * ldata_size * 4;
ep.write(addr,(void *)ldata,t);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
}
printf("Write OK\n");
// Read entire eeprom
id = 0;
for(k = 0;k < l;k++) {
addr = k * ldata_size * 4;
ep.read(addr,(void *)ldata,t);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
// format outputs with 8 words rows
for(i = 0;i < ldata_size / 8;i++) {
id++;
printf("%4d ",id);
for(j = 0;j < 8;j++) {
addr = i * 8 + j;
printf("%5d ",ldata[addr]);
}
printf("\n");
}
}
}
else {
for(i = 0;i < s;i++)
ldata[i] = i;
addr = 0;
ep.write(addr,(void *)ldata,t);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
printf("Write OK\n");
// Read entire eeprom
id = 0;
addr = 0;
ep.read(addr,(void *)ldata,t);
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
// format outputs with 8 words rows
for(i = 0;i < s / 8;i++) {
id++;
printf("%4d ",id);
for(j = 0;j < 8;j++) {
addr = i * 8 + j;
printf("%5d ",ldata[addr]);
}
printf("\n");
}
}
// clear eeprom
printf("\nClear eeprom\n");
ep.clear();
if(ep.getError() != 0)
myerror(ep.getErrorMessage());
printf("End\n");
}
int main()
{
eeprom_test();
return(0);
}
*/
// Defines
#define EEPROM_Address 0xa0
#define EEPROM_NoError 0x00
#define EEPROM_BadAddress 0x01
#define EEPROM_I2cError 0x02
#define EEPROM_ParamError 0x03
#define EEPROM_OutOfRange 0x04
#define EEPROM_MallocError 0x05
#define EEPROM_MaxError 6
static std::string _ErrorMessageEEPROM[EEPROM_MaxError] = {
"",
"Bad chip address",
"I2C error (nack)",
"Invalid parameter",
"Data address out of range",
"Memory allocation error"
};
/** EEPROM Class
*/
class EEPROM {
public:
enum TypeEeprom {T24C01=128,T24C02=256,T24C04=512,T24C08=1024,T24C16=2048,
T24C32=4096,T24C64=8192,T24C128=16384,T24C256=32768,
T24C512=65536,T24C1024=131072,T24C1025=131073} Type;
/**
* Constructor, initialize the eeprom on i2c interface.
* @param sda sda i2c pin (PinName)
* @param scl scl i2c pin (PinName)
* @param address eeprom address, according to eeprom type (uint8_t)
* @param type eeprom type (TypeEeprom)
* @return none
*/
EEPROM(PinName sda, PinName scl, uint8_t address, TypeEeprom type);
/**
* Random read byte
* @param address start address (uint32_t)
* @param data byte to read (int8_t&)
* @return none
*/
void read(uint32_t address, int8_t& data);
/**
* Random read short
* @param address start address (uint32_t)
* @param data short to read (int16_t&)
* @return none
*/
void read(uint32_t address, int16_t& data);
/**
* Random read long
* @param address start address (uint32_t)
* @param data long to read (int32_t&)
* @return none
*/
void read(uint32_t address, int32_t& data);
/**
* Random read float
* @param address start address (uint32_t)
* @param data float to read (float&)
* @return none
*/
void read(uint32_t address, float& data);
/**
* Random read anything
* @param address start address (uint32_t)
* @param data data to read (void *)
* @param size number of bytes to read (uint32_t)
* @return none
*/
void read(uint32_t address, void *data, uint32_t size);
/**
* Current address read byte
* @param data byte to read (int8_t&)
* @return none
*/
void read(int8_t& data);
/**
* Sequential read byte
* @param address start address (uint32_t)
* @param data bytes array to read (int8_t[]&)
* @param size number of bytes to read (uint32_t)
* @return none
*/
void read(uint32_t address, int8_t *data, uint32_t size);
/**
* Write byte
* @param address start address (uint32_t)
* @param data byte to write (int8_t)
* @return none
*/
void write(uint32_t address, int8_t data);
/**
* Write short
* @param address start address (uint32_t)
* @param data short to write (int16_t)
* @return none
*/
void write(uint32_t address, int16_t data);
/**
* Write long
* @param address start address (uint32_t)
* @param data long to write (int32_t)
* @return none
*/
void write(uint32_t address, int32_t data);
/**
* Write float
* @param address start address (uint32_t)
* @param data float to write (float)
* @return none
*/
void write(uint32_t address, float data);
/**
* Write anything (use the page write mode)
* @param address start address (uint32_t)
* @param data data to write (void *)
* @param size number of bytes to write (uint32_t)
* @return none
*/
void write(uint32_t address, void *data, uint32_t size);
/**
* Write array of bytes (use the page mode)
* @param address start address (uint32_t)
* @param data bytes array to write (int8_t[])
* @param size number of bytes to write (uint32_t)
* @return none
*/
void write(uint32_t address, int8_t data[], uint32_t size);
/**
* Wait eeprom ready
* @param none
* @return none
*/
void ready(void);
/**
* Get eeprom size in bytes
* @param none
* @return size in bytes (uint32_t)
*/
uint32_t getSize(void);
/**
* Get eeprom name
* @param none
* @return name (const char*)
*/
const char* getName(void);
/**
* Clear eeprom (write with 0)
* @param none
* @return none
*/
void clear(void);
/**
* Get the current error number (EEPROM_NoError if no error)
* @param none
* @return none
*/
uint8_t getError(void);
/**
* Get current error message
* @param none
* @return current error message(std::string)
*/
std::string getErrorMessage(void)
{
return(_ErrorMessageEEPROM[_errnum]);
}
//---------- local variables ----------
private:
I2C _i2c; // Local i2c communication interface instance
int _address; // Local i2c address
uint8_t _errnum; // Error number
TypeEeprom _type; // EEPROM type
uint8_t _page_write; // Page write size
uint8_t _page_number; // Number of page
uint32_t _size; // Size in bytes
bool checkAddress(uint32_t address); // Check address range
static const char * const _name[]; // eeprom name
//-------------------------------------
};
#endif