OVMS3/OVMS.V3/components/wolfssl/src/ssl.c

53623 lines
1.5 MiB

/* ssl.c
*
* Copyright (C) 2006-2020 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#if defined(OPENSSL_EXTRA) && !defined(_WIN32)
/* turn on GNU extensions for XVASPRINTF with wolfSSL_BIO_printf */
#undef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#if !defined(WOLFCRYPT_ONLY) || defined(OPENSSL_EXTRA) || \
defined(OPENSSL_EXTRA_X509_SMALL)
#include <wolfssl/internal.h>
#include <wolfssl/error-ssl.h>
#include <wolfssl/wolfcrypt/coding.h>
#ifdef NO_INLINE
#include <wolfssl/wolfcrypt/misc.h>
#else
#define WOLFSSL_MISC_INCLUDED
#include <wolfcrypt/src/misc.c>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#if !defined(WOLFSSL_ALLOW_NO_SUITES) && !defined(WOLFCRYPT_ONLY)
#if defined(NO_DH) && !defined(HAVE_ECC) && !defined(WOLFSSL_STATIC_RSA) \
&& !defined(WOLFSSL_STATIC_DH) && !defined(WOLFSSL_STATIC_PSK) \
&& !defined(HAVE_CURVE25519) && !defined(HAVE_CURVE448)
#error "No cipher suites defined because DH disabled, ECC disabled, and no static suites defined. Please see top of README"
#endif
#ifdef WOLFSSL_CERT_GEN
/* need access to Cert struct for creating certificate */
#include <wolfssl/wolfcrypt/asn_public.h>
#endif
#endif
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \
defined(HAVE_WEBSERVER) || defined(WOLFSSL_KEY_GEN)
#include <wolfssl/openssl/evp.h>
/* openssl headers end, wolfssl internal headers next */
#endif
#include <wolfssl/wolfcrypt/wc_encrypt.h>
#ifndef NO_RSA
#include <wolfssl/wolfcrypt/rsa.h>
#endif
#ifdef OPENSSL_EXTRA
/* openssl headers begin */
#include <wolfssl/openssl/aes.h>
#include <wolfssl/openssl/hmac.h>
#include <wolfssl/openssl/crypto.h>
#include <wolfssl/openssl/des.h>
#include <wolfssl/openssl/bn.h>
#include <wolfssl/openssl/buffer.h>
#include <wolfssl/openssl/dh.h>
#include <wolfssl/openssl/rsa.h>
#include <wolfssl/openssl/pem.h>
#include <wolfssl/openssl/ec.h>
#include <wolfssl/openssl/ec25519.h>
#include <wolfssl/openssl/ed25519.h>
#include <wolfssl/openssl/ec448.h>
#include <wolfssl/openssl/ed448.h>
#include <wolfssl/openssl/ecdsa.h>
#include <wolfssl/openssl/ecdh.h>
#include <wolfssl/openssl/err.h>
#include <wolfssl/openssl/opensslv.h>
#include <wolfssl/openssl/rc4.h>
#include <wolfssl/openssl/stack.h>
#include <wolfssl/openssl/x509_vfy.h>
/* openssl headers end, wolfssl internal headers next */
#include <wolfssl/wolfcrypt/hmac.h>
#include <wolfssl/wolfcrypt/random.h>
#include <wolfssl/wolfcrypt/des3.h>
#include <wolfssl/wolfcrypt/ecc.h>
#include <wolfssl/wolfcrypt/md4.h>
#include <wolfssl/wolfcrypt/md5.h>
#include <wolfssl/wolfcrypt/arc4.h>
#include <wolfssl/wolfcrypt/idea.h>
#include <wolfssl/wolfcrypt/curve25519.h>
#include <wolfssl/wolfcrypt/ed25519.h>
#include <wolfssl/wolfcrypt/curve448.h>
#if defined(OPENSSL_ALL) || defined(HAVE_STUNNEL)
#include <wolfssl/openssl/ocsp.h>
#include <wolfssl/openssl/lhash.h>
#include <wolfssl/openssl/txt_db.h>
#endif /* WITH_STUNNEL */
#if defined(WOLFSSL_SHA512) || defined(WOLFSSL_SHA384)
#include <wolfssl/wolfcrypt/sha512.h>
#endif
#if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \
&& !defined(WC_NO_RNG)
#include <wolfssl/wolfcrypt/srp.h>
#endif
#if defined(HAVE_FIPS) || defined(HAVE_SELFTEST)
#include <wolfssl/wolfcrypt/pkcs7.h>
#endif
#if defined(OPENSSL_ALL) && defined(HAVE_PKCS7)
#include <wolfssl/openssl/pkcs7.h>
#endif /* OPENSSL_ALL && HAVE_PKCS7 */
#endif
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
#include <wolfssl/openssl/x509v3.h>
int SetIndividualInternal(WOLFSSL_BIGNUM* bn, mp_int* mpi);
int SetIndividualExternal(WOLFSSL_BIGNUM** bn, mp_int* mpi);
int oid2nid(word32 oid, int grp);
word32 nid2oid(int nid, int grp);
#endif
#if defined(WOLFSSL_QT)
#include <wolfssl/wolfcrypt/sha.h>
#endif
#ifdef NO_ASN
#include <wolfssl/wolfcrypt/dh.h>
#endif
#endif /* !WOLFCRYPT_ONLY || OPENSSL_EXTRA */
#define WOLFSSL_EVP_INCLUDED
#include "wolfcrypt/src/evp.c"
#ifndef WOLFCRYPT_ONLY
#ifdef OPENSSL_EXTRA
/* Global pointer to constant BN on */
static WOLFSSL_BIGNUM* bn_one = NULL;
#endif
#if defined(OPENSSL_EXTRA) && defined(HAVE_ECC)
const WOLF_EC_NIST_NAME kNistCurves[] = {
{XSTR_SIZEOF("P-192"), "P-192", NID_X9_62_prime192v1},
{XSTR_SIZEOF("P-256"), "P-256", NID_X9_62_prime256v1},
{XSTR_SIZEOF("P-112"), "P-112", NID_secp112r1},
{XSTR_SIZEOF("P-112-2"), "P-112-2", NID_secp112r2},
{XSTR_SIZEOF("P-128"), "P-128", NID_secp128r1},
{XSTR_SIZEOF("P-128-2"), "P-128-2", NID_secp128r2},
{XSTR_SIZEOF("P-160"), "P-160", NID_secp160r1},
{XSTR_SIZEOF("P-160-2"), "P-160-2", NID_secp160r2},
{XSTR_SIZEOF("P-224"), "P-224", NID_secp224r1},
{XSTR_SIZEOF("P-384"), "P-384", NID_secp384r1},
{XSTR_SIZEOF("P-521"), "P-521", NID_secp521r1},
{XSTR_SIZEOF("K-160"), "K-160", NID_secp160k1},
{XSTR_SIZEOF("K-192"), "K-192", NID_secp192k1},
{XSTR_SIZEOF("K-224"), "K-224", NID_secp224k1},
{XSTR_SIZEOF("K-256"), "K-256", NID_secp256k1},
{XSTR_SIZEOF("B-160"), "B-160", NID_brainpoolP160r1},
{XSTR_SIZEOF("B-192"), "B-192", NID_brainpoolP192r1},
{XSTR_SIZEOF("B-224"), "B-224", NID_brainpoolP224r1},
{XSTR_SIZEOF("B-256"), "B-256", NID_brainpoolP256r1},
{XSTR_SIZEOF("B-320"), "B-320", NID_brainpoolP320r1},
{XSTR_SIZEOF("B-384"), "B-384", NID_brainpoolP384r1},
{XSTR_SIZEOF("B-512"), "B-512", NID_brainpoolP512r1},
{0, NULL, 0},
};
#endif
#if defined(WOLFSSL_RENESAS_TSIP_TLS)
/* for root ca verification */
int tsip_tls_RootCertVerify(const byte *cert, word32 cert_len,
word32 key_n_start, word32 key_n_len,
word32 key_e_start, word32 key_e_len,
word32 cm_row);
byte tsip_rootCAverified( );
#endif
#ifdef WOLFSSL_SESSION_EXPORT
#ifdef WOLFSSL_DTLS
int wolfSSL_dtls_import(WOLFSSL* ssl, const unsigned char* buf, unsigned int sz)
{
WOLFSSL_ENTER("wolfSSL_session_import");
if (ssl == NULL || buf == NULL) {
return BAD_FUNC_ARG;
}
/* sanity checks on buffer and protocol are done in internal function */
return wolfSSL_dtls_import_internal(ssl, buf, sz);
}
/* Sets the function to call for serializing the session. This function is
* called right after the handshake is completed. */
int wolfSSL_CTX_dtls_set_export(WOLFSSL_CTX* ctx, wc_dtls_export func)
{
WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_export");
/* purposefully allow func to be NULL */
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
ctx->dtls_export = func;
return WOLFSSL_SUCCESS;
}
/* Sets the function in WOLFSSL struct to call for serializing the session. This
* function is called right after the handshake is completed. */
int wolfSSL_dtls_set_export(WOLFSSL* ssl, wc_dtls_export func)
{
WOLFSSL_ENTER("wolfSSL_dtls_set_export");
/* purposefully allow func to be NULL */
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ssl->dtls_export = func;
return WOLFSSL_SUCCESS;
}
/* This function allows for directly serializing a session rather than using
* callbacks. It has less overhead by removing a temporary buffer and gives
* control over when the session gets serialized. When using callbacks the
* session is always serialized immediately after the handshake is finished.
*
* buf is the argument to contain the serialized session
* sz is the size of the buffer passed in
* ssl is the WOLFSSL struct to serialize
* returns the size of serialized session on success, 0 on no action, and
* negative value on error */
int wolfSSL_dtls_export(WOLFSSL* ssl, unsigned char* buf, unsigned int* sz)
{
WOLFSSL_ENTER("wolfSSL_dtls_export");
if (ssl == NULL || sz == NULL) {
return BAD_FUNC_ARG;
}
if (buf == NULL) {
*sz = MAX_EXPORT_BUFFER;
return 0;
}
/* if not DTLS do nothing */
if (!ssl->options.dtls) {
WOLFSSL_MSG("Currently only DTLS export is supported");
return 0;
}
/* copy over keys, options, and dtls state struct */
return wolfSSL_dtls_export_internal(ssl, buf, *sz);
}
/* This function is similar to wolfSSL_dtls_export but only exports the portion
* of the WOLFSSL structure related to the state of the connection, i.e. peer
* sequence number, epoch, AEAD state etc.
*
* buf is the argument to contain the serialized state, if null then set "sz" to
* buffer size required
* sz is the size of the buffer passed in
* ssl is the WOLFSSL struct to serialize
* returns the size of serialized session on success, 0 on no action, and
* negative value on error */
int wolfSSL_dtls_export_state_only(WOLFSSL* ssl, unsigned char* buf,
unsigned int* sz)
{
WOLFSSL_ENTER("wolfSSL_dtls_export_state_only");
if (ssl == NULL || sz == NULL) {
return BAD_FUNC_ARG;
}
if (buf == NULL) {
*sz = MAX_EXPORT_STATE_BUFFER;
return 0;
}
/* if not DTLS do nothing */
if (!ssl->options.dtls) {
WOLFSSL_MSG("Currently only DTLS export state is supported");
return 0;
}
/* copy over keys, options, and dtls state struct */
return wolfSSL_dtls_export_state_internal(ssl, buf, *sz);
}
/* returns 0 on success */
int wolfSSL_send_session(WOLFSSL* ssl)
{
int ret;
byte* buf;
word16 bufSz = MAX_EXPORT_BUFFER;
WOLFSSL_ENTER("wolfSSL_send_session");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
buf = (byte*)XMALLOC(bufSz, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
return MEMORY_E;
}
/* if not DTLS do nothing */
if (!ssl->options.dtls) {
XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
WOLFSSL_MSG("Currently only DTLS export is supported");
return 0;
}
/* copy over keys, options, and dtls state struct */
ret = wolfSSL_dtls_export_internal(ssl, buf, bufSz);
if (ret < 0) {
XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
/* if no error ret has size of buffer */
ret = ssl->dtls_export(ssl, buf, ret, NULL);
if (ret != WOLFSSL_SUCCESS) {
XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
XFREE(buf, ssl->heap, DYNAMIC_TYPE_TMP_BUFFER);
return 0;
}
#endif /* WOLFSSL_DTLS */
#endif /* WOLFSSL_SESSION_EXPORT */
/* prevent multiple mutex initializations */
static volatile WOLFSSL_GLOBAL int initRefCount = 0;
static WOLFSSL_GLOBAL wolfSSL_Mutex count_mutex; /* init ref count mutex */
/* Create a new WOLFSSL_CTX struct and return the pointer to created struct.
WOLFSSL_METHOD pointer passed in is given to ctx to manage.
This function frees the passed in WOLFSSL_METHOD struct on failure and on
success is freed when ctx is freed.
*/
WOLFSSL_CTX* wolfSSL_CTX_new_ex(WOLFSSL_METHOD* method, void* heap)
{
WOLFSSL_CTX* ctx = NULL;
WOLFSSL_ENTER("wolfSSL_CTX_new_ex");
if (initRefCount == 0) {
/* user no longer forced to call Init themselves */
int ret = wolfSSL_Init();
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_Init failed");
WOLFSSL_LEAVE("WOLFSSL_CTX_new", 0);
if (method != NULL) {
XFREE(method, heap, DYNAMIC_TYPE_METHOD);
}
return NULL;
}
}
if (method == NULL)
return ctx;
ctx = (WOLFSSL_CTX*) XMALLOC(sizeof(WOLFSSL_CTX), heap, DYNAMIC_TYPE_CTX);
if (ctx) {
int ret;
ret = InitSSL_Ctx(ctx, method, heap);
#ifdef WOLFSSL_STATIC_MEMORY
if (heap != NULL) {
ctx->onHeap = 1; /* free the memory back to heap when done */
}
#endif
if (ret < 0) {
WOLFSSL_MSG("Init CTX failed");
wolfSSL_CTX_free(ctx);
ctx = NULL;
}
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \
&& !defined(NO_SHA256) && !defined(WC_NO_RNG)
else {
ctx->srp = (Srp*)XMALLOC(sizeof(Srp), heap, DYNAMIC_TYPE_SRP);
if (ctx->srp == NULL){
WOLFSSL_MSG("Init CTX failed");
wolfSSL_CTX_free(ctx);
return NULL;
}
XMEMSET(ctx->srp, 0, sizeof(Srp));
}
#endif
}
else {
WOLFSSL_MSG("Alloc CTX failed, method freed");
XFREE(method, heap, DYNAMIC_TYPE_METHOD);
}
WOLFSSL_LEAVE("WOLFSSL_CTX_new", 0);
return ctx;
}
WOLFSSL_ABI
WOLFSSL_CTX* wolfSSL_CTX_new(WOLFSSL_METHOD* method)
{
#ifdef WOLFSSL_HEAP_TEST
/* if testing the heap hint then set top level CTX to have test value */
return wolfSSL_CTX_new_ex(method, (void*)WOLFSSL_HEAP_TEST);
#else
return wolfSSL_CTX_new_ex(method, NULL);
#endif
}
#ifdef OPENSSL_EXTRA
/* increases CTX reference count to track proper time to "free" */
int wolfSSL_CTX_up_ref(WOLFSSL_CTX* ctx)
{
int refCount = SSL_CTX_RefCount(ctx, 1);
return ((refCount > 1) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE);
}
#endif
WOLFSSL_ABI
void wolfSSL_CTX_free(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("SSL_CTX_free");
if (ctx) {
#if defined(OPENSSL_EXTRA) && defined(WOLFCRYPT_HAVE_SRP) \
&& !defined(NO_SHA256) && !defined(WC_NO_RNG)
if (ctx->srp != NULL) {
if (ctx->srp_password != NULL){
XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp_password = NULL;
}
wc_SrpTerm(ctx->srp);
XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp = NULL;
}
#endif
FreeSSL_Ctx(ctx);
}
WOLFSSL_LEAVE("SSL_CTX_free", 0);
}
#ifdef HAVE_ENCRYPT_THEN_MAC
/**
* Sets whether Encrypt-Then-MAC extension can be negotiated against context.
* The default value: enabled.
*
* ctx SSL/TLS context.
* set Whether to allow or not: 1 is allow and 0 is disallow.
* returns WOLFSSL_SUCCESS
*/
int wolfSSL_CTX_AllowEncryptThenMac(WOLFSSL_CTX *ctx, int set)
{
ctx->disallowEncThenMac = !set;
return WOLFSSL_SUCCESS;
}
/**
* Sets whether Encrypt-Then-MAC extension can be negotiated against context.
* The default value comes from context.
*
* ctx SSL/TLS context.
* set Whether to allow or not: 1 is allow and 0 is disallow.
* returns WOLFSSL_SUCCESS
*/
int wolfSSL_AllowEncryptThenMac(WOLFSSL *ssl, int set)
{
ssl->options.disallowEncThenMac = !set;
return WOLFSSL_SUCCESS;
}
#endif
#ifdef SINGLE_THREADED
/* no locking in single threaded mode, allow a CTX level rng to be shared with
* WOLFSSL objects, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_new_rng(WOLFSSL_CTX* ctx)
{
WC_RNG* rng;
int ret;
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), ctx->heap, DYNAMIC_TYPE_RNG);
if (rng == NULL) {
return MEMORY_E;
}
#ifndef HAVE_FIPS
ret = wc_InitRng_ex(rng, ctx->heap, ctx->devId);
#else
ret = wc_InitRng(rng);
#endif
if (ret != 0) {
XFREE(rng, ctx->heap, DYNAMIC_TYPE_RNG);
return ret;
}
ctx->rng = rng;
return WOLFSSL_SUCCESS;
}
#endif
WOLFSSL_ABI
WOLFSSL* wolfSSL_new(WOLFSSL_CTX* ctx)
{
WOLFSSL* ssl = NULL;
int ret = 0;
(void)ret;
WOLFSSL_ENTER("SSL_new");
if (ctx == NULL)
return ssl;
ssl = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ctx->heap, DYNAMIC_TYPE_SSL);
if (ssl)
if ( (ret = InitSSL(ssl, ctx, 0)) < 0) {
FreeSSL(ssl, ctx->heap);
ssl = 0;
}
WOLFSSL_LEAVE("SSL_new", ret);
return ssl;
}
WOLFSSL_ABI
void wolfSSL_free(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_free");
if (ssl)
FreeSSL(ssl, ssl->ctx->heap);
WOLFSSL_LEAVE("SSL_free", 0);
}
int wolfSSL_is_server(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->options.side == WOLFSSL_SERVER_END;
}
#ifdef HAVE_WRITE_DUP
/*
* Release resources around WriteDup object
*
* ssl WOLFSSL object
*
* no return, destruction so make best attempt
*/
void FreeWriteDup(WOLFSSL* ssl)
{
int doFree = 0;
WOLFSSL_ENTER("FreeWriteDup");
if (ssl->dupWrite) {
if (wc_LockMutex(&ssl->dupWrite->dupMutex) == 0) {
ssl->dupWrite->dupCount--;
if (ssl->dupWrite->dupCount == 0) {
doFree = 1;
} else {
WOLFSSL_MSG("WriteDup count not zero, no full free");
}
wc_UnLockMutex(&ssl->dupWrite->dupMutex);
}
}
if (doFree) {
WOLFSSL_MSG("Doing WriteDup full free, count to zero");
wc_FreeMutex(&ssl->dupWrite->dupMutex);
XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP);
}
}
/*
* duplicate existing ssl members into dup needed for writing
*
* dup write only WOLFSSL
* ssl existing WOLFSSL
*
* 0 on success
*/
static int DupSSL(WOLFSSL* dup, WOLFSSL* ssl)
{
/* shared dupWrite setup */
ssl->dupWrite = (WriteDup*)XMALLOC(sizeof(WriteDup), ssl->heap,
DYNAMIC_TYPE_WRITEDUP);
if (ssl->dupWrite == NULL) {
return MEMORY_E;
}
XMEMSET(ssl->dupWrite, 0, sizeof(WriteDup));
if (wc_InitMutex(&ssl->dupWrite->dupMutex) != 0) {
XFREE(ssl->dupWrite, ssl->heap, DYNAMIC_TYPE_WRITEDUP);
ssl->dupWrite = NULL;
return BAD_MUTEX_E;
}
ssl->dupWrite->dupCount = 2; /* both sides have a count to start */
dup->dupWrite = ssl->dupWrite; /* each side uses */
/* copy write parts over to dup writer */
XMEMCPY(&dup->specs, &ssl->specs, sizeof(CipherSpecs));
XMEMCPY(&dup->options, &ssl->options, sizeof(Options));
XMEMCPY(&dup->keys, &ssl->keys, sizeof(Keys));
XMEMCPY(&dup->encrypt, &ssl->encrypt, sizeof(Ciphers));
/* dup side now owns encrypt/write ciphers */
XMEMSET(&ssl->encrypt, 0, sizeof(Ciphers));
dup->IOCB_WriteCtx = ssl->IOCB_WriteCtx;
dup->wfd = ssl->wfd;
dup->wflags = ssl->wflags;
dup->hmac = ssl->hmac;
#ifdef HAVE_TRUNCATED_HMAC
dup->truncated_hmac = ssl->truncated_hmac;
#endif
/* unique side dup setup */
dup->dupSide = WRITE_DUP_SIDE;
ssl->dupSide = READ_DUP_SIDE;
return 0;
}
/*
* duplicate a WOLFSSL object post handshake for writing only
* turn existing object into read only. Allows concurrent access from two
* different threads.
*
* ssl existing WOLFSSL object
*
* return dup'd WOLFSSL object on success
*/
WOLFSSL* wolfSSL_write_dup(WOLFSSL* ssl)
{
WOLFSSL* dup = NULL;
int ret = 0;
(void)ret;
WOLFSSL_ENTER("wolfSSL_write_dup");
if (ssl == NULL) {
return ssl;
}
if (ssl->options.handShakeDone == 0) {
WOLFSSL_MSG("wolfSSL_write_dup called before handshake complete");
return NULL;
}
if (ssl->dupWrite) {
WOLFSSL_MSG("wolfSSL_write_dup already called once");
return NULL;
}
dup = (WOLFSSL*) XMALLOC(sizeof(WOLFSSL), ssl->ctx->heap, DYNAMIC_TYPE_SSL);
if (dup) {
if ( (ret = InitSSL(dup, ssl->ctx, 1)) < 0) {
FreeSSL(dup, ssl->ctx->heap);
dup = NULL;
} else if ( (ret = DupSSL(dup, ssl)) < 0) {
FreeSSL(dup, ssl->ctx->heap);
dup = NULL;
}
}
WOLFSSL_LEAVE("wolfSSL_write_dup", ret);
return dup;
}
/*
* Notify write dup side of fatal error or close notify
*
* ssl WOLFSSL object
* err Notify err
*
* 0 on success
*/
int NotifyWriteSide(WOLFSSL* ssl, int err)
{
int ret;
WOLFSSL_ENTER("NotifyWriteSide");
ret = wc_LockMutex(&ssl->dupWrite->dupMutex);
if (ret == 0) {
ssl->dupWrite->dupErr = err;
ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex);
}
return ret;
}
#endif /* HAVE_WRITE_DUP */
#ifdef HAVE_POLY1305
/* set if to use old poly 1 for yes 0 to use new poly */
int wolfSSL_use_old_poly(WOLFSSL* ssl, int value)
{
(void)ssl;
(void)value;
#ifndef WOLFSSL_NO_TLS12
WOLFSSL_ENTER("SSL_use_old_poly");
WOLFSSL_MSG("Warning SSL connection auto detects old/new and this function"
"is depreciated");
ssl->options.oldPoly = (word16)value;
WOLFSSL_LEAVE("SSL_use_old_poly", 0);
#endif
return 0;
}
#endif
WOLFSSL_ABI
int wolfSSL_set_fd(WOLFSSL* ssl, int fd)
{
int ret;
WOLFSSL_ENTER("SSL_set_fd");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ret = wolfSSL_set_read_fd(ssl, fd);
if (ret == WOLFSSL_SUCCESS) {
ret = wolfSSL_set_write_fd(ssl, fd);
}
return ret;
}
int wolfSSL_set_read_fd(WOLFSSL* ssl, int fd)
{
WOLFSSL_ENTER("SSL_set_read_fd");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ssl->rfd = fd; /* not used directly to allow IO callbacks */
ssl->IOCB_ReadCtx = &ssl->rfd;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
ssl->IOCB_ReadCtx = &ssl->buffers.dtlsCtx;
ssl->buffers.dtlsCtx.rfd = fd;
}
#endif
WOLFSSL_LEAVE("SSL_set_read_fd", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_write_fd(WOLFSSL* ssl, int fd)
{
WOLFSSL_ENTER("SSL_set_write_fd");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ssl->wfd = fd; /* not used directly to allow IO callbacks */
ssl->IOCB_WriteCtx = &ssl->wfd;
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
ssl->IOCB_WriteCtx = &ssl->buffers.dtlsCtx;
ssl->buffers.dtlsCtx.wfd = fd;
}
#endif
WOLFSSL_LEAVE("SSL_set_write_fd", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
/**
* Get the name of cipher at priority level passed in.
*/
char* wolfSSL_get_cipher_list(int priority)
{
const CipherSuiteInfo* ciphers = GetCipherNames();
if (priority >= GetCipherNamesSize() || priority < 0) {
return 0;
}
return (char*)ciphers[priority].name;
}
/**
* Get the name of cipher at priority level passed in.
*/
char* wolfSSL_get_cipher_list_ex(WOLFSSL* ssl, int priority)
{
if (ssl == NULL) {
return NULL;
}
else {
const char* cipher;
if ((cipher = wolfSSL_get_cipher_name_internal(ssl)) != NULL) {
if (priority == 0) {
return (char*)cipher;
}
else {
return NULL;
}
}
else {
return wolfSSL_get_cipher_list(priority);
}
}
}
int wolfSSL_get_ciphers(char* buf, int len)
{
const CipherSuiteInfo* ciphers = GetCipherNames();
int ciphersSz = GetCipherNamesSize();
int i;
int cipherNameSz;
if (buf == NULL || len <= 0)
return BAD_FUNC_ARG;
/* Add each member to the buffer delimited by a : */
for (i = 0; i < ciphersSz; i++) {
cipherNameSz = (int)XSTRLEN(ciphers[i].name);
if (cipherNameSz + 1 < len) {
XSTRNCPY(buf, ciphers[i].name, len);
buf += cipherNameSz;
if (i < ciphersSz - 1)
*buf++ = ':';
*buf = 0;
len -= cipherNameSz + 1;
}
else
return BUFFER_E;
}
return WOLFSSL_SUCCESS;
}
#ifndef NO_ERROR_STRINGS
/* places a list of all supported cipher suites in TLS_* format into "buf"
* return WOLFSSL_SUCCESS on success */
int wolfSSL_get_ciphers_iana(char* buf, int len)
{
const CipherSuiteInfo* ciphers = GetCipherNames();
int ciphersSz = GetCipherNamesSize();
int i;
int cipherNameSz;
if (buf == NULL || len <= 0)
return BAD_FUNC_ARG;
/* Add each member to the buffer delimited by a : */
for (i = 0; i < ciphersSz; i++) {
#ifndef NO_CIPHER_SUITE_ALIASES
if (ciphers[i].flags & WOLFSSL_CIPHER_SUITE_FLAG_NAMEALIAS)
continue;
#endif
cipherNameSz = (int)XSTRLEN(ciphers[i].name_iana);
if (cipherNameSz + 1 < len) {
XSTRNCPY(buf, ciphers[i].name_iana, len);
buf += cipherNameSz;
if (i < ciphersSz - 1)
*buf++ = ':';
*buf = 0;
len -= cipherNameSz + 1;
}
else
return BUFFER_E;
}
return WOLFSSL_SUCCESS;
}
#endif /* NO_ERROR_STRINGS */
const char* wolfSSL_get_shared_ciphers(WOLFSSL* ssl, char* buf, int len)
{
const char* cipher;
if (ssl == NULL)
return NULL;
cipher = wolfSSL_get_cipher_name_iana(ssl);
len = min(len, (int)(XSTRLEN(cipher) + 1));
XMEMCPY(buf, cipher, len);
return buf;
}
int wolfSSL_get_fd(const WOLFSSL* ssl)
{
int fd = -1;
WOLFSSL_ENTER("SSL_get_fd");
if (ssl) {
fd = ssl->rfd;
}
WOLFSSL_LEAVE("SSL_get_fd", fd);
return fd;
}
int wolfSSL_dtls(WOLFSSL* ssl)
{
int dtlsOpt = 0;
if (ssl)
dtlsOpt = ssl->options.dtls;
return dtlsOpt;
}
#if !defined(NO_CERTS)
/* Set whether mutual authentication is required for connections.
* Server side only.
*
* ctx The SSL/TLS CTX object.
* req 1 to indicate required and 0 when not.
* returns BAD_FUNC_ARG when ctx is NULL, SIDE_ERROR when not a server and
* 0 on success.
*/
int wolfSSL_CTX_mutual_auth(WOLFSSL_CTX* ctx, int req)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
if (ctx->method->side == WOLFSSL_CLIENT_END)
return SIDE_ERROR;
ctx->mutualAuth = (byte)req;
return 0;
}
/* Set whether mutual authentication is required for the connection.
* Server side only.
*
* ssl The SSL/TLS object.
* req 1 to indicate required and 0 when not.
* returns BAD_FUNC_ARG when ssl is NULL, or not using TLS v1.3,
* SIDE_ERROR when not a client and 0 on success.
*/
int wolfSSL_mutual_auth(WOLFSSL* ssl, int req)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.side == WOLFSSL_SERVER_END)
return SIDE_ERROR;
ssl->options.mutualAuth = (word16)req;
return 0;
}
#endif /* NO_CERTS */
#ifndef WOLFSSL_LEANPSK
int wolfSSL_dtls_set_peer(WOLFSSL* ssl, void* peer, unsigned int peerSz)
{
#ifdef WOLFSSL_DTLS
void* sa;
if (ssl == NULL)
return WOLFSSL_FAILURE;
sa = (void*)XMALLOC(peerSz, ssl->heap, DYNAMIC_TYPE_SOCKADDR);
if (sa != NULL) {
if (ssl->buffers.dtlsCtx.peer.sa != NULL) {
XFREE(ssl->buffers.dtlsCtx.peer.sa,ssl->heap,DYNAMIC_TYPE_SOCKADDR);
ssl->buffers.dtlsCtx.peer.sa = NULL;
}
XMEMCPY(sa, peer, peerSz);
ssl->buffers.dtlsCtx.peer.sa = sa;
ssl->buffers.dtlsCtx.peer.sz = peerSz;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
#else
(void)ssl;
(void)peer;
(void)peerSz;
return WOLFSSL_NOT_IMPLEMENTED;
#endif
}
int wolfSSL_dtls_get_peer(WOLFSSL* ssl, void* peer, unsigned int* peerSz)
{
#ifdef WOLFSSL_DTLS
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
if (peer != NULL && peerSz != NULL
&& *peerSz >= ssl->buffers.dtlsCtx.peer.sz
&& ssl->buffers.dtlsCtx.peer.sa != NULL) {
*peerSz = ssl->buffers.dtlsCtx.peer.sz;
XMEMCPY(peer, ssl->buffers.dtlsCtx.peer.sa, *peerSz);
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
#else
(void)ssl;
(void)peer;
(void)peerSz;
return WOLFSSL_NOT_IMPLEMENTED;
#endif
}
#if defined(WOLFSSL_SCTP) && defined(WOLFSSL_DTLS)
int wolfSSL_CTX_dtls_set_sctp(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_dtls_set_sctp()");
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->dtlsSctp = 1;
return WOLFSSL_SUCCESS;
}
int wolfSSL_dtls_set_sctp(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_dtls_set_sctp()");
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.dtlsSctp = 1;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS && WOLFSSL_SCTP */
#if (defined(WOLFSSL_SCTP) || defined(WOLFSSL_DTLS_MTU)) && \
defined(WOLFSSL_DTLS)
int wolfSSL_CTX_dtls_set_mtu(WOLFSSL_CTX* ctx, word16 newMtu)
{
if (ctx == NULL || newMtu > MAX_RECORD_SIZE)
return BAD_FUNC_ARG;
ctx->dtlsMtuSz = newMtu;
return WOLFSSL_SUCCESS;
}
int wolfSSL_dtls_set_mtu(WOLFSSL* ssl, word16 newMtu)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (newMtu > MAX_RECORD_SIZE) {
ssl->error = BAD_FUNC_ARG;
return WOLFSSL_FAILURE;
}
ssl->dtlsMtuSz = newMtu;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS && (WOLFSSL_SCTP || WOLFSSL_DTLS_MTU) */
#ifdef WOLFSSL_DTLS_DROP_STATS
int wolfSSL_dtls_get_drop_stats(WOLFSSL* ssl,
word32* macDropCount, word32* replayDropCount)
{
int ret;
WOLFSSL_ENTER("wolfSSL_dtls_get_drop_stats()");
if (ssl == NULL)
ret = BAD_FUNC_ARG;
else {
ret = WOLFSSL_SUCCESS;
if (macDropCount != NULL)
*macDropCount = ssl->macDropCount;
if (replayDropCount != NULL)
*replayDropCount = ssl->replayDropCount;
}
WOLFSSL_LEAVE("wolfSSL_dtls_get_drop_stats()", ret);
return ret;
}
#endif /* WOLFSSL_DTLS_DROP_STATS */
#if defined(WOLFSSL_MULTICAST)
int wolfSSL_CTX_mcast_set_member_id(WOLFSSL_CTX* ctx, word16 id)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_CTX_mcast_set_member_id()");
if (ctx == NULL || id > 255)
ret = BAD_FUNC_ARG;
if (ret == 0) {
ctx->haveEMS = 0;
ctx->haveMcast = 1;
ctx->mcastID = (byte)id;
#ifndef WOLFSSL_USER_IO
ctx->CBIORecv = EmbedReceiveFromMcast;
#endif /* WOLFSSL_USER_IO */
ret = WOLFSSL_SUCCESS;
}
WOLFSSL_LEAVE("wolfSSL_CTX_mcast_set_member_id()", ret);
return ret;
}
int wolfSSL_mcast_get_max_peers(void)
{
return WOLFSSL_MULTICAST_PEERS;
}
#ifdef WOLFSSL_DTLS
static WC_INLINE word32 UpdateHighwaterMark(word32 cur, word32 first,
word32 second, word32 high)
{
word32 newCur = 0;
if (cur < first)
newCur = first;
else if (cur < second)
newCur = second;
else if (cur < high)
newCur = high;
return newCur;
}
#endif /* WOLFSSL_DTLS */
int wolfSSL_set_secret(WOLFSSL* ssl, word16 epoch,
const byte* preMasterSecret, word32 preMasterSz,
const byte* clientRandom, const byte* serverRandom,
const byte* suite)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_set_secret()");
if (ssl == NULL || preMasterSecret == NULL ||
preMasterSz == 0 || preMasterSz > ENCRYPT_LEN ||
clientRandom == NULL || serverRandom == NULL || suite == NULL) {
ret = BAD_FUNC_ARG;
}
if (ret == 0) {
XMEMCPY(ssl->arrays->preMasterSecret, preMasterSecret, preMasterSz);
ssl->arrays->preMasterSz = preMasterSz;
XMEMCPY(ssl->arrays->clientRandom, clientRandom, RAN_LEN);
XMEMCPY(ssl->arrays->serverRandom, serverRandom, RAN_LEN);
ssl->options.cipherSuite0 = suite[0];
ssl->options.cipherSuite = suite[1];
ret = SetCipherSpecs(ssl);
}
if (ret == 0)
ret = MakeTlsMasterSecret(ssl);
if (ret == 0) {
ssl->keys.encryptionOn = 1;
ret = SetKeysSide(ssl, ENCRYPT_AND_DECRYPT_SIDE);
}
if (ret == 0) {
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
WOLFSSL_DTLS_PEERSEQ* peerSeq;
int i;
ssl->keys.dtls_epoch = epoch;
for (i = 0, peerSeq = ssl->keys.peerSeq;
i < WOLFSSL_DTLS_PEERSEQ_SZ;
i++, peerSeq++) {
peerSeq->nextEpoch = epoch;
peerSeq->prevSeq_lo = peerSeq->nextSeq_lo;
peerSeq->prevSeq_hi = peerSeq->nextSeq_hi;
peerSeq->nextSeq_lo = 0;
peerSeq->nextSeq_hi = 0;
XMEMCPY(peerSeq->prevWindow, peerSeq->window, DTLS_SEQ_SZ);
XMEMSET(peerSeq->window, 0, DTLS_SEQ_SZ);
peerSeq->highwaterMark = UpdateHighwaterMark(0,
ssl->ctx->mcastFirstSeq,
ssl->ctx->mcastSecondSeq,
ssl->ctx->mcastMaxSeq);
}
#else
(void)epoch;
#endif
}
FreeHandshakeResources(ssl);
ret = WOLFSSL_SUCCESS;
}
else {
if (ssl)
ssl->error = ret;
ret = WOLFSSL_FATAL_ERROR;
}
WOLFSSL_LEAVE("wolfSSL_set_secret()", ret);
return ret;
}
#ifdef WOLFSSL_DTLS
int wolfSSL_mcast_peer_add(WOLFSSL* ssl, word16 peerId, int remove)
{
WOLFSSL_DTLS_PEERSEQ* p = NULL;
int ret = WOLFSSL_SUCCESS;
int i;
WOLFSSL_ENTER("wolfSSL_mcast_peer_add()");
if (ssl == NULL || peerId > 255)
return BAD_FUNC_ARG;
if (!remove) {
/* Make sure it isn't already present, while keeping the first
* open spot. */
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) {
if (ssl->keys.peerSeq[i].peerId == INVALID_PEER_ID)
p = &ssl->keys.peerSeq[i];
if (ssl->keys.peerSeq[i].peerId == peerId) {
WOLFSSL_MSG("Peer ID already in multicast peer list.");
p = NULL;
}
}
if (p != NULL) {
XMEMSET(p, 0, sizeof(WOLFSSL_DTLS_PEERSEQ));
p->peerId = peerId;
p->highwaterMark = UpdateHighwaterMark(0,
ssl->ctx->mcastFirstSeq,
ssl->ctx->mcastSecondSeq,
ssl->ctx->mcastMaxSeq);
}
else {
WOLFSSL_MSG("No room in peer list.");
ret = -1;
}
}
else {
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) {
if (ssl->keys.peerSeq[i].peerId == peerId)
p = &ssl->keys.peerSeq[i];
}
if (p != NULL) {
p->peerId = INVALID_PEER_ID;
}
else {
WOLFSSL_MSG("Peer not found in list.");
}
}
WOLFSSL_LEAVE("wolfSSL_mcast_peer_add()", ret);
return ret;
}
/* If peerId is in the list of peers and its last sequence number is non-zero,
* return 1, otherwise return 0. */
int wolfSSL_mcast_peer_known(WOLFSSL* ssl, unsigned short peerId)
{
int known = 0;
int i;
WOLFSSL_ENTER("wolfSSL_mcast_peer_known()");
if (ssl == NULL || peerId > 255) {
return BAD_FUNC_ARG;
}
for (i = 0; i < WOLFSSL_DTLS_PEERSEQ_SZ; i++) {
if (ssl->keys.peerSeq[i].peerId == peerId) {
if (ssl->keys.peerSeq[i].nextSeq_hi ||
ssl->keys.peerSeq[i].nextSeq_lo) {
known = 1;
}
break;
}
}
WOLFSSL_LEAVE("wolfSSL_mcast_peer_known()", known);
return known;
}
int wolfSSL_CTX_mcast_set_highwater_cb(WOLFSSL_CTX* ctx, word32 maxSeq,
word32 first, word32 second,
CallbackMcastHighwater cb)
{
if (ctx == NULL || (second && first > second) ||
first > maxSeq || second > maxSeq || cb == NULL) {
return BAD_FUNC_ARG;
}
ctx->mcastHwCb = cb;
ctx->mcastFirstSeq = first;
ctx->mcastSecondSeq = second;
ctx->mcastMaxSeq = maxSeq;
return WOLFSSL_SUCCESS;
}
int wolfSSL_mcast_set_highwater_ctx(WOLFSSL* ssl, void* ctx)
{
if (ssl == NULL || ctx == NULL)
return BAD_FUNC_ARG;
ssl->mcastHwCbCtx = ctx;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_DTLS */
#endif /* WOLFSSL_MULTICAST */
#endif /* WOLFSSL_LEANPSK */
/* return underlying connect or accept, WOLFSSL_SUCCESS on ok */
int wolfSSL_negotiate(WOLFSSL* ssl)
{
int err = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_negotiate");
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END) {
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
err = wolfSSL_accept_TLSv13(ssl);
else
#endif
err = wolfSSL_accept(ssl);
}
#endif
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END) {
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version))
err = wolfSSL_connect_TLSv13(ssl);
else
#endif
err = wolfSSL_connect(ssl);
}
#endif
(void)ssl;
WOLFSSL_LEAVE("wolfSSL_negotiate", err);
return err;
}
WOLFSSL_ABI
WC_RNG* wolfSSL_GetRNG(WOLFSSL* ssl)
{
if (ssl) {
return ssl->rng;
}
return NULL;
}
#ifndef WOLFSSL_LEANPSK
/* object size based on build */
int wolfSSL_GetObjectSize(void)
{
#ifdef SHOW_SIZES
printf("sizeof suites = %lu\n", (unsigned long)sizeof(Suites));
printf("sizeof ciphers(2) = %lu\n", (unsigned long)sizeof(Ciphers));
#ifndef NO_RC4
printf("\tsizeof arc4 = %lu\n", (unsigned long)sizeof(Arc4));
#endif
printf("\tsizeof aes = %lu\n", (unsigned long)sizeof(Aes));
#ifndef NO_DES3
printf("\tsizeof des3 = %lu\n", (unsigned long)sizeof(Des3));
#endif
#ifndef NO_RABBIT
printf("\tsizeof rabbit = %lu\n", (unsigned long)sizeof(Rabbit));
#endif
#ifdef HAVE_CHACHA
printf("\tsizeof chacha = %lu\n", (unsigned long)sizeof(ChaCha));
#endif
printf("sizeof cipher specs = %lu\n", (unsigned long)sizeof(CipherSpecs));
printf("sizeof keys = %lu\n", (unsigned long)sizeof(Keys));
printf("sizeof Hashes(2) = %lu\n", (unsigned long)sizeof(Hashes));
#ifndef NO_MD5
printf("\tsizeof MD5 = %lu\n", (unsigned long)sizeof(wc_Md5));
#endif
#ifndef NO_SHA
printf("\tsizeof SHA = %lu\n", (unsigned long)sizeof(wc_Sha));
#endif
#ifdef WOLFSSL_SHA224
printf("\tsizeof SHA224 = %lu\n", (unsigned long)sizeof(wc_Sha224));
#endif
#ifndef NO_SHA256
printf("\tsizeof SHA256 = %lu\n", (unsigned long)sizeof(wc_Sha256));
#endif
#ifdef WOLFSSL_SHA384
printf("\tsizeof SHA384 = %lu\n", (unsigned long)sizeof(wc_Sha384));
#endif
#ifdef WOLFSSL_SHA384
printf("\tsizeof SHA512 = %lu\n", (unsigned long)sizeof(wc_Sha512));
#endif
printf("sizeof Buffers = %lu\n", (unsigned long)sizeof(Buffers));
printf("sizeof Options = %lu\n", (unsigned long)sizeof(Options));
printf("sizeof Arrays = %lu\n", (unsigned long)sizeof(Arrays));
#ifndef NO_RSA
printf("sizeof RsaKey = %lu\n", (unsigned long)sizeof(RsaKey));
#endif
#ifdef HAVE_ECC
printf("sizeof ecc_key = %lu\n", (unsigned long)sizeof(ecc_key));
#endif
printf("sizeof WOLFSSL_CIPHER = %lu\n", (unsigned long)sizeof(WOLFSSL_CIPHER));
printf("sizeof WOLFSSL_SESSION = %lu\n", (unsigned long)sizeof(WOLFSSL_SESSION));
printf("sizeof WOLFSSL = %lu\n", (unsigned long)sizeof(WOLFSSL));
printf("sizeof WOLFSSL_CTX = %lu\n", (unsigned long)sizeof(WOLFSSL_CTX));
#endif
return sizeof(WOLFSSL);
}
int wolfSSL_CTX_GetObjectSize(void)
{
return sizeof(WOLFSSL_CTX);
}
int wolfSSL_METHOD_GetObjectSize(void)
{
return sizeof(WOLFSSL_METHOD);
}
#endif
#ifdef WOLFSSL_STATIC_MEMORY
int wolfSSL_CTX_load_static_memory(WOLFSSL_CTX** ctx, wolfSSL_method_func method,
unsigned char* buf, unsigned int sz,
int flag, int maxSz)
{
WOLFSSL_HEAP* heap;
WOLFSSL_HEAP_HINT* hint;
word32 idx = 0;
if (ctx == NULL || buf == NULL) {
return BAD_FUNC_ARG;
}
if (*ctx == NULL && method == NULL) {
return BAD_FUNC_ARG;
}
if (*ctx == NULL || (*ctx)->heap == NULL) {
if (sizeof(WOLFSSL_HEAP) + sizeof(WOLFSSL_HEAP_HINT) > sz - idx) {
return BUFFER_E; /* not enough memory for structures */
}
heap = (WOLFSSL_HEAP*)buf;
idx += sizeof(WOLFSSL_HEAP);
if (wolfSSL_init_memory_heap(heap) != 0) {
return WOLFSSL_FAILURE;
}
hint = (WOLFSSL_HEAP_HINT*)(buf + idx);
idx += sizeof(WOLFSSL_HEAP_HINT);
XMEMSET(hint, 0, sizeof(WOLFSSL_HEAP_HINT));
hint->memory = heap;
if (*ctx && (*ctx)->heap == NULL) {
(*ctx)->heap = (void*)hint;
}
}
else {
#ifdef WOLFSSL_HEAP_TEST
/* do not load in memory if test has been set */
if ((*ctx)->heap == (void*)WOLFSSL_HEAP_TEST) {
return WOLFSSL_SUCCESS;
}
#endif
hint = (WOLFSSL_HEAP_HINT*)((*ctx)->heap);
heap = hint->memory;
}
if (wolfSSL_load_static_memory(buf + idx, sz - idx, flag, heap) != 1) {
WOLFSSL_MSG("Error partitioning memory");
return WOLFSSL_FAILURE;
}
/* create ctx if needed */
if (*ctx == NULL) {
*ctx = wolfSSL_CTX_new_ex(method(hint), hint);
if (*ctx == NULL) {
WOLFSSL_MSG("Error creating ctx");
return WOLFSSL_FAILURE;
}
}
/* determine what max applies too */
if (flag & WOLFMEM_IO_POOL || flag & WOLFMEM_IO_POOL_FIXED) {
heap->maxIO = maxSz;
}
else { /* general memory used in handshakes */
heap->maxHa = maxSz;
}
heap->flag |= flag;
(void)maxSz;
(void)method;
return WOLFSSL_SUCCESS;
}
int wolfSSL_is_static_memory(WOLFSSL* ssl, WOLFSSL_MEM_CONN_STATS* mem_stats)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
WOLFSSL_ENTER("wolfSSL_is_static_memory");
/* fill out statistics if wanted and WOLFMEM_TRACK_STATS flag */
if (mem_stats != NULL && ssl->heap != NULL) {
WOLFSSL_HEAP_HINT* hint = ((WOLFSSL_HEAP_HINT*)(ssl->heap));
WOLFSSL_HEAP* heap = hint->memory;
if (heap->flag & WOLFMEM_TRACK_STATS && hint->stats != NULL) {
XMEMCPY(mem_stats, hint->stats, sizeof(WOLFSSL_MEM_CONN_STATS));
}
}
return (ssl->heap) ? 1 : 0;
}
int wolfSSL_CTX_is_static_memory(WOLFSSL_CTX* ctx, WOLFSSL_MEM_STATS* mem_stats)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
WOLFSSL_ENTER("wolfSSL_CTX_is_static_memory");
/* fill out statistics if wanted */
if (mem_stats != NULL && ctx->heap != NULL) {
WOLFSSL_HEAP* heap = ((WOLFSSL_HEAP_HINT*)(ctx->heap))->memory;
if (wolfSSL_GetMemStats(heap, mem_stats) != 1) {
return MEMORY_E;
}
}
return (ctx->heap) ? 1 : 0;
}
#endif /* WOLFSSL_STATIC_MEMORY */
/* return max record layer size plaintext input size */
int wolfSSL_GetMaxOutputSize(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_GetMaxOutputSize");
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.handShakeState != HANDSHAKE_DONE) {
WOLFSSL_MSG("Handshake not complete yet");
return BAD_FUNC_ARG;
}
return wolfSSL_GetMaxRecordSize(ssl, OUTPUT_RECORD_SIZE);
}
/* return record layer size of plaintext input size */
int wolfSSL_GetOutputSize(WOLFSSL* ssl, int inSz)
{
int maxSize;
WOLFSSL_ENTER("wolfSSL_GetOutputSize");
if (inSz < 0)
return BAD_FUNC_ARG;
maxSize = wolfSSL_GetMaxOutputSize(ssl);
if (maxSize < 0)
return maxSize; /* error */
if (inSz > maxSize)
return INPUT_SIZE_E;
return BuildMessage(ssl, NULL, 0, NULL, inSz, application_data, 0, 1, 0, CUR_ORDER);
}
#ifdef HAVE_ECC
int wolfSSL_CTX_SetMinEccKey_Sz(WOLFSSL_CTX* ctx, short keySz)
{
if (ctx == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisible by 8 or ctx was null");
return BAD_FUNC_ARG;
}
ctx->minEccKeySz = keySz / 8;
#ifndef NO_CERTS
ctx->cm->minEccKeySz = keySz / 8;
#endif
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMinEccKey_Sz(WOLFSSL* ssl, short keySz)
{
if (ssl == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisible by 8 or ssl was null");
return BAD_FUNC_ARG;
}
ssl->options.minEccKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ECC */
#ifndef NO_RSA
int wolfSSL_CTX_SetMinRsaKey_Sz(WOLFSSL_CTX* ctx, short keySz)
{
if (ctx == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisible by 8 or ctx was null");
return BAD_FUNC_ARG;
}
ctx->minRsaKeySz = keySz / 8;
ctx->cm->minRsaKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMinRsaKey_Sz(WOLFSSL* ssl, short keySz)
{
if (ssl == NULL || keySz < 0 || keySz % 8 != 0) {
WOLFSSL_MSG("Key size must be divisible by 8 or ssl was null");
return BAD_FUNC_ARG;
}
ssl->options.minRsaKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_RSA */
#ifndef NO_DH
/* server Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */
int wolfSSL_SetTmpDH(WOLFSSL* ssl, const unsigned char* p, int pSz,
const unsigned char* g, int gSz)
{
WOLFSSL_ENTER("wolfSSL_SetTmpDH");
if (ssl == NULL || p == NULL || g == NULL)
return BAD_FUNC_ARG;
if ((word16)pSz < ssl->options.minDhKeySz)
return DH_KEY_SIZE_E;
if ((word16)pSz > ssl->options.maxDhKeySz)
return DH_KEY_SIZE_E;
/* this function is for server only */
if (ssl->options.side == WOLFSSL_CLIENT_END)
return SIDE_ERROR;
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
ssl->options.dhKeyTested = 0;
ssl->options.dhDoKeyTest = 1;
#endif
if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
}
if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_G.buffer = NULL;
}
ssl->buffers.weOwnDH = 1; /* SSL owns now */
ssl->buffers.serverDH_P.buffer = (byte*)XMALLOC(pSz, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_P.buffer == NULL)
return MEMORY_E;
ssl->buffers.serverDH_G.buffer = (byte*)XMALLOC(gSz, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (ssl->buffers.serverDH_G.buffer == NULL) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ssl->buffers.serverDH_P.buffer = NULL;
return MEMORY_E;
}
ssl->buffers.serverDH_P.length = pSz;
ssl->buffers.serverDH_G.length = gSz;
XMEMCPY(ssl->buffers.serverDH_P.buffer, p, pSz);
XMEMCPY(ssl->buffers.serverDH_G.buffer, g, gSz);
ssl->options.haveDH = 1;
if (ssl->options.side != WOLFSSL_NEITHER_END) {
word16 havePSK;
word16 haveRSA;
int keySz = 0;
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#else
havePSK = 0;
#endif
#ifdef NO_RSA
haveRSA = 0;
#else
haveRSA = 1;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
}
WOLFSSL_LEAVE("wolfSSL_SetTmpDH", 0);
return WOLFSSL_SUCCESS;
}
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
/* Enables or disables the session's DH key prime test. */
int wolfSSL_SetEnableDhKeyTest(WOLFSSL* ssl, int enable)
{
WOLFSSL_ENTER("wolfSSL_SetEnableDhKeyTest");
if (ssl == NULL)
return BAD_FUNC_ARG;
if (!enable)
ssl->options.dhDoKeyTest = 0;
else
ssl->options.dhDoKeyTest = 1;
WOLFSSL_LEAVE("wolfSSL_SetEnableDhKeyTest", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
#endif
/* server ctx Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_SetTmpDH(WOLFSSL_CTX* ctx, const unsigned char* p, int pSz,
const unsigned char* g, int gSz)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetTmpDH");
if (ctx == NULL || p == NULL || g == NULL) return BAD_FUNC_ARG;
if ((word16)pSz < ctx->minDhKeySz)
return DH_KEY_SIZE_E;
if ((word16)pSz > ctx->maxDhKeySz)
return DH_KEY_SIZE_E;
#if !defined(WOLFSSL_OLD_PRIME_CHECK) && !defined(HAVE_FIPS) && \
!defined(HAVE_SELFTEST)
{
DhKey checkKey;
WC_RNG rng;
int error, freeKey = 0;
error = wc_InitRng(&rng);
if (!error)
error = wc_InitDhKey(&checkKey);
if (!error) {
freeKey = 1;
error = wc_DhSetCheckKey(&checkKey,
p, pSz, g, gSz, NULL, 0, 0, &rng);
}
if (freeKey)
wc_FreeDhKey(&checkKey);
wc_FreeRng(&rng);
if (error)
return error;
ctx->dhKeyTested = 1;
}
#endif
XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ctx->serverDH_P.buffer = NULL;
XFREE(ctx->serverDH_G.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ctx->serverDH_G.buffer = NULL;
ctx->serverDH_P.buffer = (byte*)XMALLOC(pSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ctx->serverDH_P.buffer == NULL)
return MEMORY_E;
ctx->serverDH_G.buffer = (byte*)XMALLOC(gSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (ctx->serverDH_G.buffer == NULL) {
XFREE(ctx->serverDH_P.buffer, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
ctx->serverDH_P.buffer = NULL;
return MEMORY_E;
}
ctx->serverDH_P.length = pSz;
ctx->serverDH_G.length = gSz;
XMEMCPY(ctx->serverDH_P.buffer, p, pSz);
XMEMCPY(ctx->serverDH_G.buffer, g, gSz);
ctx->haveDH = 1;
WOLFSSL_LEAVE("wolfSSL_CTX_SetTmpDH", 0);
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_SetMinDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz)
{
if (ctx == NULL || keySz > 16000 || keySz % 8 != 0)
return BAD_FUNC_ARG;
ctx->minDhKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMinDhKey_Sz(WOLFSSL* ssl, word16 keySz)
{
if (ssl == NULL || keySz > 16000 || keySz % 8 != 0)
return BAD_FUNC_ARG;
ssl->options.minDhKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_SetMaxDhKey_Sz(WOLFSSL_CTX* ctx, word16 keySz)
{
if (ctx == NULL || keySz > 16000 || keySz % 8 != 0)
return BAD_FUNC_ARG;
ctx->maxDhKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_SetMaxDhKey_Sz(WOLFSSL* ssl, word16 keySz)
{
if (ssl == NULL || keySz > 16000 || keySz % 8 != 0)
return BAD_FUNC_ARG;
ssl->options.maxDhKeySz = keySz / 8;
return WOLFSSL_SUCCESS;
}
int wolfSSL_GetDhKey_Sz(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return (ssl->options.dhKeySz * 8);
}
#endif /* !NO_DH */
WOLFSSL_ABI
int wolfSSL_write(WOLFSSL* ssl, const void* data, int sz)
{
int ret;
WOLFSSL_ENTER("SSL_write()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_EARLY_DATA
if (ssl->earlyData != no_early_data && (ret = wolfSSL_negotiate(ssl)) < 0) {
ssl->error = ret;
return WOLFSSL_FATAL_ERROR;
}
ssl->earlyData = no_early_data;
#endif
#ifdef HAVE_WRITE_DUP
{ /* local variable scope */
int dupErr = 0; /* local copy */
ret = 0;
if (ssl->dupWrite && ssl->dupSide == READ_DUP_SIDE) {
WOLFSSL_MSG("Read dup side cannot write");
return WRITE_DUP_WRITE_E;
}
if (ssl->dupWrite) {
if (wc_LockMutex(&ssl->dupWrite->dupMutex) != 0) {
return BAD_MUTEX_E;
}
dupErr = ssl->dupWrite->dupErr;
ret = wc_UnLockMutex(&ssl->dupWrite->dupMutex);
}
if (ret != 0) {
ssl->error = ret; /* high priority fatal error */
return WOLFSSL_FATAL_ERROR;
}
if (dupErr != 0) {
WOLFSSL_MSG("Write dup error from other side");
ssl->error = dupErr;
return WOLFSSL_FATAL_ERROR;
}
}
#endif
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_CB_WRITE, WOLFSSL_SUCCESS);
ssl->cbmode = SSL_CB_WRITE;
}
#endif
ret = SendData(ssl, data, sz);
WOLFSSL_LEAVE("SSL_write()", ret);
if (ret < 0)
return WOLFSSL_FATAL_ERROR;
else
return ret;
}
static int wolfSSL_read_internal(WOLFSSL* ssl, void* data, int sz, int peek)
{
int ret;
WOLFSSL_ENTER("wolfSSL_read_internal()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
#ifdef HAVE_WRITE_DUP
if (ssl->dupWrite && ssl->dupSide == WRITE_DUP_SIDE) {
WOLFSSL_MSG("Write dup side cannot read");
return WRITE_DUP_READ_E;
}
#endif
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.dtls) {
ssl->dtls_expected_rx = max(sz + 100, MAX_MTU);
#ifdef WOLFSSL_SCTP
if (ssl->options.dtlsSctp)
#endif
#if defined(WOLFSSL_SCTP) || defined(WOLFSSL_DTLS_MTU)
ssl->dtls_expected_rx = max(ssl->dtls_expected_rx, ssl->dtlsMtuSz);
#endif
}
#endif
sz = wolfSSL_GetMaxRecordSize(ssl, sz);
ret = ReceiveData(ssl, (byte*)data, sz, peek);
#ifdef HAVE_WRITE_DUP
if (ssl->dupWrite) {
if (ssl->error != 0 && ssl->error != WANT_READ
#ifdef WOLFSSL_ASYNC_CRYPT
&& ssl->error != WC_PENDING_E
#endif
) {
int notifyErr;
WOLFSSL_MSG("Notifying write side of fatal read error");
notifyErr = NotifyWriteSide(ssl, ssl->error);
if (notifyErr < 0) {
ret = ssl->error = notifyErr;
}
}
}
#endif
WOLFSSL_LEAVE("wolfSSL_read_internal()", ret);
if (ret < 0)
return WOLFSSL_FATAL_ERROR;
else
return ret;
}
int wolfSSL_peek(WOLFSSL* ssl, void* data, int sz)
{
WOLFSSL_ENTER("wolfSSL_peek()");
return wolfSSL_read_internal(ssl, data, sz, TRUE);
}
WOLFSSL_ABI
int wolfSSL_read(WOLFSSL* ssl, void* data, int sz)
{
WOLFSSL_ENTER("wolfSSL_read()");
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_CB_READ, WOLFSSL_SUCCESS);
ssl->cbmode = SSL_CB_READ;
}
#endif
return wolfSSL_read_internal(ssl, data, sz, FALSE);
}
#ifdef WOLFSSL_MULTICAST
int wolfSSL_mcast_read(WOLFSSL* ssl, word16* id, void* data, int sz)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_mcast_read()");
if (ssl == NULL)
return BAD_FUNC_ARG;
ret = wolfSSL_read_internal(ssl, data, sz, FALSE);
if (ssl->options.dtls && ssl->options.haveMcast && id != NULL)
*id = ssl->keys.curPeerId;
return ret;
}
#endif /* WOLFSSL_MULTICAST */
/* helpers to set the device id, WOLFSSL_SUCCESS on ok */
WOLFSSL_ABI
int wolfSSL_SetDevId(WOLFSSL* ssl, int devId)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->devId = devId;
return WOLFSSL_SUCCESS;
}
WOLFSSL_ABI
int wolfSSL_CTX_SetDevId(WOLFSSL_CTX* ctx, int devId)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->devId = devId;
return WOLFSSL_SUCCESS;
}
/* helpers to get device id and heap */
WOLFSSL_ABI
int wolfSSL_CTX_GetDevId(WOLFSSL_CTX* ctx, WOLFSSL* ssl)
{
int devId = INVALID_DEVID;
if (ctx != NULL)
devId = ctx->devId;
else if (ssl != NULL)
devId = ssl->devId;
return devId;
}
void* wolfSSL_CTX_GetHeap(WOLFSSL_CTX* ctx, WOLFSSL* ssl)
{
void* heap = NULL;
if (ctx != NULL)
heap = ctx->heap;
else if (ssl != NULL)
heap = ssl->heap;
return heap;
}
#ifdef HAVE_SNI
WOLFSSL_ABI
int wolfSSL_UseSNI(WOLFSSL* ssl, byte type, const void* data, word16 size)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSNI(&ssl->extensions, type, data, size, ssl->heap);
}
WOLFSSL_ABI
int wolfSSL_CTX_UseSNI(WOLFSSL_CTX* ctx, byte type, const void* data,
word16 size)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSNI(&ctx->extensions, type, data, size, ctx->heap);
}
#ifndef NO_WOLFSSL_SERVER
void wolfSSL_SNI_SetOptions(WOLFSSL* ssl, byte type, byte options)
{
if (ssl && ssl->extensions)
TLSX_SNI_SetOptions(ssl->extensions, type, options);
}
void wolfSSL_CTX_SNI_SetOptions(WOLFSSL_CTX* ctx, byte type, byte options)
{
if (ctx && ctx->extensions)
TLSX_SNI_SetOptions(ctx->extensions, type, options);
}
byte wolfSSL_SNI_Status(WOLFSSL* ssl, byte type)
{
return TLSX_SNI_Status(ssl ? ssl->extensions : NULL, type);
}
word16 wolfSSL_SNI_GetRequest(WOLFSSL* ssl, byte type, void** data)
{
if (data)
*data = NULL;
if (ssl && ssl->extensions)
return TLSX_SNI_GetRequest(ssl->extensions, type, data);
return 0;
}
int wolfSSL_SNI_GetFromBuffer(const byte* clientHello, word32 helloSz,
byte type, byte* sni, word32* inOutSz)
{
if (clientHello && helloSz > 0 && sni && inOutSz && *inOutSz > 0)
return TLSX_SNI_GetFromBuffer(clientHello, helloSz, type, sni, inOutSz);
return BAD_FUNC_ARG;
}
#endif /* NO_WOLFSSL_SERVER */
#endif /* HAVE_SNI */
#ifdef HAVE_TRUSTED_CA
WOLFSSL_API int wolfSSL_UseTrustedCA(WOLFSSL* ssl, byte type,
const byte* certId, word32 certIdSz)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (type == WOLFSSL_TRUSTED_CA_PRE_AGREED) {
if (certId != NULL || certIdSz != 0)
return BAD_FUNC_ARG;
}
else if (type == WOLFSSL_TRUSTED_CA_X509_NAME) {
if (certId == NULL || certIdSz == 0)
return BAD_FUNC_ARG;
}
#ifndef NO_SHA
else if (type == WOLFSSL_TRUSTED_CA_KEY_SHA1 ||
type == WOLFSSL_TRUSTED_CA_CERT_SHA1) {
if (certId == NULL || certIdSz != WC_SHA_DIGEST_SIZE)
return BAD_FUNC_ARG;
}
#endif
else
return BAD_FUNC_ARG;
return TLSX_UseTrustedCA(&ssl->extensions,
type, certId, certIdSz, ssl->heap);
}
#endif /* HAVE_TRUSTED_CA */
#ifdef HAVE_MAX_FRAGMENT
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_UseMaxFragment(WOLFSSL* ssl, byte mfl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_ALLOW_MAX_FRAGMENT_ADJUST
/* The following is a non-standard way to reconfigure the max packet size
post-handshake for wolfSSL_write/woflSSL_read */
if (ssl->options.handShakeState == HANDSHAKE_DONE) {
switch (mfl) {
case WOLFSSL_MFL_2_8 : ssl->max_fragment = 256; break;
case WOLFSSL_MFL_2_9 : ssl->max_fragment = 512; break;
case WOLFSSL_MFL_2_10: ssl->max_fragment = 1024; break;
case WOLFSSL_MFL_2_11: ssl->max_fragment = 2048; break;
case WOLFSSL_MFL_2_12: ssl->max_fragment = 4096; break;
case WOLFSSL_MFL_2_13: ssl->max_fragment = 8192; break;
default: ssl->max_fragment = MAX_RECORD_SIZE; break;
}
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_MAX_FRAGMENT_ADJUST */
/* This call sets the max fragment TLS extension, which gets sent to server.
The server_hello response is what sets the `ssl->max_fragment` in
TLSX_MFL_Parse */
return TLSX_UseMaxFragment(&ssl->extensions, mfl, ssl->heap);
}
int wolfSSL_CTX_UseMaxFragment(WOLFSSL_CTX* ctx, byte mfl)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseMaxFragment(&ctx->extensions, mfl, ctx->heap);
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_MAX_FRAGMENT */
#ifdef HAVE_TRUNCATED_HMAC
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_UseTruncatedHMAC(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseTruncatedHMAC(&ssl->extensions, ssl->heap);
}
int wolfSSL_CTX_UseTruncatedHMAC(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseTruncatedHMAC(&ctx->extensions, ctx->heap);
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_TRUNCATED_HMAC */
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
int wolfSSL_UseOCSPStapling(WOLFSSL* ssl, byte status_type, byte options)
{
if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequest(&ssl->extensions, status_type,
options, NULL, ssl->heap, ssl->devId);
}
int wolfSSL_CTX_UseOCSPStapling(WOLFSSL_CTX* ctx, byte status_type,
byte options)
{
if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequest(&ctx->extensions, status_type,
options, NULL, ctx->heap, ctx->devId);
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST */
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST_V2
int wolfSSL_UseOCSPStaplingV2(WOLFSSL* ssl, byte status_type, byte options)
{
if (ssl == NULL || ssl->options.side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequestV2(&ssl->extensions, status_type,
options, ssl->heap, ssl->devId);
}
int wolfSSL_CTX_UseOCSPStaplingV2(WOLFSSL_CTX* ctx, byte status_type,
byte options)
{
if (ctx == NULL || ctx->method->side != WOLFSSL_CLIENT_END)
return BAD_FUNC_ARG;
return TLSX_UseCertificateStatusRequestV2(&ctx->extensions, status_type,
options, ctx->heap, ctx->devId);
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
/* Elliptic Curves */
#if defined(HAVE_SUPPORTED_CURVES)
static int isValidCurveGroup(word16 name)
{
switch (name) {
case WOLFSSL_ECC_SECP160K1:
case WOLFSSL_ECC_SECP160R1:
case WOLFSSL_ECC_SECP160R2:
case WOLFSSL_ECC_SECP192K1:
case WOLFSSL_ECC_SECP192R1:
case WOLFSSL_ECC_SECP224K1:
case WOLFSSL_ECC_SECP224R1:
case WOLFSSL_ECC_SECP256K1:
case WOLFSSL_ECC_SECP256R1:
case WOLFSSL_ECC_SECP384R1:
case WOLFSSL_ECC_SECP521R1:
case WOLFSSL_ECC_BRAINPOOLP256R1:
case WOLFSSL_ECC_BRAINPOOLP384R1:
case WOLFSSL_ECC_BRAINPOOLP512R1:
case WOLFSSL_ECC_X25519:
case WOLFSSL_ECC_X448:
case WOLFSSL_FFDHE_2048:
case WOLFSSL_FFDHE_3072:
case WOLFSSL_FFDHE_4096:
case WOLFSSL_FFDHE_6144:
case WOLFSSL_FFDHE_8192:
return 1;
default:
return 0;
}
}
int wolfSSL_UseSupportedCurve(WOLFSSL* ssl, word16 name)
{
if (ssl == NULL || !isValidCurveGroup(name))
return BAD_FUNC_ARG;
ssl->options.userCurves = 1;
return TLSX_UseSupportedCurve(&ssl->extensions, name, ssl->heap);
}
int wolfSSL_CTX_UseSupportedCurve(WOLFSSL_CTX* ctx, word16 name)
{
if (ctx == NULL || !isValidCurveGroup(name))
return BAD_FUNC_ARG;
ctx->userCurves = 1;
return TLSX_UseSupportedCurve(&ctx->extensions, name, ctx->heap);
}
#if defined(OPENSSL_EXTRA) && defined(WOLFSSL_TLS13)
int wolfSSL_CTX_set1_groups(WOLFSSL_CTX* ctx, int* groups,
int count)
{
int i;
int _groups[WOLFSSL_MAX_GROUP_COUNT];
WOLFSSL_ENTER("wolfSSL_CTX_set1_groups");
if (count == 0) {
WOLFSSL_MSG("Group count is zero");
return WOLFSSL_FAILURE;
}
for (i = 0; i < count; i++) {
if (isValidCurveGroup((word16)groups[i])) {
_groups[i] = groups[i];
}
#ifdef HAVE_ECC
else {
/* groups may be populated with curve NIDs */
int oid = nid2oid(groups[i], oidCurveType);
int name = (int)GetCurveByOID(oid);
if (name == 0) {
WOLFSSL_MSG("Invalid group name");
return WOLFSSL_FAILURE;
}
_groups[i] = name;
}
#else
else {
WOLFSSL_MSG("Invalid group name");
return WOLFSSL_FAILURE;
}
#endif
}
return wolfSSL_CTX_set_groups(ctx, _groups, count) == WOLFSSL_SUCCESS ?
WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
int wolfSSL_set1_groups(WOLFSSL* ssl, int* groups, int count)
{
int i;
int _groups[WOLFSSL_MAX_GROUP_COUNT];
WOLFSSL_ENTER("wolfSSL_CTX_set1_groups");
if (count == 0) {
WOLFSSL_MSG("Group count is zero");
return WOLFSSL_FAILURE;
}
for (i = 0; i < count; i++) {
if (isValidCurveGroup((word16)groups[i])) {
_groups[i] = groups[i];
}
#ifdef HAVE_ECC
else {
/* groups may be populated with curve NIDs */
int oid = nid2oid(groups[i], oidCurveType);
int name = (int)GetCurveByOID(oid);
if (name == 0) {
WOLFSSL_MSG("Invalid group name");
return WOLFSSL_FAILURE;
}
_groups[i] = name;
}
#else
else {
WOLFSSL_MSG("Invalid group name");
return WOLFSSL_FAILURE;
}
#endif
}
return wolfSSL_set_groups(ssl, _groups, count) == WOLFSSL_SUCCESS ?
WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
#endif /* OPENSSL_EXTRA && WOLFSSL_TLS13 */
#endif /* HAVE_SUPPORTED_CURVES */
/* QSH quantum safe handshake */
#ifdef HAVE_QSH
/* returns 1 if QSH has been used 0 otherwise */
int wolfSSL_isQSH(WOLFSSL* ssl)
{
/* if no ssl struct than QSH was not used */
if (ssl == NULL)
return 0;
return ssl->isQSH;
}
int wolfSSL_UseSupportedQSH(WOLFSSL* ssl, word16 name)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
switch (name) {
#ifdef HAVE_NTRU
case WOLFSSL_NTRU_EESS439:
case WOLFSSL_NTRU_EESS593:
case WOLFSSL_NTRU_EESS743:
break;
#endif
default:
return BAD_FUNC_ARG;
}
ssl->user_set_QSHSchemes = 1;
return TLSX_UseQSHScheme(&ssl->extensions, name, NULL, 0, ssl->heap);
}
#ifndef NO_WOLFSSL_CLIENT
/* user control over sending client public key in hello
when flag = 1 will send keys if flag is 0 or function is not called
then will not send keys in the hello extension
return 0 on success
*/
int wolfSSL_UseClientQSHKeys(WOLFSSL* ssl, unsigned char flag)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->sendQSHKeys = flag;
return 0;
}
#endif /* NO_WOLFSSL_CLIENT */
#endif /* HAVE_QSH */
/* Application-Layer Protocol Negotiation */
#ifdef HAVE_ALPN
WOLFSSL_ABI
int wolfSSL_UseALPN(WOLFSSL* ssl, char *protocol_name_list,
word32 protocol_name_listSz, byte options)
{
char *list, *ptr, *token[WOLFSSL_MAX_ALPN_NUMBER+1]={NULL};
word16 len;
int idx = 0;
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_UseALPN");
if (ssl == NULL || protocol_name_list == NULL)
return BAD_FUNC_ARG;
if (protocol_name_listSz > (WOLFSSL_MAX_ALPN_NUMBER *
WOLFSSL_MAX_ALPN_PROTO_NAME_LEN +
WOLFSSL_MAX_ALPN_NUMBER)) {
WOLFSSL_MSG("Invalid arguments, protocol name list too long");
return BAD_FUNC_ARG;
}
if (!(options & WOLFSSL_ALPN_CONTINUE_ON_MISMATCH) &&
!(options & WOLFSSL_ALPN_FAILED_ON_MISMATCH)) {
WOLFSSL_MSG("Invalid arguments, options not supported");
return BAD_FUNC_ARG;
}
list = (char *)XMALLOC(protocol_name_listSz+1, ssl->heap,
DYNAMIC_TYPE_ALPN);
if (list == NULL) {
WOLFSSL_MSG("Memory failure");
return MEMORY_ERROR;
}
XSTRNCPY(list, protocol_name_list, protocol_name_listSz);
list[protocol_name_listSz] = '\0';
/* read all protocol name from the list */
token[idx] = XSTRTOK(list, ",", &ptr);
while (idx < WOLFSSL_MAX_ALPN_NUMBER && token[idx] != NULL)
token[++idx] = XSTRTOK(NULL, ",", &ptr);
/* add protocol name list in the TLS extension in reverse order */
while ((idx--) > 0) {
len = (word16)XSTRLEN(token[idx]);
ret = TLSX_UseALPN(&ssl->extensions, token[idx], len, options,
ssl->heap);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("TLSX_UseALPN failure");
break;
}
}
XFREE(list, ssl->heap, DYNAMIC_TYPE_ALPN);
return ret;
}
int wolfSSL_ALPN_GetProtocol(WOLFSSL* ssl, char **protocol_name, word16 *size)
{
return TLSX_ALPN_GetRequest(ssl ? ssl->extensions : NULL,
(void **)protocol_name, size);
}
int wolfSSL_ALPN_GetPeerProtocol(WOLFSSL* ssl, char **list, word16 *listSz)
{
if (list == NULL || listSz == NULL)
return BAD_FUNC_ARG;
if (ssl->alpn_client_list == NULL)
return BUFFER_ERROR;
*listSz = (word16)XSTRLEN(ssl->alpn_client_list);
if (*listSz == 0)
return BUFFER_ERROR;
*list = (char *)XMALLOC((*listSz)+1, ssl->heap, DYNAMIC_TYPE_TLSX);
if (*list == NULL)
return MEMORY_ERROR;
XSTRNCPY(*list, ssl->alpn_client_list, (*listSz)+1);
(*list)[*listSz] = 0;
return WOLFSSL_SUCCESS;
}
/* used to free memory allocated by wolfSSL_ALPN_GetPeerProtocol */
int wolfSSL_ALPN_FreePeerProtocol(WOLFSSL* ssl, char **list)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
XFREE(*list, ssl->heap, DYNAMIC_TYPE_TLSX);
*list = NULL;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ALPN */
/* Secure Renegotiation */
#ifdef HAVE_SECURE_RENEGOTIATION
/* user is forcing ability to use secure renegotiation, we discourage it */
int wolfSSL_UseSecureRenegotiation(WOLFSSL* ssl)
{
int ret = BAD_FUNC_ARG;
if (ssl)
ret = TLSX_UseSecureRenegotiation(&ssl->extensions, ssl->heap);
if (ret == WOLFSSL_SUCCESS) {
TLSX* extension = TLSX_Find(ssl->extensions, TLSX_RENEGOTIATION_INFO);
if (extension)
ssl->secure_renegotiation = (SecureRenegotiation*)extension->data;
}
return ret;
}
int wolfSSL_CTX_UseSecureRenegotiation(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->useSecureReneg = 1;
return WOLFSSL_SUCCESS;
}
/* do a secure renegotiation handshake, user forced, we discourage */
static int _Rehandshake(WOLFSSL* ssl)
{
int ret;
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->secure_renegotiation == NULL) {
WOLFSSL_MSG("Secure Renegotiation not forced on by user");
return SECURE_RENEGOTIATION_E;
}
if (ssl->secure_renegotiation->enabled == 0) {
WOLFSSL_MSG("Secure Renegotiation not enabled at extension level");
return SECURE_RENEGOTIATION_E;
}
/* If the client started the renegotiation, the server will already
* have processed the client's hello. */
if (ssl->options.side != WOLFSSL_SERVER_END ||
ssl->options.acceptState != ACCEPT_FIRST_REPLY_DONE) {
if (ssl->options.handShakeState != HANDSHAKE_DONE) {
if (!ssl->options.handShakeDone) {
WOLFSSL_MSG("Can't renegotiate until initial "
"handshake complete");
return SECURE_RENEGOTIATION_E;
}
else {
WOLFSSL_MSG("Renegotiation already started. "
"Moving it forward.");
ret = wolfSSL_negotiate(ssl);
if (ret == WOLFSSL_SUCCESS)
ssl->secure_rene_count++;
return ret;
}
}
#ifndef NO_FORCE_SCR_SAME_SUITE
/* force same suite */
if (ssl->suites) {
ssl->suites->suiteSz = SUITE_LEN;
ssl->suites->suites[0] = ssl->options.cipherSuite0;
ssl->suites->suites[1] = ssl->options.cipherSuite;
}
#endif
/* reset handshake states */
ssl->options.sendVerify = 0;
ssl->options.serverState = NULL_STATE;
ssl->options.clientState = NULL_STATE;
ssl->options.connectState = CONNECT_BEGIN;
ssl->options.acceptState = ACCEPT_BEGIN_RENEG;
ssl->options.handShakeState = NULL_STATE;
ssl->options.processReply = 0; /* TODO, move states in internal.h */
XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived));
ssl->secure_renegotiation->cache_status = SCR_CACHE_NEEDED;
#if !defined(NO_WOLFSSL_SERVER) && defined(HAVE_SERVER_RENEGOTIATION_INFO)
if (ssl->options.side == WOLFSSL_SERVER_END) {
ret = SendHelloRequest(ssl);
if (ret != 0) {
ssl->error = ret;
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* NO_WOLFSSL_SERVER && HAVE_SERVER_RENEGOTIATION_INFO */
ret = InitHandshakeHashes(ssl);
if (ret != 0) {
ssl->error = ret;
return WOLFSSL_FATAL_ERROR;
}
}
ret = wolfSSL_negotiate(ssl);
if (ret == WOLFSSL_SUCCESS)
ssl->secure_rene_count++;
return ret;
}
/* do a secure renegotiation handshake, user forced, we discourage */
int wolfSSL_Rehandshake(WOLFSSL* ssl)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_Rehandshake");
if (ssl->options.side == WOLFSSL_SERVER_END) {
/* Reset option to send certificate verify. */
ssl->options.sendVerify = 0;
}
else {
/* Reset resuming flag to do full secure handshake. */
ssl->options.resuming = 0;
#ifdef HAVE_SESSION_TICKET
/* Clearing the ticket. */
ret = wolfSSL_UseSessionTicket(ssl);
#endif
}
if (ret == WOLFSSL_SUCCESS)
ret = _Rehandshake(ssl);
return ret;
}
#ifndef NO_WOLFSSL_CLIENT
/* do a secure resumption handshake, user forced, we discourage */
int wolfSSL_SecureResume(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_SecureResume");
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.side == WOLFSSL_SERVER_END) {
ssl->error = SIDE_ERROR;
return SSL_FATAL_ERROR;
}
return _Rehandshake(ssl);
}
#endif /* NO_WOLFSSL_CLIENT */
long wolfSSL_SSL_get_secure_renegotiation_support(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_SSL_get_secure_renegotiation_support");
if (!ssl || !ssl->secure_renegotiation)
return WOLFSSL_FAILURE;
return ssl->secure_renegotiation->enabled;
}
#endif /* HAVE_SECURE_RENEGOTIATION */
#if defined(HAVE_SESSION_TICKET)
/* Session Ticket */
#if !defined(NO_WOLFSSL_SERVER)
int wolfSSL_CTX_NoTicketTLSv12(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->noTicketTls12 = 1;
return WOLFSSL_SUCCESS;
}
int wolfSSL_NoTicketTLSv12(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.noTicketTls12 = 1;
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_set_TicketEncCb(WOLFSSL_CTX* ctx, SessionTicketEncCb cb)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ticketEncCb = cb;
return WOLFSSL_SUCCESS;
}
/* set hint interval, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_set_TicketHint(WOLFSSL_CTX* ctx, int hint)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ticketHint = hint;
return WOLFSSL_SUCCESS;
}
/* set user context, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_set_TicketEncCtx(WOLFSSL_CTX* ctx, void* userCtx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->ticketEncCtx = userCtx;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_WOLFSSL_SERVER */
#if !defined(NO_WOLFSSL_CLIENT)
int wolfSSL_UseSessionTicket(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSessionTicket(&ssl->extensions, NULL, ssl->heap);
}
int wolfSSL_CTX_UseSessionTicket(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
return TLSX_UseSessionTicket(&ctx->extensions, NULL, ctx->heap);
}
WOLFSSL_API int wolfSSL_get_SessionTicket(WOLFSSL* ssl,
byte* buf, word32* bufSz)
{
if (ssl == NULL || buf == NULL || bufSz == NULL || *bufSz == 0)
return BAD_FUNC_ARG;
if (ssl->session.ticketLen <= *bufSz) {
XMEMCPY(buf, ssl->session.ticket, ssl->session.ticketLen);
*bufSz = ssl->session.ticketLen;
}
else
*bufSz = 0;
return WOLFSSL_SUCCESS;
}
WOLFSSL_API int wolfSSL_set_SessionTicket(WOLFSSL* ssl, const byte* buf,
word32 bufSz)
{
if (ssl == NULL || (buf == NULL && bufSz > 0))
return BAD_FUNC_ARG;
if (bufSz > 0) {
/* Ticket will fit into static ticket */
if(bufSz <= SESSION_TICKET_LEN) {
if (ssl->session.isDynamic) {
XFREE(ssl->session.ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
ssl->session.isDynamic = 0;
ssl->session.ticket = ssl->session.staticTicket;
}
} else { /* Ticket requires dynamic ticket storage */
if (ssl->session.ticketLen < bufSz) { /* is dyn buffer big enough */
if(ssl->session.isDynamic)
XFREE(ssl->session.ticket, ssl->heap,
DYNAMIC_TYPE_SESSION_TICK);
ssl->session.ticket = (byte*)XMALLOC(bufSz, ssl->heap,
DYNAMIC_TYPE_SESSION_TICK);
if(!ssl->session.ticket) {
ssl->session.ticket = ssl->session.staticTicket;
ssl->session.isDynamic = 0;
return MEMORY_ERROR;
}
ssl->session.isDynamic = 1;
}
}
XMEMCPY(ssl->session.ticket, buf, bufSz);
}
ssl->session.ticketLen = (word16)bufSz;
return WOLFSSL_SUCCESS;
}
WOLFSSL_API int wolfSSL_set_SessionTicket_cb(WOLFSSL* ssl,
CallbackSessionTicket cb, void* ctx)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->session_ticket_cb = cb;
ssl->session_ticket_ctx = ctx;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_WOLFSSL_CLIENT */
#endif /* HAVE_SESSION_TICKET */
#ifdef HAVE_EXTENDED_MASTER
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_CTX_DisableExtendedMasterSecret(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->haveEMS = 0;
return WOLFSSL_SUCCESS;
}
int wolfSSL_DisableExtendedMasterSecret(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.haveEMS = 0;
return WOLFSSL_SUCCESS;
}
#endif
#endif
#ifndef WOLFSSL_LEANPSK
int wolfSSL_send(WOLFSSL* ssl, const void* data, int sz, int flags)
{
int ret;
int oldFlags;
WOLFSSL_ENTER("wolfSSL_send()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
oldFlags = ssl->wflags;
ssl->wflags = flags;
ret = wolfSSL_write(ssl, data, sz);
ssl->wflags = oldFlags;
WOLFSSL_LEAVE("wolfSSL_send()", ret);
return ret;
}
int wolfSSL_recv(WOLFSSL* ssl, void* data, int sz, int flags)
{
int ret;
int oldFlags;
WOLFSSL_ENTER("wolfSSL_recv()");
if (ssl == NULL || data == NULL || sz < 0)
return BAD_FUNC_ARG;
oldFlags = ssl->rflags;
ssl->rflags = flags;
ret = wolfSSL_read(ssl, data, sz);
ssl->rflags = oldFlags;
WOLFSSL_LEAVE("wolfSSL_recv()", ret);
return ret;
}
#endif
/* WOLFSSL_SUCCESS on ok */
WOLFSSL_ABI
int wolfSSL_shutdown(WOLFSSL* ssl)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("SSL_shutdown()");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
if (ssl->options.quietShutdown) {
WOLFSSL_MSG("quiet shutdown, no close notify sent");
ret = WOLFSSL_SUCCESS;
}
else {
/* try to send close notify, not an error if can't */
if (!ssl->options.isClosed && !ssl->options.connReset &&
!ssl->options.sentNotify) {
ssl->error = SendAlert(ssl, alert_warning, close_notify);
if (ssl->error < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.sentNotify = 1; /* don't send close_notify twice */
if (ssl->options.closeNotify)
ret = WOLFSSL_SUCCESS;
else {
ret = WOLFSSL_SHUTDOWN_NOT_DONE;
WOLFSSL_LEAVE("SSL_shutdown()", ret);
return ret;
}
}
#ifdef WOLFSSL_SHUTDOWNONCE
if (ssl->options.isClosed || ssl->options.connReset) {
/* Shutdown has already occurred.
* Caller is free to ignore this error. */
return SSL_SHUTDOWN_ALREADY_DONE_E;
}
#endif
/* call wolfSSL_shutdown again for bidirectional shutdown */
if (ssl->options.sentNotify && !ssl->options.closeNotify) {
ret = ProcessReply(ssl);
if (ret == ZERO_RETURN) {
/* simulate OpenSSL behavior */
ssl->error = WOLFSSL_ERROR_SYSCALL;
ret = WOLFSSL_SUCCESS;
} else if (ssl->error == WOLFSSL_ERROR_NONE) {
ret = WOLFSSL_SHUTDOWN_NOT_DONE;
} else {
WOLFSSL_ERROR(ssl->error);
ret = WOLFSSL_FATAL_ERROR;
}
}
}
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* reset WOLFSSL structure state for possible re-use */
if (ret == WOLFSSL_SUCCESS) {
if (wolfSSL_clear(ssl) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("could not clear WOLFSSL");
ret = WOLFSSL_FATAL_ERROR;
}
}
#endif
WOLFSSL_LEAVE("SSL_shutdown()", ret);
return ret;
}
/* get current error state value */
int wolfSSL_state(WOLFSSL* ssl)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
return ssl->error;
}
WOLFSSL_ABI
int wolfSSL_get_error(WOLFSSL* ssl, int ret)
{
WOLFSSL_ENTER("SSL_get_error");
if (ret > 0)
return WOLFSSL_ERROR_NONE;
if (ssl == NULL)
return BAD_FUNC_ARG;
WOLFSSL_LEAVE("SSL_get_error", ssl->error);
/* make sure converted types are handled in SetErrorString() too */
if (ssl->error == WANT_READ)
return WOLFSSL_ERROR_WANT_READ; /* convert to OpenSSL type */
else if (ssl->error == WANT_WRITE)
return WOLFSSL_ERROR_WANT_WRITE; /* convert to OpenSSL type */
else if (ssl->error == ZERO_RETURN)
return WOLFSSL_ERROR_ZERO_RETURN; /* convert to OpenSSL type */
return ssl->error;
}
/* retrieve alert history, WOLFSSL_SUCCESS on ok */
int wolfSSL_get_alert_history(WOLFSSL* ssl, WOLFSSL_ALERT_HISTORY *h)
{
if (ssl && h) {
*h = ssl->alert_history;
}
return WOLFSSL_SUCCESS;
}
#ifdef OPENSSL_EXTRA
/* returns SSL_WRITING, SSL_READING or SSL_NOTHING */
int wolfSSL_want(WOLFSSL* ssl)
{
int rw_state = SSL_NOTHING;
if (ssl) {
if (ssl->error == WANT_READ)
rw_state = SSL_READING;
else if (ssl->error == WANT_WRITE)
rw_state = SSL_WRITING;
}
return rw_state;
}
#endif
/* return TRUE if current error is want read */
int wolfSSL_want_read(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_want_read");
if (ssl->error == WANT_READ)
return 1;
return 0;
}
/* return TRUE if current error is want write */
int wolfSSL_want_write(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_want_write");
if (ssl->error == WANT_WRITE)
return 1;
return 0;
}
char* wolfSSL_ERR_error_string(unsigned long errNumber, char* data)
{
static char tmp[WOLFSSL_MAX_ERROR_SZ] = {0};
WOLFSSL_ENTER("ERR_error_string");
if (data) {
SetErrorString((int)errNumber, data);
return data;
}
else {
SetErrorString((int)errNumber, tmp);
return tmp;
}
}
void wolfSSL_ERR_error_string_n(unsigned long e, char* buf, unsigned long len)
{
WOLFSSL_ENTER("wolfSSL_ERR_error_string_n");
if (len >= WOLFSSL_MAX_ERROR_SZ)
wolfSSL_ERR_error_string(e, buf);
else {
char tmp[WOLFSSL_MAX_ERROR_SZ];
WOLFSSL_MSG("Error buffer too short, truncating");
if (len) {
wolfSSL_ERR_error_string(e, tmp);
XMEMCPY(buf, tmp, len-1);
buf[len-1] = '\0';
}
}
}
/* don't free temporary arrays at end of handshake */
void wolfSSL_KeepArrays(WOLFSSL* ssl)
{
if (ssl)
ssl->options.saveArrays = 1;
}
/* user doesn't need temporary arrays anymore, Free */
void wolfSSL_FreeArrays(WOLFSSL* ssl)
{
if (ssl && ssl->options.handShakeState == HANDSHAKE_DONE) {
ssl->options.saveArrays = 0;
FreeArrays(ssl, 1);
}
}
/* Set option to indicate that the resources are not to be freed after
* handshake.
*
* ssl The SSL/TLS object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_KeepHandshakeResources(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.keepResources = 1;
return 0;
}
/* Free the handshake resources after handshake.
*
* ssl The SSL/TLS object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_FreeHandshakeResources(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
FreeHandshakeResources(ssl);
return 0;
}
/* Use the client's order of preference when matching cipher suites.
*
* ssl The SSL/TLS context object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_CTX_UseClientSuites(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->useClientOrder = 1;
return 0;
}
/* Use the client's order of preference when matching cipher suites.
*
* ssl The SSL/TLS object.
* returns BAD_FUNC_ARG when ssl is NULL and 0 on success.
*/
int wolfSSL_UseClientSuites(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.useClientOrder = 1;
return 0;
}
#ifdef WOLFSSL_DTLS
const byte* wolfSSL_GetDtlsMacSecret(WOLFSSL* ssl, int verify, int epochOrder)
{
#ifndef WOLFSSL_AEAD_ONLY
Keys* keys = NULL;
(void)epochOrder;
if (ssl == NULL)
return NULL;
#ifdef HAVE_SECURE_RENEGOTIATION
switch (epochOrder) {
case PEER_ORDER:
if (IsDtlsMsgSCRKeys(ssl))
keys = &ssl->secure_renegotiation->tmp_keys;
else
keys = &ssl->keys;
break;
case PREV_ORDER:
keys = &ssl->keys;
break;
case CUR_ORDER:
if (DtlsUseSCRKeys(ssl))
keys = &ssl->secure_renegotiation->tmp_keys;
else
keys = &ssl->keys;
break;
default:
WOLFSSL_MSG("Unknown epoch order");
return NULL;
}
#else
keys = &ssl->keys;
#endif
if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) ||
(ssl->options.side == WOLFSSL_SERVER_END && verify) )
return keys->client_write_MAC_secret;
else
return keys->server_write_MAC_secret;
#else
(void)ssl;
(void)verify;
(void)epochOrder;
return NULL;
#endif
}
#endif /* WOLFSSL_DTLS */
const byte* wolfSSL_GetMacSecret(WOLFSSL* ssl, int verify)
{
#ifndef WOLFSSL_AEAD_ONLY
if (ssl == NULL)
return NULL;
if ( (ssl->options.side == WOLFSSL_CLIENT_END && !verify) ||
(ssl->options.side == WOLFSSL_SERVER_END && verify) )
return ssl->keys.client_write_MAC_secret;
else
return ssl->keys.server_write_MAC_secret;
#else
(void)ssl;
(void)verify;
return NULL;
#endif
}
#ifdef ATOMIC_USER
void wolfSSL_CTX_SetMacEncryptCb(WOLFSSL_CTX* ctx, CallbackMacEncrypt cb)
{
if (ctx)
ctx->MacEncryptCb = cb;
}
void wolfSSL_SetMacEncryptCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->MacEncryptCtx = ctx;
}
void* wolfSSL_GetMacEncryptCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->MacEncryptCtx;
return NULL;
}
void wolfSSL_CTX_SetDecryptVerifyCb(WOLFSSL_CTX* ctx, CallbackDecryptVerify cb)
{
if (ctx)
ctx->DecryptVerifyCb = cb;
}
void wolfSSL_SetDecryptVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->DecryptVerifyCtx = ctx;
}
void* wolfSSL_GetDecryptVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->DecryptVerifyCtx;
return NULL;
}
#if defined(HAVE_ENCRYPT_THEN_MAC) && !defined(WOLFSSL_AEAD_ONLY)
/**
* Set the callback, against the context, that encrypts then MACs.
*
* ctx SSL/TLS context.
* cb Callback function to use with Encrypt-Then-MAC.
*/
void wolfSSL_CTX_SetEncryptMacCb(WOLFSSL_CTX* ctx, CallbackEncryptMac cb)
{
if (ctx)
ctx->EncryptMacCb = cb;
}
/**
* Set the context to use with callback that encrypts then MACs.
*
* ssl SSL/TLS object.
* ctx Callback function's context.
*/
void wolfSSL_SetEncryptMacCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EncryptMacCtx = ctx;
}
/**
* Get the context being used with callback that encrypts then MACs.
*
* ssl SSL/TLS object.
* returns callback function's context or NULL if SSL/TLS object is NULL.
*/
void* wolfSSL_GetEncryptMacCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EncryptMacCtx;
return NULL;
}
/**
* Set the callback, against the context, that MAC verifies then decrypts.
*
* ctx SSL/TLS context.
* cb Callback function to use with Encrypt-Then-MAC.
*/
void wolfSSL_CTX_SetVerifyDecryptCb(WOLFSSL_CTX* ctx, CallbackVerifyDecrypt cb)
{
if (ctx)
ctx->VerifyDecryptCb = cb;
}
/**
* Set the context to use with callback that MAC verifies then decrypts.
*
* ssl SSL/TLS object.
* ctx Callback function's context.
*/
void wolfSSL_SetVerifyDecryptCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->VerifyDecryptCtx = ctx;
}
/**
* Get the context being used with callback that MAC verifies then decrypts.
*
* ssl SSL/TLS object.
* returns callback function's context or NULL if SSL/TLS object is NULL.
*/
void* wolfSSL_GetVerifyDecryptCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->VerifyDecryptCtx;
return NULL;
}
#endif /* HAVE_ENCRYPT_THEN_MAC !WOLFSSL_AEAD_ONLY */
const byte* wolfSSL_GetClientWriteKey(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.client_write_key;
return NULL;
}
const byte* wolfSSL_GetClientWriteIV(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.client_write_IV;
return NULL;
}
const byte* wolfSSL_GetServerWriteKey(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.server_write_key;
return NULL;
}
const byte* wolfSSL_GetServerWriteIV(WOLFSSL* ssl)
{
if (ssl)
return ssl->keys.server_write_IV;
return NULL;
}
int wolfSSL_GetKeySize(WOLFSSL* ssl)
{
if (ssl)
return ssl->specs.key_size;
return BAD_FUNC_ARG;
}
int wolfSSL_GetIVSize(WOLFSSL* ssl)
{
if (ssl)
return ssl->specs.iv_size;
return BAD_FUNC_ARG;
}
int wolfSSL_GetBulkCipher(WOLFSSL* ssl)
{
if (ssl)
return ssl->specs.bulk_cipher_algorithm;
return BAD_FUNC_ARG;
}
int wolfSSL_GetCipherType(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
#ifndef WOLFSSL_AEAD_ONLY
if (ssl->specs.cipher_type == block)
return WOLFSSL_BLOCK_TYPE;
if (ssl->specs.cipher_type == stream)
return WOLFSSL_STREAM_TYPE;
#endif
if (ssl->specs.cipher_type == aead)
return WOLFSSL_AEAD_TYPE;
return -1;
}
int wolfSSL_GetCipherBlockSize(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->specs.block_size;
}
int wolfSSL_GetAeadMacSize(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return ssl->specs.aead_mac_size;
}
int wolfSSL_IsTLSv1_1(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->options.tls1_1)
return 1;
return 0;
}
int wolfSSL_GetSide(WOLFSSL* ssl)
{
if (ssl)
return ssl->options.side;
return BAD_FUNC_ARG;
}
int wolfSSL_GetHmacSize(WOLFSSL* ssl)
{
/* AEAD ciphers don't have HMAC keys */
if (ssl)
return (ssl->specs.cipher_type != aead) ? ssl->specs.hash_size : 0;
return BAD_FUNC_ARG;
}
#endif /* ATOMIC_USER */
#ifndef NO_CERTS
WOLFSSL_CERT_MANAGER* wolfSSL_CTX_GetCertManager(WOLFSSL_CTX* ctx)
{
WOLFSSL_CERT_MANAGER* cm = NULL;
if (ctx)
cm = ctx->cm;
return cm;
}
WOLFSSL_CERT_MANAGER* wolfSSL_CertManagerNew_ex(void* heap)
{
WOLFSSL_CERT_MANAGER* cm;
WOLFSSL_ENTER("wolfSSL_CertManagerNew");
cm = (WOLFSSL_CERT_MANAGER*) XMALLOC(sizeof(WOLFSSL_CERT_MANAGER), heap,
DYNAMIC_TYPE_CERT_MANAGER);
if (cm) {
XMEMSET(cm, 0, sizeof(WOLFSSL_CERT_MANAGER));
cm->refCount = 1;
if (wc_InitMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("Bad mutex init");
wolfSSL_CertManagerFree(cm);
return NULL;
}
if (wc_InitMutex(&cm->refMutex) != 0) {
WOLFSSL_MSG("Bad mutex init");
wolfSSL_CertManagerFree(cm);
return NULL;
}
#ifdef WOLFSSL_TRUST_PEER_CERT
if (wc_InitMutex(&cm->tpLock) != 0) {
WOLFSSL_MSG("Bad mutex init");
wolfSSL_CertManagerFree(cm);
return NULL;
}
#endif
/* set default minimum key size allowed */
#ifndef NO_RSA
cm->minRsaKeySz = MIN_RSAKEY_SZ;
#endif
#ifdef HAVE_ECC
cm->minEccKeySz = MIN_ECCKEY_SZ;
#endif
cm->heap = heap;
}
return cm;
}
WOLFSSL_CERT_MANAGER* wolfSSL_CertManagerNew(void)
{
return wolfSSL_CertManagerNew_ex(NULL);
}
void wolfSSL_CertManagerFree(WOLFSSL_CERT_MANAGER* cm)
{
int doFree = 0;
WOLFSSL_ENTER("wolfSSL_CertManagerFree");
if (cm) {
if (wc_LockMutex(&cm->refMutex) != 0) {
WOLFSSL_MSG("Couldn't lock cm mutex");
}
cm->refCount--;
if (cm->refCount == 0)
doFree = 1;
wc_UnLockMutex(&cm->refMutex);
if (doFree) {
#ifdef HAVE_CRL
if (cm->crl)
FreeCRL(cm->crl, 1);
#endif
#ifdef HAVE_OCSP
if (cm->ocsp)
FreeOCSP(cm->ocsp, 1);
XFREE(cm->ocspOverrideURL, cm->heap, DYNAMIC_TYPE_URL);
#if !defined(NO_WOLFSSL_SERVER) && \
(defined(HAVE_CERTIFICATE_STATUS_REQUEST) || \
defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2))
if (cm->ocsp_stapling)
FreeOCSP(cm->ocsp_stapling, 1);
#endif
#endif
FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap);
wc_FreeMutex(&cm->caLock);
#ifdef WOLFSSL_TRUST_PEER_CERT
FreeTrustedPeerTable(cm->tpTable, TP_TABLE_SIZE, cm->heap);
wc_FreeMutex(&cm->tpLock);
#endif
if (wc_FreeMutex(&cm->refMutex) != 0) {
WOLFSSL_MSG("Couldn't free refMutex mutex");
}
XFREE(cm, cm->heap, DYNAMIC_TYPE_CERT_MANAGER);
}
}
}
int wolfSSL_CertManager_up_ref(WOLFSSL_CERT_MANAGER* cm)
{
if (cm) {
if (wc_LockMutex(&cm->refMutex) != 0) {
WOLFSSL_MSG("Failed to lock cm mutex");
}
cm->refCount++;
wc_UnLockMutex(&cm->refMutex);
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#if defined(OPENSSL_EXTRA) && !defined(NO_FILESYSTEM)
#if defined(WOLFSSL_SIGNER_DER_CERT)
/******************************************************************************
* wolfSSL_CertManagerGetCerts - retrieve stack of X509 certificates in a
* certificate manager (CM).
*
* RETURNS:
* returns stack of X509 certs on success, otherwise returns a NULL.
*/
WOLFSSL_STACK* wolfSSL_CertManagerGetCerts(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_STACK* sk = NULL;
Signer* signers = NULL;
word32 row = 0;
DecodedCert* dCert = NULL;
WOLFSSL_X509* x509 = NULL;
int found = 0;
if (cm == NULL)
return NULL;
sk = wolfSSL_sk_X509_new();
if (sk == NULL) {
return NULL;
}
if (wc_LockMutex(&cm->caLock) != 0) {
goto error_init;
}
for (row = 0; row < CA_TABLE_SIZE; row++) {
signers = cm->caTable[row];
while (signers && signers->derCert && signers->derCert->buffer) {
dCert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap,
DYNAMIC_TYPE_DCERT);
if (dCert == NULL) {
goto error;
}
XMEMSET(dCert, 0, sizeof(DecodedCert));
InitDecodedCert(dCert, signers->derCert->buffer,
signers->derCert->length, cm->heap);
/* Parse Certificate */
if (ParseCert(dCert, CERT_TYPE, NO_VERIFY, cm)) {
goto error;
}
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), cm->heap,
DYNAMIC_TYPE_X509);
if (x509 == NULL) {
goto error;
}
InitX509(x509, 1, NULL);
if (CopyDecodedToX509(x509, dCert) == 0) {
if (wolfSSL_sk_X509_push(sk, x509) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Unable to load x509 into stack");
FreeX509(x509);
XFREE(x509, cm->heap, DYNAMIC_TYPE_X509);
goto error;
}
}
else {
goto error;
}
found = 1;
signers = signers->next;
FreeDecodedCert(dCert);
XFREE(dCert, cm->heap, DYNAMIC_TYPE_DCERT);
dCert = NULL;
}
}
wc_UnLockMutex(&cm->caLock);
if (!found) {
goto error_init;
}
return sk;
error:
wc_UnLockMutex(&cm->caLock);
error_init:
if (dCert) {
FreeDecodedCert(dCert);
XFREE(dCert, cm->heap, DYNAMIC_TYPE_DCERT);
}
if (sk)
wolfSSL_sk_X509_free(sk);
return NULL;
}
#endif /* WOLFSSL_SIGNER_DER_CERT */
/******************************************************************************
* wolfSSL_X509_STORE_GetCerts - retrieve stack of X509 in a certificate store ctx
*
* This API can be used in SSL verify callback function to view cert chain
* See examples/client/client.c and myVerify() function in test.h
*
* RETURNS:
* returns stack of X509 certs on success, otherwise returns a NULL.
*/
WOLFSSL_STACK* wolfSSL_X509_STORE_GetCerts(WOLFSSL_X509_STORE_CTX* s)
{
int certIdx = 0;
WOLFSSL_BUFFER_INFO* cert = NULL;
DecodedCert* dCert = NULL;
WOLFSSL_X509* x509 = NULL;
WOLFSSL_STACK* sk = NULL;
int found = 0;
if (s == NULL) {
return NULL;
}
sk = wolfSSL_sk_X509_new();
if (sk == NULL) {
return NULL;
}
for (certIdx = s->totalCerts - 1; certIdx >= 0; certIdx--) {
/* get certificate buffer */
cert = &s->certs[certIdx];
dCert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT);
if (dCert == NULL) {
goto error;
}
XMEMSET(dCert, 0, sizeof(DecodedCert));
InitDecodedCert(dCert, cert->buffer, cert->length, NULL);
/* Parse Certificate */
if (ParseCert(dCert, CERT_TYPE, NO_VERIFY, NULL)){
goto error;
}
x509 = wolfSSL_X509_new();
if (x509 == NULL) {
goto error;
}
InitX509(x509, 1, NULL);
if (CopyDecodedToX509(x509, dCert) == 0) {
if (wolfSSL_sk_X509_push(sk, x509) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Unable to load x509 into stack");
wolfSSL_X509_free(x509);
goto error;
}
}
else {
goto error;
}
found = 1;
FreeDecodedCert(dCert);
XFREE(dCert, NULL, DYNAMIC_TYPE_DCERT);
dCert = NULL;
}
if (!found) {
wolfSSL_sk_X509_free(sk);
sk = NULL;
}
return sk;
error:
if (dCert) {
FreeDecodedCert(dCert);
XFREE(dCert, NULL, DYNAMIC_TYPE_DCERT);
}
if (sk)
wolfSSL_sk_X509_free(sk);
return NULL;
}
#endif /* OPENSSL_EXTRA && !NO_FILESYSTEM */
/* Unload the CA signer list */
int wolfSSL_CertManagerUnloadCAs(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerUnloadCAs");
if (cm == NULL)
return BAD_FUNC_ARG;
if (wc_LockMutex(&cm->caLock) != 0)
return BAD_MUTEX_E;
FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap);
wc_UnLockMutex(&cm->caLock);
return WOLFSSL_SUCCESS;
}
#ifdef WOLFSSL_TRUST_PEER_CERT
int wolfSSL_CertManagerUnload_trust_peers(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerUnload_trust_peers");
if (cm == NULL)
return BAD_FUNC_ARG;
if (wc_LockMutex(&cm->tpLock) != 0)
return BAD_MUTEX_E;
FreeTrustedPeerTable(cm->tpTable, TP_TABLE_SIZE, cm->heap);
wc_UnLockMutex(&cm->tpLock);
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
#endif /* NO_CERTS */
#if !defined(NO_FILESYSTEM) && !defined(NO_STDIO_FILESYSTEM)
void wolfSSL_ERR_print_errors_fp(XFILE fp, int err)
{
char data[WOLFSSL_MAX_ERROR_SZ + 1];
WOLFSSL_ENTER("wolfSSL_ERR_print_errors_fp");
SetErrorString(err, data);
XFPRINTF(fp, "%s", data);
}
#if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)
void wolfSSL_ERR_dump_errors_fp(XFILE fp)
{
wc_ERR_print_errors_fp(fp);
}
void wolfSSL_ERR_print_errors_cb (int (*cb)(const char *str, size_t len,
void *u), void *u)
{
wc_ERR_print_errors_cb(cb, u);
}
#endif
#endif
WOLFSSL_ABI
int wolfSSL_pending(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_pending");
return ssl->buffers.clearOutputBuffer.length;
}
#ifndef WOLFSSL_LEANPSK
/* turn on handshake group messages for context */
int wolfSSL_CTX_set_group_messages(WOLFSSL_CTX* ctx)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->groupMessages = 1;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_WOLFSSL_CLIENT
/* connect enough to get peer cert chain */
int wolfSSL_connect_cert(WOLFSSL* ssl)
{
int ret;
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->options.certOnly = 1;
ret = wolfSSL_connect(ssl);
ssl->options.certOnly = 0;
return ret;
}
#endif
#ifndef WOLFSSL_LEANPSK
/* turn on handshake group messages for ssl object */
int wolfSSL_set_group_messages(WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->options.groupMessages = 1;
return WOLFSSL_SUCCESS;
}
/* make minVersion the internal equivalent SSL version */
static int SetMinVersionHelper(byte* minVersion, int version)
{
#ifdef NO_TLS
(void)minVersion;
#endif
switch (version) {
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
case WOLFSSL_SSLV3:
*minVersion = SSLv3_MINOR;
break;
#endif
#ifndef NO_TLS
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
case WOLFSSL_TLSV1:
*minVersion = TLSv1_MINOR;
break;
#endif
case WOLFSSL_TLSV1_1:
*minVersion = TLSv1_1_MINOR;
break;
#endif
#ifndef WOLFSSL_NO_TLS12
case WOLFSSL_TLSV1_2:
*minVersion = TLSv1_2_MINOR;
break;
#endif
#endif
#ifdef WOLFSSL_TLS13
case WOLFSSL_TLSV1_3:
*minVersion = TLSv1_3_MINOR;
break;
#endif
default:
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
return WOLFSSL_SUCCESS;
}
/* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */
WOLFSSL_ABI
int wolfSSL_CTX_SetMinVersion(WOLFSSL_CTX* ctx, int version)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetMinVersion");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
return SetMinVersionHelper(&ctx->minDowngrade, version);
}
/* Set minimum downgrade version allowed, WOLFSSL_SUCCESS on ok */
int wolfSSL_SetMinVersion(WOLFSSL* ssl, int version)
{
WOLFSSL_ENTER("wolfSSL_SetMinVersion");
if (ssl == NULL) {
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
return SetMinVersionHelper(&ssl->options.minDowngrade, version);
}
/* Function to get version as WOLFSSL_ enum value for wolfSSL_SetVersion */
int wolfSSL_GetVersion(const WOLFSSL* ssl)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (ssl->version.major == SSLv3_MAJOR) {
switch (ssl->version.minor) {
case SSLv3_MINOR :
return WOLFSSL_SSLV3;
case TLSv1_MINOR :
return WOLFSSL_TLSV1;
case TLSv1_1_MINOR :
return WOLFSSL_TLSV1_1;
case TLSv1_2_MINOR :
return WOLFSSL_TLSV1_2;
case TLSv1_3_MINOR :
return WOLFSSL_TLSV1_3;
default:
break;
}
}
return VERSION_ERROR;
}
int wolfSSL_SetVersion(WOLFSSL* ssl, int version)
{
word16 haveRSA = 1;
word16 havePSK = 0;
int keySz = 0;
WOLFSSL_ENTER("wolfSSL_SetVersion");
if (ssl == NULL) {
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
switch (version) {
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
case WOLFSSL_SSLV3:
ssl->version = MakeSSLv3();
break;
#endif
#ifndef NO_TLS
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
case WOLFSSL_TLSV1:
ssl->version = MakeTLSv1();
break;
#endif
case WOLFSSL_TLSV1_1:
ssl->version = MakeTLSv1_1();
break;
#endif
#ifndef WOLFSSL_NO_TLS12
case WOLFSSL_TLSV1_2:
ssl->version = MakeTLSv1_2();
break;
#endif
#endif
#ifdef WOLFSSL_TLS13
case WOLFSSL_TLSV1_3:
ssl->version = MakeTLSv1_3();
break;
#endif
default:
WOLFSSL_MSG("Bad function argument");
return BAD_FUNC_ARG;
}
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
return WOLFSSL_SUCCESS;
}
#endif /* !leanpsk */
#if !defined(NO_CERTS) || !defined(NO_SESSION_CACHE)
/* Make a work from the front of random hash */
static WC_INLINE word32 MakeWordFromHash(const byte* hashID)
{
return ((word32)hashID[0] << 24) | ((word32)hashID[1] << 16) |
((word32)hashID[2] << 8) | (word32)hashID[3];
}
#endif /* !NO_CERTS || !NO_SESSION_CACHE */
#ifndef NO_CERTS
/* hash is the SHA digest of name, just use first 32 bits as hash */
static WC_INLINE word32 HashSigner(const byte* hash)
{
return MakeWordFromHash(hash) % CA_TABLE_SIZE;
}
/* does CA already exist on signer list */
int AlreadySigner(WOLFSSL_CERT_MANAGER* cm, byte* hash)
{
Signer* signers;
int ret = 0;
word32 row;
if (cm == NULL || hash == NULL) {
return ret;
}
row = HashSigner(hash);
if (wc_LockMutex(&cm->caLock) != 0) {
return ret;
}
signers = cm->caTable[row];
while (signers) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = signers->subjectKeyIdHash;
#else
subjectHash = signers->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = 1; /* success */
break;
}
signers = signers->next;
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#ifdef WOLFSSL_TRUST_PEER_CERT
/* hash is the SHA digest of name, just use first 32 bits as hash */
static WC_INLINE word32 TrustedPeerHashSigner(const byte* hash)
{
return MakeWordFromHash(hash) % TP_TABLE_SIZE;
}
/* does trusted peer already exist on signer list */
int AlreadyTrustedPeer(WOLFSSL_CERT_MANAGER* cm, byte* hash)
{
TrustedPeerCert* tp;
int ret = 0;
word32 row = TrustedPeerHashSigner(hash);
if (wc_LockMutex(&cm->tpLock) != 0)
return ret;
tp = cm->tpTable[row];
while (tp) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = tp->subjectKeyIdHash;
#else
subjectHash = tp->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = 1;
break;
}
tp = tp->next;
}
wc_UnLockMutex(&cm->tpLock);
return ret;
}
/* return Trusted Peer if found, otherwise NULL
type is what to match on
*/
TrustedPeerCert* GetTrustedPeer(void* vp, byte* hash, int type)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
TrustedPeerCert* ret = NULL;
TrustedPeerCert* tp = NULL;
word32 row;
if (cm == NULL || hash == NULL)
return NULL;
row = TrustedPeerHashSigner(hash);
if (wc_LockMutex(&cm->tpLock) != 0)
return ret;
tp = cm->tpTable[row];
while (tp) {
byte* subjectHash;
switch (type) {
#ifndef NO_SKID
case WC_MATCH_SKID:
subjectHash = tp->subjectKeyIdHash;
break;
#endif
case WC_MATCH_NAME:
subjectHash = tp->subjectNameHash;
break;
default:
WOLFSSL_MSG("Unknown search type");
wc_UnLockMutex(&cm->tpLock);
return NULL;
}
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = tp;
break;
}
tp = tp->next;
}
wc_UnLockMutex(&cm->tpLock);
return ret;
}
int MatchTrustedPeer(TrustedPeerCert* tp, DecodedCert* cert)
{
if (tp == NULL || cert == NULL)
return BAD_FUNC_ARG;
/* subject key id or subject hash has been compared when searching
tpTable for the cert from function GetTrustedPeer */
/* compare signatures */
if (tp->sigLen == cert->sigLength) {
if (XMEMCMP(tp->sig, cert->signature, cert->sigLength)) {
return WOLFSSL_FAILURE;
}
}
else {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* return CA if found, otherwise NULL */
Signer* GetCA(void* vp, byte* hash)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
Signer* ret = NULL;
Signer* signers;
word32 row = 0;
if (cm == NULL || hash == NULL)
return NULL;
row = HashSigner(hash);
if (wc_LockMutex(&cm->caLock) != 0)
return ret;
signers = cm->caTable[row];
while (signers) {
byte* subjectHash;
#ifndef NO_SKID
subjectHash = signers->subjectKeyIdHash;
#else
subjectHash = signers->subjectNameHash;
#endif
if (XMEMCMP(hash, subjectHash, SIGNER_DIGEST_SIZE) == 0) {
ret = signers;
break;
}
signers = signers->next;
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#ifndef NO_SKID
/* return CA if found, otherwise NULL. Walk through hash table. */
Signer* GetCAByName(void* vp, byte* hash)
{
WOLFSSL_CERT_MANAGER* cm = (WOLFSSL_CERT_MANAGER*)vp;
Signer* ret = NULL;
Signer* signers;
word32 row;
if (cm == NULL)
return NULL;
if (wc_LockMutex(&cm->caLock) != 0)
return ret;
for (row = 0; row < CA_TABLE_SIZE && ret == NULL; row++) {
signers = cm->caTable[row];
while (signers && ret == NULL) {
if (XMEMCMP(hash, signers->subjectNameHash,
SIGNER_DIGEST_SIZE) == 0) {
ret = signers;
}
signers = signers->next;
}
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
#endif
#ifdef WOLFSSL_TRUST_PEER_CERT
/* add a trusted peer cert to linked list */
int AddTrustedPeer(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int verify)
{
int ret, row;
TrustedPeerCert* peerCert;
DecodedCert* cert;
DerBuffer* der = *pDer;
byte* subjectHash = NULL;
WOLFSSL_MSG("Adding a Trusted Peer Cert");
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
InitDecodedCert(cert, der->buffer, der->length, cm->heap);
if ((ret = ParseCert(cert, TRUSTED_PEER_TYPE, verify, cm)) != 0) {
FreeDecodedCert(cert);
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
return ret;
}
WOLFSSL_MSG("\tParsed new trusted peer cert");
peerCert = (TrustedPeerCert*)XMALLOC(sizeof(TrustedPeerCert), cm->heap,
DYNAMIC_TYPE_CERT);
if (peerCert == NULL) {
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
return MEMORY_E;
}
XMEMSET(peerCert, 0, sizeof(TrustedPeerCert));
#ifndef NO_SKID
if (cert->extAuthKeyIdSet) {
subjectHash = cert->extSubjKeyId;
}
else {
subjectHash = cert->subjectHash;
}
#else
subjectHash = cert->subjectHash;
#endif
#ifndef IGNORE_NAME_CONSTRAINTS
if (peerCert->permittedNames)
FreeNameSubtrees(peerCert->permittedNames, cm->heap);
if (peerCert->excludedNames)
FreeNameSubtrees(peerCert->excludedNames, cm->heap);
#endif
if (AlreadyTrustedPeer(cm, subjectHash)) {
WOLFSSL_MSG("\tAlready have this CA, not adding again");
FreeTrustedPeer(peerCert, cm->heap);
(void)ret;
}
else {
/* add trusted peer signature */
peerCert->sigLen = cert->sigLength;
peerCert->sig = (byte *)XMALLOC(cert->sigLength, cm->heap,
DYNAMIC_TYPE_SIGNATURE);
if (peerCert->sig == NULL) {
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
FreeTrustedPeer(peerCert, cm->heap);
return MEMORY_E;
}
XMEMCPY(peerCert->sig, cert->signature, cert->sigLength);
/* add trusted peer name */
peerCert->nameLen = cert->subjectCNLen;
peerCert->name = cert->subjectCN;
#ifndef IGNORE_NAME_CONSTRAINTS
peerCert->permittedNames = cert->permittedNames;
peerCert->excludedNames = cert->excludedNames;
#endif
/* add SKID when available and hash of name */
#ifndef NO_SKID
XMEMCPY(peerCert->subjectKeyIdHash, cert->extSubjKeyId,
SIGNER_DIGEST_SIZE);
#endif
XMEMCPY(peerCert->subjectNameHash, cert->subjectHash,
SIGNER_DIGEST_SIZE);
peerCert->next = NULL; /* If Key Usage not set, all uses valid. */
cert->subjectCN = 0;
#ifndef IGNORE_NAME_CONSTRAINTS
cert->permittedNames = NULL;
cert->excludedNames = NULL;
#endif
#ifndef NO_SKID
if (cert->extAuthKeyIdSet) {
row = TrustedPeerHashSigner(peerCert->subjectKeyIdHash);
}
else {
row = TrustedPeerHashSigner(peerCert->subjectNameHash);
}
#else
row = TrustedPeerHashSigner(peerCert->subjectNameHash);
#endif
if (wc_LockMutex(&cm->tpLock) == 0) {
peerCert->next = cm->tpTable[row];
cm->tpTable[row] = peerCert; /* takes ownership */
wc_UnLockMutex(&cm->tpLock);
}
else {
WOLFSSL_MSG("\tTrusted Peer Cert Mutex Lock failed");
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
FreeTrustedPeer(peerCert, cm->heap);
return BAD_MUTEX_E;
}
}
WOLFSSL_MSG("\tFreeing parsed trusted peer cert");
FreeDecodedCert(cert);
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
WOLFSSL_MSG("\tFreeing der trusted peer cert");
FreeDer(&der);
WOLFSSL_MSG("\t\tOK Freeing der trusted peer cert");
WOLFSSL_LEAVE("AddTrustedPeer", ret);
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* owns der, internal now uses too */
/* type flag ids from user or from chain received during verify
don't allow chain ones to be added w/o isCA extension */
int AddCA(WOLFSSL_CERT_MANAGER* cm, DerBuffer** pDer, int type, int verify)
{
int ret;
Signer* signer = NULL;
word32 row;
byte* subjectHash;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
DerBuffer* der = *pDer;
WOLFSSL_MSG("Adding a CA");
if (cm == NULL) {
FreeDer(pDer);
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert == NULL) {
FreeDer(pDer);
return MEMORY_E;
}
#endif
InitDecodedCert(cert, der->buffer, der->length, cm->heap);
ret = ParseCert(cert, CA_TYPE, verify, cm);
WOLFSSL_MSG("\tParsed new CA");
#ifndef NO_SKID
subjectHash = cert->extSubjKeyId;
#else
subjectHash = cert->subjectHash;
#endif
/* check CA key size */
if (verify) {
switch (cert->keyOID) {
#ifndef NO_RSA
case RSAk:
if (cm->minRsaKeySz < 0 ||
cert->pubKeySize < (word16)cm->minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("\tCA RSA key size error");
}
break;
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
if (cm->minEccKeySz < 0 ||
cert->pubKeySize < (word16)cm->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("\tCA ECC key size error");
}
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
if (cm->minEccKeySz < 0 ||
ED25519_KEY_SIZE < (word16)cm->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("\tCA ECC key size error");
}
break;
#endif /* HAVE_ED25519 */
#ifdef HAVE_ED448
case ED448k:
if (cm->minEccKeySz < 0 ||
ED448_KEY_SIZE < (word16)cm->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("\tCA ECC key size error");
}
break;
#endif /* HAVE_ED448 */
default:
WOLFSSL_MSG("\tNo key size check done on CA");
break; /* no size check if key type is not in switch */
}
}
if (ret == 0 && cert->isCA == 0 && type != WOLFSSL_USER_CA) {
WOLFSSL_MSG("\tCan't add as CA if not actually one");
ret = NOT_CA_ERROR;
}
#ifndef ALLOW_INVALID_CERTSIGN
else if (ret == 0 && cert->isCA == 1 && type != WOLFSSL_USER_CA &&
!cert->selfSigned && (cert->extKeyUsage & KEYUSE_KEY_CERT_SIGN) == 0) {
/* Intermediate CA certs are required to have the keyCertSign
* extension set. User loaded root certs are not. */
WOLFSSL_MSG("\tDoesn't have key usage certificate signing");
ret = NOT_CA_ERROR;
}
#endif
else if (ret == 0 && AlreadySigner(cm, subjectHash)) {
WOLFSSL_MSG("\tAlready have this CA, not adding again");
(void)ret;
}
else if (ret == 0) {
/* take over signer parts */
signer = MakeSigner(cm->heap);
if (!signer)
ret = MEMORY_ERROR;
}
if (ret == 0 && signer != NULL) {
#ifdef WOLFSSL_SIGNER_DER_CERT
ret = AllocDer(&signer->derCert, der->length, der->type, NULL);
}
if (ret == 0 && signer != NULL) {
XMEMCPY(signer->derCert->buffer, der->buffer, der->length);
#endif
signer->keyOID = cert->keyOID;
if (cert->pubKeyStored) {
signer->publicKey = cert->publicKey;
signer->pubKeySize = cert->pubKeySize;
}
if (cert->subjectCNStored) {
signer->nameLen = cert->subjectCNLen;
signer->name = cert->subjectCN;
}
signer->pathLength = cert->pathLength;
signer->maxPathLen = cert->maxPathLen;
signer->pathLengthSet = cert->pathLengthSet;
signer->selfSigned = cert->selfSigned;
#ifndef IGNORE_NAME_CONSTRAINTS
signer->permittedNames = cert->permittedNames;
signer->excludedNames = cert->excludedNames;
#endif
#ifndef NO_SKID
XMEMCPY(signer->subjectKeyIdHash, cert->extSubjKeyId,
SIGNER_DIGEST_SIZE);
#endif
XMEMCPY(signer->subjectNameHash, cert->subjectHash,
SIGNER_DIGEST_SIZE);
#ifdef HAVE_OCSP
XMEMCPY(signer->subjectKeyHash, cert->subjectKeyHash,
KEYID_SIZE);
#endif
signer->keyUsage = cert->extKeyUsageSet ? cert->extKeyUsage
: 0xFFFF;
signer->next = NULL; /* If Key Usage not set, all uses valid. */
cert->publicKey = 0; /* in case lock fails don't free here. */
cert->subjectCN = 0;
#ifndef IGNORE_NAME_CONSTRAINTS
cert->permittedNames = NULL;
cert->excludedNames = NULL;
#endif
#ifndef NO_SKID
row = HashSigner(signer->subjectKeyIdHash);
#else
row = HashSigner(signer->subjectNameHash);
#endif
if (wc_LockMutex(&cm->caLock) == 0) {
signer->next = cm->caTable[row];
cm->caTable[row] = signer; /* takes ownership */
wc_UnLockMutex(&cm->caLock);
if (cm->caCacheCallback)
cm->caCacheCallback(der->buffer, (int)der->length, type);
}
else {
WOLFSSL_MSG("\tCA Mutex Lock failed");
ret = BAD_MUTEX_E;
FreeSigner(signer, cm->heap);
}
}
#if defined(WOLFSSL_RENESAS_TSIP_TLS)
/* Verify CA by TSIP so that generated tsip key is going to be able to */
/* be used for peer's cert verification */
/* TSIP is only able to handle USER CA, and only one CA. */
/* Therefore, it doesn't need to call TSIP again if there is already */
/* verified CA. */
if ( ret == 0 && signer != NULL ) {
signer->cm_idx = row;
if (type == WOLFSSL_USER_CA && tsip_rootCAverified() == 0 ) {
if ((ret = tsip_tls_RootCertVerify(cert->source, cert->maxIdx,
cert->sigCtx.pubkey_n_start, cert->sigCtx.pubkey_n_len - 1,
cert->sigCtx.pubkey_e_start, cert->sigCtx.pubkey_e_len - 1,
row/* cm index */))
!= 0)
WOLFSSL_MSG("tsip_tls_RootCertVerify() failed");
else
WOLFSSL_MSG("tsip_tls_RootCertVerify() succeed");
}
}
#endif
WOLFSSL_MSG("\tFreeing Parsed CA");
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
WOLFSSL_MSG("\tFreeing der CA");
FreeDer(pDer);
WOLFSSL_MSG("\t\tOK Freeing der CA");
WOLFSSL_LEAVE("AddCA", ret);
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
#endif /* !NO_CERTS */
#ifndef NO_SESSION_CACHE
/* basic config gives a cache with 33 sessions, adequate for clients and
embedded servers
TITAN_SESSION_CACHE allows just over 2 million sessions, for servers
with titanic amounts of memory with long session ID timeouts and high
levels of traffic.
HUGE_SESSION_CACHE yields 65,791 sessions, for servers under heavy load,
allows over 13,000 new sessions per minute or over 200 new sessions per
second
BIG_SESSION_CACHE yields 20,027 sessions
MEDIUM_SESSION_CACHE allows 1055 sessions, adequate for servers that
aren't under heavy load, basically allows 200 new sessions per minute
SMALL_SESSION_CACHE only stores 6 sessions, good for embedded clients
or systems where the default of nearly 3kB is too much RAM, this define
uses less than 500 bytes RAM
default SESSION_CACHE stores 33 sessions (no XXX_SESSION_CACHE defined)
*/
#if defined(TITAN_SESSION_CACHE)
#define SESSIONS_PER_ROW 31
#define SESSION_ROWS 64937
#elif defined(HUGE_SESSION_CACHE)
#define SESSIONS_PER_ROW 11
#define SESSION_ROWS 5981
#elif defined(BIG_SESSION_CACHE)
#define SESSIONS_PER_ROW 7
#define SESSION_ROWS 2861
#elif defined(MEDIUM_SESSION_CACHE)
#define SESSIONS_PER_ROW 5
#define SESSION_ROWS 211
#elif defined(SMALL_SESSION_CACHE)
#define SESSIONS_PER_ROW 2
#define SESSION_ROWS 3
#else
#define SESSIONS_PER_ROW 3
#define SESSION_ROWS 11
#endif
typedef struct SessionRow {
int nextIdx; /* where to place next one */
int totalCount; /* sessions ever on this row */
WOLFSSL_SESSION Sessions[SESSIONS_PER_ROW];
} SessionRow;
static WOLFSSL_GLOBAL SessionRow SessionCache[SESSION_ROWS];
#if defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS)
static WOLFSSL_GLOBAL word32 PeakSessions;
#endif
static WOLFSSL_GLOBAL wolfSSL_Mutex session_mutex; /* SessionCache mutex */
#ifndef NO_CLIENT_CACHE
typedef struct ClientSession {
word16 serverRow; /* SessionCache Row id */
word16 serverIdx; /* SessionCache Idx (column) */
} ClientSession;
typedef struct ClientRow {
int nextIdx; /* where to place next one */
int totalCount; /* sessions ever on this row */
ClientSession Clients[SESSIONS_PER_ROW];
} ClientRow;
static WOLFSSL_GLOBAL ClientRow ClientCache[SESSION_ROWS];
/* Client Cache */
/* uses session mutex */
#endif /* NO_CLIENT_CACHE */
#endif /* NO_SESSION_CACHE */
#if defined(OPENSSL_EXTRA) || \
(defined(OPENSSL_EXTRA_X509_SMALL) && !defined(NO_RSA))
static WC_RNG globalRNG;
static int initGlobalRNG = 0;
static wolfSSL_Mutex globalRNGMutex;
#endif
WOLFSSL_ABI
int wolfSSL_Init(void)
{
WOLFSSL_ENTER("wolfSSL_Init");
if (initRefCount == 0) {
/* Initialize crypto for use with TLS connection */
if (wolfCrypt_Init() != 0) {
WOLFSSL_MSG("Bad wolfCrypt Init");
return WC_INIT_E;
}
#if defined(OPENSSL_EXTRA) || \
(defined(OPENSSL_EXTRA_X509_SMALL) && !defined(NO_RSA))
if (wc_InitMutex(&globalRNGMutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex rng");
return BAD_MUTEX_E;
}
#endif
#ifdef OPENSSL_EXTRA
if (wolfSSL_RAND_seed(NULL, 0) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_RAND_Seed failed");
return WC_INIT_E;
}
#endif
#ifndef NO_SESSION_CACHE
if (wc_InitMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex session");
return BAD_MUTEX_E;
}
#endif
if (wc_InitMutex(&count_mutex) != 0) {
WOLFSSL_MSG("Bad Init Mutex count");
return BAD_MUTEX_E;
}
}
if (wc_LockMutex(&count_mutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex count");
return BAD_MUTEX_E;
}
initRefCount++;
wc_UnLockMutex(&count_mutex);
return WOLFSSL_SUCCESS;
}
#ifndef NO_CERTS
/* process user cert chain to pass during the handshake */
static int ProcessUserChain(WOLFSSL_CTX* ctx, const unsigned char* buff,
long sz, int format, int type, WOLFSSL* ssl,
long* used, EncryptedInfo* info, int verify)
{
int ret = 0;
void* heap = wolfSSL_CTX_GetHeap(ctx, ssl);
#ifdef WOLFSSL_TLS13
int cnt = 0;
#endif
if ((type == CA_TYPE) && (ctx == NULL)) {
WOLFSSL_MSG("Need context for CA load");
return BAD_FUNC_ARG;
}
/* we may have a user cert chain, try to consume */
if ((type == CERT_TYPE || type == CA_TYPE) && (info->consumed < sz)) {
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE]; /* tmp chain buffer */
#endif
byte* chainBuffer = staticBuffer;
int dynamicBuffer = 0;
word32 bufferSz;
long consumed = info->consumed;
word32 idx = 0;
int gotOne = 0;
/* Calculate max possible size, including max headers */
bufferSz = (word32)(sz - consumed) + (CERT_HEADER_SZ * MAX_CHAIN_DEPTH);
if (bufferSz > sizeof(staticBuffer)) {
WOLFSSL_MSG("Growing Tmp Chain Buffer");
/* will shrink to actual size */
chainBuffer = (byte*)XMALLOC(bufferSz, heap, DYNAMIC_TYPE_FILE);
if (chainBuffer == NULL) {
return MEMORY_E;
}
dynamicBuffer = 1;
}
WOLFSSL_MSG("Processing Cert Chain");
while (consumed < sz) {
DerBuffer* part = NULL;
word32 remain = (word32)(sz - consumed);
info->consumed = 0;
if (format == WOLFSSL_FILETYPE_PEM) {
#ifdef WOLFSSL_PEM_TO_DER
ret = PemToDer(buff + consumed, remain, type, &part,
heap, info, NULL);
#else
ret = NOT_COMPILED_IN;
#endif
}
else {
int length = remain;
if (format == WOLFSSL_FILETYPE_ASN1) {
/* get length of der (read sequence) */
word32 inOutIdx = 0;
if (GetSequence(buff + consumed, &inOutIdx, &length,
remain) < 0) {
ret = ASN_NO_PEM_HEADER;
}
length += inOutIdx; /* include leading sequence */
}
info->consumed = length;
if (ret == 0) {
ret = AllocDer(&part, length, type, heap);
if (ret == 0) {
XMEMCPY(part->buffer, buff + consumed, length);
}
}
}
if (ret == 0) {
gotOne = 1;
#ifdef WOLFSSL_TLS13
cnt++;
#endif
if ((idx + part->length + CERT_HEADER_SZ) > bufferSz) {
WOLFSSL_MSG(" Cert Chain bigger than buffer");
ret = BUFFER_E;
}
else {
c32to24(part->length, &chainBuffer[idx]);
idx += CERT_HEADER_SZ;
XMEMCPY(&chainBuffer[idx], part->buffer, part->length);
idx += part->length;
consumed += info->consumed;
if (used)
*used += info->consumed;
}
/* add CA's to certificate manager */
if (type == CA_TYPE) {
/* verify CA unless user set to no verify */
ret = AddCA(ctx->cm, &part, WOLFSSL_USER_CA, verify);
gotOne = 0; /* don't exit loop for CA type */
}
}
FreeDer(&part);
if (ret == ASN_NO_PEM_HEADER && gotOne) {
WOLFSSL_MSG("We got one good cert, so stuff at end ok");
break;
}
if (ret < 0) {
WOLFSSL_MSG(" Error in Cert in Chain");
if (dynamicBuffer)
XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE);
return ret;
}
WOLFSSL_MSG(" Consumed another Cert in Chain");
}
WOLFSSL_MSG("Finished Processing Cert Chain");
/* only retain actual size used */
ret = 0;
if (idx > 0) {
if (ssl) {
if (ssl->buffers.weOwnCertChain) {
FreeDer(&ssl->buffers.certChain);
}
ret = AllocDer(&ssl->buffers.certChain, idx, type, heap);
if (ret == 0) {
XMEMCPY(ssl->buffers.certChain->buffer, chainBuffer,
idx);
ssl->buffers.weOwnCertChain = 1;
}
#ifdef WOLFSSL_TLS13
ssl->buffers.certChainCnt = cnt;
#endif
} else if (ctx) {
FreeDer(&ctx->certChain);
ret = AllocDer(&ctx->certChain, idx, type, heap);
if (ret == 0) {
XMEMCPY(ctx->certChain->buffer, chainBuffer, idx);
}
#ifdef WOLFSSL_TLS13
ctx->certChainCnt = cnt;
#endif
}
}
if (dynamicBuffer)
XFREE(chainBuffer, heap, DYNAMIC_TYPE_FILE);
}
return ret;
}
static int ProcessBufferTryDecode(WOLFSSL_CTX* ctx, WOLFSSL* ssl, DerBuffer* der,
int* keySz, word32* idx, int* resetSuites, int* keyFormat, void* heap, int devId)
{
int ret = 0;
(void)heap;
(void)devId;
if (ctx == NULL && ssl == NULL)
ret = BAD_FUNC_ARG;
if (!der || !keySz || !idx || !resetSuites || !keyFormat)
ret = BAD_FUNC_ARG;
#ifndef NO_RSA
if (ret == 0 && (*keyFormat == 0 || *keyFormat == RSAk)) {
/* make sure RSA key can be used */
#ifdef WOLFSSL_SMALL_STACK
RsaKey* key;
#else
RsaKey key[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
key = (RsaKey*)XMALLOC(sizeof(RsaKey), heap, DYNAMIC_TYPE_RSA);
if (key == NULL)
return MEMORY_E;
#endif
ret = wc_InitRsaKey_ex(key, heap, devId);
if (ret == 0) {
*idx = 0;
if (wc_RsaPrivateKeyDecode(der->buffer, idx, key, der->length)
!= 0) {
#if !defined(HAVE_ECC) && !defined(HAVE_ED25519) && \
!defined(HAVE_ED448)
WOLFSSL_MSG("RSA decode failed and ECC/ED25519/ED448 not "
"enabled to try");
ret = WOLFSSL_BAD_FILE;
#endif
}
else {
/* check that the size of the RSA key is enough */
int minRsaSz = ssl ? ssl->options.minRsaKeySz :
ctx->minRsaKeySz;
*keySz = wc_RsaEncryptSize((RsaKey*)key);
if (*keySz < minRsaSz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("Private Key size too small");
}
if (ssl) {
ssl->buffers.keyType = rsa_sa_algo;
ssl->buffers.keySz = *keySz;
}
else {
ctx->privateKeyType = rsa_sa_algo;
ctx->privateKeySz = *keySz;
}
*keyFormat = RSAk;
if (ssl && ssl->options.side == WOLFSSL_SERVER_END) {
ssl->options.haveStaticECC = 0;
*resetSuites = 1;
}
}
wc_FreeRsaKey(key);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, heap, DYNAMIC_TYPE_RSA);
#endif
}
#endif
#ifdef HAVE_ECC
if (ret == 0 && (*keyFormat == 0 || *keyFormat == ECDSAk)) {
/* make sure ECC key can be used */
#ifdef WOLFSSL_SMALL_STACK
ecc_key* key;
#else
ecc_key key[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
key = (ecc_key*)XMALLOC(sizeof(ecc_key), heap, DYNAMIC_TYPE_ECC);
if (key == NULL)
return MEMORY_E;
#endif
if (wc_ecc_init_ex(key, heap, devId) == 0) {
*idx = 0;
if (wc_EccPrivateKeyDecode(der->buffer, idx, key,
der->length) == 0) {
/* check for minimum ECC key size and then free */
int minKeySz = ssl ? ssl->options.minEccKeySz :
ctx->minEccKeySz;
*keySz = wc_ecc_size(key);
if (*keySz < minKeySz) {
WOLFSSL_MSG("ECC private key too small");
ret = ECC_KEY_SIZE_E;
}
*keyFormat = ECDSAk;
if (ssl) {
ssl->options.haveStaticECC = 1;
ssl->buffers.keyType = ecc_dsa_sa_algo;
ssl->buffers.keySz = *keySz;
}
else {
ctx->haveStaticECC = 1;
ctx->privateKeyType = ecc_dsa_sa_algo;
ctx->privateKeySz = *keySz;
}
if (ssl && ssl->options.side == WOLFSSL_SERVER_END) {
*resetSuites = 1;
}
}
wc_ecc_free(key);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, heap, DYNAMIC_TYPE_ECC);
#endif
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
if (ret == 0 && (*keyFormat == 0 || *keyFormat == ED25519k)) {
/* make sure Ed25519 key can be used */
#ifdef WOLFSSL_SMALL_STACK
ed25519_key* key;
#else
ed25519_key key[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
key = (ed25519_key*)XMALLOC(sizeof(ed25519_key), heap,
DYNAMIC_TYPE_ED25519);
if (key == NULL)
return MEMORY_E;
#endif
ret = wc_ed25519_init(key);
if (ret == 0) {
*idx = 0;
if (wc_Ed25519PrivateKeyDecode(der->buffer, idx, key,
der->length) == 0) {
/* check for minimum key size and then free */
int minKeySz = ssl ? ssl->options.minEccKeySz :
ctx->minEccKeySz;
*keySz = ED25519_KEY_SIZE;
if (*keySz < minKeySz) {
WOLFSSL_MSG("ED25519 private key too small");
ret = ECC_KEY_SIZE_E;
}
if (ret == 0) {
if (ssl) {
ssl->buffers.keyType = ed25519_sa_algo;
ssl->buffers.keySz = *keySz;
}
else if (ctx) {
ctx->privateKeyType = ed25519_sa_algo;
ctx->privateKeySz = *keySz;
}
*keyFormat = ED25519k;
if (ssl && ssl->options.side == WOLFSSL_SERVER_END) {
*resetSuites = 1;
}
}
}
wc_ed25519_free(key);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, heap, DYNAMIC_TYPE_ED25519);
#endif
}
#endif /* HAVE_ED25519 */
#ifdef HAVE_ED448
if (ret == 0 && (*keyFormat == 0 || *keyFormat == ED448k)) {
/* make sure Ed448 key can be used */
#ifdef WOLFSSL_SMALL_STACK
ed448_key* key = NULL;
#else
ed448_key key[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
key = (ed448_key*)XMALLOC(sizeof(ed448_key), heap, DYNAMIC_TYPE_ED448);
if (key == NULL)
return MEMORY_E;
#endif
ret = wc_ed448_init(key);
if (ret == 0) {
*idx = 0;
if (wc_Ed448PrivateKeyDecode(der->buffer, idx, key,
der->length) != 0) {
ret = WOLFSSL_BAD_FILE;
}
if (ret == 0) {
/* check for minimum key size and then free */
int minKeySz = ssl ? ssl->options.minEccKeySz :
ctx->minEccKeySz;
*keySz = ED448_KEY_SIZE;
if (*keySz < minKeySz) {
WOLFSSL_MSG("ED448 private key too small");
ret = ECC_KEY_SIZE_E;
}
}
if (ret == 0) {
if (ssl) {
ssl->buffers.keyType = ed448_sa_algo;
ssl->buffers.keySz = *keySz;
}
else if (ctx) {
ctx->privateKeyType = ed448_sa_algo;
ctx->privateKeySz = *keySz;
}
*keyFormat = ED448k;
if (ssl && ssl->options.side == WOLFSSL_SERVER_END) {
*resetSuites = 1;
}
}
wc_ed448_free(key);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(key, heap, DYNAMIC_TYPE_ED448);
#endif
}
#endif /* HAVE_ED448 */
return ret;
}
#define WOLFSSL_SMALL_STACK
/* process the buffer buff, length sz, into ctx of format and type
used tracks bytes consumed, userChain specifies a user cert chain
to pass during the handshake */
int ProcessBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff,
long sz, int format, int type, WOLFSSL* ssl,
long* used, int userChain, int verify)
{
DerBuffer* der = NULL; /* holds DER or RAW (for NTRU) */
int ret = 0;
int done = 0;
int keyFormat = 0;
int resetSuites = 0;
void* heap = wolfSSL_CTX_GetHeap(ctx, ssl);
int devId = wolfSSL_CTX_GetDevId(ctx, ssl);
word32 idx = 0;
int keySz = 0;
#if (defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)) || \
defined(HAVE_PKCS8)
word32 algId = 0;
#endif
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif
(void)devId;
(void)idx;
(void)keySz;
if (used)
*used = sz; /* used bytes default to sz, PEM chain may shorten*/
/* check args */
if (format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM
&& format != WOLFSSL_FILETYPE_RAW)
return WOLFSSL_BAD_FILETYPE;
if (ctx == NULL && ssl == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), heap,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL)
return MEMORY_E;
#endif
XMEMSET(info, 0, sizeof(EncryptedInfo));
#if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)
if (ctx) {
info->passwd_cb = ctx->passwd_cb;
info->passwd_userdata = ctx->passwd_userdata;
}
#endif
if (format == WOLFSSL_FILETYPE_PEM) {
#ifdef WOLFSSL_PEM_TO_DER
ret = PemToDer(buff, sz, type, &der, heap, info, &keyFormat);
#else
ret = NOT_COMPILED_IN;
#endif
}
else {
/* ASN1 (DER) or RAW (NTRU) */
int length = (int)sz;
if (format == WOLFSSL_FILETYPE_ASN1) {
/* get length of der (read sequence or octet string) */
word32 inOutIdx = 0;
if (GetSequence(buff, &inOutIdx, &length, (word32)sz) >= 0) {
length += inOutIdx; /* include leading sequence */
}
/* get length using octect string (allowed for private key types) */
else if (type == PRIVATEKEY_TYPE &&
GetOctetString(buff, &inOutIdx, &length, (word32)sz) >= 0) {
length += inOutIdx; /* include leading oct string */
}
else {
ret = ASN_PARSE_E;
}
}
info->consumed = length;
if (ret == 0) {
ret = AllocDer(&der, (word32)length, type, heap);
if (ret == 0) {
XMEMCPY(der->buffer, buff, length);
}
#ifdef HAVE_PKCS8
/* if private key try and remove PKCS8 header */
if (type == PRIVATEKEY_TYPE) {
if ((ret = ToTraditional_ex(der->buffer, der->length, &algId)) > 0) {
/* Found PKCS8 header */
/* ToTraditional_ex moves buff and returns adjusted length */
der->length = ret;
}
ret = 0; /* failures should be ignored */
}
#endif
}
}
if (used) {
*used = info->consumed;
}
/* process user chain */
if (ret >= 0) {
/* Chain should have server cert first, then intermediates, then root.
* First certificate in chain is processed below after ProcessUserChain
* and is loaded into ssl->buffers.certificate.
* Remainder are processed using ProcessUserChain and are loaded into
* ssl->buffers.certChain. */
if (userChain) {
ret = ProcessUserChain(ctx, buff, sz, format, type, ssl, used, info,
verify);
}
}
/* info is only used for private key with DER or PEM, so free now */
if (ret < 0 || type != PRIVATEKEY_TYPE || format == WOLFSSL_FILETYPE_RAW) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
}
/* check for error */
if (ret < 0) {
FreeDer(&der);
done = 1;
}
if (done == 1) {
/* No operation, just skip the next section */
}
/* Handle DER owner */
else if (type == CA_TYPE) {
if (ctx == NULL) {
WOLFSSL_MSG("Need context for CA load");
FreeDer(&der);
return BAD_FUNC_ARG;
}
/* verify CA unless user set to no verify */
ret = AddCA(ctx->cm, &der, WOLFSSL_USER_CA, verify);
done = 1;
}
#ifdef WOLFSSL_TRUST_PEER_CERT
else if (type == TRUSTED_PEER_TYPE) {
if (ctx == NULL) {
WOLFSSL_MSG("Need context for trusted peer cert load");
FreeDer(&der);
return BAD_FUNC_ARG;
}
/* add trusted peer cert */
ret = AddTrustedPeer(ctx->cm, &der, !ctx->verifyNone);
done = 1;
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
else if (type == CERT_TYPE) {
if (ssl) {
/* Make sure previous is free'd */
if (ssl->buffers.weOwnCert) {
FreeDer(&ssl->buffers.certificate);
#ifdef KEEP_OUR_CERT
wolfSSL_X509_free(ssl->ourCert);
ssl->ourCert = NULL;
#endif
}
ssl->buffers.certificate = der;
#ifdef KEEP_OUR_CERT
ssl->keepCert = 1; /* hold cert for ssl lifetime */
#endif
ssl->buffers.weOwnCert = 1;
}
else if (ctx) {
FreeDer(&ctx->certificate); /* Make sure previous is free'd */
#ifdef KEEP_OUR_CERT
if (ctx->ourCert) {
if (ctx->ownOurCert)
wolfSSL_X509_free(ctx->ourCert);
ctx->ourCert = NULL;
}
#endif
ctx->certificate = der;
}
}
else if (type == PRIVATEKEY_TYPE) {
if (ssl) {
/* Make sure previous is free'd */
if (ssl->buffers.weOwnKey) {
FreeDer(&ssl->buffers.key);
}
ssl->buffers.key = der;
ssl->buffers.weOwnKey = 1;
}
else if (ctx) {
FreeDer(&ctx->privateKey);
ctx->privateKey = der;
}
}
else {
FreeDer(&der);
return WOLFSSL_BAD_CERTTYPE;
}
if (done == 1) {
/* No operation, just skip the next section */
}
else if (type == PRIVATEKEY_TYPE && format != WOLFSSL_FILETYPE_RAW) {
#if defined(WOLFSSL_ENCRYPTED_KEYS) || defined(HAVE_PKCS8)
keyFormat = algId;
#endif
ret = ProcessBufferTryDecode(ctx, ssl, der, &keySz, &idx, &resetSuites,
&keyFormat, heap, devId);
#if defined(WOLFSSL_ENCRYPTED_KEYS) && !defined(NO_PWDBASED)
/* for WOLFSSL_FILETYPE_PEM, PemToDer manages the decryption */
/* If private key type PKCS8 header wasn't already removed (algoId == 0) */
if ((ret != 0 || keyFormat == 0)
&& format != WOLFSSL_FILETYPE_PEM && info->passwd_cb && algId == 0)
{
int passwordSz = NAME_SZ;
#ifndef WOLFSSL_SMALL_STACK
char password[NAME_SZ];
#else
char* password = (char*)XMALLOC(passwordSz, heap, DYNAMIC_TYPE_STRING);
if (password == NULL) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
FreeDer(&der);
return MEMORY_E;
}
#endif
/* get password */
ret = info->passwd_cb(password, passwordSz, PEM_PASS_READ,
info->passwd_userdata);
if (ret >= 0) {
passwordSz = ret;
/* PKCS8 decrypt */
ret = ToTraditionalEnc(der->buffer, der->length,
password, passwordSz, &algId);
if (ret >= 0) {
der->length = ret;
}
/* ignore failures and try parsing as unencrypted */
ForceZero(password, passwordSz);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(password, heap, DYNAMIC_TYPE_STRING);
#endif
ret = ProcessBufferTryDecode(ctx, ssl, der, &keySz, &idx,
&resetSuites, &keyFormat, heap, devId);
}
#endif /* WOLFSSL_ENCRYPTED_KEYS && !NO_PWDBASED */
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, heap, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
if (ret != 0)
return ret;
if (keyFormat == 0) {
#ifdef OPENSSL_EXTRA
/* Reaching this point probably means that the
* decryption password is wrong */
if (info->passwd_cb)
EVPerr(0, EVP_R_BAD_DECRYPT);
#endif
return WOLFSSL_BAD_FILE;
}
(void)devId;
}
else if (type == CERT_TYPE) {
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert;
#else
DecodedCert cert[1];
#endif
#if defined(HAVE_PKCS11) || defined(HAVE_PK_CALLBACKS)
int keyType = 0;
#endif
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
WOLFSSL_MSG("Checking cert signature type");
InitDecodedCert(cert, der->buffer, der->length, heap);
if (DecodeToKey(cert, 0) < 0) {
WOLFSSL_MSG("Decode to key failed");
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, heap, DYNAMIC_TYPE_DCERT);
#endif
return WOLFSSL_BAD_FILE;
}
if (ssl && ssl->options.side == WOLFSSL_SERVER_END) {
resetSuites = 1;
}
if (ssl && ssl->ctx->haveECDSAsig) {
WOLFSSL_MSG("SSL layer setting cert, CTX had ECDSA, turning off");
ssl->options.haveECDSAsig = 0; /* may turn back on next */
}
switch (cert->signatureOID) {
case CTC_SHAwECDSA:
case CTC_SHA256wECDSA:
case CTC_SHA384wECDSA:
case CTC_SHA512wECDSA:
WOLFSSL_MSG("ECDSA cert signature");
if (ssl)
ssl->options.haveECDSAsig = 1;
else if (ctx)
ctx->haveECDSAsig = 1;
break;
case CTC_ED25519:
WOLFSSL_MSG("ED25519 cert signature");
if (ssl)
ssl->options.haveECDSAsig = 1;
else if (ctx)
ctx->haveECDSAsig = 1;
break;
case CTC_ED448:
WOLFSSL_MSG("ED448 cert signature");
if (ssl)
ssl->options.haveECDSAsig = 1;
else if (ctx)
ctx->haveECDSAsig = 1;
break;
default:
WOLFSSL_MSG("Not ECDSA cert signature");
break;
}
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
if (ssl) {
ssl->pkCurveOID = cert->pkCurveOID;
#ifndef WC_STRICT_SIG
if (cert->keyOID == ECDSAk) {
ssl->options.haveECC = 1;
}
#ifdef HAVE_ED25519
else if (cert->keyOID == ED25519k) {
ssl->options.haveECC = 1;
}
#endif
#ifdef HAVE_ED448
else if (cert->keyOID == ED448k) {
ssl->options.haveECC = 1;
}
#endif
#else
ssl->options.haveECC = ssl->options.haveECDSAsig;
#endif
}
else if (ctx) {
ctx->pkCurveOID = cert->pkCurveOID;
#ifndef WC_STRICT_SIG
if (cert->keyOID == ECDSAk) {
ctx->haveECC = 1;
}
#ifdef HAVE_ED25519
else if (cert->keyOID == ED25519k) {
ctx->haveECC = 1;
}
#endif
#ifdef HAVE_ED448
else if (cert->keyOID == ED448k) {
ctx->haveECC = 1;
}
#endif
#else
ctx->haveECC = ctx->haveECDSAsig;
#endif
}
#endif
/* check key size of cert unless specified not to */
switch (cert->keyOID) {
#ifndef NO_RSA
case RSAk:
#if defined(HAVE_PKCS11) || defined(HAVE_PK_CALLBACKS)
keyType = rsa_sa_algo;
#endif
/* Determine RSA key size by parsing public key */
idx = 0;
ret = wc_RsaPublicKeyDecode_ex(cert->publicKey, &idx,
cert->pubKeySize, NULL, (word32*)&keySz, NULL, NULL);
if (ret < 0)
break;
if (ssl && !ssl->options.verifyNone) {
if (ssl->options.minRsaKeySz < 0 ||
keySz < (int)ssl->options.minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("Certificate RSA key size too small");
}
}
else if (ctx && !ctx->verifyNone) {
if (ctx->minRsaKeySz < 0 ||
keySz < (int)ctx->minRsaKeySz) {
ret = RSA_KEY_SIZE_E;
WOLFSSL_MSG("Certificate RSA key size too small");
}
}
break;
#endif /* !NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
#if defined(HAVE_PKCS11) || defined(HAVE_PK_CALLBACKS)
keyType = ecc_dsa_sa_algo;
#endif
/* Determine ECC key size based on curve */
keySz = wc_ecc_get_curve_size_from_id(
wc_ecc_get_oid(cert->pkCurveOID, NULL, NULL));
if (ssl && !ssl->options.verifyNone) {
if (ssl->options.minEccKeySz < 0 ||
keySz < (int)ssl->options.minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate ECC key size error");
}
}
else if (ctx && !ctx->verifyNone) {
if (ctx->minEccKeySz < 0 ||
keySz < (int)ctx->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate ECC key size error");
}
}
break;
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
case ED25519k:
#if defined(HAVE_PKCS11) || defined(HAVE_PK_CALLBACKS)
keyType = ed25519_sa_algo;
#endif
/* ED25519 is fixed key size */
keySz = ED25519_KEY_SIZE;
if (ssl && !ssl->options.verifyNone) {
if (ssl->options.minEccKeySz < 0 ||
keySz < (int)ssl->options.minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate Ed key size error");
}
}
else if (ctx && !ctx->verifyNone) {
if (ctx->minEccKeySz < 0 ||
keySz < (int)ctx->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate ECC key size error");
}
}
break;
#endif /* HAVE_ED25519 */
#ifdef HAVE_ED448
case ED448k:
#if defined(HAVE_PKCS11) || defined(HAVE_PK_CALLBACKS)
keyType = ed448_sa_algo;
#endif
/* ED448 is fixed key size */
keySz = ED448_KEY_SIZE;
if (ssl && !ssl->options.verifyNone) {
if (ssl->options.minEccKeySz < 0 ||
keySz < (int)ssl->options.minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate Ed key size error");
}
}
else if (ctx && !ctx->verifyNone) {
if (ctx->minEccKeySz < 0 ||
keySz < (int)ctx->minEccKeySz) {
ret = ECC_KEY_SIZE_E;
WOLFSSL_MSG("Certificate ECC key size error");
}
}
break;
#endif /* HAVE_ED448 */
default:
WOLFSSL_MSG("No key size check done on certificate");
break; /* do no check if not a case for the key */
}
#if defined(HAVE_PKCS11) || defined(HAVE_PK_CALLBACKS)
if (ssl
#ifdef HAVE_PK_CALLBACKS
&& ssl->buffers.keyType == 0
#endif
) {
ssl->buffers.keyType = keyType;
ssl->buffers.keySz = keySz;
}
else if (ctx
#ifdef HAVE_PK_CALLBACKS
&& ctx->privateKeyType == 0
#endif
) {
ctx->privateKeyType = keyType;
ctx->privateKeySz = keySz;
}
#endif
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, heap, DYNAMIC_TYPE_DCERT);
#endif
if (ret != 0) {
done = 1;
}
}
if (done == 1) {
#if !defined(NO_WOLFSSL_CM_VERIFY) && (!defined(NO_WOLFSSL_CLIENT) || \
!defined(WOLFSSL_NO_CLIENT_AUTH))
if ((type == CA_TYPE) || (type == CERT_TYPE)) {
/* Call to over-ride status */
if ((ctx != NULL) && (ctx->cm != NULL) &&
(ctx->cm->verifyCallback != NULL)) {
ret = CM_VerifyBuffer_ex(ctx->cm, buff,
sz, format, (ret == WOLFSSL_SUCCESS ? 0 : ret));
}
}
#endif /* NO_WOLFSSL_CM_VERIFY */
return ret;
}
if (ssl && resetSuites) {
word16 havePSK = 0;
word16 haveRSA = 0;
#ifndef NO_PSK
if (ssl->options.havePSK) {
havePSK = 1;
}
#endif
#ifndef NO_RSA
haveRSA = 1;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
/* let's reset suites */
InitSuites(ssl->suites, ssl->version, keySz, haveRSA,
havePSK, ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
}
return WOLFSSL_SUCCESS;
}
#undef WOLFSSL_SMALL_STACK
/* CA PEM file for verification, may have multiple/chain certs to process */
static int ProcessChainBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff,
long sz, int format, int type, WOLFSSL* ssl, int verify)
{
long used = 0;
int ret = 0;
int gotOne = 0;
WOLFSSL_MSG("Processing CA PEM file");
while (used < sz) {
long consumed = 0;
ret = ProcessBuffer(ctx, buff + used, sz - used, format, type, ssl,
&consumed, 0, verify);
if (ret < 0) {
#if defined(WOLFSSL_WPAS) && defined(HAVE_CRL)
DerBuffer* der = NULL;
EncryptedInfo info;
WOLFSSL_MSG("Trying a CRL");
if (PemToDer(buff + used, sz - used, CRL_TYPE, &der, NULL, &info,
NULL) == 0) {
WOLFSSL_MSG(" Processed a CRL");
wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, der->buffer,
der->length, WOLFSSL_FILETYPE_ASN1);
FreeDer(&der);
used += info.consumed;
continue;
}
#endif
if (consumed > 0) { /* Made progress in file */
WOLFSSL_ERROR(ret);
WOLFSSL_MSG("CA Parse failed, with progress in file.");
WOLFSSL_MSG("Search for other certs in file");
}
else {
WOLFSSL_MSG("CA Parse failed, no progress in file.");
WOLFSSL_MSG("Do not continue search for other certs in file");
break;
}
}
else {
WOLFSSL_MSG(" Processed a CA");
gotOne = 1;
}
used += consumed;
}
if (gotOne) {
WOLFSSL_MSG("Processed at least one valid CA. Other stuff OK");
return WOLFSSL_SUCCESS;
}
return ret;
}
static WC_INLINE WOLFSSL_METHOD* cm_pick_method(void)
{
#ifndef NO_WOLFSSL_CLIENT
#if !defined(NO_OLD_TLS) && defined(WOLFSSL_ALLOW_SSLV3)
return wolfSSLv3_client_method();
#elif !defined(NO_OLD_TLS) && defined(WOLFSSL_ALLOW_TLSV10)
return wolfTLSv1_client_method();
#elif !defined(NO_OLD_TLS)
return wolfTLSv1_1_client_method();
#elif !defined(WOLFSSL_NO_TLS12)
return wolfTLSv1_2_client_method();
#elif defined(WOLFSSL_TLS13)
return wolfTLSv1_3_client_method();
#else
return NULL;
#endif
#elif !defined(NO_WOLFSSL_SERVER)
#if !defined(NO_OLD_TLS) && defined(WOLFSSL_ALLOW_SSLV3)
return wolfSSLv3_server_method();
#elif !defined(NO_OLD_TLS) && defined(WOLFSSL_ALLOW_TLSV10)
return wolfTLSv1_server_method();
#elif !defined(NO_OLD_TLS)
return wolfTLSv1_1_server_method();
#elif !defined(WOLFSSL_NO_TLS12)
return wolfTLSv1_2_server_method();
#elif defined(WOLFSSL_TLS13)
return wolfTLSv1_3_server_method();
#else
return NULL;
#endif
#else
return NULL;
#endif
}
/* like load verify locations, 1 for success, < 0 for error */
int wolfSSL_CertManagerLoadCABuffer(WOLFSSL_CERT_MANAGER* cm,
const unsigned char* in, long sz, int format)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_CTX* tmp;
WOLFSSL_ENTER("wolfSSL_CertManagerLoadCABuffer");
if (cm == NULL) {
WOLFSSL_MSG("No CertManager error");
return ret;
}
tmp = wolfSSL_CTX_new(cm_pick_method());
if (tmp == NULL) {
WOLFSSL_MSG("CTX new failed");
return ret;
}
/* for tmp use */
wolfSSL_CertManagerFree(tmp->cm);
tmp->cm = cm;
ret = wolfSSL_CTX_load_verify_buffer(tmp, in, sz, format);
/* don't loose our good one */
tmp->cm = NULL;
wolfSSL_CTX_free(tmp);
return ret;
}
#ifdef HAVE_CRL
int wolfSSL_CertManagerLoadCRLBuffer(WOLFSSL_CERT_MANAGER* cm,
const unsigned char* buff, long sz, int type)
{
WOLFSSL_ENTER("wolfSSL_CertManagerLoadCRLBuffer");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->crl == NULL) {
if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Enable CRL failed");
return WOLFSSL_FATAL_ERROR;
}
}
return BufferLoadCRL(cm->crl, buff, sz, type, VERIFY);
}
int wolfSSL_CertManagerFreeCRL(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerFreeCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->crl != NULL){
FreeCRL(cm->crl, 1);
cm->crl = NULL;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_LoadCRLBuffer(WOLFSSL_CTX* ctx, const unsigned char* buff,
long sz, int type)
{
WOLFSSL_ENTER("wolfSSL_CTX_LoadCRLBuffer");
if (ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerLoadCRLBuffer(ctx->cm, buff, sz, type);
}
int wolfSSL_LoadCRLBuffer(WOLFSSL* ssl, const unsigned char* buff,
long sz, int type)
{
WOLFSSL_ENTER("wolfSSL_LoadCRLBuffer");
if (ssl == NULL || ssl->ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerLoadCRLBuffer(ssl->ctx->cm, buff, sz, type);
}
#endif /* HAVE_CRL */
/* turn on CRL if off and compiled in, set options */
int wolfSSL_CertManagerEnableCRL(WOLFSSL_CERT_MANAGER* cm, int options)
{
int ret = WOLFSSL_SUCCESS;
(void)options;
WOLFSSL_ENTER("wolfSSL_CertManagerEnableCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
#ifdef HAVE_CRL
if (cm->crl == NULL) {
cm->crl = (WOLFSSL_CRL*)XMALLOC(sizeof(WOLFSSL_CRL), cm->heap,
DYNAMIC_TYPE_CRL);
if (cm->crl == NULL)
return MEMORY_E;
if (InitCRL(cm->crl, cm) != 0) {
WOLFSSL_MSG("Init CRL failed");
FreeCRL(cm->crl, 1);
cm->crl = NULL;
return WOLFSSL_FAILURE;
}
#ifdef HAVE_CRL_IO
cm->crl->crlIOCb = EmbedCrlLookup;
#endif
}
cm->crlEnabled = 1;
if (options & WOLFSSL_CRL_CHECKALL)
cm->crlCheckAll = 1;
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
int wolfSSL_CertManagerDisableCRL(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerDisableCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->crlEnabled = 0;
return WOLFSSL_SUCCESS;
}
#ifndef NO_WOLFSSL_CM_VERIFY
void wolfSSL_CertManagerSetVerify(WOLFSSL_CERT_MANAGER* cm, VerifyCallback vc)
{
WOLFSSL_ENTER("wolfSSL_CertManagerSetVerify");
if (cm == NULL)
return;
cm->verifyCallback = vc;
}
#endif /* NO_WOLFSSL_CM_VERIFY */
#if !defined(NO_WOLFSSL_CLIENT) || !defined(WOLFSSL_NO_CLIENT_AUTH)
/* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */
int CM_VerifyBuffer_ex(WOLFSSL_CERT_MANAGER* cm, const byte* buff,
long sz, int format, int err_val)
{
int ret = 0;
DerBuffer* der = NULL;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert;
#else
DecodedCert cert[1];
#endif
WOLFSSL_ENTER("wolfSSL_CertManagerVerifyBuffer");
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
if (format == WOLFSSL_FILETYPE_PEM) {
#ifdef WOLFSSL_PEM_TO_DER
ret = PemToDer(buff, sz, CERT_TYPE, &der, cm->heap, NULL, NULL);
if (ret != 0) {
FreeDer(&der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
#endif
return ret;
}
InitDecodedCert(cert, der->buffer, der->length, cm->heap);
#else
ret = NOT_COMPILED_IN;
#endif
}
else {
InitDecodedCert(cert, (byte*)buff, (word32)sz, cm->heap);
}
if (ret == 0)
ret = ParseCertRelative(cert, CERT_TYPE, 1, cm);
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
/* ret needs to be self-singer error for Qt compat */
if (ret == ASN_NO_SIGNER_E && cert->selfSigned)
ret = ASN_SELF_SIGNED_E;
#endif
#ifdef HAVE_CRL
if (ret == 0 && cm->crlEnabled)
ret = CheckCertCRL(cm->crl, cert);
#endif
#ifndef NO_WOLFSSL_CM_VERIFY
/* if verify callback has been set */
if (cm->verifyCallback) {
buffer certBuf;
#ifdef WOLFSSL_SMALL_STACK
ProcPeerCertArgs* args;
args = (ProcPeerCertArgs*)XMALLOC(
sizeof(ProcPeerCertArgs), cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (args == NULL) {
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
return MEMORY_E;
}
#else
ProcPeerCertArgs args[1];
#endif
certBuf.buffer = (byte*)buff;
certBuf.length = (unsigned int)sz;
XMEMSET(args, 0, sizeof(ProcPeerCertArgs));
args->totalCerts = 1;
args->certs = &certBuf;
args->dCert = cert;
args->dCertInit = 1;
if (err_val != 0) {
ret = err_val;
}
ret = DoVerifyCallback(cm, NULL, ret, args);
#ifdef WOLFSSL_SMALL_STACK
XFREE(args, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
}
#else
(void)err_val;
#endif
FreeDecodedCert(cert);
FreeDer(&der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
#endif
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
/* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */
int wolfSSL_CertManagerVerifyBuffer(WOLFSSL_CERT_MANAGER* cm, const byte* buff,
long sz, int format)
{
return CM_VerifyBuffer_ex(cm, buff, sz, format, 0);
}
#endif /* !NO_WOLFSSL_CLIENT || !WOLFSSL_NO_CLIENT_AUTH */
/* turn on OCSP if off and compiled in, set options */
int wolfSSL_CertManagerEnableOCSP(WOLFSSL_CERT_MANAGER* cm, int options)
{
int ret = WOLFSSL_SUCCESS;
(void)options;
WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSP");
if (cm == NULL)
return BAD_FUNC_ARG;
#ifdef HAVE_OCSP
if (cm->ocsp == NULL) {
cm->ocsp = (WOLFSSL_OCSP*)XMALLOC(sizeof(WOLFSSL_OCSP), cm->heap,
DYNAMIC_TYPE_OCSP);
if (cm->ocsp == NULL)
return MEMORY_E;
if (InitOCSP(cm->ocsp, cm) != 0) {
WOLFSSL_MSG("Init OCSP failed");
FreeOCSP(cm->ocsp, 1);
cm->ocsp = NULL;
return WOLFSSL_FAILURE;
}
}
cm->ocspEnabled = 1;
if (options & WOLFSSL_OCSP_URL_OVERRIDE)
cm->ocspUseOverrideURL = 1;
if (options & WOLFSSL_OCSP_NO_NONCE)
cm->ocspSendNonce = 0;
else
cm->ocspSendNonce = 1;
if (options & WOLFSSL_OCSP_CHECKALL)
cm->ocspCheckAll = 1;
#ifndef WOLFSSL_USER_IO
cm->ocspIOCb = EmbedOcspLookup;
cm->ocspRespFreeCb = EmbedOcspRespFree;
cm->ocspIOCtx = cm->heap;
#endif /* WOLFSSL_USER_IO */
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
int wolfSSL_CertManagerDisableOCSP(WOLFSSL_CERT_MANAGER* cm)
{
WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSP");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->ocspEnabled = 0;
return WOLFSSL_SUCCESS;
}
/* turn on OCSP Stapling if off and compiled in, set options */
int wolfSSL_CertManagerEnableOCSPStapling(WOLFSSL_CERT_MANAGER* cm)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSPStapling");
if (cm == NULL)
return BAD_FUNC_ARG;
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
#ifndef NO_WOLFSSL_SERVER
if (cm->ocsp_stapling == NULL) {
cm->ocsp_stapling = (WOLFSSL_OCSP*)XMALLOC(sizeof(WOLFSSL_OCSP),
cm->heap, DYNAMIC_TYPE_OCSP);
if (cm->ocsp_stapling == NULL)
return MEMORY_E;
if (InitOCSP(cm->ocsp_stapling, cm) != 0) {
WOLFSSL_MSG("Init OCSP failed");
FreeOCSP(cm->ocsp_stapling, 1);
cm->ocsp_stapling = NULL;
return WOLFSSL_FAILURE;
}
}
#ifndef WOLFSSL_USER_IO
cm->ocspIOCb = EmbedOcspLookup;
cm->ocspRespFreeCb = EmbedOcspRespFree;
cm->ocspIOCtx = cm->heap;
#endif /* WOLFSSL_USER_IO */
#endif /* NO_WOLFSSL_SERVER */
cm->ocspStaplingEnabled = 1;
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
int wolfSSL_CertManagerDisableOCSPStapling(WOLFSSL_CERT_MANAGER* cm)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSPStapling");
if (cm == NULL)
return BAD_FUNC_ARG;
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
cm->ocspStaplingEnabled = 0;
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
/* require OCSP stapling response */
int wolfSSL_CertManagerEnableOCSPMustStaple(WOLFSSL_CERT_MANAGER* cm)
{
int ret;
WOLFSSL_ENTER("wolfSSL_CertManagerEnableOCSPMustStaple");
if (cm == NULL)
return BAD_FUNC_ARG;
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
#ifndef NO_WOLFSSL_CLIENT
cm->ocspMustStaple = 1;
#endif
ret = WOLFSSL_SUCCESS;
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
int wolfSSL_CertManagerDisableOCSPMustStaple(WOLFSSL_CERT_MANAGER* cm)
{
int ret;
WOLFSSL_ENTER("wolfSSL_CertManagerDisableOCSPMustStaple");
if (cm == NULL)
return BAD_FUNC_ARG;
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
#ifndef NO_WOLFSSL_CLIENT
cm->ocspMustStaple = 0;
#endif
ret = WOLFSSL_SUCCESS;
#else
ret = NOT_COMPILED_IN;
#endif
return ret;
}
#ifdef HAVE_OCSP
/* check CRL if enabled, WOLFSSL_SUCCESS */
int wolfSSL_CertManagerCheckOCSP(WOLFSSL_CERT_MANAGER* cm, byte* der, int sz)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
WOLFSSL_ENTER("wolfSSL_CertManagerCheckOCSP");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->ocspEnabled == 0)
return WOLFSSL_SUCCESS;
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), cm->heap, DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
InitDecodedCert(cert, der, sz, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, VERIFY_OCSP, cm)) != 0) {
WOLFSSL_MSG("ParseCert failed");
}
else if ((ret = CheckCertOCSP(cm->ocsp, cert, NULL)) != 0) {
WOLFSSL_MSG("CheckCertOCSP failed");
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, cm->heap, DYNAMIC_TYPE_DCERT);
#endif
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
WOLFSSL_API int wolfSSL_CertManagerCheckOCSPResponse(WOLFSSL_CERT_MANAGER *cm,
byte *response, int responseSz, buffer *responseBuffer,
CertStatus *status, OcspEntry *entry, OcspRequest *ocspRequest)
{
int ret;
WOLFSSL_ENTER("wolfSSL_CertManagerCheckOCSP_Staple");
if (cm == NULL || response == NULL)
return BAD_FUNC_ARG;
if (cm->ocspEnabled == 0)
return WOLFSSL_SUCCESS;
ret = CheckOcspResponse(cm->ocsp, response, responseSz, responseBuffer, status,
entry, ocspRequest);
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
int wolfSSL_CertManagerSetOCSPOverrideURL(WOLFSSL_CERT_MANAGER* cm,
const char* url)
{
WOLFSSL_ENTER("wolfSSL_CertManagerSetOCSPOverrideURL");
if (cm == NULL)
return BAD_FUNC_ARG;
XFREE(cm->ocspOverrideURL, cm->heap, DYNAMIC_TYPE_URL);
if (url != NULL) {
int urlSz = (int)XSTRLEN(url) + 1;
cm->ocspOverrideURL = (char*)XMALLOC(urlSz, cm->heap, DYNAMIC_TYPE_URL);
if (cm->ocspOverrideURL != NULL) {
XMEMCPY(cm->ocspOverrideURL, url, urlSz);
}
else
return MEMORY_E;
}
else
cm->ocspOverrideURL = NULL;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CertManagerSetOCSP_Cb(WOLFSSL_CERT_MANAGER* cm,
CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx)
{
WOLFSSL_ENTER("wolfSSL_CertManagerSetOCSP_Cb");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->ocspIOCb = ioCb;
cm->ocspRespFreeCb = respFreeCb;
cm->ocspIOCtx = ioCbCtx;
return WOLFSSL_SUCCESS;
}
int wolfSSL_EnableOCSP(WOLFSSL* ssl, int options)
{
WOLFSSL_ENTER("wolfSSL_EnableOCSP");
if (ssl)
return wolfSSL_CertManagerEnableOCSP(ssl->ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_DisableOCSP(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_DisableOCSP");
if (ssl)
return wolfSSL_CertManagerDisableOCSP(ssl->ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_EnableOCSPStapling(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_EnableOCSPStapling");
if (ssl)
return wolfSSL_CertManagerEnableOCSPStapling(ssl->ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_DisableOCSPStapling(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_DisableOCSPStapling");
if (ssl)
return wolfSSL_CertManagerDisableOCSPStapling(ssl->ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_SetOCSP_OverrideURL(WOLFSSL* ssl, const char* url)
{
WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL");
if (ssl)
return wolfSSL_CertManagerSetOCSPOverrideURL(ssl->ctx->cm, url);
else
return BAD_FUNC_ARG;
}
int wolfSSL_SetOCSP_Cb(WOLFSSL* ssl,
CbOCSPIO ioCb, CbOCSPRespFree respFreeCb, void* ioCbCtx)
{
WOLFSSL_ENTER("wolfSSL_SetOCSP_Cb");
if (ssl) {
ssl->ocspIOCtx = ioCbCtx; /* use SSL specific ioCbCtx */
return wolfSSL_CertManagerSetOCSP_Cb(ssl->ctx->cm,
ioCb, respFreeCb, NULL);
}
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_EnableOCSP(WOLFSSL_CTX* ctx, int options)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSP");
if (ctx)
return wolfSSL_CertManagerEnableOCSP(ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableOCSP(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSP");
if (ctx)
return wolfSSL_CertManagerDisableOCSP(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_SetOCSP_OverrideURL(WOLFSSL_CTX* ctx, const char* url)
{
WOLFSSL_ENTER("wolfSSL_SetOCSP_OverrideURL");
if (ctx)
return wolfSSL_CertManagerSetOCSPOverrideURL(ctx->cm, url);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_SetOCSP_Cb(WOLFSSL_CTX* ctx, CbOCSPIO ioCb,
CbOCSPRespFree respFreeCb, void* ioCbCtx)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetOCSP_Cb");
if (ctx)
return wolfSSL_CertManagerSetOCSP_Cb(ctx->cm, ioCb,
respFreeCb, ioCbCtx);
else
return BAD_FUNC_ARG;
}
#if defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2)
int wolfSSL_CTX_EnableOCSPStapling(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPStapling");
if (ctx)
return wolfSSL_CertManagerEnableOCSPStapling(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableOCSPStapling(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPStapling");
if (ctx)
return wolfSSL_CertManagerDisableOCSPStapling(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_EnableOCSPMustStaple(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableOCSPMustStaple");
if (ctx)
return wolfSSL_CertManagerEnableOCSPMustStaple(ctx->cm);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableOCSPMustStaple(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableOCSPMustStaple");
if (ctx)
return wolfSSL_CertManagerDisableOCSPMustStaple(ctx->cm);
else
return BAD_FUNC_ARG;
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST || HAVE_CERTIFICATE_STATUS_REQUEST_V2 */
#endif /* HAVE_OCSP */
/* macro to get verify settings for AddCA */
#define GET_VERIFY_SETTING_CTX(ctx) \
(ctx && ctx->verifyNone ? NO_VERIFY : VERIFY)
#define GET_VERIFY_SETTING_SSL(ssl) \
(ssl && ssl->options.verifyNone ? NO_VERIFY : VERIFY)
#ifndef NO_FILESYSTEM
/* process a file with name fname into ctx of format and type
userChain specifies a user certificate chain to pass during handshake */
int ProcessFile(WOLFSSL_CTX* ctx, const char* fname, int format, int type,
WOLFSSL* ssl, int userChain, WOLFSSL_CRL* crl, int verify)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
int ret;
long sz = 0;
XFILE file;
void* heapHint = wolfSSL_CTX_GetHeap(ctx, ssl);
const char* header = NULL;
const char* footer = NULL;
(void)crl;
(void)heapHint;
if (fname == NULL) return WOLFSSL_BAD_FILE;
file = XFOPEN(fname, "rb");
if (file == XBADFILE) return WOLFSSL_BAD_FILE;
if (XFSEEK(file, 0, XSEEK_END) != 0) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
sz = XFTELL(file);
XREWIND(file);
if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) {
WOLFSSL_MSG("ProcessFile file size error");
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
if (sz > (long)sizeof(staticBuffer)) {
WOLFSSL_MSG("Getting dynamic buffer");
myBuffer = (byte*)XMALLOC(sz, heapHint, DYNAMIC_TYPE_FILE);
if (myBuffer == NULL) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
dynamic = 1;
}
if ((size_t)XFREAD(myBuffer, 1, sz, file) != (size_t)sz)
ret = WOLFSSL_BAD_FILE;
else {
/* Try to detect type by parsing cert header and footer */
if (type == DETECT_CERT_TYPE) {
if (wc_PemGetHeaderFooter(CA_TYPE, &header, &footer) == 0 &&
(XSTRNSTR((char*)myBuffer, header, (int)sz) != NULL)) {
type = CA_TYPE;
}
#ifdef HAVE_CRL
else if (wc_PemGetHeaderFooter(CRL_TYPE, &header, &footer) == 0 &&
(XSTRNSTR((char*)myBuffer, header, (int)sz) != NULL)) {
type = CRL_TYPE;
}
#endif
else if (wc_PemGetHeaderFooter(CERT_TYPE, &header, &footer) == 0 &&
(XSTRNSTR((char*)myBuffer, header, (int)sz) != NULL)) {
type = CERT_TYPE;
}
else {
WOLFSSL_MSG("Failed to detect certificate type");
if (dynamic)
XFREE(myBuffer, heapHint, DYNAMIC_TYPE_FILE);
XFCLOSE(file);
return WOLFSSL_BAD_CERTTYPE;
}
}
if ((type == CA_TYPE || type == TRUSTED_PEER_TYPE)
&& format == WOLFSSL_FILETYPE_PEM) {
ret = ProcessChainBuffer(ctx, myBuffer, sz, format, type, ssl,
verify);
}
#ifdef HAVE_CRL
else if (type == CRL_TYPE)
ret = BufferLoadCRL(crl, myBuffer, sz, format, verify);
#endif
else
ret = ProcessBuffer(ctx, myBuffer, sz, format, type, ssl, NULL,
userChain, verify);
}
XFCLOSE(file);
if (dynamic)
XFREE(myBuffer, heapHint, DYNAMIC_TYPE_FILE);
return ret;
}
/* loads file then loads each file in path, no c_rehash */
int wolfSSL_CTX_load_verify_locations_ex(WOLFSSL_CTX* ctx, const char* file,
const char* path, word32 flags)
{
int ret = WOLFSSL_SUCCESS;
#ifndef NO_WOLFSSL_DIR
int fileRet;
int successCount = 0;
int failCount = 0;
#endif
int verify;
WOLFSSL_MSG("wolfSSL_CTX_load_verify_locations_ex");
if (ctx == NULL || (file == NULL && path == NULL)) {
return WOLFSSL_FAILURE;
}
verify = GET_VERIFY_SETTING_CTX(ctx);
if (flags & WOLFSSL_LOAD_FLAG_DATE_ERR_OKAY)
verify = VERIFY_SKIP_DATE;
if (file) {
ret = ProcessFile(ctx, file, WOLFSSL_FILETYPE_PEM, CA_TYPE, NULL, 0,
NULL, verify);
#ifndef NO_WOLFSSL_DIR
if (ret == WOLFSSL_SUCCESS)
successCount++;
#endif
}
if (ret == WOLFSSL_SUCCESS && path) {
#ifndef NO_WOLFSSL_DIR
char* name = NULL;
#ifdef WOLFSSL_SMALL_STACK
ReadDirCtx* readCtx;
readCtx = (ReadDirCtx*)XMALLOC(sizeof(ReadDirCtx), ctx->heap,
DYNAMIC_TYPE_DIRCTX);
if (readCtx == NULL)
return MEMORY_E;
#else
ReadDirCtx readCtx[1];
#endif
/* try to load each regular file in path */
fileRet = wc_ReadDirFirst(readCtx, path, &name);
while (fileRet == 0 && name) {
WOLFSSL_MSG(name); /* log file name */
ret = ProcessFile(ctx, name, WOLFSSL_FILETYPE_PEM, CA_TYPE,
NULL, 0, NULL, verify);
if (ret != WOLFSSL_SUCCESS) {
/* handle flags for ignoring errors, skipping expired certs or
by PEM certificate header error */
if ( (flags & WOLFSSL_LOAD_FLAG_IGNORE_ERR) ||
((flags & WOLFSSL_LOAD_FLAG_PEM_CA_ONLY) &&
(ret == ASN_NO_PEM_HEADER))) {
/* Do not fail here if a certificate fails to load,
continue to next file */
ret = WOLFSSL_SUCCESS;
}
else {
WOLFSSL_ERROR(ret);
WOLFSSL_MSG("Load CA file failed, continuing");
failCount++;
}
}
else {
successCount++;
}
fileRet = wc_ReadDirNext(readCtx, path, &name);
}
wc_ReadDirClose(readCtx);
/* pass directory read failure to response code */
if (fileRet != WC_READDIR_NOFILE) {
ret = fileRet;
}
/* report failure if no files were loaded or there were failures */
else if (successCount == 0 || failCount > 0) {
/* use existing error code if exists */
if (ret == WOLFSSL_SUCCESS)
ret = WOLFSSL_FAILURE;
}
else {
ret = WOLFSSL_SUCCESS;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(readCtx, ctx->heap, DYNAMIC_TYPE_DIRCTX);
#endif
#else
ret = NOT_COMPILED_IN;
(void)flags;
#endif
}
return ret;
}
WOLFSSL_ABI
int wolfSSL_CTX_load_verify_locations(WOLFSSL_CTX* ctx, const char* file,
const char* path)
{
return wolfSSL_CTX_load_verify_locations_ex(ctx, file, path,
WOLFSSL_LOAD_VERIFY_DEFAULT_FLAGS);
}
#ifdef WOLFSSL_TRUST_PEER_CERT
/* Used to specify a peer cert to match when connecting
ctx : the ctx structure to load in peer cert
file: the string name of cert file
type: type of format such as PEM/DER
*/
int wolfSSL_CTX_trust_peer_cert(WOLFSSL_CTX* ctx, const char* file, int type)
{
WOLFSSL_ENTER("wolfSSL_CTX_trust_peer_cert");
if (ctx == NULL || file == NULL) {
return WOLFSSL_FAILURE;
}
return ProcessFile(ctx, file, type, TRUSTED_PEER_TYPE, NULL, 0, NULL,
GET_VERIFY_SETTING_CTX(ctx));
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
#if !defined(NO_WOLFSSL_CLIENT) || !defined(WOLFSSL_NO_CLIENT_AUTH)
/* Verify the certificate, WOLFSSL_SUCCESS for ok, < 0 for error */
int wolfSSL_CertManagerVerify(WOLFSSL_CERT_MANAGER* cm, const char* fname,
int format)
{
int ret = WOLFSSL_FATAL_ERROR;
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
long sz = 0;
XFILE file = XFOPEN(fname, "rb");
WOLFSSL_ENTER("wolfSSL_CertManagerVerify");
if (file == XBADFILE) return WOLFSSL_BAD_FILE;
if(XFSEEK(file, 0, XSEEK_END) != 0) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
sz = XFTELL(file);
XREWIND(file);
if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) {
WOLFSSL_MSG("CertManagerVerify file size error");
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
if (sz > (long)sizeof(staticBuffer)) {
WOLFSSL_MSG("Getting dynamic buffer");
myBuffer = (byte*) XMALLOC(sz, cm->heap, DYNAMIC_TYPE_FILE);
if (myBuffer == NULL) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
dynamic = 1;
}
if ((size_t)XFREAD(myBuffer, 1, sz, file) != (size_t)sz)
ret = WOLFSSL_BAD_FILE;
else
ret = wolfSSL_CertManagerVerifyBuffer(cm, myBuffer, sz, format);
XFCLOSE(file);
if (dynamic)
XFREE(myBuffer, cm->heap, DYNAMIC_TYPE_FILE);
return ret;
}
#endif
/* like load verify locations, 1 for success, < 0 for error */
int wolfSSL_CertManagerLoadCA(WOLFSSL_CERT_MANAGER* cm, const char* file,
const char* path)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_CTX* tmp;
WOLFSSL_ENTER("wolfSSL_CertManagerLoadCA");
if (cm == NULL) {
WOLFSSL_MSG("No CertManager error");
return ret;
}
tmp = wolfSSL_CTX_new(cm_pick_method());
if (tmp == NULL) {
WOLFSSL_MSG("CTX new failed");
return ret;
}
/* for tmp use */
wolfSSL_CertManagerFree(tmp->cm);
tmp->cm = cm;
ret = wolfSSL_CTX_load_verify_locations(tmp, file, path);
/* don't lose our good one */
tmp->cm = NULL;
wolfSSL_CTX_free(tmp);
return ret;
}
#endif /* NO_FILESYSTEM */
#ifdef HAVE_CRL
/* check CRL if enabled, WOLFSSL_SUCCESS */
int wolfSSL_CertManagerCheckCRL(WOLFSSL_CERT_MANAGER* cm, byte* der, int sz)
{
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
WOLFSSL_ENTER("wolfSSL_CertManagerCheckCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->crlEnabled == 0)
return WOLFSSL_SUCCESS;
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
InitDecodedCert(cert, der, sz, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, VERIFY_CRL, cm)) != 0) {
WOLFSSL_MSG("ParseCert failed");
}
else if ((ret = CheckCertCRL(cm->crl, cert)) != 0) {
WOLFSSL_MSG("CheckCertCRL failed");
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
return ret == 0 ? WOLFSSL_SUCCESS : ret;
}
int wolfSSL_CertManagerSetCRL_Cb(WOLFSSL_CERT_MANAGER* cm, CbMissingCRL cb)
{
WOLFSSL_ENTER("wolfSSL_CertManagerSetCRL_Cb");
if (cm == NULL)
return BAD_FUNC_ARG;
cm->cbMissingCRL = cb;
return WOLFSSL_SUCCESS;
}
#ifdef HAVE_CRL_IO
int wolfSSL_CertManagerSetCRL_IOCb(WOLFSSL_CERT_MANAGER* cm, CbCrlIO cb)
{
if (cm == NULL)
return BAD_FUNC_ARG;
cm->crl->crlIOCb = cb;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_FILESYSTEM
int wolfSSL_CertManagerLoadCRL(WOLFSSL_CERT_MANAGER* cm, const char* path,
int type, int monitor)
{
WOLFSSL_ENTER("wolfSSL_CertManagerLoadCRL");
if (cm == NULL)
return BAD_FUNC_ARG;
if (cm->crl == NULL) {
if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Enable CRL failed");
return WOLFSSL_FATAL_ERROR;
}
}
return LoadCRL(cm->crl, path, type, monitor);
}
#endif
int wolfSSL_EnableCRL(WOLFSSL* ssl, int options)
{
WOLFSSL_ENTER("wolfSSL_EnableCRL");
if (ssl)
return wolfSSL_CertManagerEnableCRL(ssl->ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_DisableCRL(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_DisableCRL");
if (ssl)
return wolfSSL_CertManagerDisableCRL(ssl->ctx->cm);
else
return BAD_FUNC_ARG;
}
#ifndef NO_FILESYSTEM
int wolfSSL_LoadCRL(WOLFSSL* ssl, const char* path, int type, int monitor)
{
WOLFSSL_ENTER("wolfSSL_LoadCRL");
if (ssl)
return wolfSSL_CertManagerLoadCRL(ssl->ctx->cm, path, type, monitor);
else
return BAD_FUNC_ARG;
}
#endif
int wolfSSL_SetCRL_Cb(WOLFSSL* ssl, CbMissingCRL cb)
{
WOLFSSL_ENTER("wolfSSL_SetCRL_Cb");
if (ssl)
return wolfSSL_CertManagerSetCRL_Cb(ssl->ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#ifdef HAVE_CRL_IO
int wolfSSL_SetCRL_IOCb(WOLFSSL* ssl, CbCrlIO cb)
{
WOLFSSL_ENTER("wolfSSL_SetCRL_Cb");
if (ssl)
return wolfSSL_CertManagerSetCRL_IOCb(ssl->ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#endif
int wolfSSL_CTX_EnableCRL(WOLFSSL_CTX* ctx, int options)
{
WOLFSSL_ENTER("wolfSSL_CTX_EnableCRL");
if (ctx)
return wolfSSL_CertManagerEnableCRL(ctx->cm, options);
else
return BAD_FUNC_ARG;
}
int wolfSSL_CTX_DisableCRL(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_DisableCRL");
if (ctx)
return wolfSSL_CertManagerDisableCRL(ctx->cm);
else
return BAD_FUNC_ARG;
}
#ifndef NO_FILESYSTEM
int wolfSSL_CTX_LoadCRL(WOLFSSL_CTX* ctx, const char* path,
int type, int monitor)
{
WOLFSSL_ENTER("wolfSSL_CTX_LoadCRL");
if (ctx)
return wolfSSL_CertManagerLoadCRL(ctx->cm, path, type, monitor);
else
return BAD_FUNC_ARG;
}
#endif
int wolfSSL_CTX_SetCRL_Cb(WOLFSSL_CTX* ctx, CbMissingCRL cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_Cb");
if (ctx)
return wolfSSL_CertManagerSetCRL_Cb(ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#ifdef HAVE_CRL_IO
int wolfSSL_CTX_SetCRL_IOCb(WOLFSSL_CTX* ctx, CbCrlIO cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_SetCRL_IOCb");
if (ctx)
return wolfSSL_CertManagerSetCRL_IOCb(ctx->cm, cb);
else
return BAD_FUNC_ARG;
}
#endif
#endif /* HAVE_CRL */
#ifndef NO_FILESYSTEM
#ifdef WOLFSSL_DER_LOAD
/* Add format parameter to allow DER load of CA files */
int wolfSSL_CTX_der_load_verify_locations(WOLFSSL_CTX* ctx, const char* file,
int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_der_load_verify_locations");
if (ctx == NULL || file == NULL)
return WOLFSSL_FAILURE;
if (ProcessFile(ctx, file, format, CA_TYPE, NULL, 0, NULL,
GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* WOLFSSL_DER_LOAD */
WOLFSSL_ABI
int wolfSSL_CTX_use_certificate_file(WOLFSSL_CTX* ctx, const char* file,
int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_file");
if (ProcessFile(ctx, file, format, CERT_TYPE, NULL, 0, NULL,
GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
WOLFSSL_ABI
int wolfSSL_CTX_use_PrivateKey_file(WOLFSSL_CTX* ctx, const char* file,
int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_file");
if (ProcessFile(ctx, file, format, PRIVATEKEY_TYPE, NULL, 0, NULL,
GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* NO_FILESYSTEM */
/* Sets the max chain depth when verifying a certificate chain. Default depth
* is set to MAX_CHAIN_DEPTH.
*
* ctx WOLFSSL_CTX structure to set depth in
* depth max depth
*/
void wolfSSL_CTX_set_verify_depth(WOLFSSL_CTX *ctx, int depth) {
WOLFSSL_ENTER("wolfSSL_CTX_set_verify_depth");
if (ctx == NULL || depth < 0 || depth > MAX_CHAIN_DEPTH) {
WOLFSSL_MSG("Bad depth argument, too large or less than 0");
return;
}
ctx->verifyDepth = (byte)depth;
}
/* get cert chaining depth using ssl struct */
long wolfSSL_get_verify_depth(WOLFSSL* ssl)
{
if(ssl == NULL) {
return BAD_FUNC_ARG;
}
#ifndef OPENSSL_EXTRA
return MAX_CHAIN_DEPTH;
#else
return ssl->options.verifyDepth;
#endif
}
/* get cert chaining depth using ctx struct */
long wolfSSL_CTX_get_verify_depth(WOLFSSL_CTX* ctx)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
#ifndef OPENSSL_EXTRA
return MAX_CHAIN_DEPTH;
#else
return ctx->verifyDepth;
#endif
}
#ifndef NO_FILESYSTEM
WOLFSSL_ABI
int wolfSSL_CTX_use_certificate_chain_file(WOLFSSL_CTX* ctx, const char* file)
{
/* process up to MAX_CHAIN_DEPTH plus subject cert */
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_file");
if (ProcessFile(ctx, file, WOLFSSL_FILETYPE_PEM, CERT_TYPE, NULL, 1, NULL,
GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
int wolfSSL_CTX_use_certificate_chain_file_format(WOLFSSL_CTX* ctx,
const char* file, int format)
{
/* process up to MAX_CHAIN_DEPTH plus subject cert */
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_file_format");
if (ProcessFile(ctx, file, format, CERT_TYPE, NULL, 1, NULL,
GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#ifndef NO_DH
/* server Diffie-Hellman parameters */
static int wolfSSL_SetTmpDH_file_wrapper(WOLFSSL_CTX* ctx, WOLFSSL* ssl,
const char* fname, int format)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
int ret;
long sz = 0;
XFILE file;
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
file = XFOPEN(fname, "rb");
if (file == XBADFILE) return WOLFSSL_BAD_FILE;
if(XFSEEK(file, 0, XSEEK_END) != 0) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
sz = XFTELL(file);
XREWIND(file);
if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) {
WOLFSSL_MSG("SetTmpDH file size error");
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
if (sz > (long)sizeof(staticBuffer)) {
WOLFSSL_MSG("Getting dynamic buffer");
myBuffer = (byte*) XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE);
if (myBuffer == NULL) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
dynamic = 1;
}
if ((size_t)XFREAD(myBuffer, 1, sz, file) != (size_t)sz)
ret = WOLFSSL_BAD_FILE;
else {
if (ssl)
ret = wolfSSL_SetTmpDH_buffer(ssl, myBuffer, sz, format);
else
ret = wolfSSL_CTX_SetTmpDH_buffer(ctx, myBuffer, sz, format);
}
XFCLOSE(file);
if (dynamic)
XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE);
return ret;
}
/* server Diffie-Hellman parameters */
int wolfSSL_SetTmpDH_file(WOLFSSL* ssl, const char* fname, int format)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return wolfSSL_SetTmpDH_file_wrapper(ssl->ctx, ssl, fname, format);
}
/* server Diffie-Hellman parameters */
int wolfSSL_CTX_SetTmpDH_file(WOLFSSL_CTX* ctx, const char* fname, int format)
{
return wolfSSL_SetTmpDH_file_wrapper(ctx, NULL, fname, format);
}
#endif /* NO_DH */
#endif /* NO_FILESYSTEM */
#ifndef NO_CHECK_PRIVATE_KEY
/* Check private against public in certificate for match
*
* ctx WOLFSSL_CTX structure to check private key in
*
* Returns SSL_SUCCESS on good private key and SSL_FAILURE if miss matched. */
int wolfSSL_CTX_check_private_key(const WOLFSSL_CTX* ctx)
{
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* der = NULL;
#else
DecodedCert der[1];
#endif
word32 size;
byte* buff;
int ret;
WOLFSSL_ENTER("wolfSSL_CTX_check_private_key");
if (ctx == NULL || ctx->certificate == NULL) {
return WOLFSSL_FAILURE;
}
#ifndef NO_CERTS
#ifdef WOLFSSL_SMALL_STACK
der = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT);
if (der == NULL)
return MEMORY_E;
#endif
size = ctx->certificate->length;
buff = ctx->certificate->buffer;
InitDecodedCert(der, buff, size, ctx->heap);
if (ParseCertRelative(der, CERT_TYPE, NO_VERIFY, NULL) != 0) {
FreeDecodedCert(der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(der, NULL, DYNAMIC_TYPE_DCERT);
#endif
return WOLFSSL_FAILURE;
}
size = ctx->privateKey->length;
buff = ctx->privateKey->buffer;
#ifdef WOLF_CRYPTO_CB
if (ctx->privateKeyDevId != INVALID_DEVID) {
int type = 0;
void *pkey = NULL;
if (der->keyOID == RSAk) {
type = DYNAMIC_TYPE_RSA;
}
else if (der->keyOID == ECDSAk) {
type = DYNAMIC_TYPE_ECC;
}
ret = CreateDevPrivateKey(&pkey, buff, size, type, ctx->privateKeyLabel,
ctx->privateKeyId, ctx->heap,
ctx->privateKeyDevId);
if (ret == 0 && der->keyOID == RSAk) {
ret = wc_CryptoCb_RsaCheckPrivKey((RsaKey*)pkey, der->publicKey,
der->pubKeySize);
wc_FreeRsaKey((RsaKey*)pkey);
}
else if (ret == 0 && der->keyOID == ECDSAk) {
ret = wc_CryptoCb_EccCheckPrivKey((ecc_key*)pkey, der->publicKey,
der->pubKeySize);
wc_ecc_free((ecc_key*)pkey);
}
if (pkey != NULL) {
XFREE(pkey, ctx->heap, type);
}
if (ret == 0) {
ret = WOLFSSL_SUCCESS;
}
else {
ret = WOLFSSL_FAILURE;
}
}
else
#endif
{
ret = wc_CheckPrivateKeyCert(buff, size, der);
if (ret == 1) {
ret = WOLFSSL_SUCCESS;
}
else {
ret = WOLFSSL_FAILURE;
}
}
FreeDecodedCert(der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(der, NULL, DYNAMIC_TYPE_DCERT);
#endif
return ret;
#else
WOLFSSL_MSG("NO_CERTS is defined, can not check private key");
return WOLFSSL_FAILURE;
#endif
}
#endif /* !NO_CHECK_PRIVATE_KEY */
#ifdef OPENSSL_EXTRA
#ifndef NO_BIO
/* put SSL type in extra for now, not very common */
/* Converts a DER format key read from "bio" to a PKCS8 structure.
*
* bio input bio to read DER from
* pkey If not NULL then this pointer will be overwritten with a new PKCS8
* structure.
*
* returns a WOLFSSL_PKCS8_PRIV_KEY_INFO pointer on success and NULL in fail
* case.
*/
WOLFSSL_PKCS8_PRIV_KEY_INFO* wolfSSL_d2i_PKCS8_PKEY_bio(WOLFSSL_BIO* bio,
WOLFSSL_PKCS8_PRIV_KEY_INFO** pkey)
{
WOLFSSL_PKCS8_PRIV_KEY_INFO* pkcs8 = NULL;
#ifdef WOLFSSL_PEM_TO_DER
unsigned char* mem = NULL;
int memSz;
int keySz;
word32 algId;
WOLFSSL_MSG("wolfSSL_d2i_PKCS8_PKEY_bio()");
if (bio == NULL) {
return NULL;
}
if ((memSz = wolfSSL_BIO_get_mem_data(bio, &mem)) < 0) {
return NULL;
}
if ((keySz = wc_KeyPemToDer(mem, memSz, mem, memSz, NULL)) < 0) {
WOLFSSL_MSG("Not PEM format");
keySz = memSz;
if ((keySz = ToTraditional_ex((byte*)mem, (word32)keySz, &algId)) < 0) {
return NULL;
}
}
pkcs8 = wolfSSL_EVP_PKEY_new();
if (pkcs8 == NULL) {
return NULL;
}
pkcs8->pkey.ptr = (char*)XMALLOC(keySz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (pkcs8->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(pkcs8);
return NULL;
}
XMEMCPY(pkcs8->pkey.ptr, mem, keySz);
pkcs8->pkey_sz = keySz;
if (pkey != NULL) {
*pkey = pkcs8;
}
#else
(void)bio;
(void)pkey;
#endif /* WOLFSSL_PEM_TO_DER */
return pkcs8;
}
/* expecting DER format public key
*
* bio input bio to read DER from
* out If not NULL then this pointer will be overwritten with a new
* WOLFSSL_EVP_PKEY pointer
*
* returns a WOLFSSL_EVP_PKEY pointer on success and NULL in fail case.
*/
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY_bio(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY** out)
{
unsigned char* mem;
long memSz;
WOLFSSL_EVP_PKEY* pkey = NULL;
WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY_bio()");
if (bio == NULL) {
return NULL;
}
(void)out;
memSz = wolfSSL_BIO_get_len(bio);
if (memSz <= 0) {
return NULL;
}
mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
return NULL;
}
if (wolfSSL_BIO_read(bio, mem, (int)memSz) == memSz) {
pkey = wolfSSL_d2i_PUBKEY(NULL, (const unsigned char**)&mem, memSz);
if (out != NULL && pkey != NULL) {
*out = pkey;
}
}
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return pkey;
}
#endif /* !NO_BIO */
/* Converts a DER encoded public key to a WOLFSSL_EVP_PKEY structure.
*
* out pointer to new WOLFSSL_EVP_PKEY structure. Can be NULL
* in DER buffer to convert
* inSz size of in buffer
*
* returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL
* on fail
*/
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PUBKEY(WOLFSSL_EVP_PKEY** out,
const unsigned char** in, long inSz)
{
WOLFSSL_EVP_PKEY* pkey = NULL;
const unsigned char* mem;
long memSz = inSz;
WOLFSSL_ENTER("wolfSSL_d2i_PUBKEY");
if (in == NULL || inSz < 0) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
mem = *in;
#if !defined(NO_RSA)
{
RsaKey rsa;
word32 keyIdx = 0;
/* test if RSA key */
if (wc_InitRsaKey(&rsa, NULL) == 0 &&
wc_RsaPublicKeyDecode(mem, &keyIdx, &rsa, (word32)memSz) == 0) {
wc_FreeRsaKey(&rsa);
pkey = wolfSSL_EVP_PKEY_new();
if (pkey != NULL) {
pkey->pkey_sz = keyIdx;
pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
XMEMCPY(pkey->pkey.ptr, mem, keyIdx);
pkey->type = EVP_PKEY_RSA;
if (out != NULL) {
*out = pkey;
}
pkey->ownRsa = 1;
pkey->rsa = wolfSSL_RSA_new();
if (pkey->rsa == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
if (wolfSSL_RSA_LoadDer_ex(pkey->rsa,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, WOLFSSL_RSA_LOAD_PUBLIC) != 1) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
return pkey;
}
else {
WOLFSSL_MSG("RSA wolfSSL_EVP_PKEY_new error");
}
}
wc_FreeRsaKey(&rsa);
}
#endif /* NO_RSA */
#ifdef HAVE_ECC
{
word32 keyIdx = 0;
ecc_key ecc;
if (wc_ecc_init(&ecc) == 0 &&
wc_EccPublicKeyDecode(mem, &keyIdx, &ecc, (word32)memSz) == 0) {
wc_ecc_free(&ecc);
pkey = wolfSSL_EVP_PKEY_new();
if (pkey != NULL) {
pkey->pkey_sz = keyIdx;
pkey->pkey.ptr = (char*)XMALLOC(keyIdx, NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
XMEMCPY(pkey->pkey.ptr, mem, keyIdx);
pkey->type = EVP_PKEY_EC;
if (out != NULL) {
*out = pkey;
}
pkey->ownEcc = 1;
pkey->ecc = wolfSSL_EC_KEY_new();
if (pkey->ecc == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
if (wolfSSL_EC_KEY_LoadDer_ex(pkey->ecc,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, WOLFSSL_EC_KEY_LOAD_PUBLIC) != 1) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
return pkey;
}
else {
WOLFSSL_MSG("ECC wolfSSL_EVP_PKEY_new error");
}
}
wc_ecc_free(&ecc);
}
#endif /* HAVE_ECC */
#if !defined(NO_DSA)
{
DsaKey dsa;
word32 keyIdx = 0;
/* test if DSA key */
if (wc_InitDsaKey(&dsa) == 0 &&
wc_DsaPublicKeyDecode(mem, &keyIdx, &dsa, (word32)memSz) == 0) {
wc_FreeDsaKey(&dsa);
pkey = wolfSSL_EVP_PKEY_new();
if (pkey != NULL) {
pkey->pkey_sz = keyIdx;
pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
XMEMCPY(pkey->pkey.ptr, mem, keyIdx);
pkey->type = EVP_PKEY_DSA;
if (out != NULL) {
*out = pkey;
}
pkey->ownDsa = 1;
pkey->dsa = wolfSSL_DSA_new();
if (pkey->dsa == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
if (wolfSSL_DSA_LoadDer_ex(pkey->dsa,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, WOLFSSL_DSA_LOAD_PUBLIC) != 1) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
return pkey;
}
else {
WOLFSSL_MSG("DSA wolfSSL_EVP_PKEY_new error");
}
}
wc_FreeDsaKey(&dsa);
}
#endif /* NO_DSA */
#if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL))
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && \
(HAVE_FIPS_VERSION > 2))
{
DhKey dh;
word32 keyIdx = 0;
/* test if DH key */
if (wc_InitDhKey(&dh) == 0 &&
wc_DhKeyDecode(mem, &keyIdx, &dh, (word32)memSz) == 0) {
wc_FreeDhKey(&dh);
pkey = wolfSSL_EVP_PKEY_new();
if (pkey != NULL) {
pkey->pkey_sz = (int)memSz;
pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
if (pkey->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
XMEMCPY(pkey->pkey.ptr, mem, memSz);
pkey->type = EVP_PKEY_DH;
if (out != NULL) {
*out = pkey;
}
pkey->ownDh = 1;
pkey->dh = wolfSSL_DH_new();
if (pkey->dh == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
if (wolfSSL_DH_LoadDer(pkey->dh,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz) != WOLFSSL_SUCCESS) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
return pkey;
}
else {
WOLFSSL_MSG("DH wolfSSL_EVP_PKEY_new error");
}
}
wc_FreeDhKey(&dh);
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* !NO_DH && (WOLFSSL_QT || OPENSSL_ALL) */
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_d2i_PUBKEY couldn't determine key type");
}
return pkey;
}
/* helper function to get raw pointer to DER buffer from WOLFSSL_EVP_PKEY */
static int wolfSSL_EVP_PKEY_get_der(const WOLFSSL_EVP_PKEY* key, unsigned char** der)
{
unsigned char* pt;
int sz;
if (!key || !key->pkey_sz)
return WOLFSSL_FATAL_ERROR;
sz = key->pkey_sz;
if (der) {
pt = (unsigned char*)key->pkey.ptr;
if (*der) {
/* since this function signature has no size value passed in it is
* assumed that the user has allocated a large enough buffer */
XMEMCPY(*der, pt, sz);
*der += sz;
}
else {
*der = (unsigned char*)XMALLOC(sz, NULL, DYNAMIC_TYPE_OPENSSL);
if (*der == NULL) {
return WOLFSSL_FATAL_ERROR;
}
XMEMCPY(*der, pt, sz);
}
}
return sz;
}
int wolfSSL_i2d_PUBKEY(const WOLFSSL_EVP_PKEY *key, unsigned char **der)
{
return wolfSSL_EVP_PKEY_get_der(key, der);
}
/* Reads in a DER format key. If PKCS8 headers are found they are stripped off.
*
* type type of key
* out newly created WOLFSSL_EVP_PKEY structure
* in pointer to input key DER
* inSz size of in buffer
*
* On success a non null pointer is returned and the pointer in is advanced the
* same number of bytes read.
*/
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey(int type, WOLFSSL_EVP_PKEY** out,
const unsigned char **in, long inSz)
{
WOLFSSL_EVP_PKEY* local;
word32 idx = 0;
int ret;
word32 algId;
WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey");
if (in == NULL || inSz < 0) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
/* Check if input buffer has PKCS8 header. In the case that it does not
* have a PKCS8 header then do not error out. */
if ((ret = ToTraditionalInline_ex((const byte*)(*in), &idx, (word32)inSz,
&algId)) > 0) {
WOLFSSL_MSG("Found and removed PKCS8 header");
}
else {
if (ret != ASN_PARSE_E) {
WOLFSSL_MSG("Unexpected error with trying to remove PKCS8 header");
return NULL;
}
}
if (out != NULL && *out != NULL) {
wolfSSL_EVP_PKEY_free(*out);
*out = NULL;
}
local = wolfSSL_EVP_PKEY_new();
if (local == NULL) {
return NULL;
}
/* sanity check on idx before use */
if ((int)idx > inSz) {
WOLFSSL_MSG("Issue with index pointer");
wolfSSL_EVP_PKEY_free(local);
local = NULL;
return NULL;
}
local->type = type;
local->pkey_sz = (int)inSz - idx;
local->pkey.ptr = (char*)XMALLOC(inSz - idx, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (local->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(local);
local = NULL;
return NULL;
}
else {
XMEMCPY(local->pkey.ptr, *in + idx, inSz - idx);
}
switch (type) {
#ifndef NO_RSA
case EVP_PKEY_RSA:
local->ownRsa = 1;
local->rsa = wolfSSL_RSA_new();
if (local->rsa == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
if (wolfSSL_RSA_LoadDer_ex(local->rsa,
(const unsigned char*)local->pkey.ptr, local->pkey_sz,
WOLFSSL_RSA_LOAD_PRIVATE) != WOLFSSL_SUCCESS) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
break;
#endif /* NO_RSA */
#ifdef HAVE_ECC
case EVP_PKEY_EC:
local->ownEcc = 1;
local->ecc = wolfSSL_EC_KEY_new();
if (local->ecc == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
if (wolfSSL_EC_KEY_LoadDer(local->ecc,
(const unsigned char*)local->pkey.ptr, local->pkey_sz)
!= WOLFSSL_SUCCESS) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
break;
#endif /* HAVE_ECC */
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) || defined(WOLFSSL_OPENSSH)
#ifndef NO_DSA
case EVP_PKEY_DSA:
local->ownDsa = 1;
local->dsa = wolfSSL_DSA_new();
if (local->dsa == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
if (wolfSSL_DSA_LoadDer(local->dsa,
(const unsigned char*)local->pkey.ptr, local->pkey_sz)
!= WOLFSSL_SUCCESS) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
break;
#endif /* NO_DSA */
#ifndef NO_DH
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
case EVP_PKEY_DH:
local->ownDh = 1;
local->dh = wolfSSL_DH_new();
if (local->dh == NULL) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
if (wolfSSL_DH_LoadDer(local->dh,
(const unsigned char*)local->pkey.ptr, local->pkey_sz)
!= WOLFSSL_SUCCESS) {
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
break;
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* HAVE_DH */
#endif /* WOLFSSL_QT || OPENSSL_ALL || WOLFSSL_OPENSSH */
default:
WOLFSSL_MSG("Unsupported key type");
wolfSSL_EVP_PKEY_free(local);
return NULL;
}
/* advance pointer with success */
if (local != NULL) {
if ((idx + local->pkey_sz) <= (word32)inSz) {
*in = *in + idx + local->pkey_sz;
}
if (out != NULL) {
*out = local;
}
}
return local;
}
#ifndef NO_CERTS
int wolfSSL_check_private_key(const WOLFSSL* ssl)
{
DecodedCert der;
word32 size;
byte* buff;
int ret;
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
size = ssl->buffers.certificate->length;
buff = ssl->buffers.certificate->buffer;
InitDecodedCert(&der, buff, size, ssl->heap);
#ifdef HAVE_PK_CALLBACKS
ret = InitSigPkCb((WOLFSSL*)ssl, &der.sigCtx);
if (ret != 0) {
FreeDecodedCert(&der);
return ret;
}
#endif
if (ParseCertRelative(&der, CERT_TYPE, NO_VERIFY, NULL) != 0) {
FreeDecodedCert(&der);
return WOLFSSL_FAILURE;
}
size = ssl->buffers.key->length;
buff = ssl->buffers.key->buffer;
#ifdef WOLF_CRYPTO_CB
if (ssl->buffers.keyDevId != INVALID_DEVID) {
int type = 0;
void *pkey = NULL;
if (der.keyOID == RSAk) {
type = DYNAMIC_TYPE_RSA;
}
else if (der.keyOID == ECDSAk) {
type = DYNAMIC_TYPE_ECC;
}
ret = CreateDevPrivateKey(&pkey, buff, size, type,
ssl->buffers.keyLabel,
ssl->buffers.keyId, ssl->heap,
ssl->buffers.keyDevId);
if (ret == 0 && der.keyOID == RSAk) {
ret = wc_CryptoCb_RsaCheckPrivKey((RsaKey*)pkey, der.publicKey,
der.pubKeySize);
if (ret == 0)
ret = 1;
wc_FreeRsaKey((RsaKey*)pkey);
}
else if (ret == 0 && der.keyOID == ECDSAk) {
ret = wc_CryptoCb_EccCheckPrivKey((ecc_key*)pkey, der.publicKey,
der.pubKeySize);
if (ret == 0)
ret = 1;
wc_ecc_free((ecc_key*)pkey);
}
if (pkey != NULL) {
XFREE(pkey, ssl->heap, type);
}
}
else
#endif
ret = wc_CheckPrivateKeyCert(buff, size, &der);
FreeDecodedCert(&der);
return ret;
}
#if defined(OPENSSL_ALL)
/* Returns the number of X509V3 extensions in X509 object, or 0 on failure */
int wolfSSL_X509_get_ext_count(const WOLFSSL_X509* passedCert)
{
int extCount = 0;
int length = 0;
int outSz = 0;
const byte* rawCert;
int sz = 0;
word32 idx = 0;
DecodedCert cert;
const byte* input;
WOLFSSL_ENTER("wolfSSL_X509_get_ext_count()");
if (passedCert == NULL) {
WOLFSSL_MSG("\tNot passed a certificate");
return WOLFSSL_FAILURE;
}
rawCert = wolfSSL_X509_get_der((WOLFSSL_X509*)passedCert, &outSz);
if (rawCert == NULL) {
WOLFSSL_MSG("\tpassedCert has no internal DerBuffer set.");
return WOLFSSL_FAILURE;
}
InitDecodedCert(&cert, rawCert, (word32)outSz, 0);
if (ParseCert(&cert,
#ifdef WOLFSSL_CERT_REQ
passedCert->isCSR ? CERTREQ_TYPE :
#endif
CA_TYPE,
NO_VERIFY, NULL) < 0) {
WOLFSSL_MSG("\tCertificate parsing failed");
return WOLFSSL_FAILURE;
}
input = cert.extensions;
sz = cert.extensionsSz;
if (input == NULL || sz == 0) {
WOLFSSL_MSG("\tsz or input NULL error");
FreeDecodedCert(&cert);
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_CERT_REQ
if (!passedCert->isCSR)
#endif
{
if (input[idx++] != ASN_EXTENSIONS) {
WOLFSSL_MSG("\tfail: should be an EXTENSIONS");
FreeDecodedCert(&cert);
return WOLFSSL_FAILURE;
}
if (GetLength(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: invalid length");
FreeDecodedCert(&cert);
return WOLFSSL_FAILURE;
}
}
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE (1)");
FreeDecodedCert(&cert);
return WOLFSSL_FAILURE;
}
while (idx < (word32)sz) {
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE");
FreeDecodedCert(&cert);
return WOLFSSL_FAILURE;
}
idx += length;
extCount++;
}
FreeDecodedCert(&cert);
return extCount;
}
/* Creates and returns pointer to a new X509_EXTENSION object in memory */
WOLFSSL_X509_EXTENSION* wolfSSL_X509_EXTENSION_new(void)
{
WOLFSSL_X509_EXTENSION* newExt;
WOLFSSL_ENTER("wolfSSL_X509_EXTENSION_new");
newExt = (WOLFSSL_X509_EXTENSION*)XMALLOC(sizeof(WOLFSSL_X509_EXTENSION),
NULL, DYNAMIC_TYPE_X509_EXT);
if (newExt == NULL)
return NULL;
XMEMSET(newExt, 0, sizeof(WOLFSSL_X509_EXTENSION));
return newExt;
}
void wolfSSL_X509_EXTENSION_free(WOLFSSL_X509_EXTENSION* x)
{
WOLFSSL_ASN1_STRING asn1;
WOLFSSL_ENTER("wolfSSL_X509_EXTENSION_free");
if (x == NULL)
return;
if (x->obj != NULL)
wolfSSL_ASN1_OBJECT_free(x->obj);
asn1 = x->value;
if (asn1.length > 0 && asn1.data != NULL && asn1.isDynamic)
XFREE(asn1.data, NULL, DYNAMIC_TYPE_OPENSSL);
wolfSSL_sk_free(x->ext_sk);
XFREE(x, NULL, DYNAMIC_TYPE_X509_EXT);
}
/* Creates and returns a new WOLFSSL_X509_EXTENSION stack. */
WOLFSSL_STACK* wolfSSL_sk_new_x509_ext(void)
{
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_sk_new_x509_ext");
sk = wolfSSL_sk_new_null();
if (sk) {
sk->type = STACK_TYPE_X509_EXT;
}
return sk;
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_X509_EXTENSION_push(WOLFSSL_STACK* sk,WOLFSSL_X509_EXTENSION* ext)
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_X509_EXTENSION_push");
if (sk == NULL || ext == NULL) {
return WOLFSSL_FAILURE;
}
/* no previous values in stack */
if (sk->data.ext == NULL) {
sk->data.ext = ext;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
/* stack already has value(s) create a new node and add more */
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_X509);
if (node == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
XMEMSET(node, 0, sizeof(WOLFSSL_STACK));
/* push new obj onto head of stack */
node->data.ext = sk->data.ext;
node->next = sk->next;
node->type = sk->type;
sk->next = node;
sk->data.ext = ext;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
/* Free the structure for X509_EXTENSION stack
*
* sk stack to free nodes in
*/
void wolfSSL_sk_X509_EXTENSION_free(WOLFSSL_STACK* sk)
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_X509_EXTENSION_free");
if (sk == NULL) {
return;
}
/* parse through stack freeing each node */
node = sk->next;
while ((node != NULL) && (sk->num > 1)) {
WOLFSSL_STACK* tmp = node;
node = node->next;
wolfSSL_X509_EXTENSION_free(tmp->data.ext);
XFREE(tmp, NULL, DYNAMIC_TYPE_X509);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
wolfSSL_X509_EXTENSION_free(sk->data.ext);
}
XFREE(sk, NULL, DYNAMIC_TYPE_X509);
}
int wolfSSL_ASN1_BIT_STRING_set_bit(WOLFSSL_ASN1_BIT_STRING* str, int pos,
int val)
{
int bytes_cnt, bit;
byte* temp;
if (!str || (val != 0 && val != 1) || pos < 0) {
return WOLFSSL_FAILURE;
}
bytes_cnt = pos/8;
bit = 1<<(7-(pos%8));
if (bytes_cnt+1 > str->length) {
if (!(temp = (byte*)XREALLOC(str->data, bytes_cnt+1, NULL,
DYNAMIC_TYPE_OPENSSL))) {
return WOLFSSL_FAILURE;
}
XMEMSET(temp+str->length, 0, bytes_cnt+1 - str->length);
str->data = temp;
str->length = bytes_cnt+1;
}
str->data[bytes_cnt] &= ~bit;
str->data[bytes_cnt] |= val ? bit : 0;
return WOLFSSL_SUCCESS;
}
static WOLFSSL_STACK* generateExtStack(const WOLFSSL_X509 *x)
{
int numOfExt, i;
WOLFSSL_X509 *x509 = (WOLFSSL_X509*)x;
WOLFSSL_STACK* ret;
WOLFSSL_STACK* tmp;
if (!x509) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
/* Save x509->ext_sk */
tmp = x509->ext_sk;
x509->ext_sk = NULL;
numOfExt = wolfSSL_X509_get_ext_count(x509);
for (i = 0; i < numOfExt; i++) {
/* Build the extension stack */
(void)wolfSSL_X509_set_ext(x509, i);
}
/* Restore */
ret = x509->ext_sk;
x509->ext_sk = tmp;
return ret;
}
/**
* @param x Certificate to extract extensions from
* @return STACK_OF(X509_EXTENSION)*
*/
const WOLFSSL_STACK *wolfSSL_X509_get0_extensions(const WOLFSSL_X509 *x)
{
int numOfExt;
WOLFSSL_X509 *x509 = (WOLFSSL_X509*)x;
WOLFSSL_ENTER("wolfSSL_X509_get0_extensions");
if (!x509) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
numOfExt = wolfSSL_X509_get_ext_count(x509);
if (numOfExt != wolfSSL_sk_num(x509->ext_sk_full)) {
wolfSSL_sk_free(x509->ext_sk_full);
x509->ext_sk_full = generateExtStack(x);
}
return x509->ext_sk_full;
}
/**
* Caller is responsible for freeing the returned stack.
*/
const WOLFSSL_STACK *wolfSSL_X509_REQ_get_extensions(const WOLFSSL_X509 *x)
{
return generateExtStack(x);
}
/* Gets the X509_EXTENSION* ext based on it's location in WOLFSSL_X509* x509.
*
* x509 : The X509 structure to look for the extension.
* loc : Location of the extension. If the extension is found at the given
* location, a new X509_EXTENSION structure is populated with extension-specific
* data based on the extension type.
* Returns NULL on error or pointer to X509_EXTENSION structure containing the
* extension. The returned X509_EXTENSION should not be free'd by caller.
* The returned X509_EXTENSION is pushed onto a stack inside the x509 argument.
* This is later free'd when x509 is free'd.
*
* NOTE: for unknown extension NIDs, a X509_EXTENSION is populated with the
* extension oid as the ASN1_OBJECT (QT compatibility)
*/
WOLFSSL_X509_EXTENSION* wolfSSL_X509_get_ext(const WOLFSSL_X509* x509, int loc)
{
WOLFSSL_X509_EXTENSION* ext = NULL;
WOLFSSL_ENTER("wolfSSL_X509_get_ext");
if (x509 == NULL)
return NULL;
ext = wolfSSL_X509_set_ext((WOLFSSL_X509*) x509, loc);
return ext;
}
int wolfSSL_X509_get_ext_by_OBJ(const WOLFSSL_X509 *x,
const WOLFSSL_ASN1_OBJECT *obj, int lastpos)
{
const WOLF_STACK_OF(WOLFSSL_X509_EXTENSION) *sk;
if (!x || !obj) {
WOLFSSL_MSG("Bad parameter");
return -1;
}
sk = wolfSSL_X509_get0_extensions(x);
if (!sk) {
WOLFSSL_MSG("No extensions");
return -1;
}
lastpos++;
if (lastpos < 0)
lastpos = 0;
for (; lastpos < wolfSSL_sk_num(sk); lastpos++)
if (wolfSSL_OBJ_cmp((WOLFSSL_ASN1_OBJECT*)wolfSSL_sk_value(sk,
lastpos), obj) == 0)
return lastpos;
return -1;
}
/* Pushes a new X509_EXTENSION* ext onto the stack inside WOLFSSL_X509* x509.
* This is currently a helper function for wolfSSL_X509_get_ext
* Caller does not free the returned WOLFSSL_X509_EXTENSION*
*/
WOLFSSL_X509_EXTENSION* wolfSSL_X509_set_ext(WOLFSSL_X509* x509, int loc)
{
int extCount = 0, length = 0, outSz = 0, sz = 0, ret = 0;
int objSz = 0, isSet = 0;
const byte* rawCert;
const byte* input;
byte* oidBuf;
word32 oid, idx = 0, tmpIdx = 0;
WOLFSSL_X509_EXTENSION* ext = NULL;
WOLFSSL_ASN1_INTEGER* a;
WOLFSSL_STACK* sk;
DecodedCert cert;
WOLFSSL_ENTER("wolfSSL_X509_set_ext");
if(x509 == NULL){
WOLFSSL_MSG("\tNot passed a certificate");
return NULL;
}
if(loc <0 || (loc > wolfSSL_X509_get_ext_count(x509))){
WOLFSSL_MSG("\tBad location argument");
return NULL;
}
ext = wolfSSL_X509_EXTENSION_new();
if (ext == NULL) {
WOLFSSL_MSG("\tX509_EXTENSION_new() failed");
return NULL;
}
rawCert = wolfSSL_X509_get_der((WOLFSSL_X509*)x509, &outSz);
if (rawCert == NULL) {
WOLFSSL_MSG("\tX509_get_der() failed");
wolfSSL_X509_EXTENSION_free(ext);
return NULL;
}
InitDecodedCert( &cert, rawCert, (word32)outSz, 0);
if (ParseCert(&cert,
#ifdef WOLFSSL_CERT_REQ
x509->isCSR ? CERTREQ_TYPE :
#endif
CA_TYPE,
NO_VERIFY, NULL) < 0) {
WOLFSSL_MSG("\tCertificate parsing failed");
wolfSSL_X509_EXTENSION_free(ext);
return NULL;
}
input = cert.extensions;
sz = cert.extensionsSz;
if (input == NULL || sz == 0) {
WOLFSSL_MSG("\tfail: should be an EXTENSIONS");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
#ifdef WOLFSSL_CERT_REQ
if (!x509->isCSR)
#endif
{
if (input[idx++] != ASN_EXTENSIONS) {
WOLFSSL_MSG("\tfail: should be an EXTENSIONS");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
if (GetLength(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: invalid length");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
}
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE (1)");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
while (idx < (word32)sz) {
oid = 0;
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
tmpIdx = idx;
ret = GetObjectId(input, &idx, &oid, oidCertExtType, sz);
if (ret < 0) {
WOLFSSL_MSG("\tfail: OBJECT ID");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
idx = tmpIdx;
/* Continue while loop until extCount == loc or idx > sz */
if (extCount != loc) {
idx += length;
extCount++;
continue;
}
/* extCount == loc. Now get the extension. */
/* Check if extension has been set */
isSet = wolfSSL_X509_ext_isSet_by_NID((WOLFSSL_X509*)x509, oid);
ext->obj = wolfSSL_OBJ_nid2obj(oid);
if (ext->obj == NULL) {
WOLFSSL_MSG("\tfail: Invalid OBJECT");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
ext->obj->nid = oid;
switch (oid) {
case BASIC_CA_OID:
if (!isSet)
break;
/* Set pathlength */
a = wolfSSL_ASN1_INTEGER_new();
if (a == NULL) {
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
a->length = x509->pathLength;
/* Save ASN1_INTEGER in x509 extension */
ext->obj->pathlen = a;
ext->obj->ca = x509->isCa;
ext->crit = x509->basicConstCrit;
break;
case AUTH_INFO_OID:
if (!isSet)
break;
/* Create a stack to hold both the caIssuer and ocsp objects
in X509_EXTENSION structure */
sk = (WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)*)XMALLOC(
sizeof(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)),
NULL, DYNAMIC_TYPE_ASN1);
if (sk == NULL) {
WOLFSSL_MSG("Failed to malloc stack");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
XMEMSET(sk, 0, sizeof(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)));
sk->type = STACK_TYPE_OBJ;
/* Add CaIssuers object to stack */
if (x509->authInfoCaIssuer != NULL &&
x509->authInfoCaIssuerSz > 0)
{
WOLFSSL_ASN1_OBJECT* obj;
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Error creating ASN1 object");
wolfSSL_sk_ASN1_OBJECT_free(sk);
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
obj->obj = (byte*)x509->authInfoCaIssuer;
obj->objSz = x509->authInfoCaIssuerSz;
obj->grp = oidCertAuthInfoType;
obj->nid = AIA_CA_ISSUER_OID;
ret = wolfSSL_sk_ASN1_OBJECT_push(sk, obj);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing ASN1 object onto stack");
wolfSSL_ASN1_OBJECT_free(obj);
wolfSSL_sk_ASN1_OBJECT_free(sk);
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
}
/* Add OCSP object to stack */
if (x509->authInfo != NULL &&
x509->authInfoSz > 0)
{
WOLFSSL_ASN1_OBJECT* obj;
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Error creating ASN1 object");
wolfSSL_sk_ASN1_OBJECT_free(sk);
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
obj->obj = x509->authInfo;
obj->objSz = x509->authInfoSz;
obj->grp = oidCertAuthInfoType;
obj->nid = AIA_OCSP_OID;
ret = wolfSSL_sk_ASN1_OBJECT_push(sk, obj);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing ASN1 object onto stack");
wolfSSL_ASN1_OBJECT_free(obj);
wolfSSL_sk_ASN1_OBJECT_free(sk);
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
}
ext->ext_sk = sk;
ext->crit = x509->authInfoCrit;
break;
case AUTH_KEY_OID:
if (!isSet)
break;
ret = wolfSSL_ASN1_STRING_set(&ext->value, x509->authKeyId,
x509->authKeyIdSz);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ASN1_STRING_set() failed");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
ext->crit = x509->authKeyIdCrit;
break;
case SUBJ_KEY_OID:
if (!isSet)
break;
ret = wolfSSL_ASN1_STRING_set(&ext->value, x509->subjKeyId,
x509->subjKeyIdSz);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ASN1_STRING_set() failed");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
ext->crit = x509->subjKeyIdCrit;
break;
case CERT_POLICY_OID:
if (!isSet)
break;
ext->crit = x509->certPolicyCrit;
break;
case KEY_USAGE_OID:
if (!isSet)
break;
ret = wolfSSL_ASN1_STRING_set(&ext->value,
(byte*)&(x509->keyUsage), sizeof(word16));
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ASN1_STRING_set() failed");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
ext->crit = x509->keyUsageCrit;
break;
case EXT_KEY_USAGE_OID:
if (!isSet)
break;
ext->crit = x509->keyUsageCrit;
break;
case CRL_DIST_OID:
if (!isSet)
break;
ext->crit = x509->CRLdistCrit;
break;
case ALT_NAMES_OID:
{
WOLFSSL_GENERAL_NAME* gn = NULL;
DNS_entry* dns = NULL;
if (!isSet)
break;
sk = (WOLFSSL_GENERAL_NAMES*)XMALLOC(
sizeof(WOLFSSL_GENERAL_NAMES), NULL,
DYNAMIC_TYPE_ASN1);
if (sk == NULL) {
return NULL;
}
XMEMSET(sk, 0, sizeof(WOLFSSL_GENERAL_NAMES));
sk->type = STACK_TYPE_GEN_NAME;
if (x509->subjAltNameSet && x509->altNames != NULL) {
/* alt names are DNS_entry structs */
dns = x509->altNames;
/* Currently only support GEN_DNS type */
while (dns != NULL) {
gn = wolfSSL_GENERAL_NAME_new();
if (gn == NULL) {
WOLFSSL_MSG("Error creating GENERAL_NAME");
wolfSSL_sk_free(sk);
return NULL;
}
gn->type = dns->type;
gn->d.ia5->length = dns->len;
if (wolfSSL_ASN1_STRING_set(gn->d.ia5, dns->name,
gn->d.ia5->length) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ASN1_STRING_set failed");
wolfSSL_GENERAL_NAME_free(gn);
wolfSSL_sk_free(sk);
return NULL;
}
dns = dns->next;
/* last dns in list add at end of function */
if (dns != NULL) {
if (wolfSSL_sk_GENERAL_NAME_push(sk, gn) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing onto stack");
wolfSSL_GENERAL_NAME_free(gn);
wolfSSL_sk_free(sk);
sk = NULL;
}
}
}
if (wolfSSL_sk_GENERAL_NAME_push(sk,gn) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing onto stack");
wolfSSL_GENERAL_NAME_free(gn);
wolfSSL_sk_free(sk);
sk = NULL;
}
}
ext->ext_sk = sk;
ext->crit = x509->subjAltNameCrit;
break;
}
default:
WOLFSSL_MSG("Unknown extension type found, parsing OID");
/* If the extension type is not recognized/supported,
set the ASN1_OBJECT in the extension with the
parsed oid for access in later function calls */
/* Get OID from input */
if (GetASNObjectId(input, &idx, &length, sz) != 0) {
WOLFSSL_MSG("Failed to Get ASN Object Id");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
oidBuf = (byte*)XMALLOC(length+1+MAX_LENGTH_SZ, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (oidBuf == NULL) {
WOLFSSL_MSG("Failed to malloc tmp buffer");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
oidBuf[0] = ASN_OBJECT_ID;
objSz++;
objSz += SetLength(length, oidBuf + 1);
objSz += length;
/* Set object size and reallocate space in object buffer */
ext->obj->objSz = objSz;
if(((ext->obj->dynamic & WOLFSSL_ASN1_DYNAMIC_DATA) != 0) ||
(ext->obj->obj == NULL)) {
ext->obj->obj =(byte*)XREALLOC((byte*)ext->obj->obj,
ext->obj->objSz,
NULL,DYNAMIC_TYPE_ASN1);
if (ext->obj->obj == NULL) {
wolfSSL_ASN1_OBJECT_free(ext->obj);
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
XFREE(oidBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
ext->obj->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA;
} else {
ext->obj->dynamic &= ~WOLFSSL_ASN1_DYNAMIC_DATA;
}
/* Get OID from input and copy to ASN1_OBJECT buffer */
XMEMCPY(oidBuf+2, input+idx, length);
XMEMCPY((byte*)ext->obj->obj, oidBuf, ext->obj->objSz);
XFREE(oidBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
oidBuf = NULL;
ext->obj->grp = oidCertExtType;
ext->crit = 0;
/* Get extension data and copy as ASN1_STRING */
tmpIdx = idx + length;
if ((tmpIdx >= (word32)sz) || (input[tmpIdx++] != ASN_OCTET_STRING)) {
WOLFSSL_MSG("Error decoding unknown extension data");
wolfSSL_ASN1_OBJECT_free(ext->obj);
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
if (GetLength(input, &tmpIdx, &length, sz) <= 0) {
WOLFSSL_MSG("Error: Invalid Input Length.");
wolfSSL_ASN1_OBJECT_free(ext->obj);
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
ext->value.data = (char*)XMALLOC(length, NULL, DYNAMIC_TYPE_ASN1);
ext->value.isDynamic = 1;
if (ext->value.data == NULL) {
WOLFSSL_MSG("Failed to malloc ASN1_STRING data");
wolfSSL_X509_EXTENSION_free(ext);
FreeDecodedCert(&cert);
return NULL;
}
XMEMCPY(ext->value.data,input+tmpIdx,length);
ext->value.length = length;
} /* switch(oid) */
break; /* Got the Extension. Now exit while loop. */
} /* while(idx < sz) */
/* Store the new extension in a stack inside x509
* The extensions on the stack are free'd internally when FreeX509 is called
*/
if (x509->ext_sk == NULL)
x509->ext_sk = wolfSSL_sk_new_x509_ext();
if (x509->ext_sk != NULL)
wolfSSL_sk_X509_EXTENSION_push(x509->ext_sk, ext);
FreeDecodedCert(&cert);
return ext;
}
/**
* @param str String to copy
* @param buf Output buffer. If this contains a pointer then it is free'd
* with the DYNAMIC_TYPE_X509_EXT hint.
* @param len Output length
* @return WOLFSSL_SUCCESS on sucess and WOLFSSL_FAILURE on error
*/
static int asn1_string_copy_to_buffer(WOLFSSL_ASN1_STRING* str, byte** buf,
word32* len, void* heap) {
if (!str || !buf || !len) {
return WOLFSSL_FAILURE;
}
if (str->data && str->length > 0) {
if (*buf)
XFREE(*buf, heap, DYNAMIC_TYPE_X509_EXT);
*len = 0;
*buf = (byte*)XMALLOC(str->length, heap,
DYNAMIC_TYPE_X509_EXT);
if (!*buf) {
WOLFSSL_MSG("malloc error");
return WOLFSSL_FAILURE;
}
*len = str->length;
XMEMCPY(*buf, str->data, str->length);
}
(void)heap;
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_add_ext(WOLFSSL_X509 *x509, WOLFSSL_X509_EXTENSION *ext, int loc)
{
WOLFSSL_ENTER("wolfSSL_X509_add_ext");
if (!x509 || !ext || !ext->obj || loc >= 0) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
switch (ext->obj->type) {
case NID_authority_key_identifier:
if (asn1_string_copy_to_buffer(&ext->value, &x509->authKeyId,
&x509->authKeyIdSz, x509->heap) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("asn1_string_copy_to_buffer error");
return WOLFSSL_FAILURE;
}
x509->authKeyIdCrit = ext->crit;
break;
case NID_subject_key_identifier:
if (asn1_string_copy_to_buffer(&ext->value, &x509->subjKeyId,
&x509->subjKeyIdSz, x509->heap) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("asn1_string_copy_to_buffer error");
return WOLFSSL_FAILURE;
}
x509->subjKeyIdCrit = ext->crit;
break;
case NID_subject_alt_name:
{
WOLFSSL_GENERAL_NAMES* gns = ext->ext_sk;
while (gns) {
WOLFSSL_GENERAL_NAME* gn = gns->data.gn;
if (!gn || !gn->d.ia5 ||
wolfSSL_X509_add_altname_ex(x509, gn->d.ia5->data,
gn->d.ia5->length, gn->type) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Subject alternative name missing extension");
return WOLFSSL_FAILURE;
}
gns = gns->next;
}
x509->subjAltNameSet = 1;
x509->subjAltNameCrit = ext->crit;
break;
}
case NID_key_usage:
if (ext && ext->value.data &&
ext->value.length == sizeof(word16)) {
x509->keyUsage = *(word16*)ext->value.data;
x509->keyUsageCrit = ext->crit;
x509->keyUsageSet = 1;
}
break;
case NID_basic_constraints:
if (ext->obj) {
x509->isCa = ext->obj->ca;
x509->basicConstCrit = ext->crit;
if (ext->obj->pathlen)
x509->pathLength = ext->obj->pathlen->length;
x509->basicConstSet = 1;
}
break;
default:
WOLFSSL_MSG("Unsupported extension to add");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#ifndef NO_BIO
/* Return 0 on success and 1 on failure. Copies ext data to bio, using indent
* to pad the output. flag is ignored. */
int wolfSSL_X509V3_EXT_print(WOLFSSL_BIO *out, WOLFSSL_X509_EXTENSION *ext,
unsigned long flag, int indent)
{
ASN1_OBJECT* obj;
ASN1_STRING* str;
int nid;
const int sz = CTC_NAME_SIZE*2;
int rc = WOLFSSL_FAILURE;
char tmp[CTC_NAME_SIZE*2] = {0};
WOLFSSL_ENTER("wolfSSL_X509V3_EXT_print");
if ((out == NULL) || (ext == NULL)) {
WOLFSSL_MSG("NULL parameter error");
return rc;
}
obj = wolfSSL_X509_EXTENSION_get_object(ext);
if (obj == NULL) {
WOLFSSL_MSG("Error getting ASN1_OBJECT from X509_EXTENSION");
return rc;
}
str = wolfSSL_X509_EXTENSION_get_data(ext);
if (str == NULL) {
WOLFSSL_MSG("Error getting ASN1_STRING from X509_EXTENSION");
return rc;
}
/* Print extension based on the type */
nid = wolfSSL_OBJ_obj2nid(obj);
switch (nid) {
case BASIC_CA_OID:
{
char isCa[] = "TRUE";
char notCa[] = "FALSE";
XSNPRINTF(tmp, sz, "%*sCA:%s", indent, "",
obj->ca ? isCa : notCa);
break;
}
case ALT_NAMES_OID:
{
WOLFSSL_STACK* sk;
char* val;
int len;
tmp[0] = '\0'; /* Make sure tmp is null-terminated */
sk = ext->ext_sk;
while (sk != NULL) {
if (sk->type == STACK_TYPE_GEN_NAME && sk->data.gn) {
/* str is GENERAL_NAME for subject alternative name ext */
str = sk->data.gn->d.ia5;
len = str->length + 2; /* + 2 for NULL char and "," */
if (len > sz) {
WOLFSSL_MSG("len greater than buffer size");
return rc;
}
val = (char*)XMALLOC(len + indent, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (val == NULL) {
WOLFSSL_MSG("Memory error");
return rc;
}
if (sk->next)
XSNPRINTF(val, len, "%*s%s, ", indent, "", str->strData);
else
XSNPRINTF(val, len, "%*s%s", indent, "", str->strData);
XSTRNCAT(tmp, val, len);
XFREE(val, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
sk = sk->next;
}
break;
}
case AUTH_KEY_OID:
case SUBJ_KEY_OID:
{
char* asn1str;
asn1str = wolfSSL_i2s_ASN1_STRING(NULL, str);
XSNPRINTF(tmp, sz, "%*s%s", indent, "", asn1str);
XFREE(asn1str, NULL, DYNAMIC_TYPE_TMP_BUFFER);
break;
}
case AUTH_INFO_OID:
case CERT_POLICY_OID:
case CRL_DIST_OID:
case KEY_USAGE_OID:
WOLFSSL_MSG("X509V3_EXT_print not yet implemented for ext type");
break;
default:
XSNPRINTF(tmp, sz, "%*s%s", indent, "", str->strData);
}
if (wolfSSL_BIO_write(out, tmp, (int)XSTRLEN(tmp)) == (int)XSTRLEN(tmp)) {
rc = WOLFSSL_SUCCESS;
}
(void) flag;
return rc;
}
#endif /* !NO_BIO */
#ifndef NO_WOLFSSL_STUB
int wolfSSL_X509V3_EXT_add_nconf(WOLFSSL_CONF *conf, WOLFSSL_X509V3_CTX *ctx,
const char *section, WOLFSSL_X509 *cert)
{
WOLFSSL_ENTER("wolfSSL_X509V3_EXT_add_nconf");
WOLFSSL_STUB("wolfSSL_X509V3_EXT_add_nconf");
(void)conf;
(void)ctx;
(void)section;
(void)cert;
return WOLFSSL_SUCCESS;
}
#endif
/* Returns crit flag in X509_EXTENSION object */
int wolfSSL_X509_EXTENSION_get_critical(const WOLFSSL_X509_EXTENSION* ex)
{
WOLFSSL_ENTER("wolfSSL_X509_EXTENSION_get_critical");
if (ex == NULL)
return BAD_FUNC_ARG;
return ex->crit;
}
/* Creates v3_ext_method for a given X509v3 extension
*
* ex : The X509_EXTENSION used to create v3_ext_method. If the extension is
* not NULL, get the NID of the extension object and populate the
* extension type-specific X509V3_EXT_* function(s) in v3_ext_method.
*
* Returns NULL on error or pointer to the v3_ext_method populated with extension
* type-specific X509V3_EXT_* function(s).
*
* NOTE: NID_subject_key_identifier is currently the only extension implementing
* the X509V3_EXT_* functions, as it is the only type called directly by QT. The
* other extension types return a pointer to a v3_ext_method struct that contains
* only the NID.
*/
const WOLFSSL_v3_ext_method* wolfSSL_X509V3_EXT_get(WOLFSSL_X509_EXTENSION* ex)
{
int nid;
WOLFSSL_v3_ext_method method;
WOLFSSL_ENTER("wolfSSL_X509V3_EXT_get");
if ((ex == NULL) || (ex->obj == NULL)) {
WOLFSSL_MSG("Passed an invalid X509_EXTENSION*");
return NULL;
}
/* Initialize method to 0 */
XMEMSET(&method, 0, sizeof(struct WOLFSSL_v3_ext_method));
nid = ex->obj->nid;
if (nid <= 0) {
WOLFSSL_MSG("Failed to get nid from passed extension object");
return NULL;
}
XMEMSET(&method, 0, sizeof(WOLFSSL_v3_ext_method));
switch (nid) {
case NID_basic_constraints:
break;
case NID_subject_key_identifier:
method.i2s = (X509V3_EXT_I2S)wolfSSL_i2s_ASN1_STRING;
break;
case NID_subject_alt_name:
WOLFSSL_MSG("i2v function not yet implemented for Subject Alternative Name");
break;
case NID_key_usage:
WOLFSSL_MSG("i2v function not yet implemented for Key Usage");
break;
case NID_authority_key_identifier:
WOLFSSL_MSG("i2v function not yet implemented for Auth Key Id");
break;
case NID_info_access:
WOLFSSL_MSG("i2v function not yet implemented for Info Access");
break;
case NID_ext_key_usage:
WOLFSSL_MSG("i2v function not yet implemented for Ext Key Usage");
break;
case NID_certificate_policies:
WOLFSSL_MSG("r2i function not yet implemented for Cert Policies");
break;
case NID_crl_distribution_points:
WOLFSSL_MSG("r2i function not yet implemented for CRL Dist Points");
break;
default:
/* If extension type is unknown, return NULL -- QT makes call to
X509_EXTENSION_get_data() if there is no v3_ext_method */
WOLFSSL_MSG("X509V3_EXT_get(): Unknown extension type found");
return NULL;
}
method.ext_nid = nid;
ex->ext_method = method;
return (const WOLFSSL_v3_ext_method*)&ex->ext_method;
}
/* Parses and returns an x509v3 extension internal structure.
*
* ext : The X509_EXTENSION for parsing internal structure. If extension is
* not NULL, get the NID of the extension object and create a new
* extension-specific internal structure based on the extension type.
*
* Returns NULL on error or if NID is not found, otherwise returns a pointer to
* the extension type-specific X509_EXTENSION internal structure.
* Return is expected to be free'd by caller.
*/
void* wolfSSL_X509V3_EXT_d2i(WOLFSSL_X509_EXTENSION* ext)
{
const WOLFSSL_v3_ext_method* method;
int ret;
WOLFSSL_ASN1_OBJECT* object;
WOLFSSL_BASIC_CONSTRAINTS* bc;
WOLFSSL_AUTHORITY_KEYID* akey;
WOLFSSL_ASN1_STRING* asn1String, *newString;
WOLFSSL_AUTHORITY_INFO_ACCESS* aia;
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_X509V3_EXT_d2i");
if(ext == NULL) {
WOLFSSL_MSG("Bad function Argument");
return NULL;
}
/* extract extension info */
method = wolfSSL_X509V3_EXT_get(ext);
if (method == NULL) {
WOLFSSL_MSG("wolfSSL_X509V3_EXT_get error");
return NULL;
}
object = wolfSSL_X509_EXTENSION_get_object(ext);
if (object == NULL) {
WOLFSSL_MSG("X509_EXTENSION_get_object failed");
return NULL;
}
/* Return pointer to proper internal structure based on NID */
switch (object->type) {
/* basicConstraints */
case (NID_basic_constraints):
WOLFSSL_MSG("basicConstraints");
/* Allocate new BASIC_CONSTRAINTS structure */
bc = wolfSSL_BASIC_CONSTRAINTS_new();
if (bc == NULL) {
WOLFSSL_MSG("Failed to malloc basic constraints");
return NULL;
}
/* Copy pathlen and CA into BASIC_CONSTRAINTS from object */
bc->ca = object->ca;
if (object->pathlen->length > 0) {
bc->pathlen = wolfSSL_ASN1_INTEGER_dup(object->pathlen);
if (bc->pathlen == NULL) {
WOLFSSL_MSG("Failed to duplicate ASN1_INTEGER");
wolfSSL_BASIC_CONSTRAINTS_free(bc);
return NULL;
}
}
else
bc->pathlen = NULL;
return bc;
/* subjectKeyIdentifier */
case (NID_subject_key_identifier):
WOLFSSL_MSG("subjectKeyIdentifier");
asn1String = wolfSSL_X509_EXTENSION_get_data(ext);
if (asn1String == NULL) {
WOLFSSL_MSG("X509_EXTENSION_get_data() failed");
return NULL;
}
newString = wolfSSL_ASN1_STRING_new();
if (newString == NULL) {
WOLFSSL_MSG("Failed to malloc ASN1_STRING");
return NULL;
}
ret = wolfSSL_ASN1_STRING_set(newString, asn1String->data,
asn1String->length);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ASN1_STRING_set() failed");
wolfSSL_ASN1_STRING_free(newString);
return NULL;
};
newString->type = asn1String->type;
return newString;
/* authorityKeyIdentifier */
case (NID_authority_key_identifier):
WOLFSSL_MSG("AuthorityKeyIdentifier");
akey = (WOLFSSL_AUTHORITY_KEYID*)
XMALLOC(sizeof(WOLFSSL_AUTHORITY_KEYID), NULL,
DYNAMIC_TYPE_X509_EXT);
if (akey == NULL) {
WOLFSSL_MSG("Failed to malloc authority key id");
return NULL;
}
akey->keyid = wolfSSL_ASN1_STRING_new();
if (akey->keyid == NULL) {
WOLFSSL_MSG("ASN1_STRING_new() failed");
wolfSSL_AUTHORITY_KEYID_free(akey);
return NULL;
}
asn1String = wolfSSL_X509_EXTENSION_get_data(ext);
if (asn1String == NULL) {
WOLFSSL_MSG("X509_EXTENSION_get_data() failed");
wolfSSL_AUTHORITY_KEYID_free(akey);
return NULL;
}
ret = wolfSSL_ASN1_STRING_set(akey->keyid, asn1String->data,
asn1String->length);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ASN1_STRING_set() failed");
wolfSSL_AUTHORITY_KEYID_free(akey);
return NULL;
};
akey->keyid->type = asn1String->type;
/* For now, set issuer and serial to NULL. This may need to be
updated for future use */
akey->issuer = NULL;
akey->serial = NULL;
return akey;
/* keyUsage */
case (NID_key_usage):
WOLFSSL_MSG("keyUsage");
/* This may need to be updated for future use. The i2v method for
keyUsage is not currently set. For now, return the ASN1_STRING
representation of KeyUsage bit string */
asn1String = wolfSSL_X509_EXTENSION_get_data(ext);
if (asn1String == NULL) {
WOLFSSL_MSG("X509_EXTENSION_get_data() failed");
return NULL;
}
newString = wolfSSL_ASN1_STRING_new();
if (newString == NULL) {
WOLFSSL_MSG("Failed to malloc ASN1_STRING");
return NULL;
}
ret = wolfSSL_ASN1_STRING_set(newString, asn1String->data,
asn1String->length);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ASN1_STRING_set() failed");
wolfSSL_ASN1_STRING_free(newString);
return NULL;
};
newString->type = asn1String->type;
return newString;
/* extKeyUsage */
case (NID_ext_key_usage):
WOLFSSL_MSG("extKeyUsage not supported yet");
return NULL;
/* certificatePolicies */
case (NID_certificate_policies):
WOLFSSL_MSG("certificatePolicies not supported yet");
return NULL;
/* cRLDistributionPoints */
case (NID_crl_distribution_points):
WOLFSSL_MSG("cRLDistributionPoints not supported yet");
return NULL;
/* authorityInfoAccess */
case (NID_info_access):
WOLFSSL_MSG("AuthorityInfoAccess");
sk = ext->ext_sk;
if (sk == NULL) {
WOLFSSL_MSG("ACCESS_DESCRIPTION stack NULL");
return NULL;
}
/* AUTHORITY_INFO_ACCESS is a stack of ACCESS_DESCRIPTION entries */
aia = wolfSSL_sk_new_null();
if (aia == NULL) {
WOLFSSL_MSG("Failed to malloc AUTHORITY_INFO_ACCESS");
return NULL;
}
aia->type = STACK_TYPE_ACCESS_DESCRIPTION;
while (sk) {
WOLFSSL_ACCESS_DESCRIPTION* ad;
WOLFSSL_ASN1_OBJECT* aiaEntry;
if (sk->type != STACK_TYPE_OBJ) {
sk = sk->next;
continue;
}
aiaEntry = sk->data.obj;
/* ACCESS_DESCRIPTION has two members, method and location.
Method: ASN1_OBJECT as either AIA_OCSP_OID or AIA_CA_ISSUER_OID
Location: GENERAL_NAME structure containing the URI. */
ad = (WOLFSSL_ACCESS_DESCRIPTION*)
XMALLOC(sizeof(WOLFSSL_ACCESS_DESCRIPTION), NULL,
DYNAMIC_TYPE_X509_EXT);
if (ad == NULL) {
WOLFSSL_MSG("Failed to malloc ACCESS_DESCRIPTION");
XFREE(aia, NULL, DYNAMIC_TYPE_X509_EXT);
return NULL;
}
XMEMSET(ad, 0, sizeof(WOLFSSL_ACCESS_DESCRIPTION));
/* Create new ASN1_OBJECT from oid */
ad->method = wolfSSL_OBJ_nid2obj(aiaEntry->nid);
if (ad->method == NULL) {
WOLFSSL_MSG("OBJ_nid2obj() failed");
XFREE(aia, NULL, DYNAMIC_TYPE_X509_EXT);
XFREE(ad, NULL, DYNAMIC_TYPE_X509_EXT);
return NULL;
}
/* Allocate memory for GENERAL NAME */
ad->location = (WOLFSSL_GENERAL_NAME*)
XMALLOC(sizeof(WOLFSSL_GENERAL_NAME), NULL,
DYNAMIC_TYPE_OPENSSL);
if (ad->location == NULL) {
WOLFSSL_MSG("Failed to malloc GENERAL_NAME");
wolfSSL_ASN1_OBJECT_free(ad->method);
XFREE(aia, NULL, DYNAMIC_TYPE_X509_EXT);
XFREE(ad, NULL, DYNAMIC_TYPE_X509_EXT);
return NULL;
}
XMEMSET(ad->location, 0, sizeof(WOLFSSL_GENERAL_NAME));
ad->location->type = GEN_URI;
ad->location->d.uniformResourceIdentifier =
wolfSSL_ASN1_STRING_new();
/* Set the URI in GENERAL_NAME */
ret = wolfSSL_ASN1_STRING_set(
ad->location->d.uniformResourceIdentifier,
aiaEntry->obj, aiaEntry->objSz);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ASN1_STRING_set() failed");
wolfSSL_ASN1_OBJECT_free(ad->method);
XFREE(aia, NULL, DYNAMIC_TYPE_X509_EXT);
XFREE(ad, NULL, DYNAMIC_TYPE_X509_EXT);
return NULL;
}
/* Push to AUTHORITY_INFO_ACCESS stack */
ret = wolfSSL_sk_ACCESS_DESCRIPTION_push(aia, ad);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing ASN1 AD onto stack");
wolfSSL_sk_ACCESS_DESCRIPTION_pop_free(aia, NULL);
wolfSSL_ASN1_OBJECT_free(ad->method);
XFREE(aia, NULL, DYNAMIC_TYPE_X509_EXT);
XFREE(ad, NULL, DYNAMIC_TYPE_X509_EXT);
return NULL;
}
sk = sk->next;
}
return aia;
default:
WOLFSSL_MSG("Extension NID not in table, returning NULL");
break;
}
return NULL;
}
/* Looks for the extension matching the passed in nid
*
* x509 : certificate to get parse through for extension.
* nid : Extension OID to be found.
* lastPos : Start search from extension after lastPos.
* Set to -1 to search from index 0.
* return >= 0 If successful the extension index is returned.
* return -1 If extension is not found or error is encountered.
*/
int wolfSSL_X509_get_ext_by_NID(const WOLFSSL_X509* x509, int nid, int lastPos)
{
int extCount = 0, length = 0, outSz = 0, sz = 0, ret = 0;
int isSet = 0, found = 0, loc;
const byte* rawCert;
const byte* input;
word32 oid, idx = 0, tmpIdx = 0;
DecodedCert cert;
WOLFSSL_ENTER("wolfSSL_X509_get_ext_by_NID");
if(x509 == NULL){
WOLFSSL_MSG("\tNot passed a certificate");
return WOLFSSL_FATAL_ERROR;
}
if(lastPos < -1 || (lastPos > (wolfSSL_X509_get_ext_count(x509) - 1))){
WOLFSSL_MSG("\tBad location argument");
return WOLFSSL_FATAL_ERROR;
}
loc = lastPos + 1;
rawCert = wolfSSL_X509_get_der((WOLFSSL_X509*)x509, &outSz);
if (rawCert == NULL) {
WOLFSSL_MSG("\tX509_get_der() failed");
return WOLFSSL_FATAL_ERROR;
}
InitDecodedCert( &cert, rawCert, (word32)outSz, 0);
if (ParseCert(&cert,
#ifdef WOLFSSL_CERT_REQ
x509->isCSR ? CERTREQ_TYPE :
#endif
CA_TYPE,
NO_VERIFY, NULL) < 0) {
WOLFSSL_MSG("\tCertificate parsing failed");
return WOLFSSL_FATAL_ERROR;
}
input = cert.extensions;
sz = cert.extensionsSz;
if (input == NULL || sz == 0) {
WOLFSSL_MSG("\tfail: should be an EXTENSIONS");
FreeDecodedCert(&cert);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_CERT_REQ
if (!x509->isCSR)
#endif
{
if (input[idx++] != ASN_EXTENSIONS) {
WOLFSSL_MSG("\tfail: should be an EXTENSIONS");
FreeDecodedCert(&cert);
return WOLFSSL_FATAL_ERROR;
}
if (GetLength(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: invalid length");
FreeDecodedCert(&cert);
return WOLFSSL_FATAL_ERROR;
}
}
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE (1)");
FreeDecodedCert(&cert);
return WOLFSSL_FATAL_ERROR;
}
while (idx < (word32)sz) {
oid = 0;
if (GetSequence(input, &idx, &length, sz) < 0) {
WOLFSSL_MSG("\tfail: should be a SEQUENCE");
FreeDecodedCert(&cert);
return WOLFSSL_FATAL_ERROR;
}
tmpIdx = idx;
ret = GetObjectId(input, &idx, &oid, oidCertExtType, sz);
if (ret < 0) {
WOLFSSL_MSG("\tfail: OBJECT ID");
FreeDecodedCert(&cert);
return WOLFSSL_FATAL_ERROR;
}
idx = tmpIdx;
if (extCount >= loc) {
/* extCount >= loc. Now check if extension has been set */
isSet = wolfSSL_X509_ext_isSet_by_NID((WOLFSSL_X509*)x509, oid);
if (isSet && ((word32)nid == oid)) {
found = 1;
break;
}
}
idx += length;
extCount++;
} /* while(idx < sz) */
FreeDecodedCert(&cert);
return found ? extCount : WOLFSSL_FATAL_ERROR;
}
#endif /* OPENSSL_ALL */
#endif /* !NO_CERTS */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
WOLFSSL_ASN1_BIT_STRING* wolfSSL_ASN1_BIT_STRING_new(void)
{
WOLFSSL_ASN1_BIT_STRING* str;
str = (WOLFSSL_ASN1_BIT_STRING*)XMALLOC(sizeof(WOLFSSL_ASN1_BIT_STRING),
NULL, DYNAMIC_TYPE_OPENSSL);
if (str) {
XMEMSET(str, 0, sizeof(WOLFSSL_ASN1_BIT_STRING));
}
return str;
}
void wolfSSL_ASN1_BIT_STRING_free(WOLFSSL_ASN1_BIT_STRING* str)
{
if (str) {
if (str->data) {
XFREE(str->data, NULL, DYNAMIC_TYPE_OPENSSL);
str->data = NULL;
}
XFREE(str, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
int wolfSSL_ASN1_BIT_STRING_get_bit(const WOLFSSL_ASN1_BIT_STRING* str, int i)
{
if (!str || !str->data || str->length <= (i/8) || i < 0) {
return WOLFSSL_FAILURE;
}
return (str->data[i/8] & (1<<(7-(i%8)))) ? 1 : 0;
}
/* Looks for the extension matching the passed in nid
*
* c : if not null then is set to status value -2 if multiple occurrences
* of the extension are found, -1 if not found, 0 if found and not
* critical, and 1 if found and critical.
* nid : Extension OID to be found.
* idx : if NULL return first extension found match, otherwise start search at
* idx location and set idx to the location of extension returned.
* returns NULL or a pointer to an WOLFSSL_ASN1_BIT_STRING (for KEY_USAGE_OID)
* or WOLFSSL_STACK (for other)
* holding extension structure
*
* NOTE code for decoding extensions is in asn.c DecodeCertExtensions --
* use already decoded extension in this function to avoid decoding twice.
* Currently we do not make use of idx since getting pre decoded extensions.
*/
void* wolfSSL_X509_get_ext_d2i(const WOLFSSL_X509* x509, int nid, int* c,
int* idx)
{
void* ret = NULL;
WOLFSSL_STACK* sk = NULL;
WOLFSSL_ASN1_OBJECT* obj = NULL;
WOLFSSL_GENERAL_NAME* gn = NULL;
WOLFSSL_BASIC_CONSTRAINTS* bc = NULL;
WOLFSSL_ENTER("wolfSSL_X509_get_ext_d2i");
if (x509 == NULL) {
return NULL;
}
if (c != NULL) {
*c = -1; /* default to not found */
}
switch (nid) {
case BASIC_CA_OID:
if (x509->basicConstSet) {
WOLFSSL_ASN1_INTEGER* a;
bc = wolfSSL_BASIC_CONSTRAINTS_new();
if (!bc) {
WOLFSSL_MSG("wolfSSL_BASIC_CONSTRAINTS_new error");
return NULL;
}
a = wolfSSL_ASN1_INTEGER_new();
if (!a) {
WOLFSSL_MSG("wolfSSL_ASN1_INTEGER_new error");
wolfSSL_BASIC_CONSTRAINTS_free(bc);
return NULL;
}
a->length = x509->pathLength;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT) || \
defined(WOLFSSL_APACHE_HTTPD)
bc->ca = x509->isCa;
#endif
bc->pathlen = a;
if (c != NULL) {
*c = x509->basicConstCrit;
}
}
else {
WOLFSSL_MSG("No Basic Constraint set");
}
return bc;
case ALT_NAMES_OID:
{
DNS_entry* dns = NULL;
/* Malloc GENERAL_NAME stack */
sk = (WOLFSSL_GENERAL_NAMES*)XMALLOC(
sizeof(WOLFSSL_GENERAL_NAMES), NULL,
DYNAMIC_TYPE_ASN1);
if (sk == NULL) {
return NULL;
}
XMEMSET(sk, 0, sizeof(WOLFSSL_GENERAL_NAMES));
sk->type = STACK_TYPE_GEN_NAME;
if (x509->subjAltNameSet && x509->altNames != NULL) {
/* alt names are DNS_entry structs */
if (c != NULL) {
if (x509->altNames->next != NULL) {
*c = -2; /* more then one found */
}
else {
*c = x509->subjAltNameCrit;
}
}
dns = x509->altNames;
/* Currently only support GEN_DNS type */
while (dns != NULL) {
gn = wolfSSL_GENERAL_NAME_new();
if (gn == NULL) {
WOLFSSL_MSG("Error creating GENERAL_NAME");
wolfSSL_sk_free(sk);
return NULL;
}
gn->type = dns->type;
gn->d.ia5->length = dns->len;
if (wolfSSL_ASN1_STRING_set(gn->d.ia5, dns->name,
gn->d.ia5->length) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ASN1_STRING_set failed");
wolfSSL_GENERAL_NAME_free(gn);
wolfSSL_sk_free(sk);
return NULL;
}
dns = dns->next;
if (wolfSSL_sk_GENERAL_NAME_push(sk, gn) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing ASN1 object onto stack");
wolfSSL_GENERAL_NAME_free(gn);
wolfSSL_sk_free(sk);
sk = NULL;
}
/* null so that it doesn't get pushed again after switch */
gn = NULL;
}
}
else {
WOLFSSL_MSG("No Alt Names set");
}
break;
}
case CRL_DIST_OID:
if (x509->CRLdistSet && x509->CRLInfo != NULL) {
if (c != NULL) {
*c = x509->CRLdistCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
return NULL;
}
obj->type = CRL_DIST_OID;
obj->grp = oidCertExtType;
obj->obj = x509->CRLInfo;
obj->objSz = x509->CRLInfoSz;
}
else {
WOLFSSL_MSG("No CRL dist set");
}
break;
case AUTH_INFO_OID:
if (x509->authInfoSet && x509->authInfo != NULL) {
if (c != NULL) {
*c = x509->authInfoCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
return NULL;
}
obj->type = AUTH_INFO_OID;
obj->grp = oidCertExtType;
obj->obj = x509->authInfo;
obj->objSz = x509->authInfoSz;
}
else {
WOLFSSL_MSG("No Auth Info set");
}
break;
case AUTH_KEY_OID:
if (x509->authKeyIdSet) {
WOLFSSL_AUTHORITY_KEYID* akey = wolfSSL_AUTHORITY_KEYID_new();
if (!akey) {
WOLFSSL_MSG("Issue creating WOLFSSL_AUTHORITY_KEYID struct");
return NULL;
}
if (c != NULL) {
*c = x509->authKeyIdCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
wolfSSL_AUTHORITY_KEYID_free(akey);
return NULL;
}
obj->type = AUTH_KEY_OID;
obj->grp = oidCertExtType;
obj->obj = x509->authKeyId;
obj->objSz = x509->authKeyIdSz;
akey->issuer = obj;
return akey;
}
else {
WOLFSSL_MSG("No Auth Key set");
}
break;
case SUBJ_KEY_OID:
if (x509->subjKeyIdSet) {
if (c != NULL) {
*c = x509->subjKeyIdCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
return NULL;
}
obj->type = SUBJ_KEY_OID;
obj->grp = oidCertExtType;
obj->obj = x509->subjKeyId;
obj->objSz = x509->subjKeyIdSz;
}
else {
WOLFSSL_MSG("No Subject Key set");
}
break;
case CERT_POLICY_OID:
{
#ifdef WOLFSSL_CERT_EXT
int i;
if (x509->certPoliciesNb > 0) {
if (c != NULL) {
if (x509->certPoliciesNb > 1) {
*c = -2;
}
else {
*c = 0;
}
}
sk = wolfSSL_sk_new_asn1_obj();
if (sk == NULL) {
return NULL;
}
for (i = 0; i < x509->certPoliciesNb - 1; i++) {
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
wolfSSL_sk_ASN1_OBJECT_free(sk);
return NULL;
}
obj->type = CERT_POLICY_OID;
obj->grp = oidCertExtType;
obj->obj = (byte*)(x509->certPolicies[i]);
obj->objSz = MAX_CERTPOL_SZ;
if (wolfSSL_sk_ASN1_OBJECT_push(sk, obj)
!= WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing ASN1 object onto stack");
wolfSSL_ASN1_OBJECT_free(obj);
wolfSSL_sk_ASN1_OBJECT_free(sk);
sk = NULL;
}
}
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
wolfSSL_sk_ASN1_OBJECT_free(sk);
return NULL;
}
obj->type = CERT_POLICY_OID;
obj->grp = oidCertExtType;
obj->obj = (byte*)(x509->certPolicies[i]);
obj->objSz = MAX_CERTPOL_SZ;
}
else {
WOLFSSL_MSG("No Cert Policy set");
}
#elif defined(WOLFSSL_SEP)
if (x509->certPolicySet) {
if (c != NULL) {
*c = x509->certPolicyCrit;
}
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
return NULL;
}
obj->type = CERT_POLICY_OID;
obj->grp = oidCertExtType;
}
else {
WOLFSSL_MSG("No Cert Policy set");
}
#else
WOLFSSL_MSG("wolfSSL not built with WOLFSSL_SEP or WOLFSSL_CERT_EXT");
#endif
break;
}
case KEY_USAGE_OID:
{
WOLFSSL_ASN1_STRING* asn1str = NULL;
if (x509->keyUsageSet) {
if (c != NULL) {
*c = x509->keyUsageCrit;
}
asn1str = wolfSSL_ASN1_STRING_new();
if (asn1str == NULL) {
WOLFSSL_MSG("Failed to malloc ASN1_STRING");
return NULL;
}
if (wolfSSL_ASN1_STRING_set(asn1str, &x509->keyUsage,
sizeof(word16)) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_ASN1_STRING_set error");
wolfSSL_ASN1_STRING_free(asn1str);
return NULL;
}
asn1str->type = KEY_USAGE_OID;
}
else {
WOLFSSL_MSG("No Key Usage set");
}
/* don't add stack of and return bit string directly */
return asn1str;
}
case INHIBIT_ANY_OID:
WOLFSSL_MSG("INHIBIT ANY extension not supported");
break;
case EXT_KEY_USAGE_OID:
if (x509->extKeyUsageSrc != NULL) {
if (c != NULL) {
if (x509->extKeyUsageCount > 1) {
*c = -2;
}
else {
*c = x509->extKeyUsageCrit;
}
}
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
return NULL;
}
obj->type = EXT_KEY_USAGE_OID;
obj->grp = oidCertExtType;
obj->obj = x509->extKeyUsageSrc;
obj->objSz = x509->extKeyUsageSz;
}
else {
WOLFSSL_MSG("No Extended Key Usage set");
}
break;
case NAME_CONS_OID:
WOLFSSL_MSG("Name Constraint OID extension not supported");
break;
case PRIV_KEY_USAGE_PERIOD_OID:
WOLFSSL_MSG("Private Key Usage Period extension not supported");
break;
case SUBJECT_INFO_ACCESS:
WOLFSSL_MSG("Subject Info Access extension not supported");
break;
case POLICY_MAP_OID:
WOLFSSL_MSG("Policy Map extension not supported");
break;
case POLICY_CONST_OID:
WOLFSSL_MSG("Policy Constraint extension not supported");
break;
case ISSUE_ALT_NAMES_OID:
WOLFSSL_MSG("Issue Alt Names extension not supported");
break;
case TLS_FEATURE_OID:
WOLFSSL_MSG("TLS Feature extension not supported");
break;
default:
WOLFSSL_MSG("Unsupported/Unknown extension OID");
}
/* make sure stack of is allocated */
if ((obj || gn) && sk == NULL) {
sk = wolfSSL_sk_new_asn1_obj();
if (sk == NULL) {
goto err;
}
}
if (obj) {
if (wolfSSL_sk_ASN1_OBJECT_push(sk, obj) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing ASN1_OBJECT object onto "
"stack.");
goto err;
}
}
else if (gn) {
if (wolfSSL_sk_GENERAL_NAME_push(sk, gn) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error pushing GENERAL_NAME object onto "
"stack.");
goto err;
}
}
ret = sk;
(void)idx;
return ret;
err:
if (obj) {
wolfSSL_ASN1_OBJECT_free(obj);
}
if (gn) {
wolfSSL_GENERAL_NAME_free(gn);
}
if (sk) {
wolfSSL_sk_free(sk);
}
return NULL;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
#ifndef NO_CERTS
int wolfSSL_X509_add_altname_ex(WOLFSSL_X509* x509, const char* name,
word32 nameSz, int type)
{
DNS_entry* newAltName = NULL;
char* nameCopy = NULL;
if (x509 == NULL)
return WOLFSSL_FAILURE;
if ((name == NULL) || (nameSz == 0))
return WOLFSSL_SUCCESS;
newAltName = (DNS_entry*)XMALLOC(sizeof(DNS_entry),
x509->heap, DYNAMIC_TYPE_ALTNAME);
if (newAltName == NULL)
return WOLFSSL_FAILURE;
nameCopy = (char*)XMALLOC(nameSz + 1, x509->heap, DYNAMIC_TYPE_ALTNAME);
if (nameCopy == NULL) {
XFREE(newAltName, x509->heap, DYNAMIC_TYPE_ALTNAME);
return WOLFSSL_FAILURE;
}
XMEMCPY(nameCopy, name, nameSz);
nameCopy[nameSz] = '\0';
newAltName->next = x509->altNames;
newAltName->type = type;
newAltName->len = nameSz;
newAltName->name = nameCopy;
x509->altNames = newAltName;
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_add_altname(WOLFSSL_X509* x509, const char* name, int type)
{
word32 nameSz;
if (name == NULL)
return WOLFSSL_SUCCESS;
nameSz = (word32)XSTRLEN(name);
if (nameSz == 0)
return WOLFSSL_SUCCESS;
if (type == ASN_IP_TYPE) {
WOLFSSL_MSG("Type not supported, use wolfSSL_X509_add_altname_ex");
return WOLFSSL_FAILURE;
}
return wolfSSL_X509_add_altname_ex(x509, name, nameSz, type);
}
#ifndef NO_WOLFSSL_STUB
WOLFSSL_X509_EXTENSION *wolfSSL_X509_delete_ext(WOLFSSL_X509 *x509, int loc)
{
WOLFSSL_STUB("wolfSSL_X509_delete_ext");
(void)x509;
(void)loc;
return NULL;
}
/* currently LHASH is not implemented (and not needed for Apache port) */
WOLFSSL_X509_EXTENSION* wolfSSL_X509V3_EXT_conf_nid(
WOLF_LHASH_OF(CONF_VALUE)* conf, WOLFSSL_X509V3_CTX* ctx, int nid,
char* value)
{
WOLFSSL_STUB("wolfSSL_X509V3_EXT_conf_nid");
if (conf != NULL) {
WOLFSSL_MSG("Handling LHASH not implemented yet");
return NULL;
}
(void)conf;
(void)ctx;
(void)nid;
(void)value;
return NULL;
}
void wolfSSL_X509V3_set_ctx_nodb(WOLFSSL_X509V3_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_X509V3_set_ctx_nodb");
(void)ctx;
}
#endif /* !NO_WOLFSSL_STUB */
#if defined(OPENSSL_ALL)
static void wolfSSL_X509V3_EXT_METHOD_populate(WOLFSSL_v3_ext_method *method,
int nid)
{
if (!method)
return;
WOLFSSL_ENTER("wolfSSL_X509V3_EXT_METHOD_populate");
switch (nid) {
case NID_subject_key_identifier:
method->i2s = (X509V3_EXT_I2S)wolfSSL_i2s_ASN1_STRING;
FALL_THROUGH;
case NID_authority_key_identifier:
case NID_key_usage:
case NID_certificate_policies:
case NID_policy_mappings:
case NID_subject_alt_name:
case NID_issuer_alt_name:
case NID_basic_constraints:
case NID_name_constraints:
case NID_policy_constraints:
case NID_ext_key_usage:
case NID_crl_distribution_points:
case NID_inhibit_any_policy:
case NID_info_access:
WOLFSSL_MSG("Nothing to populate for current NID");
break;
default:
WOLFSSL_MSG("Unknown or unsupported NID");
break;
}
return;
}
/**
* @param nid One of the NID_* constants defined in asn.h
* @param crit
* @param data This data is copied to the returned extension.
* @return
*/
WOLFSSL_X509_EXTENSION *wolfSSL_X509V3_EXT_i2d(int nid, int crit,
void *data)
{
WOLFSSL_X509_EXTENSION *ext = NULL;
WOLFSSL_ASN1_STRING* asn1str = NULL;
WOLFSSL_ENTER("wolfSSL_X509V3_EXT_i2d");
if (!data) {
return NULL;
}
if (!(ext = wolfSSL_X509_EXTENSION_new())) {
return NULL;
}
wolfSSL_X509V3_EXT_METHOD_populate(&ext->ext_method, nid);
switch (nid) {
case NID_subject_key_identifier:
/* WOLFSSL_ASN1_STRING */
case NID_key_usage:
/* WOLFSSL_ASN1_STRING */
{
asn1str = (WOLFSSL_ASN1_STRING*)data;
ext->value = *asn1str;
if (asn1str->isDynamic) {
ext->value.data = (char*)XMALLOC(asn1str->length, NULL,
DYNAMIC_TYPE_OPENSSL);
if (!ext->value.data) {
WOLFSSL_MSG("malloc failed");
/* Zero so that no existing memory is freed */
XMEMSET(&ext->value, 0, sizeof(WOLFSSL_ASN1_STRING));
goto err_cleanup;
}
XMEMCPY(ext->value.data, asn1str->data, asn1str->length);
}
else {
ext->value.data = ext->value.strData;
}
break;
}
case NID_subject_alt_name:
/* typedef STACK_OF(GENERAL_NAME) GENERAL_NAMES */
case NID_issuer_alt_name:
/* typedef STACK_OF(GENERAL_NAME) GENERAL_NAMES */
case NID_ext_key_usage:
/* typedef STACK_OF(ASN1_OBJECT) EXTENDED_KEY_USAGE */
case NID_info_access:
/* typedef STACK_OF(ACCESS_DESCRIPTION) AUTHORITY_INFO_ACCESS */
{
WOLFSSL_STACK* sk = (WOLFSSL_STACK*)data;
if (ext->ext_sk) {
wolfSSL_sk_free(ext->ext_sk);
}
if (!(ext->ext_sk = wolfSSL_sk_dup(sk))) {
WOLFSSL_MSG("wolfSSL_sk_dup failed");
goto err_cleanup;
}
break;
}
case NID_basic_constraints:
{
/* WOLFSSL_BASIC_CONSTRAINTS */
WOLFSSL_BASIC_CONSTRAINTS* bc = (WOLFSSL_BASIC_CONSTRAINTS*)data;
if (!(ext->obj = wolfSSL_ASN1_OBJECT_new())) {
WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_new failed");
goto err_cleanup;
}
ext->obj->ca = bc->ca;
if (bc->pathlen) {
ext->obj->pathlen = wolfSSL_ASN1_INTEGER_dup(bc->pathlen);
if (!ext->obj->pathlen) {
WOLFSSL_MSG("wolfSSL_ASN1_INTEGER_dup failed");
goto err_cleanup;
}
}
break;
}
case NID_authority_key_identifier:
{
/* AUTHORITY_KEYID */
WOLFSSL_AUTHORITY_KEYID* akey = (WOLFSSL_AUTHORITY_KEYID*)data;
if (akey->keyid) {
if (wolfSSL_ASN1_STRING_set(&ext->value, akey->keyid->data,
akey->keyid->length) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_ASN1_STRING_set failed");
goto err_cleanup;
}
ext->value.type = akey->keyid->type;
}
else if (akey->issuer) {
ext->obj = wolfSSL_ASN1_OBJECT_dup(akey->issuer);
if (!ext->obj) {
WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_dup failed");
goto err_cleanup;
}
}
else {
WOLFSSL_MSG("NID_authority_key_identifier empty data");
goto err_cleanup;
}
break;
}
case NID_inhibit_any_policy:
/* ASN1_INTEGER */
case NID_certificate_policies:
/* STACK_OF(POLICYINFO) */
case NID_policy_mappings:
/* STACK_OF(POLICY_MAPPING) */
case NID_name_constraints:
/* NAME_CONSTRAINTS */
case NID_policy_constraints:
/* POLICY_CONSTRAINTS */
case NID_crl_distribution_points:
/* typedef STACK_OF(DIST_POINT) CRL_DIST_POINTS */
default:
WOLFSSL_MSG("Unknown or unsupported NID");
break;
}
ext->crit = crit;
return ext;
err_cleanup:
if (ext) {
wolfSSL_X509_EXTENSION_free(ext);
}
if (asn1str) {
wolfSSL_ASN1_STRING_free(asn1str);
}
return NULL;
}
/* Returns pointer to ASN1_OBJECT from an X509_EXTENSION object */
WOLFSSL_ASN1_OBJECT* wolfSSL_X509_EXTENSION_get_object \
(WOLFSSL_X509_EXTENSION* ext)
{
WOLFSSL_ENTER("wolfSSL_X509_EXTENSION_get_object");
if(ext == NULL)
return NULL;
return ext->obj;
}
#endif /* OPENSSL_ALL */
/* Returns pointer to ASN1_STRING in X509_EXTENSION object */
WOLFSSL_ASN1_STRING* wolfSSL_X509_EXTENSION_get_data(WOLFSSL_X509_EXTENSION* ext)
{
WOLFSSL_ENTER("wolfSSL_X509_EXTENSION_get_data");
if (ext == NULL)
return NULL;
return &ext->value;
}
#if !defined(NO_PWDBASED)
int wolfSSL_X509_digest(const WOLFSSL_X509* x509, const WOLFSSL_EVP_MD* digest,
unsigned char* buf, unsigned int* len)
{
int ret;
WOLFSSL_ENTER("wolfSSL_X509_digest");
if (x509 == NULL || digest == NULL) {
WOLFSSL_MSG("Null argument found");
return WOLFSSL_FAILURE;
}
if (x509->derCert == NULL) {
WOLFSSL_MSG("No DER certificate stored in X509");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_EVP_Digest(x509->derCert->buffer, x509->derCert->length, buf,
len, digest, NULL);
WOLFSSL_LEAVE("wolfSSL_X509_digest", ret);
return ret;
}
#endif
int wolfSSL_use_PrivateKey(WOLFSSL* ssl, WOLFSSL_EVP_PKEY* pkey)
{
WOLFSSL_ENTER("wolfSSL_use_PrivateKey");
if (ssl == NULL || pkey == NULL ) {
return WOLFSSL_FAILURE;
}
return wolfSSL_use_PrivateKey_buffer(ssl, (unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, WOLFSSL_FILETYPE_ASN1);
}
int wolfSSL_use_PrivateKey_ASN1(int pri, WOLFSSL* ssl, const unsigned char* der,
long derSz)
{
WOLFSSL_ENTER("wolfSSL_use_PrivateKey_ASN1");
if (ssl == NULL || der == NULL ) {
return WOLFSSL_FAILURE;
}
(void)pri; /* type of private key */
return wolfSSL_use_PrivateKey_buffer(ssl, der, derSz, WOLFSSL_FILETYPE_ASN1);
}
/******************************************************************************
* wolfSSL_CTX_use_PrivateKey_ASN1 - loads a private key buffer into the SSL ctx
*
* RETURNS:
* returns WOLFSSL_SUCCESS on success, otherwise returns WOLFSSL_FAILURE
*/
int wolfSSL_CTX_use_PrivateKey_ASN1(int pri, WOLFSSL_CTX* ctx,
unsigned char* der, long derSz)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_ASN1");
if (ctx == NULL || der == NULL ) {
return WOLFSSL_FAILURE;
}
(void)pri; /* type of private key */
return wolfSSL_CTX_use_PrivateKey_buffer(ctx, der, derSz, WOLFSSL_FILETYPE_ASN1);
}
#ifndef NO_RSA
int wolfSSL_use_RSAPrivateKey_ASN1(WOLFSSL* ssl, unsigned char* der, long derSz)
{
WOLFSSL_ENTER("wolfSSL_use_RSAPrivateKey_ASN1");
if (ssl == NULL || der == NULL ) {
return WOLFSSL_FAILURE;
}
return wolfSSL_use_PrivateKey_buffer(ssl, der, derSz, WOLFSSL_FILETYPE_ASN1);
}
#endif
int wolfSSL_use_certificate(WOLFSSL* ssl, WOLFSSL_X509* x509)
{
long idx;
WOLFSSL_ENTER("wolfSSL_use_certificate");
if (x509 != NULL && ssl != NULL && x509->derCert != NULL) {
if (ProcessBuffer(NULL, x509->derCert->buffer, x509->derCert->length,
WOLFSSL_FILETYPE_ASN1, CERT_TYPE, ssl, &idx, 0,
GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
}
(void)idx;
return WOLFSSL_FAILURE;
}
#endif /* NO_CERTS */
#endif /* OPENSSL_EXTRA */
#ifndef NO_CERTS
int wolfSSL_use_certificate_ASN1(WOLFSSL* ssl, const unsigned char* der,
int derSz)
{
long idx;
WOLFSSL_ENTER("wolfSSL_use_certificate_ASN1");
if (der != NULL && ssl != NULL) {
if (ProcessBuffer(NULL, der, derSz, WOLFSSL_FILETYPE_ASN1, CERT_TYPE,
ssl, &idx, 0, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
}
(void)idx;
return WOLFSSL_FAILURE;
}
#ifndef NO_FILESYSTEM
WOLFSSL_ABI
int wolfSSL_use_certificate_file(WOLFSSL* ssl, const char* file, int format)
{
WOLFSSL_ENTER("wolfSSL_use_certificate_file");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
if (ProcessFile(ssl->ctx, file, format, CERT_TYPE,
ssl, 0, NULL, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
WOLFSSL_ABI
int wolfSSL_use_PrivateKey_file(WOLFSSL* ssl, const char* file, int format)
{
WOLFSSL_ENTER("wolfSSL_use_PrivateKey_file");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
if (ProcessFile(ssl->ctx, file, format, PRIVATEKEY_TYPE,
ssl, 0, NULL, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
WOLFSSL_ABI
int wolfSSL_use_certificate_chain_file(WOLFSSL* ssl, const char* file)
{
/* process up to MAX_CHAIN_DEPTH plus subject cert */
WOLFSSL_ENTER("wolfSSL_use_certificate_chain_file");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
if (ProcessFile(ssl->ctx, file, WOLFSSL_FILETYPE_PEM, CERT_TYPE,
ssl, 1, NULL, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
int wolfSSL_use_certificate_chain_file_format(WOLFSSL* ssl, const char* file,
int format)
{
/* process up to MAX_CHAIN_DEPTH plus subject cert */
WOLFSSL_ENTER("wolfSSL_use_certificate_chain_file_format");
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
if (ProcessFile(ssl->ctx, file, format, CERT_TYPE, ssl, 1,
NULL, GET_VERIFY_SETTING_SSL(ssl)) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* !NO_FILESYSTEM */
#endif /* !NO_CERTS */
#ifdef HAVE_ECC
/* Set Temp CTX EC-DHE size in octets, can be 14 - 66 (112 - 521 bit) */
int wolfSSL_CTX_SetTmpEC_DHE_Sz(WOLFSSL_CTX* ctx, word16 sz)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
/* if 0 then get from loaded private key */
if (sz == 0) {
/* applies only to ECDSA */
if (ctx->privateKeyType != ecc_dsa_sa_algo)
return WOLFSSL_SUCCESS;
if (ctx->privateKeySz == 0) {
WOLFSSL_MSG("Must set private key/cert first");
return BAD_FUNC_ARG;
}
sz = (word16)ctx->privateKeySz;
}
/* check size */
if (sz < ECC_MINSIZE || sz > ECC_MAXSIZE)
return BAD_FUNC_ARG;
ctx->eccTempKeySz = sz;
return WOLFSSL_SUCCESS;
}
/* Set Temp SSL EC-DHE size in octets, can be 14 - 66 (112 - 521 bit) */
int wolfSSL_SetTmpEC_DHE_Sz(WOLFSSL* ssl, word16 sz)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
/* check size */
if (sz < ECC_MINSIZE || sz > ECC_MAXSIZE)
return BAD_FUNC_ARG;
ssl->eccTempKeySz = sz;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ECC */
#ifdef OPENSSL_EXTRA
#ifndef NO_FILESYSTEM
int wolfSSL_CTX_use_RSAPrivateKey_file(WOLFSSL_CTX* ctx,const char* file,
int format)
{
WOLFSSL_ENTER("SSL_CTX_use_RSAPrivateKey_file");
return wolfSSL_CTX_use_PrivateKey_file(ctx, file, format);
}
int wolfSSL_use_RSAPrivateKey_file(WOLFSSL* ssl, const char* file, int format)
{
WOLFSSL_ENTER("wolfSSL_use_RSAPrivateKey_file");
return wolfSSL_use_PrivateKey_file(ssl, file, format);
}
#endif /* NO_FILESYSTEM */
/* Copies the master secret over to out buffer. If outSz is 0 returns the size
* of master secret.
*
* ses : a session from completed TLS/SSL handshake
* out : buffer to hold copy of master secret
* outSz : size of out buffer
* returns : number of bytes copied into out buffer on success
* less then or equal to 0 is considered a failure case
*/
int wolfSSL_SESSION_get_master_key(const WOLFSSL_SESSION* ses,
unsigned char* out, int outSz)
{
int size;
if (outSz == 0) {
return SECRET_LEN;
}
if (ses == NULL || out == NULL || outSz < 0) {
return 0;
}
if (outSz > SECRET_LEN) {
size = SECRET_LEN;
}
else {
size = outSz;
}
XMEMCPY(out, ses->masterSecret, size);
return size;
}
int wolfSSL_SESSION_get_master_key_length(const WOLFSSL_SESSION* ses)
{
(void)ses;
return SECRET_LEN;
}
#endif /* OPENSSL_EXTRA */
#ifndef NO_FILESYSTEM
#ifdef HAVE_NTRU
int wolfSSL_CTX_use_NTRUPrivateKey_file(WOLFSSL_CTX* ctx, const char* file)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_NTRUPrivateKey_file");
if (ctx == NULL)
return WOLFSSL_FAILURE;
if (ProcessFile(ctx, file, WOLFSSL_FILETYPE_RAW, PRIVATEKEY_TYPE, NULL, 0,
NULL, GET_VERIFY_SETTING_CTX(ctx)) == WOLFSSL_SUCCESS) {
ctx->haveNTRU = 1;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* HAVE_NTRU */
#endif /* NO_FILESYSTEM */
void wolfSSL_CTX_set_verify(WOLFSSL_CTX* ctx, int mode, VerifyCallback vc)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_verify");
if (ctx == NULL)
return;
ctx->verifyPeer = 0;
ctx->verifyNone = 0;
ctx->failNoCert = 0;
ctx->failNoCertxPSK = 0;
if (mode == WOLFSSL_VERIFY_NONE) {
ctx->verifyNone = 1;
}
else {
if (mode & WOLFSSL_VERIFY_PEER) {
ctx->verifyPeer = 1;
}
if (mode & WOLFSSL_VERIFY_FAIL_EXCEPT_PSK) {
ctx->failNoCertxPSK = 1;
}
if (mode & WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT) {
ctx->failNoCert = 1;
}
}
ctx->verifyCallback = vc;
}
#ifdef OPENSSL_ALL
void wolfSSL_CTX_set_cert_verify_callback(WOLFSSL_CTX* ctx,
CertVerifyCallback cb, void* arg)
{
WOLFSSL_ENTER("SSL_CTX_set_cert_verify_callback");
if (ctx == NULL)
return;
ctx->verifyCertCb = cb;
ctx->verifyCertCbArg = arg;
}
#endif
void wolfSSL_set_verify(WOLFSSL* ssl, int mode, VerifyCallback vc)
{
WOLFSSL_ENTER("wolfSSL_set_verify");
if (ssl == NULL)
return;
ssl->options.verifyPeer = 0;
ssl->options.verifyNone = 0;
ssl->options.failNoCert = 0;
ssl->options.failNoCertxPSK = 0;
if (mode == WOLFSSL_VERIFY_NONE) {
ssl->options.verifyNone = 1;
}
else {
if (mode & WOLFSSL_VERIFY_PEER) {
ssl->options.verifyPeer = 1;
}
if (mode & WOLFSSL_VERIFY_FAIL_EXCEPT_PSK) {
ssl->options.failNoCertxPSK = 1;
}
if (mode & WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT) {
ssl->options.failNoCert = 1;
}
}
ssl->verifyCallback = vc;
}
void wolfSSL_set_verify_result(WOLFSSL *ssl, long v)
{
WOLFSSL_ENTER("wolfSSL_set_verify_result");
if (ssl == NULL)
return;
#ifdef OPENSSL_ALL
ssl->verifyCallbackResult = v;
#else
(void)v;
WOLFSSL_STUB("wolfSSL_set_verify_result");
#endif
}
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS) && \
defined(WOLFSSL_TLS13) && defined(WOLFSSL_POST_HANDSHAKE_AUTH)
/* For TLS v1.3 send handshake messages after handshake completes. */
/* Returns 1=WOLFSSL_SUCCESS or 0=WOLFSSL_FAILURE */
int wolfSSL_verify_client_post_handshake(WOLFSSL* ssl)
{
int ret = wolfSSL_request_certificate(ssl);
return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
int wolfSSL_CTX_set_post_handshake_auth(WOLFSSL_CTX* ctx, int val)
{
int ret = wolfSSL_CTX_allow_post_handshake_auth(ctx);
if (ret == 0) {
ctx->postHandshakeAuth = (val != 0);
}
return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
int wolfSSL_set_post_handshake_auth(WOLFSSL* ssl, int val)
{
int ret = wolfSSL_allow_post_handshake_auth(ssl);
if (ret == 0) {
ssl->options.postHandshakeAuth = (val != 0);
}
return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
#endif /* OPENSSL_EXTRA && !NO_CERTS && WOLFSSL_TLS13 && WOLFSSL_POST_HANDSHAKE_AUTH */
/* store user ctx for verify callback */
void wolfSSL_SetCertCbCtx(WOLFSSL* ssl, void* ctx)
{
WOLFSSL_ENTER("wolfSSL_SetCertCbCtx");
if (ssl)
ssl->verifyCbCtx = ctx;
}
/* store context CA Cache addition callback */
void wolfSSL_CTX_SetCACb(WOLFSSL_CTX* ctx, CallbackCACache cb)
{
if (ctx && ctx->cm)
ctx->cm->caCacheCallback = cb;
}
#if defined(PERSIST_CERT_CACHE)
#if !defined(NO_FILESYSTEM)
/* Persist cert cache to file */
int wolfSSL_CTX_save_cert_cache(WOLFSSL_CTX* ctx, const char* fname)
{
WOLFSSL_ENTER("wolfSSL_CTX_save_cert_cache");
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
return CM_SaveCertCache(ctx->cm, fname);
}
/* Persist cert cache from file */
int wolfSSL_CTX_restore_cert_cache(WOLFSSL_CTX* ctx, const char* fname)
{
WOLFSSL_ENTER("wolfSSL_CTX_restore_cert_cache");
if (ctx == NULL || fname == NULL)
return BAD_FUNC_ARG;
return CM_RestoreCertCache(ctx->cm, fname);
}
#endif /* NO_FILESYSTEM */
/* Persist cert cache to memory */
int wolfSSL_CTX_memsave_cert_cache(WOLFSSL_CTX* ctx, void* mem,
int sz, int* used)
{
WOLFSSL_ENTER("wolfSSL_CTX_memsave_cert_cache");
if (ctx == NULL || mem == NULL || used == NULL || sz <= 0)
return BAD_FUNC_ARG;
return CM_MemSaveCertCache(ctx->cm, mem, sz, used);
}
/* Restore cert cache from memory */
int wolfSSL_CTX_memrestore_cert_cache(WOLFSSL_CTX* ctx, const void* mem, int sz)
{
WOLFSSL_ENTER("wolfSSL_CTX_memrestore_cert_cache");
if (ctx == NULL || mem == NULL || sz <= 0)
return BAD_FUNC_ARG;
return CM_MemRestoreCertCache(ctx->cm, mem, sz);
}
/* get how big the the cert cache save buffer needs to be */
int wolfSSL_CTX_get_cert_cache_memsize(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_cert_cache_memsize");
if (ctx == NULL)
return BAD_FUNC_ARG;
return CM_GetCertCacheMemSize(ctx->cm);
}
#endif /* PERSIST_CERT_CACHE */
#endif /* !NO_CERTS */
#ifndef NO_SESSION_CACHE
WOLFSSL_ABI
WOLFSSL_SESSION* wolfSSL_get_session(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_session");
if (ssl)
return GetSession(ssl, 0, 1);
return NULL;
}
WOLFSSL_ABI
int wolfSSL_set_session(WOLFSSL* ssl, WOLFSSL_SESSION* session)
{
WOLFSSL_ENTER("SSL_set_session");
if (session)
return SetSession(ssl, session);
return WOLFSSL_FAILURE;
}
#ifndef NO_CLIENT_CACHE
/* Associate client session with serverID, find existing or store for saving
if newSession flag on, don't reuse existing session
WOLFSSL_SUCCESS on ok */
int wolfSSL_SetServerID(WOLFSSL* ssl, const byte* id, int len, int newSession)
{
WOLFSSL_SESSION* session = NULL;
WOLFSSL_ENTER("wolfSSL_SetServerID");
if (ssl == NULL || id == NULL || len <= 0)
return BAD_FUNC_ARG;
if (newSession == 0) {
session = GetSessionClient(ssl, id, len);
if (session) {
if (SetSession(ssl, session) != WOLFSSL_SUCCESS) {
#ifdef HAVE_EXT_CACHE
FreeSession(session, 0);
#endif
WOLFSSL_MSG("SetSession failed");
session = NULL;
}
}
}
if (session == NULL) {
WOLFSSL_MSG("Valid ServerID not cached already");
ssl->session.idLen = (word16)min(SERVER_ID_LEN, (word32)len);
XMEMCPY(ssl->session.serverID, id, ssl->session.idLen);
}
#ifdef HAVE_EXT_CACHE
else
FreeSession(session, 0);
#endif
return WOLFSSL_SUCCESS;
}
#endif /* NO_CLIENT_CACHE */
#if defined(PERSIST_SESSION_CACHE)
/* for persistence, if changes to layout need to increment and modify
save_session_cache() and restore_session_cache and memory versions too */
#define WOLFSSL_CACHE_VERSION 2
/* Session Cache Header information */
typedef struct {
int version; /* cache layout version id */
int rows; /* session rows */
int columns; /* session columns */
int sessionSz; /* sizeof WOLFSSL_SESSION */
} cache_header_t;
/* current persistence layout is:
1) cache_header_t
2) SessionCache
3) ClientCache
update WOLFSSL_CACHE_VERSION if change layout for the following
PERSISTENT_SESSION_CACHE functions
*/
/* get how big the the session cache save buffer needs to be */
int wolfSSL_get_session_cache_memsize(void)
{
int sz = (int)(sizeof(SessionCache) + sizeof(cache_header_t));
#ifndef NO_CLIENT_CACHE
sz += (int)(sizeof(ClientCache));
#endif
return sz;
}
/* Persist session cache to memory */
int wolfSSL_memsave_session_cache(void* mem, int sz)
{
int i;
cache_header_t cache_header;
SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header));
#ifndef NO_CLIENT_CACHE
ClientRow* clRow;
#endif
WOLFSSL_ENTER("wolfSSL_memsave_session_cache");
if (sz < wolfSSL_get_session_cache_memsize()) {
WOLFSSL_MSG("Memory buffer too small");
return BUFFER_E;
}
cache_header.version = WOLFSSL_CACHE_VERSION;
cache_header.rows = SESSION_ROWS;
cache_header.columns = SESSIONS_PER_ROW;
cache_header.sessionSz = (int)sizeof(WOLFSSL_SESSION);
XMEMCPY(mem, &cache_header, sizeof(cache_header));
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Session cache mutex lock failed");
return BAD_MUTEX_E;
}
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(row++, SessionCache + i, sizeof(SessionRow));
#ifndef NO_CLIENT_CACHE
clRow = (ClientRow*)row;
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(clRow++, ClientCache + i, sizeof(ClientRow));
#endif
wc_UnLockMutex(&session_mutex);
WOLFSSL_LEAVE("wolfSSL_memsave_session_cache", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
/* Restore the persistent session cache from memory */
int wolfSSL_memrestore_session_cache(const void* mem, int sz)
{
int i;
cache_header_t cache_header;
SessionRow* row = (SessionRow*)((byte*)mem + sizeof(cache_header));
#ifndef NO_CLIENT_CACHE
ClientRow* clRow;
#endif
WOLFSSL_ENTER("wolfSSL_memrestore_session_cache");
if (sz < wolfSSL_get_session_cache_memsize()) {
WOLFSSL_MSG("Memory buffer too small");
return BUFFER_E;
}
XMEMCPY(&cache_header, mem, sizeof(cache_header));
if (cache_header.version != WOLFSSL_CACHE_VERSION ||
cache_header.rows != SESSION_ROWS ||
cache_header.columns != SESSIONS_PER_ROW ||
cache_header.sessionSz != (int)sizeof(WOLFSSL_SESSION)) {
WOLFSSL_MSG("Session cache header match failed");
return CACHE_MATCH_ERROR;
}
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Session cache mutex lock failed");
return BAD_MUTEX_E;
}
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(SessionCache + i, row++, sizeof(SessionRow));
#ifndef NO_CLIENT_CACHE
clRow = (ClientRow*)row;
for (i = 0; i < cache_header.rows; ++i)
XMEMCPY(ClientCache + i, clRow++, sizeof(ClientRow));
#endif
wc_UnLockMutex(&session_mutex);
WOLFSSL_LEAVE("wolfSSL_memrestore_session_cache", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
#if !defined(NO_FILESYSTEM)
/* Persist session cache to file */
/* doesn't use memsave because of additional memory use */
int wolfSSL_save_session_cache(const char *fname)
{
XFILE file;
int ret;
int rc = WOLFSSL_SUCCESS;
int i;
cache_header_t cache_header;
WOLFSSL_ENTER("wolfSSL_save_session_cache");
file = XFOPEN(fname, "w+b");
if (file == XBADFILE) {
WOLFSSL_MSG("Couldn't open session cache save file");
return WOLFSSL_BAD_FILE;
}
cache_header.version = WOLFSSL_CACHE_VERSION;
cache_header.rows = SESSION_ROWS;
cache_header.columns = SESSIONS_PER_ROW;
cache_header.sessionSz = (int)sizeof(WOLFSSL_SESSION);
/* cache header */
ret = (int)XFWRITE(&cache_header, sizeof cache_header, 1, file);
if (ret != 1) {
WOLFSSL_MSG("Session cache header file write failed");
XFCLOSE(file);
return FWRITE_ERROR;
}
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Session cache mutex lock failed");
XFCLOSE(file);
return BAD_MUTEX_E;
}
/* session cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFWRITE(SessionCache + i, sizeof(SessionRow), 1, file);
if (ret != 1) {
WOLFSSL_MSG("Session cache member file write failed");
rc = FWRITE_ERROR;
break;
}
}
#ifndef NO_CLIENT_CACHE
/* client cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFWRITE(ClientCache + i, sizeof(ClientRow), 1, file);
if (ret != 1) {
WOLFSSL_MSG("Client cache member file write failed");
rc = FWRITE_ERROR;
break;
}
}
#endif /* NO_CLIENT_CACHE */
wc_UnLockMutex(&session_mutex);
XFCLOSE(file);
WOLFSSL_LEAVE("wolfSSL_save_session_cache", rc);
return rc;
}
/* Restore the persistent session cache from file */
/* doesn't use memstore because of additional memory use */
int wolfSSL_restore_session_cache(const char *fname)
{
XFILE file;
int rc = WOLFSSL_SUCCESS;
int ret;
int i;
cache_header_t cache_header;
WOLFSSL_ENTER("wolfSSL_restore_session_cache");
file = XFOPEN(fname, "rb");
if (file == XBADFILE) {
WOLFSSL_MSG("Couldn't open session cache save file");
return WOLFSSL_BAD_FILE;
}
/* cache header */
ret = (int)XFREAD(&cache_header, sizeof cache_header, 1, file);
if (ret != 1) {
WOLFSSL_MSG("Session cache header file read failed");
XFCLOSE(file);
return FREAD_ERROR;
}
if (cache_header.version != WOLFSSL_CACHE_VERSION ||
cache_header.rows != SESSION_ROWS ||
cache_header.columns != SESSIONS_PER_ROW ||
cache_header.sessionSz != (int)sizeof(WOLFSSL_SESSION)) {
WOLFSSL_MSG("Session cache header match failed");
XFCLOSE(file);
return CACHE_MATCH_ERROR;
}
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Session cache mutex lock failed");
XFCLOSE(file);
return BAD_MUTEX_E;
}
/* session cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFREAD(SessionCache + i, sizeof(SessionRow), 1, file);
if (ret != 1) {
WOLFSSL_MSG("Session cache member file read failed");
XMEMSET(SessionCache, 0, sizeof SessionCache);
rc = FREAD_ERROR;
break;
}
}
#ifndef NO_CLIENT_CACHE
/* client cache */
for (i = 0; i < cache_header.rows; ++i) {
ret = (int)XFREAD(ClientCache + i, sizeof(ClientRow), 1, file);
if (ret != 1) {
WOLFSSL_MSG("Client cache member file read failed");
XMEMSET(ClientCache, 0, sizeof ClientCache);
rc = FREAD_ERROR;
break;
}
}
#endif /* NO_CLIENT_CACHE */
wc_UnLockMutex(&session_mutex);
XFCLOSE(file);
WOLFSSL_LEAVE("wolfSSL_restore_session_cache", rc);
return rc;
}
#endif /* !NO_FILESYSTEM */
#endif /* PERSIST_SESSION_CACHE */
#endif /* NO_SESSION_CACHE */
void wolfSSL_load_error_strings(void) /* compatibility only */
{}
int wolfSSL_library_init(void)
{
WOLFSSL_ENTER("SSL_library_init");
if (wolfSSL_Init() == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
else
return WOLFSSL_FATAL_ERROR;
}
#ifdef HAVE_SECRET_CALLBACK
int wolfSSL_set_session_secret_cb(WOLFSSL* ssl, SessionSecretCb cb, void* ctx)
{
WOLFSSL_ENTER("wolfSSL_set_session_secret_cb");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
ssl->sessionSecretCb = cb;
ssl->sessionSecretCtx = ctx;
/* If using a pre-set key, assume session resumption. */
ssl->session.sessionIDSz = 0;
ssl->options.resuming = 1;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_SESSION_CACHE
/* on by default if built in but allow user to turn off */
WOLFSSL_ABI
long wolfSSL_CTX_set_session_cache_mode(WOLFSSL_CTX* ctx, long mode)
{
WOLFSSL_ENTER("SSL_CTX_set_session_cache_mode");
if (mode == WOLFSSL_SESS_CACHE_OFF)
ctx->sessionCacheOff = 1;
if ((mode & WOLFSSL_SESS_CACHE_NO_AUTO_CLEAR) != 0)
ctx->sessionCacheFlushOff = 1;
#ifdef HAVE_EXT_CACHE
if ((mode & WOLFSSL_SESS_CACHE_NO_INTERNAL_STORE) != 0)
ctx->internalCacheOff = 1;
#endif
return WOLFSSL_SUCCESS;
}
#endif /* NO_SESSION_CACHE */
#if !defined(NO_CERTS)
#if defined(PERSIST_CERT_CACHE)
#define WOLFSSL_CACHE_CERT_VERSION 1
typedef struct {
int version; /* cache cert layout version id */
int rows; /* hash table rows, CA_TABLE_SIZE */
int columns[CA_TABLE_SIZE]; /* columns per row on list */
int signerSz; /* sizeof Signer object */
} CertCacheHeader;
/* current cert persistence layout is:
1) CertCacheHeader
2) caTable
update WOLFSSL_CERT_CACHE_VERSION if change layout for the following
PERSIST_CERT_CACHE functions
*/
/* Return memory needed to persist this signer, have lock */
static WC_INLINE int GetSignerMemory(Signer* signer)
{
int sz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID)
+ sizeof(signer->nameLen) + sizeof(signer->subjectNameHash);
#if !defined(NO_SKID)
sz += (int)sizeof(signer->subjectKeyIdHash);
#endif
/* add dynamic bytes needed */
sz += signer->pubKeySize;
sz += signer->nameLen;
return sz;
}
/* Return memory needed to persist this row, have lock */
static WC_INLINE int GetCertCacheRowMemory(Signer* row)
{
int sz = 0;
while (row) {
sz += GetSignerMemory(row);
row = row->next;
}
return sz;
}
/* get the size of persist cert cache, have lock */
static WC_INLINE int GetCertCacheMemSize(WOLFSSL_CERT_MANAGER* cm)
{
int sz;
int i;
sz = sizeof(CertCacheHeader);
for (i = 0; i < CA_TABLE_SIZE; i++)
sz += GetCertCacheRowMemory(cm->caTable[i]);
return sz;
}
/* Store cert cache header columns with number of items per list, have lock */
static WC_INLINE void SetCertHeaderColumns(WOLFSSL_CERT_MANAGER* cm, int* columns)
{
int i;
Signer* row;
for (i = 0; i < CA_TABLE_SIZE; i++) {
int count = 0;
row = cm->caTable[i];
while (row) {
++count;
row = row->next;
}
columns[i] = count;
}
}
/* Restore whole cert row from memory, have lock, return bytes consumed,
< 0 on error, have lock */
static WC_INLINE int RestoreCertRow(WOLFSSL_CERT_MANAGER* cm, byte* current,
int row, int listSz, const byte* end)
{
int idx = 0;
if (listSz < 0) {
WOLFSSL_MSG("Row header corrupted, negative value");
return PARSE_ERROR;
}
while (listSz) {
Signer* signer;
byte* publicKey;
byte* start = current + idx; /* for end checks on this signer */
int minSz = sizeof(signer->pubKeySize) + sizeof(signer->keyOID) +
sizeof(signer->nameLen) + sizeof(signer->subjectNameHash);
#ifndef NO_SKID
minSz += (int)sizeof(signer->subjectKeyIdHash);
#endif
if (start + minSz > end) {
WOLFSSL_MSG("Would overread restore buffer");
return BUFFER_E;
}
signer = MakeSigner(cm->heap);
if (signer == NULL)
return MEMORY_E;
/* pubKeySize */
XMEMCPY(&signer->pubKeySize, current + idx, sizeof(signer->pubKeySize));
idx += (int)sizeof(signer->pubKeySize);
/* keyOID */
XMEMCPY(&signer->keyOID, current + idx, sizeof(signer->keyOID));
idx += (int)sizeof(signer->keyOID);
/* pulicKey */
if (start + minSz + signer->pubKeySize > end) {
WOLFSSL_MSG("Would overread restore buffer");
FreeSigner(signer, cm->heap);
return BUFFER_E;
}
publicKey = (byte*)XMALLOC(signer->pubKeySize, cm->heap,
DYNAMIC_TYPE_KEY);
if (publicKey == NULL) {
FreeSigner(signer, cm->heap);
return MEMORY_E;
}
XMEMCPY(publicKey, current + idx, signer->pubKeySize);
signer->publicKey = publicKey;
idx += signer->pubKeySize;
/* nameLen */
XMEMCPY(&signer->nameLen, current + idx, sizeof(signer->nameLen));
idx += (int)sizeof(signer->nameLen);
/* name */
if (start + minSz + signer->pubKeySize + signer->nameLen > end) {
WOLFSSL_MSG("Would overread restore buffer");
FreeSigner(signer, cm->heap);
return BUFFER_E;
}
signer->name = (char*)XMALLOC(signer->nameLen, cm->heap,
DYNAMIC_TYPE_SUBJECT_CN);
if (signer->name == NULL) {
FreeSigner(signer, cm->heap);
return MEMORY_E;
}
XMEMCPY(signer->name, current + idx, signer->nameLen);
idx += signer->nameLen;
/* subjectNameHash */
XMEMCPY(signer->subjectNameHash, current + idx, SIGNER_DIGEST_SIZE);
idx += SIGNER_DIGEST_SIZE;
#ifndef NO_SKID
/* subjectKeyIdHash */
XMEMCPY(signer->subjectKeyIdHash, current + idx,SIGNER_DIGEST_SIZE);
idx += SIGNER_DIGEST_SIZE;
#endif
signer->next = cm->caTable[row];
cm->caTable[row] = signer;
--listSz;
}
return idx;
}
/* Store whole cert row into memory, have lock, return bytes added */
static WC_INLINE int StoreCertRow(WOLFSSL_CERT_MANAGER* cm, byte* current, int row)
{
int added = 0;
Signer* list = cm->caTable[row];
while (list) {
XMEMCPY(current + added, &list->pubKeySize, sizeof(list->pubKeySize));
added += (int)sizeof(list->pubKeySize);
XMEMCPY(current + added, &list->keyOID, sizeof(list->keyOID));
added += (int)sizeof(list->keyOID);
XMEMCPY(current + added, list->publicKey, list->pubKeySize);
added += list->pubKeySize;
XMEMCPY(current + added, &list->nameLen, sizeof(list->nameLen));
added += (int)sizeof(list->nameLen);
XMEMCPY(current + added, list->name, list->nameLen);
added += list->nameLen;
XMEMCPY(current + added, list->subjectNameHash, SIGNER_DIGEST_SIZE);
added += SIGNER_DIGEST_SIZE;
#ifndef NO_SKID
XMEMCPY(current + added, list->subjectKeyIdHash,SIGNER_DIGEST_SIZE);
added += SIGNER_DIGEST_SIZE;
#endif
list = list->next;
}
return added;
}
/* Persist cert cache to memory, have lock */
static WC_INLINE int DoMemSaveCertCache(WOLFSSL_CERT_MANAGER* cm,
void* mem, int sz)
{
int realSz;
int ret = WOLFSSL_SUCCESS;
int i;
WOLFSSL_ENTER("DoMemSaveCertCache");
realSz = GetCertCacheMemSize(cm);
if (realSz > sz) {
WOLFSSL_MSG("Mem output buffer too small");
ret = BUFFER_E;
}
else {
byte* current;
CertCacheHeader hdr;
hdr.version = WOLFSSL_CACHE_CERT_VERSION;
hdr.rows = CA_TABLE_SIZE;
SetCertHeaderColumns(cm, hdr.columns);
hdr.signerSz = (int)sizeof(Signer);
XMEMCPY(mem, &hdr, sizeof(CertCacheHeader));
current = (byte*)mem + sizeof(CertCacheHeader);
for (i = 0; i < CA_TABLE_SIZE; ++i)
current += StoreCertRow(cm, current, i);
}
return ret;
}
#if !defined(NO_FILESYSTEM)
/* Persist cert cache to file */
int CM_SaveCertCache(WOLFSSL_CERT_MANAGER* cm, const char* fname)
{
XFILE file;
int rc = WOLFSSL_SUCCESS;
int memSz;
byte* mem;
WOLFSSL_ENTER("CM_SaveCertCache");
file = XFOPEN(fname, "w+b");
if (file == XBADFILE) {
WOLFSSL_MSG("Couldn't open cert cache save file");
return WOLFSSL_BAD_FILE;
}
if (wc_LockMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("wc_LockMutex on caLock failed");
XFCLOSE(file);
return BAD_MUTEX_E;
}
memSz = GetCertCacheMemSize(cm);
mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
WOLFSSL_MSG("Alloc for tmp buffer failed");
rc = MEMORY_E;
} else {
rc = DoMemSaveCertCache(cm, mem, memSz);
if (rc == WOLFSSL_SUCCESS) {
int ret = (int)XFWRITE(mem, memSz, 1, file);
if (ret != 1) {
WOLFSSL_MSG("Cert cache file write failed");
rc = FWRITE_ERROR;
}
}
XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
wc_UnLockMutex(&cm->caLock);
XFCLOSE(file);
return rc;
}
/* Restore cert cache from file */
int CM_RestoreCertCache(WOLFSSL_CERT_MANAGER* cm, const char* fname)
{
XFILE file;
int rc = WOLFSSL_SUCCESS;
int ret;
int memSz;
byte* mem;
WOLFSSL_ENTER("CM_RestoreCertCache");
file = XFOPEN(fname, "rb");
if (file == XBADFILE) {
WOLFSSL_MSG("Couldn't open cert cache save file");
return WOLFSSL_BAD_FILE;
}
if(XFSEEK(file, 0, XSEEK_END) != 0) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
memSz = (int)XFTELL(file);
XREWIND(file);
if (memSz > MAX_WOLFSSL_FILE_SIZE || memSz <= 0) {
WOLFSSL_MSG("CM_RestoreCertCache file size error");
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
mem = (byte*)XMALLOC(memSz, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
WOLFSSL_MSG("Alloc for tmp buffer failed");
XFCLOSE(file);
return MEMORY_E;
}
ret = (int)XFREAD(mem, memSz, 1, file);
if (ret != 1) {
WOLFSSL_MSG("Cert file read error");
rc = FREAD_ERROR;
} else {
rc = CM_MemRestoreCertCache(cm, mem, memSz);
if (rc != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Mem restore cert cache failed");
}
}
XFREE(mem, cm->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFCLOSE(file);
return rc;
}
#endif /* NO_FILESYSTEM */
/* Persist cert cache to memory */
int CM_MemSaveCertCache(WOLFSSL_CERT_MANAGER* cm, void* mem, int sz, int* used)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("CM_MemSaveCertCache");
if (wc_LockMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("wc_LockMutex on caLock failed");
return BAD_MUTEX_E;
}
ret = DoMemSaveCertCache(cm, mem, sz);
if (ret == WOLFSSL_SUCCESS)
*used = GetCertCacheMemSize(cm);
wc_UnLockMutex(&cm->caLock);
return ret;
}
/* Restore cert cache from memory */
int CM_MemRestoreCertCache(WOLFSSL_CERT_MANAGER* cm, const void* mem, int sz)
{
int ret = WOLFSSL_SUCCESS;
int i;
CertCacheHeader* hdr = (CertCacheHeader*)mem;
byte* current = (byte*)mem + sizeof(CertCacheHeader);
byte* end = (byte*)mem + sz; /* don't go over */
WOLFSSL_ENTER("CM_MemRestoreCertCache");
if (current > end) {
WOLFSSL_MSG("Cert Cache Memory buffer too small");
return BUFFER_E;
}
if (hdr->version != WOLFSSL_CACHE_CERT_VERSION ||
hdr->rows != CA_TABLE_SIZE ||
hdr->signerSz != (int)sizeof(Signer)) {
WOLFSSL_MSG("Cert Cache Memory header mismatch");
return CACHE_MATCH_ERROR;
}
if (wc_LockMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("wc_LockMutex on caLock failed");
return BAD_MUTEX_E;
}
FreeSignerTable(cm->caTable, CA_TABLE_SIZE, cm->heap);
for (i = 0; i < CA_TABLE_SIZE; ++i) {
int added = RestoreCertRow(cm, current, i, hdr->columns[i], end);
if (added < 0) {
WOLFSSL_MSG("RestoreCertRow error");
ret = added;
break;
}
current += added;
}
wc_UnLockMutex(&cm->caLock);
return ret;
}
/* get how big the the cert cache save buffer needs to be */
int CM_GetCertCacheMemSize(WOLFSSL_CERT_MANAGER* cm)
{
int sz;
WOLFSSL_ENTER("CM_GetCertCacheMemSize");
if (wc_LockMutex(&cm->caLock) != 0) {
WOLFSSL_MSG("wc_LockMutex on caLock failed");
return BAD_MUTEX_E;
}
sz = GetCertCacheMemSize(cm);
wc_UnLockMutex(&cm->caLock);
return sz;
}
#endif /* PERSIST_CERT_CACHE */
#endif /* NO_CERTS */
#ifdef OPENSSL_EXTRA
/* removes all cipher suites from the list that contain "toRemove"
* returns the new list size on success
*/
static int wolfSSL_remove_ciphers(char* list, int sz, const char* toRemove)
{
int idx = 0;
char* next = (char*)list;
int totalSz = sz;
if (list == NULL) {
return 0;
}
do {
char* current = next;
char name[MAX_SUITE_NAME + 1];
word32 length;
next = XSTRSTR(next, ":");
length = min(sizeof(name), !next ? (word32)XSTRLEN(current) /* last */
: (word32)(next - current));
XSTRNCPY(name, current, length);
name[(length == sizeof(name)) ? length - 1 : length] = 0;
if (XSTRSTR(name, toRemove)) {
XMEMMOVE(list + idx, list + idx + length, totalSz - (idx + length));
totalSz -= length;
list[totalSz] = '\0';
next = current;
}
else {
idx += length;
}
} while (next++); /* ++ needed to skip ':' */
return totalSz;
}
/* parse some bulk lists like !eNULL / !aNULL
*
* returns WOLFSSL_SUCCESS on success and sets the cipher suite list
*/
static int wolfSSL_parse_cipher_list(WOLFSSL_CTX* ctx, Suites* suites,
const char* list)
{
int ret = 0;
const int suiteSz = GetCipherNamesSize();
char* next = (char*)list;
const CipherSuiteInfo* names = GetCipherNames();
char* localList = NULL;
int sz = 0;
if (suites == NULL || list == NULL) {
WOLFSSL_MSG("NULL argument");
return WOLFSSL_FAILURE;
}
/* does list contain eNULL or aNULL? */
if (XSTRSTR(list, "aNULL") || XSTRSTR(list, "eNULL")) {
do {
char* current = next;
char name[MAX_SUITE_NAME + 1];
int i;
word32 length;
next = XSTRSTR(next, ":");
length = min(sizeof(name), !next ? (word32)XSTRLEN(current) /*last*/
: (word32)(next - current));
XSTRNCPY(name, current, length);
name[(length == sizeof(name)) ? length - 1 : length] = 0;
/* check for "not" case */
if (name[0] == '!' && suiteSz > 0) {
/* populate list with all suites if not already created */
if (localList == NULL) {
for (i = 0; i < suiteSz; i++) {
sz += (int)XSTRLEN(names[i].name) + 2;
}
localList = (char*)XMALLOC(sz, ctx->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (localList == NULL) {
return WOLFSSL_FAILURE;
}
wolfSSL_get_ciphers(localList, sz);
sz = (int)XSTRLEN(localList);
}
if (XSTRSTR(name, "eNULL")) {
wolfSSL_remove_ciphers(localList, sz, "-NULL");
}
}
}
while (next++); /* ++ needed to skip ':' */
ret = SetCipherList(ctx, suites, localList);
XFREE(localList, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
return (ret)? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
else {
return (SetCipherList(ctx, suites, list)) ? WOLFSSL_SUCCESS :
WOLFSSL_FAILURE;
}
}
#endif
int wolfSSL_CTX_set_cipher_list(WOLFSSL_CTX* ctx, const char* list)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_cipher_list");
if (ctx == NULL)
return WOLFSSL_FAILURE;
/* alloc/init on demand only */
if (ctx->suites == NULL) {
ctx->suites = (Suites*)XMALLOC(sizeof(Suites), ctx->heap,
DYNAMIC_TYPE_SUITES);
if (ctx->suites == NULL) {
WOLFSSL_MSG("Memory alloc for Suites failed");
return WOLFSSL_FAILURE;
}
XMEMSET(ctx->suites, 0, sizeof(Suites));
}
#ifdef OPENSSL_EXTRA
return wolfSSL_parse_cipher_list(ctx, ctx->suites, list);
#else
return (SetCipherList(ctx, ctx->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
#endif
}
int wolfSSL_set_cipher_list(WOLFSSL* ssl, const char* list)
{
WOLFSSL_ENTER("wolfSSL_set_cipher_list");
#ifdef SINGLE_THREADED
if (ssl->ctx->suites == ssl->suites) {
ssl->suites = (Suites*)XMALLOC(sizeof(Suites), ssl->heap,
DYNAMIC_TYPE_SUITES);
if (ssl->suites == NULL) {
WOLFSSL_MSG("Suites Memory error");
return MEMORY_E;
}
ssl->options.ownSuites = 1;
}
#endif
#ifdef OPENSSL_EXTRA
return wolfSSL_parse_cipher_list(ssl->ctx, ssl->suites, list);
#else
return (SetCipherList(ssl->ctx, ssl->suites, list)) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
#endif
}
#ifdef HAVE_KEYING_MATERIAL
#define TLS_PRF_LABEL_CLIENT_FINISHED "client finished"
#define TLS_PRF_LABEL_SERVER_FINISHED "server finished"
#define TLS_PRF_LABEL_MASTER_SECRET "master secret"
#define TLS_PRF_LABEL_EXT_MASTER_SECRET "extended master secret"
#define TLS_PRF_LABEL_KEY_EXPANSION "key expansion"
static const struct ForbiddenLabels {
const char* label;
size_t labelLen;
} forbiddenLabels[] = {
{TLS_PRF_LABEL_CLIENT_FINISHED, XSTR_SIZEOF(TLS_PRF_LABEL_CLIENT_FINISHED)},
{TLS_PRF_LABEL_SERVER_FINISHED, XSTR_SIZEOF(TLS_PRF_LABEL_SERVER_FINISHED)},
{TLS_PRF_LABEL_MASTER_SECRET, XSTR_SIZEOF(TLS_PRF_LABEL_MASTER_SECRET)},
{TLS_PRF_LABEL_EXT_MASTER_SECRET, XSTR_SIZEOF(TLS_PRF_LABEL_EXT_MASTER_SECRET)},
{TLS_PRF_LABEL_KEY_EXPANSION, XSTR_SIZEOF(TLS_PRF_LABEL_KEY_EXPANSION)},
{NULL, 0},
};
/**
* Implement RFC 5705
* TLS 1.3 uses a different exporter definition (section 7.5 of RFC 8446)
* @return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on error
*/
int wolfSSL_export_keying_material(WOLFSSL *ssl,
unsigned char *out, size_t outLen,
const char *label, size_t labelLen,
const unsigned char *context, size_t contextLen,
int use_context)
{
byte* seed = NULL;
word32 seedLen;
const struct ForbiddenLabels* fl;
WOLFSSL_ENTER("wolfSSL_export_keying_material");
if (ssl == NULL || out == NULL || label == NULL ||
(use_context && contextLen && context == NULL)) {
WOLFSSL_MSG("Bad argument");
return WOLFSSL_FAILURE;
}
/* clientRandom + serverRandom
* OR
* clientRandom + serverRandom + ctx len encoding + ctx */
seedLen = !use_context ? (word32)SEED_LEN :
(word32)SEED_LEN + 2 + (word32)contextLen;
if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) {
WOLFSSL_MSG("To export keying material wolfSSL needs to keep handshake "
"data. Call wolfSSL_KeepArrays before attempting to "
"export keyig material.");
return WOLFSSL_FAILURE;
}
/* check forbidden labels */
for (fl = &forbiddenLabels[0]; fl->label != NULL; fl++) {
if (labelLen >= fl->labelLen &&
XMEMCMP(label, fl->label, fl->labelLen) == 0) {
WOLFSSL_MSG("Forbidden label");
return WOLFSSL_FAILURE;
}
}
#ifdef WOLFSSL_TLS13
if (IsAtLeastTLSv1_3(ssl->version)) {
/* Path for TLS 1.3 */
if (!use_context) {
contextLen = 0;
context = (byte*)""; /* Give valid pointer for 0 length memcpy */
}
if (Tls13_Exporter(ssl, out, (word32)outLen, label, labelLen,
context, contextLen) != 0) {
WOLFSSL_MSG("Tls13_Exporter error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif
/* Path for <=TLS 1.2 */
seed = (byte*)XMALLOC(seedLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (seed == NULL) {
WOLFSSL_MSG("malloc error");
return WOLFSSL_FAILURE;
}
XMEMCPY(seed, ssl->arrays->clientRandom, RAN_LEN);
XMEMCPY(seed + RAN_LEN, ssl->arrays->serverRandom, RAN_LEN);
if (use_context) {
/* Encode len in big endian */
seed[SEED_LEN ] = (contextLen >> 8) & 0xFF;
seed[SEED_LEN + 1] = (contextLen) & 0xFF;
if (contextLen) {
/* 0 length context is allowed */
XMEMCPY(seed + SEED_LEN + 2, context, contextLen);
}
}
if (wc_PRF_TLS(out, (word32)outLen, ssl->arrays->masterSecret, SECRET_LEN,
(byte*)label, (word32)labelLen, seed, seedLen, IsAtLeastTLSv1_2(ssl),
ssl->specs.mac_algorithm, ssl->heap, ssl->devId) != 0) {
WOLFSSL_MSG("wc_PRF_TLS error");
XFREE(seed, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
XFREE(seed, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_KEYING_MATERIAL */
int wolfSSL_dtls_get_using_nonblock(WOLFSSL* ssl)
{
int useNb = 0;
if (ssl == NULL)
return WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_dtls_get_using_nonblock");
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
useNb = ssl->options.dtlsUseNonblock;
#endif
}
else {
WOLFSSL_MSG("wolfSSL_dtls_get_using_nonblock() is "
"DEPRECATED for non-DTLS use.");
}
return useNb;
}
#ifndef WOLFSSL_LEANPSK
void wolfSSL_dtls_set_using_nonblock(WOLFSSL* ssl, int nonblock)
{
(void)nonblock;
WOLFSSL_ENTER("wolfSSL_dtls_set_using_nonblock");
if (ssl == NULL)
return;
if (ssl->options.dtls) {
#ifdef WOLFSSL_DTLS
ssl->options.dtlsUseNonblock = (nonblock != 0);
#endif
}
else {
WOLFSSL_MSG("wolfSSL_dtls_set_using_nonblock() is "
"DEPRECATED for non-DTLS use.");
}
}
#ifdef WOLFSSL_DTLS
int wolfSSL_dtls_get_current_timeout(WOLFSSL* ssl)
{
int timeout = 0;
if (ssl)
timeout = ssl->dtls_timeout;
WOLFSSL_LEAVE("wolfSSL_dtls_get_current_timeout()", timeout);
return timeout;
}
int wolfSSL_DTLSv1_get_timeout(WOLFSSL* ssl, WOLFSSL_TIMEVAL* timeleft)
{
if (ssl && timeleft) {
XMEMSET(timeleft, 0, sizeof(WOLFSSL_TIMEVAL));
timeleft->tv_sec = ssl->dtls_timeout;
}
return 0;
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_DTLSv1_handle_timeout(WOLFSSL* ssl)
{
WOLFSSL_STUB("SSL_DTLSv1_handle_timeout");
(void)ssl;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_DTLSv1_set_initial_timeout_duration(WOLFSSL* ssl, word32 duration_ms)
{
WOLFSSL_STUB("SSL_DTLSv1_set_initial_timeout_duration");
(void)ssl;
(void)duration_ms;
}
#endif
/* user may need to alter init dtls recv timeout, WOLFSSL_SUCCESS on ok */
int wolfSSL_dtls_set_timeout_init(WOLFSSL* ssl, int timeout)
{
if (ssl == NULL || timeout < 0)
return BAD_FUNC_ARG;
if (timeout > ssl->dtls_timeout_max) {
WOLFSSL_MSG("Can't set dtls timeout init greater than dtls timeout max");
return BAD_FUNC_ARG;
}
ssl->dtls_timeout_init = timeout;
ssl->dtls_timeout = timeout;
return WOLFSSL_SUCCESS;
}
/* user may need to alter max dtls recv timeout, WOLFSSL_SUCCESS on ok */
int wolfSSL_dtls_set_timeout_max(WOLFSSL* ssl, int timeout)
{
if (ssl == NULL || timeout < 0)
return BAD_FUNC_ARG;
if (timeout < ssl->dtls_timeout_init) {
WOLFSSL_MSG("Can't set dtls timeout max less than dtls timeout init");
return BAD_FUNC_ARG;
}
ssl->dtls_timeout_max = timeout;
return WOLFSSL_SUCCESS;
}
int wolfSSL_dtls_got_timeout(WOLFSSL* ssl)
{
int result = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_dtls_got_timeout()");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
if ((IsSCR(ssl) || !ssl->options.handShakeDone) &&
(DtlsMsgPoolTimeout(ssl) < 0 || DtlsMsgPoolSend(ssl, 0) < 0)) {
result = WOLFSSL_FATAL_ERROR;
}
WOLFSSL_LEAVE("wolfSSL_dtls_got_timeout()", result);
return result;
}
/* retransmit all the saves messages, WOLFSSL_SUCCESS on ok */
int wolfSSL_dtls_retransmit(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_dtls_retransmit()");
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
if (!ssl->options.handShakeDone) {
int result = DtlsMsgPoolSend(ssl, 0);
if (result < 0) {
ssl->error = result;
WOLFSSL_ERROR(result);
return WOLFSSL_FATAL_ERROR;
}
}
return 0;
}
#endif /* DTLS */
#endif /* LEANPSK */
#if defined(WOLFSSL_DTLS) && !defined(NO_WOLFSSL_SERVER)
/* Not an SSL function, return 0 for success, error code otherwise */
/* Prereq: ssl's RNG needs to be initialized. */
int wolfSSL_DTLS_SetCookieSecret(WOLFSSL* ssl,
const byte* secret, word32 secretSz)
{
int ret = 0;
WOLFSSL_ENTER("wolfSSL_DTLS_SetCookieSecret");
if (ssl == NULL) {
WOLFSSL_MSG("need a SSL object");
return BAD_FUNC_ARG;
}
if (secret != NULL && secretSz == 0) {
WOLFSSL_MSG("can't have a new secret without a size");
return BAD_FUNC_ARG;
}
/* If secretSz is 0, use the default size. */
if (secretSz == 0)
secretSz = COOKIE_SECRET_SZ;
if (secretSz != ssl->buffers.dtlsCookieSecret.length) {
byte* newSecret;
if (ssl->buffers.dtlsCookieSecret.buffer != NULL) {
ForceZero(ssl->buffers.dtlsCookieSecret.buffer,
ssl->buffers.dtlsCookieSecret.length);
XFREE(ssl->buffers.dtlsCookieSecret.buffer,
ssl->heap, DYNAMIC_TYPE_NONE);
}
newSecret = (byte*)XMALLOC(secretSz, ssl->heap,DYNAMIC_TYPE_COOKIE_PWD);
if (newSecret == NULL) {
ssl->buffers.dtlsCookieSecret.buffer = NULL;
ssl->buffers.dtlsCookieSecret.length = 0;
WOLFSSL_MSG("couldn't allocate new cookie secret");
return MEMORY_ERROR;
}
ssl->buffers.dtlsCookieSecret.buffer = newSecret;
ssl->buffers.dtlsCookieSecret.length = secretSz;
}
/* If the supplied secret is NULL, randomly generate a new secret. */
if (secret == NULL) {
ret = wc_RNG_GenerateBlock(ssl->rng,
ssl->buffers.dtlsCookieSecret.buffer, secretSz);
}
else
XMEMCPY(ssl->buffers.dtlsCookieSecret.buffer, secret, secretSz);
WOLFSSL_LEAVE("wolfSSL_DTLS_SetCookieSecret", 0);
return ret;
}
#endif /* WOLFSSL_DTLS && !NO_WOLFSSL_SERVER */
/* EITHER SIDE METHODS */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE)
WOLFSSL_METHOD* wolfSSLv23_method(void)
{
return wolfSSLv23_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv23_method_ex(void* heap)
{
WOLFSSL_METHOD* m = NULL;
WOLFSSL_ENTER("SSLv23_method");
#if !defined(NO_WOLFSSL_CLIENT)
m = wolfSSLv23_client_method_ex(heap);
#elif !defined(NO_WOLFSSL_SERVER)
m = wolfSSLv23_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#ifdef WOLFSSL_ALLOW_SSLV3
WOLFSSL_METHOD* wolfSSLv3_method(void)
{
return wolfSSLv3_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv3_method_ex(void* heap)
{
WOLFSSL_METHOD* m = NULL;
WOLFSSL_ENTER("SSLv3_method");
#if !defined(NO_WOLFSSL_CLIENT)
m = wolfSSLv3_client_method_ex(heap);
#elif !defined(NO_WOLFSSL_SERVER)
m = wolfSSLv3_server_method_ex(heap);
#endif
if (m != NULL) {
m->side = WOLFSSL_NEITHER_END;
}
return m;
}
#endif
#endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */
/* client only parts */
#ifndef NO_WOLFSSL_CLIENT
#ifdef OPENSSL_EXTRA
WOLFSSL_METHOD* wolfSSLv2_client_method(void)
{
WOLFSSL_STUB("wolfSSLv2_client_method");
return NULL;
}
#endif
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv3_client_method(void)
{
return wolfSSLv3_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv3_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("SSLv3_client_method_ex");
if (method)
InitSSL_Method(method, MakeSSLv3());
return method;
}
#endif /* WOLFSSL_ALLOW_SSLV3 && !NO_OLD_TLS */
WOLFSSL_METHOD* wolfSSLv23_client_method(void)
{
return wolfSSLv23_client_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv23_client_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("SSLv23_client_method_ex");
if (method) {
#if !defined(NO_SHA256) || defined(WOLFSSL_SHA384) || defined(WOLFSSL_SHA512)
#if defined(WOLFSSL_TLS13)
InitSSL_Method(method, MakeTLSv1_3());
#elif !defined(WOLFSSL_NO_TLS12)
InitSSL_Method(method, MakeTLSv1_2());
#elif !defined(NO_OLD_TLS)
InitSSL_Method(method, MakeTLSv1_1());
#endif
#else
#ifndef NO_OLD_TLS
InitSSL_Method(method, MakeTLSv1_1());
#endif
#endif
#if !defined(NO_OLD_TLS) || defined(WOLFSSL_TLS13)
method->downgrade = 1;
#endif
}
return method;
}
#if defined(WOLFSSL_DTLS) || !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS) || \
defined(WOLFSSL_ALLOW_SSLV3)
/* If SCTP is not enabled returns the state of the dtls option.
* If SCTP is enabled returns dtls && !sctp. */
static WC_INLINE int IsDtlsNotSctpMode(WOLFSSL* ssl)
{
int result = ssl->options.dtls;
if (result) {
#ifdef WOLFSSL_SCTP
result = !ssl->options.dtlsSctp;
#endif
}
return result;
}
#endif /* WOLFSSL_DTLS || !WOLFSSL_NO_TLS12 || !NO_OLD_TLS */
/* please see note at top of README if you get an error from connect */
WOLFSSL_ABI
int wolfSSL_connect(WOLFSSL* ssl)
{
#if !(defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13))
int neededState;
#endif
WOLFSSL_ENTER("SSL_connect()");
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
if (ssl == NULL)
return BAD_FUNC_ARG;
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE)
if (ssl->options.side == WOLFSSL_NEITHER_END) {
ssl->error = InitSSL_Side(ssl, WOLFSSL_CLIENT_END);
if (ssl->error != WOLFSSL_SUCCESS) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->error = 0; /* expected to be zero here */
}
#ifdef OPENSSL_EXTRA
if (ssl->CBIS != NULL) {
ssl->CBIS(ssl, SSL_ST_CONNECT, WOLFSSL_SUCCESS);
ssl->cbmode = SSL_CB_WRITE;
}
#endif
#endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */
#if defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13)
return wolfSSL_connect_TLSv13(ssl);
#else
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
if (ssl->options.side != WOLFSSL_CLIENT_END) {
WOLFSSL_ERROR(ssl->error = SIDE_ERROR);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_DTLS
if (ssl->version.major == DTLS_MAJOR) {
ssl->options.dtls = 1;
ssl->options.tls = 1;
ssl->options.tls1_1 = 1;
}
#endif
if (ssl->buffers.outputBuffer.length > 0
#ifdef WOLFSSL_ASYNC_CRYPT
/* do not send buffered or advance state if last error was an
async pending operation */
&& ssl->error != WC_PENDING_E
#endif
) {
if ( (ssl->error = SendBuffered(ssl)) == 0) {
/* fragOffset is non-zero when sending fragments. On the last
* fragment, fragOffset is zero again, and the state can be
* advanced. */
if (ssl->fragOffset == 0) {
ssl->options.connectState++;
WOLFSSL_MSG("connect state: "
"Advanced from last buffered fragment send");
}
else {
WOLFSSL_MSG("connect state: "
"Not advanced, more fragments to send");
}
}
else {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
switch (ssl->options.connectState) {
case CONNECT_BEGIN :
/* always send client hello first */
if ( (ssl->error = SendClientHello(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.connectState = CLIENT_HELLO_SENT;
WOLFSSL_MSG("connect state: CLIENT_HELLO_SENT");
FALL_THROUGH;
case CLIENT_HELLO_SENT :
neededState = ssl->options.resuming ? SERVER_FINISHED_COMPLETE :
SERVER_HELLODONE_COMPLETE;
#ifdef WOLFSSL_DTLS
/* In DTLS, when resuming, we can go straight to FINISHED,
* or do a cookie exchange and then skip to FINISHED, assume
* we need the cookie exchange first. */
if (IsDtlsNotSctpMode(ssl))
neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE;
#endif
/* get response */
while (ssl->options.serverState < neededState) {
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
/* if resumption failed, reset needed state */
else if (neededState == SERVER_FINISHED_COMPLETE)
if (!ssl->options.resuming) {
if (!IsDtlsNotSctpMode(ssl))
neededState = SERVER_HELLODONE_COMPLETE;
else
neededState = SERVER_HELLOVERIFYREQUEST_COMPLETE;
}
}
ssl->options.connectState = HELLO_AGAIN;
WOLFSSL_MSG("connect state: HELLO_AGAIN");
FALL_THROUGH;
case HELLO_AGAIN :
if (ssl->options.certOnly)
return WOLFSSL_SUCCESS;
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
#ifdef WOLFSSL_DTLS
if (ssl->options.serverState ==
SERVER_HELLOVERIFYREQUEST_COMPLETE) {
if (IsDtlsNotSctpMode(ssl)) {
/* re-init hashes, exclude first hello and verify request */
if ((ssl->error = InitHandshakeHashes(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
if ( (ssl->error = SendClientHello(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
}
#endif
ssl->options.connectState = HELLO_AGAIN_REPLY;
WOLFSSL_MSG("connect state: HELLO_AGAIN_REPLY");
FALL_THROUGH;
case HELLO_AGAIN_REPLY :
#ifdef WOLFSSL_DTLS
if (IsDtlsNotSctpMode(ssl)) {
neededState = ssl->options.resuming ?
SERVER_FINISHED_COMPLETE : SERVER_HELLODONE_COMPLETE;
/* get response */
while (ssl->options.serverState < neededState) {
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
/* if resumption failed, reset needed state */
if (neededState == SERVER_FINISHED_COMPLETE) {
if (!ssl->options.resuming)
neededState = SERVER_HELLODONE_COMPLETE;
}
}
}
#endif
ssl->options.connectState = FIRST_REPLY_DONE;
WOLFSSL_MSG("connect state: FIRST_REPLY_DONE");
FALL_THROUGH;
case FIRST_REPLY_DONE :
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH)
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
if (ssl->options.sendVerify) {
if ( (ssl->error = SendCertificate(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: certificate");
}
#endif
ssl->options.connectState = FIRST_REPLY_FIRST;
WOLFSSL_MSG("connect state: FIRST_REPLY_FIRST");
FALL_THROUGH;
case FIRST_REPLY_FIRST :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_connect_TLSv13(ssl);
#endif
if (!ssl->options.resuming) {
if ( (ssl->error = SendClientKeyExchange(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: client key exchange");
}
ssl->options.connectState = FIRST_REPLY_SECOND;
WOLFSSL_MSG("connect state: FIRST_REPLY_SECOND");
FALL_THROUGH;
#if !defined(WOLFSSL_NO_TLS12) || !defined(NO_OLD_TLS)
case FIRST_REPLY_SECOND :
#if !defined(NO_CERTS) && !defined(WOLFSSL_NO_CLIENT_AUTH)
if (ssl->options.sendVerify) {
if ( (ssl->error = SendCertificateVerify(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: certificate verify");
}
#endif /* !NO_CERTS && !WOLFSSL_NO_CLIENT_AUTH */
ssl->options.connectState = FIRST_REPLY_THIRD;
WOLFSSL_MSG("connect state: FIRST_REPLY_THIRD");
FALL_THROUGH;
case FIRST_REPLY_THIRD :
if ( (ssl->error = SendChangeCipher(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: change cipher spec");
ssl->options.connectState = FIRST_REPLY_FOURTH;
WOLFSSL_MSG("connect state: FIRST_REPLY_FOURTH");
FALL_THROUGH;
case FIRST_REPLY_FOURTH :
if ( (ssl->error = SendFinished(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_MSG("sent: finished");
ssl->options.connectState = FINISHED_DONE;
WOLFSSL_MSG("connect state: FINISHED_DONE");
FALL_THROUGH;
case FINISHED_DONE :
/* get response */
while (ssl->options.serverState < SERVER_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.connectState = SECOND_REPLY_DONE;
WOLFSSL_MSG("connect state: SECOND_REPLY_DONE");
FALL_THROUGH;
case SECOND_REPLY_DONE:
#ifndef NO_HANDSHAKE_DONE_CB
if (ssl->hsDoneCb) {
int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx);
if (cbret < 0) {
ssl->error = cbret;
WOLFSSL_MSG("HandShake Done Cb don't continue error");
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* NO_HANDSHAKE_DONE_CB */
if (!ssl->options.dtls) {
if (!ssl->options.keepResources) {
FreeHandshakeResources(ssl);
}
}
#ifdef WOLFSSL_DTLS
else {
ssl->options.dtlsHsRetain = 1;
}
#endif /* WOLFSSL_DTLS */
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_SECURE_RENEGOTIATION)
/* This may be necessary in async so that we don't try to
* renegotiate again */
if (ssl->secure_renegotiation && ssl->secure_renegotiation->startScr) {
ssl->secure_renegotiation->startScr = 0;
}
#endif /* WOLFSSL_ASYNC_CRYPT && HAVE_SECURE_RENEGOTIATION */
WOLFSSL_LEAVE("SSL_connect()", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
#endif /* !WOLFSSL_NO_TLS12 || !NO_OLD_TLS */
default:
WOLFSSL_MSG("Unknown connect state ERROR");
return WOLFSSL_FATAL_ERROR; /* unknown connect state */
}
#endif /* !WOLFSSL_NO_TLS12 || !NO_OLD_TLS || !WOLFSSL_TLS13 */
}
#endif /* NO_WOLFSSL_CLIENT */
/* server only parts */
#ifndef NO_WOLFSSL_SERVER
#ifdef OPENSSL_EXTRA
WOLFSSL_METHOD* wolfSSLv2_server_method(void)
{
WOLFSSL_STUB("wolfSSLv2_server_method");
return 0;
}
#endif
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
WOLFSSL_METHOD* wolfSSLv3_server_method(void)
{
return wolfSSLv3_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv3_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("SSLv3_server_method_ex");
if (method) {
InitSSL_Method(method, MakeSSLv3());
method->side = WOLFSSL_SERVER_END;
}
return method;
}
#endif /* WOLFSSL_ALLOW_SSLV3 && !NO_OLD_TLS */
WOLFSSL_METHOD* wolfSSLv23_server_method(void)
{
return wolfSSLv23_server_method_ex(NULL);
}
WOLFSSL_METHOD* wolfSSLv23_server_method_ex(void* heap)
{
WOLFSSL_METHOD* method =
(WOLFSSL_METHOD*) XMALLOC(sizeof(WOLFSSL_METHOD),
heap, DYNAMIC_TYPE_METHOD);
(void)heap;
WOLFSSL_ENTER("SSLv23_server_method_ex");
if (method) {
#if !defined(NO_SHA256) || defined(WOLFSSL_SHA384) || defined(WOLFSSL_SHA512)
#ifdef WOLFSSL_TLS13
InitSSL_Method(method, MakeTLSv1_3());
#elif !defined(WOLFSSL_NO_TLS12)
InitSSL_Method(method, MakeTLSv1_2());
#elif !defined(NO_OLD_TLS)
InitSSL_Method(method, MakeTLSv1_1());
#endif
#else
#ifndef NO_OLD_TLS
InitSSL_Method(method, MakeTLSv1_1());
#else
#error Must have SHA256, SHA384 or SHA512 enabled for TLS 1.2
#endif
#endif
#if !defined(NO_OLD_TLS) || defined(WOLFSSL_TLS13)
method->downgrade = 1;
#endif
method->side = WOLFSSL_SERVER_END;
}
return method;
}
WOLFSSL_ABI
int wolfSSL_accept(WOLFSSL* ssl)
{
#if !(defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13))
word16 havePSK = 0;
word16 haveAnon = 0;
word16 haveMcast = 0;
#endif
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EITHER_SIDE)
if (ssl->options.side == WOLFSSL_NEITHER_END) {
WOLFSSL_MSG("Setting WOLFSSL_SSL to be server side");
ssl->error = InitSSL_Side(ssl, WOLFSSL_SERVER_END);
if (ssl->error != WOLFSSL_SUCCESS) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->error = 0; /* expected to be zero here */
}
#endif /* OPENSSL_EXTRA || WOLFSSL_EITHER_SIDE */
#if defined(WOLFSSL_NO_TLS12) && defined(NO_OLD_TLS) && defined(WOLFSSL_TLS13)
return wolfSSL_accept_TLSv13(ssl);
#else
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3)
return wolfSSL_accept_TLSv13(ssl);
#endif
WOLFSSL_ENTER("SSL_accept()");
#ifdef HAVE_ERRNO_H
errno = 0;
#endif
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
(void)havePSK;
#ifdef HAVE_ANON
haveAnon = ssl->options.haveAnon;
#endif
(void)haveAnon;
#ifdef WOLFSSL_MULTICAST
haveMcast = ssl->options.haveMcast;
#endif
(void)haveMcast;
if (ssl->options.side != WOLFSSL_SERVER_END) {
WOLFSSL_ERROR(ssl->error = SIDE_ERROR);
return WOLFSSL_FATAL_ERROR;
}
#ifndef NO_CERTS
/* in case used set_accept_state after init */
/* allow no private key if using PK callbacks and CB is set */
if (!havePSK && !haveAnon && !haveMcast) {
if (!ssl->buffers.certificate ||
!ssl->buffers.certificate->buffer) {
WOLFSSL_MSG("accept error: server cert required");
WOLFSSL_ERROR(ssl->error = NO_PRIVATE_KEY);
return WOLFSSL_FATAL_ERROR;
}
#ifdef HAVE_PK_CALLBACKS
if (wolfSSL_CTX_IsPrivatePkSet(ssl->ctx)) {
WOLFSSL_MSG("Using PK for server private key");
}
else
#endif
if (!ssl->buffers.key || !ssl->buffers.key->buffer) {
WOLFSSL_MSG("accept error: server key required");
WOLFSSL_ERROR(ssl->error = NO_PRIVATE_KEY);
return WOLFSSL_FATAL_ERROR;
}
}
#endif
#ifdef WOLFSSL_DTLS
if (ssl->version.major == DTLS_MAJOR) {
ssl->options.dtls = 1;
ssl->options.tls = 1;
ssl->options.tls1_1 = 1;
}
#endif
if (ssl->buffers.outputBuffer.length > 0
#ifdef WOLFSSL_ASYNC_CRYPT
/* do not send buffered or advance state if last error was an
async pending operation */
&& ssl->error != WC_PENDING_E
#endif
) {
if ( (ssl->error = SendBuffered(ssl)) == 0) {
/* fragOffset is non-zero when sending fragments. On the last
* fragment, fragOffset is zero again, and the state can be
* advanced. */
if (ssl->fragOffset == 0) {
ssl->options.acceptState++;
WOLFSSL_MSG("accept state: "
"Advanced from last buffered fragment send");
}
else {
WOLFSSL_MSG("accept state: "
"Not advanced, more fragments to send");
}
}
else {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
switch (ssl->options.acceptState) {
case ACCEPT_BEGIN :
#ifdef HAVE_SECURE_RENEGOTIATION
case ACCEPT_BEGIN_RENEG:
#endif
/* get response */
while (ssl->options.clientState < CLIENT_HELLO_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_TLS13
ssl->options.acceptState = ACCEPT_CLIENT_HELLO_DONE;
WOLFSSL_MSG("accept state ACCEPT_CLIENT_HELLO_DONE");
FALL_THROUGH;
case ACCEPT_CLIENT_HELLO_DONE :
if (ssl->options.tls1_3) {
return wolfSSL_accept_TLSv13(ssl);
}
#endif
ssl->options.acceptState = ACCEPT_FIRST_REPLY_DONE;
WOLFSSL_MSG("accept state ACCEPT_FIRST_REPLY_DONE");
FALL_THROUGH;
case ACCEPT_FIRST_REPLY_DONE :
if ( (ssl->error = SendServerHello(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = SERVER_HELLO_SENT;
WOLFSSL_MSG("accept state SERVER_HELLO_SENT");
FALL_THROUGH;
case SERVER_HELLO_SENT :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
return wolfSSL_accept_TLSv13(ssl);
}
#endif
#ifndef NO_CERTS
if (!ssl->options.resuming)
if ( (ssl->error = SendCertificate(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#endif
ssl->options.acceptState = CERT_SENT;
WOLFSSL_MSG("accept state CERT_SENT");
FALL_THROUGH;
case CERT_SENT :
#ifndef NO_CERTS
if (!ssl->options.resuming)
if ( (ssl->error = SendCertificateStatus(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
#endif
ssl->options.acceptState = CERT_STATUS_SENT;
WOLFSSL_MSG("accept state CERT_STATUS_SENT");
FALL_THROUGH;
case CERT_STATUS_SENT :
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
return wolfSSL_accept_TLSv13(ssl);
}
#endif
if (!ssl->options.resuming)
if ( (ssl->error = SendServerKeyExchange(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = KEY_EXCHANGE_SENT;
WOLFSSL_MSG("accept state KEY_EXCHANGE_SENT");
FALL_THROUGH;
case KEY_EXCHANGE_SENT :
#ifndef NO_CERTS
if (!ssl->options.resuming) {
if (ssl->options.verifyPeer) {
if ( (ssl->error = SendCertificateRequest(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
}
#endif
ssl->options.acceptState = CERT_REQ_SENT;
WOLFSSL_MSG("accept state CERT_REQ_SENT");
FALL_THROUGH;
case CERT_REQ_SENT :
if (!ssl->options.resuming)
if ( (ssl->error = SendServerHelloDone(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = SERVER_HELLO_DONE;
WOLFSSL_MSG("accept state SERVER_HELLO_DONE");
FALL_THROUGH;
case SERVER_HELLO_DONE :
if (!ssl->options.resuming) {
while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
ssl->options.acceptState = ACCEPT_SECOND_REPLY_DONE;
WOLFSSL_MSG("accept state ACCEPT_SECOND_REPLY_DONE");
FALL_THROUGH;
case ACCEPT_SECOND_REPLY_DONE :
#ifdef HAVE_SESSION_TICKET
if (ssl->options.createTicket && !ssl->options.noTicketTls12) {
if ( (ssl->error = SendTicket(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* HAVE_SESSION_TICKET */
ssl->options.acceptState = TICKET_SENT;
WOLFSSL_MSG("accept state TICKET_SENT");
FALL_THROUGH;
case TICKET_SENT:
if ( (ssl->error = SendChangeCipher(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = CHANGE_CIPHER_SENT;
WOLFSSL_MSG("accept state CHANGE_CIPHER_SENT");
FALL_THROUGH;
case CHANGE_CIPHER_SENT :
if ( (ssl->error = SendFinished(ssl)) != 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = ACCEPT_FINISHED_DONE;
WOLFSSL_MSG("accept state ACCEPT_FINISHED_DONE");
FALL_THROUGH;
case ACCEPT_FINISHED_DONE :
if (ssl->options.resuming)
while (ssl->options.clientState < CLIENT_FINISHED_COMPLETE)
if ( (ssl->error = ProcessReply(ssl)) < 0) {
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
ssl->options.acceptState = ACCEPT_THIRD_REPLY_DONE;
WOLFSSL_MSG("accept state ACCEPT_THIRD_REPLY_DONE");
FALL_THROUGH;
case ACCEPT_THIRD_REPLY_DONE :
#ifndef NO_HANDSHAKE_DONE_CB
if (ssl->hsDoneCb) {
int cbret = ssl->hsDoneCb(ssl, ssl->hsDoneCtx);
if (cbret < 0) {
ssl->error = cbret;
WOLFSSL_MSG("HandShake Done Cb don't continue error");
return WOLFSSL_FATAL_ERROR;
}
}
#endif /* NO_HANDSHAKE_DONE_CB */
if (!ssl->options.dtls) {
if (!ssl->options.keepResources) {
FreeHandshakeResources(ssl);
}
}
#ifdef WOLFSSL_DTLS
else {
ssl->options.dtlsHsRetain = 1;
}
#endif /* WOLFSSL_DTLS */
#if defined(WOLFSSL_ASYNC_CRYPT) && defined(HAVE_SECURE_RENEGOTIATION)
/* This may be necessary in async so that we don't try to
* renegotiate again */
if (ssl->secure_renegotiation && ssl->secure_renegotiation->startScr) {
ssl->secure_renegotiation->startScr = 0;
}
#endif /* WOLFSSL_ASYNC_CRYPT && HAVE_SECURE_RENEGOTIATION */
#ifdef WOLFSSL_SESSION_EXPORT
if (ssl->dtls_export) {
if ((ssl->error = wolfSSL_send_session(ssl)) != 0) {
WOLFSSL_MSG("Export DTLS session error");
WOLFSSL_ERROR(ssl->error);
return WOLFSSL_FATAL_ERROR;
}
}
#endif
WOLFSSL_LEAVE("SSL_accept()", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
default :
WOLFSSL_MSG("Unknown accept state ERROR");
return WOLFSSL_FATAL_ERROR;
}
#endif /* !WOLFSSL_NO_TLS12 */
}
#endif /* NO_WOLFSSL_SERVER */
#ifndef NO_HANDSHAKE_DONE_CB
int wolfSSL_SetHsDoneCb(WOLFSSL* ssl, HandShakeDoneCb cb, void* user_ctx)
{
WOLFSSL_ENTER("wolfSSL_SetHsDoneCb");
if (ssl == NULL)
return BAD_FUNC_ARG;
ssl->hsDoneCb = cb;
ssl->hsDoneCtx = user_ctx;
return WOLFSSL_SUCCESS;
}
#endif /* NO_HANDSHAKE_DONE_CB */
WOLFSSL_ABI
int wolfSSL_Cleanup(void)
{
int ret = WOLFSSL_SUCCESS;
int release = 0;
WOLFSSL_ENTER("wolfSSL_Cleanup");
if (initRefCount == 0)
return ret; /* possibly no init yet, but not failure either way */
if (wc_LockMutex(&count_mutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex count");
return BAD_MUTEX_E;
}
release = initRefCount-- == 1;
if (initRefCount < 0)
initRefCount = 0;
wc_UnLockMutex(&count_mutex);
if (!release)
return ret;
#ifdef OPENSSL_EXTRA
if (bn_one) {
wolfSSL_BN_free(bn_one);
bn_one = NULL;
}
#endif
#ifndef NO_SESSION_CACHE
if (wc_FreeMutex(&session_mutex) != 0)
ret = BAD_MUTEX_E;
#endif
if (wc_FreeMutex(&count_mutex) != 0)
ret = BAD_MUTEX_E;
#ifdef OPENSSL_EXTRA
wolfSSL_RAND_Cleanup();
#endif
if (wolfCrypt_Cleanup() != 0) {
WOLFSSL_MSG("Error with wolfCrypt_Cleanup call");
ret = WC_CLEANUP_E;
}
return ret;
}
#ifndef NO_SESSION_CACHE
/* some session IDs aren't random after all, let's make them random */
static WC_INLINE word32 HashSession(const byte* sessionID, word32 len, int* error)
{
byte digest[WC_MAX_DIGEST_SIZE];
#ifndef NO_MD5
*error = wc_Md5Hash(sessionID, len, digest);
#elif !defined(NO_SHA)
*error = wc_ShaHash(sessionID, len, digest);
#elif !defined(NO_SHA256)
*error = wc_Sha256Hash(sessionID, len, digest);
#else
#error "We need a digest to hash the session IDs"
#endif
return *error == 0 ? MakeWordFromHash(digest) : 0; /* 0 on failure */
}
WOLFSSL_ABI
void wolfSSL_flush_sessions(WOLFSSL_CTX* ctx, long tm)
{
/* static table now, no flushing needed */
(void)ctx;
(void)tm;
}
/* set ssl session timeout in seconds */
WOLFSSL_ABI
int wolfSSL_set_timeout(WOLFSSL* ssl, unsigned int to)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
if (to == 0)
to = WOLFSSL_SESSION_TIMEOUT;
ssl->timeout = to;
return WOLFSSL_SUCCESS;
}
/* set ctx session timeout in seconds */
WOLFSSL_ABI
int wolfSSL_CTX_set_timeout(WOLFSSL_CTX* ctx, unsigned int to)
{
if (ctx == NULL)
return BAD_FUNC_ARG;
if (to == 0)
to = WOLFSSL_SESSION_TIMEOUT;
ctx->timeout = to;
return WOLFSSL_SUCCESS;
}
#ifndef NO_CLIENT_CACHE
/* Get Session from Client cache based on id/len, return NULL on failure */
WOLFSSL_SESSION* GetSessionClient(WOLFSSL* ssl, const byte* id, int len)
{
WOLFSSL_SESSION* ret = NULL;
word32 row;
int idx;
int count;
int error = 0;
WOLFSSL_ENTER("GetSessionClient");
if (ssl->ctx->sessionCacheOff)
return NULL;
if (ssl->options.side == WOLFSSL_SERVER_END)
return NULL;
len = min(SERVER_ID_LEN, (word32)len);
#ifdef HAVE_EXT_CACHE
if (ssl->ctx->get_sess_cb != NULL) {
int copy = 0;
ret = ssl->ctx->get_sess_cb(ssl, (byte*)id, len, &copy);
if (ret != NULL)
return ret;
}
if (ssl->ctx->internalCacheOff)
return NULL;
#endif
row = HashSession(id, len, &error) % SESSION_ROWS;
if (error != 0) {
WOLFSSL_MSG("Hash session failed");
return NULL;
}
if (wc_LockMutex(&session_mutex) != 0) {
WOLFSSL_MSG("Lock session mutex failed");
return NULL;
}
/* start from most recently used */
count = min((word32)ClientCache[row].totalCount, SESSIONS_PER_ROW);
idx = ClientCache[row].nextIdx - 1;
if (idx < 0)
idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */
for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) {
WOLFSSL_SESSION* current;
ClientSession clSess;
if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */
WOLFSSL_MSG("Bad idx");
break;
}
clSess = ClientCache[row].Clients[idx];
current = &SessionCache[clSess.serverRow].Sessions[clSess.serverIdx];
if (XMEMCMP(current->serverID, id, len) == 0) {
WOLFSSL_MSG("Found a serverid match for client");
if (LowResTimer() < (current->bornOn + current->timeout)) {
WOLFSSL_MSG("Session valid");
ret = current;
break;
} else {
WOLFSSL_MSG("Session timed out"); /* could have more for id */
}
} else {
WOLFSSL_MSG("ServerID not a match from client table");
}
}
wc_UnLockMutex(&session_mutex);
return ret;
}
#endif /* NO_CLIENT_CACHE */
/* Restore the master secret and session information for certificates.
*
* ssl The SSL/TLS object.
* session The cached session to restore.
* masterSecret The master secret from the cached session.
* restoreSessionCerts Restoring session certificates is required.
*/
static WC_INLINE void RestoreSession(WOLFSSL* ssl, WOLFSSL_SESSION* session,
byte* masterSecret, byte restoreSessionCerts)
{
(void)ssl;
(void)restoreSessionCerts;
if (masterSecret)
XMEMCPY(masterSecret, session->masterSecret, SECRET_LEN);
#ifdef SESSION_CERTS
/* If set, we should copy the session certs into the ssl object
* from the session we are returning so we can resume */
if (restoreSessionCerts) {
ssl->session.chain = session->chain;
ssl->session.version = session->version;
#ifdef NO_RESUME_SUITE_CHECK
ssl->session.cipherSuite0 = session->cipherSuite0;
ssl->session.cipherSuite = session->cipherSuite;
#endif
}
#endif /* SESSION_CERTS */
#if !defined(NO_RESUME_SUITE_CHECK) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET))
ssl->session.cipherSuite0 = session->cipherSuite0;
ssl->session.cipherSuite = session->cipherSuite;
#endif
}
WOLFSSL_SESSION* GetSession(WOLFSSL* ssl, byte* masterSecret,
byte restoreSessionCerts)
{
WOLFSSL_SESSION* ret = 0;
const byte* id = NULL;
word32 row;
int idx;
int count;
int error = 0;
(void) restoreSessionCerts;
if (ssl->options.sessionCacheOff)
return NULL;
if (ssl->options.haveSessionId == 0)
return NULL;
#ifdef HAVE_SESSION_TICKET
if (ssl->options.side == WOLFSSL_SERVER_END && ssl->options.useTicket == 1)
return NULL;
#endif
if (!ssl->options.tls1_3 && ssl->arrays != NULL)
id = ssl->arrays->sessionID;
else
id = ssl->session.sessionID;
#ifdef HAVE_EXT_CACHE
if (ssl->ctx->get_sess_cb != NULL) {
int copy = 0;
/* Attempt to retrieve the session from the external cache. */
ret = ssl->ctx->get_sess_cb(ssl, (byte*)id, ID_LEN, &copy);
if (ret != NULL) {
RestoreSession(ssl, ret, masterSecret, restoreSessionCerts);
return ret;
}
}
if (ssl->ctx->internalCacheOff)
return NULL;
#endif
row = HashSession(id, ID_LEN, &error) % SESSION_ROWS;
if (error != 0) {
WOLFSSL_MSG("Hash session failed");
return NULL;
}
if (wc_LockMutex(&session_mutex) != 0)
return 0;
/* start from most recently used */
count = min((word32)SessionCache[row].totalCount, SESSIONS_PER_ROW);
idx = SessionCache[row].nextIdx - 1;
if (idx < 0)
idx = SESSIONS_PER_ROW - 1; /* if back to front, the previous was end */
for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) {
WOLFSSL_SESSION* current;
if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */
WOLFSSL_MSG("Bad idx");
break;
}
current = &SessionCache[row].Sessions[idx];
if (XMEMCMP(current->sessionID, id, ID_LEN) == 0 &&
current->side == ssl->options.side) {
WOLFSSL_MSG("Found a session match");
if (LowResTimer() < (current->bornOn + current->timeout)) {
WOLFSSL_MSG("Session valid");
ret = current;
RestoreSession(ssl, ret, masterSecret, restoreSessionCerts);
} else {
WOLFSSL_MSG("Session timed out");
}
break; /* no more sessionIDs whether valid or not that match */
} else {
WOLFSSL_MSG("SessionID not a match at this idx");
}
}
wc_UnLockMutex(&session_mutex);
return ret;
}
static int GetDeepCopySession(WOLFSSL* ssl, WOLFSSL_SESSION* copyFrom)
{
WOLFSSL_SESSION* copyInto = &ssl->session;
void* tmpBuff = NULL;
int ticketLen = 0;
int doDynamicCopy = 0;
int ret = WOLFSSL_SUCCESS;
(void)ticketLen;
(void)doDynamicCopy;
(void)tmpBuff;
if (!ssl || !copyFrom)
return BAD_FUNC_ARG;
#ifdef HAVE_SESSION_TICKET
/* Free old dynamic ticket if we had one to avoid leak */
if (copyInto->isDynamic) {
XFREE(copyInto->ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
copyInto->ticket = copyInto->staticTicket;
copyInto->isDynamic = 0;
}
#endif
if (wc_LockMutex(&session_mutex) != 0)
return BAD_MUTEX_E;
#ifdef HAVE_SESSION_TICKET
/* Size of ticket to alloc if needed; Use later for alloc outside lock */
doDynamicCopy = copyFrom->isDynamic;
ticketLen = copyFrom->ticketLen;
#endif
*copyInto = *copyFrom;
/* Default ticket to non dynamic. This will avoid crash if we fail below */
#ifdef HAVE_SESSION_TICKET
copyInto->ticket = copyInto->staticTicket;
copyInto->isDynamic = 0;
#endif
#ifndef NO_RESUME_SUITE_CHECK
copyInto->cipherSuite0 = copyFrom->cipherSuite0;
copyInto->cipherSuite = copyFrom->cipherSuite;
#endif
if (wc_UnLockMutex(&session_mutex) != 0) {
return BAD_MUTEX_E;
}
#ifdef HAVE_SESSION_TICKET
#ifdef WOLFSSL_TLS13
if (wc_LockMutex(&session_mutex) != 0) {
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
return BAD_MUTEX_E;
}
#ifdef NO_RESUME_SUITE_CHECK
copyInto->cipherSuite0 = copyFrom->cipherSuite0;
copyInto->cipherSuite = copyFrom->cipherSuite;
#endif
copyInto->namedGroup = copyFrom->namedGroup;
copyInto->ticketSeen = copyFrom->ticketSeen;
copyInto->ticketAdd = copyFrom->ticketAdd;
copyInto->side = copyFrom->side;
XMEMCPY(&copyInto->ticketNonce, &copyFrom->ticketNonce,
sizeof(TicketNonce));
#ifdef WOLFSSL_EARLY_DATA
copyInto->maxEarlyDataSz = copyFrom->maxEarlyDataSz;
#endif
XMEMCPY(copyInto->masterSecret, copyFrom->masterSecret, SECRET_LEN);
if (wc_UnLockMutex(&session_mutex) != 0) {
if (ret == WOLFSSL_SUCCESS)
ret = BAD_MUTEX_E;
}
#endif
/* If doing dynamic copy, need to alloc outside lock, then inside a lock
* confirm the size still matches and memcpy */
if (doDynamicCopy) {
tmpBuff = (byte*)XMALLOC(ticketLen, ssl->heap,
DYNAMIC_TYPE_SESSION_TICK);
if (!tmpBuff)
return MEMORY_ERROR;
if (wc_LockMutex(&session_mutex) != 0) {
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
return BAD_MUTEX_E;
}
if ((word16)ticketLen != copyFrom->ticketLen) {
/* Another thread modified the ssl-> session ticket during alloc.
* Treat as error, since ticket different than when copy requested */
ret = VAR_STATE_CHANGE_E;
}
if (ret == WOLFSSL_SUCCESS) {
copyInto->ticket = (byte*)tmpBuff;
copyInto->isDynamic = 1;
XMEMCPY(copyInto->ticket, copyFrom->ticket, ticketLen);
}
} else {
/* Need to ensure ticket pointer gets updated to own buffer
* and is not pointing to buff of session copied from */
copyInto->ticket = copyInto->staticTicket;
}
if (doDynamicCopy) {
if (wc_UnLockMutex(&session_mutex) != 0) {
if (ret == WOLFSSL_SUCCESS)
ret = BAD_MUTEX_E;
}
}
if (ret != WOLFSSL_SUCCESS) {
/* cleanup */
if (tmpBuff)
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
copyInto->ticket = copyInto->staticTicket;
copyInto->isDynamic = 0;
}
#endif /* HAVE_SESSION_TICKET */
return ret;
}
int SetSession(WOLFSSL* ssl, WOLFSSL_SESSION* session)
{
if (ssl->options.sessionCacheOff)
return WOLFSSL_FAILURE;
#ifdef OPENSSL_EXTRA
/* check for application context id */
if (ssl->sessionCtxSz > 0) {
if (XMEMCMP(ssl->sessionCtx, session->sessionCtx, ssl->sessionCtxSz)) {
/* context id did not match! */
WOLFSSL_MSG("Session context did not match");
return SSL_FAILURE;
}
}
#endif /* OPENSSL_EXTRA */
if (LowResTimer() < (session->bornOn + session->timeout)) {
int ret = GetDeepCopySession(ssl, session);
if (ret == WOLFSSL_SUCCESS) {
ssl->options.resuming = 1;
#if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \
defined(HAVE_SESSION_TICKET))
ssl->version = session->version;
#endif
#if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET))
ssl->options.cipherSuite0 = session->cipherSuite0;
ssl->options.cipherSuite = session->cipherSuite;
#endif
}
return ret;
}
return WOLFSSL_FAILURE; /* session timed out */
}
#ifdef WOLFSSL_SESSION_STATS
static int get_locked_session_stats(word32* active, word32* total,
word32* peak);
#endif
int AddSession(WOLFSSL* ssl)
{
word32 row = 0;
word32 idx = 0;
int error = 0;
const byte* id = NULL;
#ifdef HAVE_SESSION_TICKET
byte* tmpBuff = NULL;
int ticLen = 0;
#endif
WOLFSSL_SESSION* session;
int i;
int overwrite = 0;
#ifdef HAVE_EXT_CACHE
int cbRet = 0;
#endif
if (ssl->options.sessionCacheOff)
return 0;
if (ssl->options.haveSessionId == 0)
return 0;
#ifdef HAVE_SESSION_TICKET
if (ssl->options.side == WOLFSSL_SERVER_END && ssl->options.useTicket == 1)
return 0;
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)
if (ssl->options.tls1_3)
id = ssl->session.sessionID;
else
#endif
if (ssl->arrays)
id = ssl->arrays->sessionID;
if (id == NULL) {
return BAD_FUNC_ARG;
}
#ifdef HAVE_SESSION_TICKET
ticLen = ssl->session.ticketLen;
/* Alloc Memory here so if Malloc fails can exit outside of lock */
if (ticLen > SESSION_TICKET_LEN) {
tmpBuff = (byte*)XMALLOC(ticLen, ssl->heap,
DYNAMIC_TYPE_SESSION_TICK);
if(!tmpBuff)
return MEMORY_E;
}
#endif
#ifdef HAVE_EXT_CACHE
if (ssl->options.internalCacheOff) {
/* Create a new session object to be stored. */
session = wolfSSL_SESSION_new();
if (session == NULL) {
#ifdef HAVE_SESSION_TICKET
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
#endif
return MEMORY_E;
}
}
else
#endif
{
/* Use the session object in the cache for external cache if required.
*/
row = HashSession(id, ID_LEN, &error) % SESSION_ROWS;
if (error != 0) {
WOLFSSL_MSG("Hash session failed");
#ifdef HAVE_SESSION_TICKET
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
#endif
return error;
}
if (wc_LockMutex(&session_mutex) != 0) {
#ifdef HAVE_SESSION_TICKET
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
#endif
return BAD_MUTEX_E;
}
for (i=0; i<SESSIONS_PER_ROW; i++) {
if (XMEMCMP(id, SessionCache[row].Sessions[i].sessionID, ID_LEN) == 0 &&
SessionCache[row].Sessions[i].side == ssl->options.side) {
WOLFSSL_MSG("Session already exists. Overwriting.");
overwrite = 1;
idx = i;
break;
}
}
if (!overwrite) {
idx = SessionCache[row].nextIdx++;
}
#ifdef SESSION_INDEX
ssl->sessionIndex = (row << SESSIDX_ROW_SHIFT) | idx;
#endif
session = &SessionCache[row].Sessions[idx];
}
session->side = (byte)ssl->options.side;
#ifdef WOLFSSL_TLS13
if (ssl->options.tls1_3) {
XMEMCPY(session->masterSecret, ssl->session.masterSecret, SECRET_LEN);
session->sessionIDSz = ID_LEN;
}
else
#endif
{
XMEMCPY(session->masterSecret, ssl->arrays->masterSecret, SECRET_LEN);
session->sessionIDSz = ssl->arrays->sessionIDSz;
}
XMEMCPY(session->sessionID, id, ID_LEN);
session->haveEMS = ssl->options.haveEMS;
#ifdef OPENSSL_EXTRA
/* If using compatibility layer then check for and copy over session context
* id. */
if (ssl->sessionCtxSz > 0 && ssl->sessionCtxSz < ID_LEN) {
XMEMCPY(session->sessionCtx, ssl->sessionCtx, ssl->sessionCtxSz);
}
#endif
session->timeout = ssl->timeout;
session->bornOn = LowResTimer();
#ifdef HAVE_SESSION_TICKET
/* Check if another thread modified ticket since alloc */
if ((word16)ticLen != ssl->session.ticketLen) {
error = VAR_STATE_CHANGE_E;
}
if (error == 0) {
/* Cleanup cache row's old Dynamic buff if exists */
if (session->isDynamic) {
XFREE(session->ticket, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
session->ticket = NULL;
}
/* If too large to store in static buffer, use dyn buffer */
if (ticLen > SESSION_TICKET_LEN) {
session->ticket = tmpBuff;
session->isDynamic = 1;
} else {
session->ticket = session->staticTicket;
session->isDynamic = 0;
}
session->ticketLen = (word16)ticLen;
XMEMCPY(session->ticket, ssl->session.ticket, ticLen);
} else { /* cleanup, reset state */
session->ticket = session->staticTicket;
session->isDynamic = 0;
session->ticketLen = 0;
if (tmpBuff) {
XFREE(tmpBuff, ssl->heap, DYNAMIC_TYPE_SESSION_TICK);
tmpBuff = NULL;
}
}
#endif
#ifdef SESSION_CERTS
if (error == 0) {
if (!overwrite || ssl->session.chain.count > 0) {
/*
* If we are overwriting and no certs present in ssl->session.chain
* then keep the old chain.
*/
session->chain.count = ssl->session.chain.count;
XMEMCPY(session->chain.certs, ssl->session.chain.certs,
sizeof(x509_buffer) * session->chain.count);
}
}
#endif /* SESSION_CERTS */
#if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \
defined(HAVE_SESSION_TICKET))
if (error == 0) {
session->version = ssl->version;
}
#endif /* SESSION_CERTS || (WOLFSSL_TLS13 & HAVE_SESSION_TICKET) */
#if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET))
if (error == 0) {
session->cipherSuite0 = ssl->options.cipherSuite0;
session->cipherSuite = ssl->options.cipherSuite;
}
#endif
#if defined(WOLFSSL_TLS13)
if (error == 0) {
session->namedGroup = ssl->session.namedGroup;
}
#endif
#if defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET)
if (error == 0) {
session->ticketSeen = ssl->session.ticketSeen;
session->ticketAdd = ssl->session.ticketAdd;
XMEMCPY(&session->ticketNonce, &ssl->session.ticketNonce,
sizeof(TicketNonce));
#ifdef WOLFSSL_EARLY_DATA
session->maxEarlyDataSz = ssl->session.maxEarlyDataSz;
#endif
}
#endif /* WOLFSSL_TLS13 && HAVE_SESSION_TICKET */
#ifdef HAVE_EXT_CACHE
if (!ssl->options.internalCacheOff)
#endif
{
if (error == 0) {
SessionCache[row].totalCount++;
if (SessionCache[row].nextIdx == SESSIONS_PER_ROW)
SessionCache[row].nextIdx = 0;
}
}
#ifndef NO_CLIENT_CACHE
if (error == 0) {
if (ssl->options.side == WOLFSSL_CLIENT_END && ssl->session.idLen) {
word32 clientRow, clientIdx;
WOLFSSL_MSG("Adding client cache entry");
session->idLen = ssl->session.idLen;
XMEMCPY(session->serverID, ssl->session.serverID,
ssl->session.idLen);
#ifdef HAVE_EXT_CACHE
if (!ssl->options.internalCacheOff)
#endif
{
clientRow = HashSession(ssl->session.serverID,
ssl->session.idLen, &error) % SESSION_ROWS;
if (error != 0) {
WOLFSSL_MSG("Hash session failed");
} else {
clientIdx = ClientCache[clientRow].nextIdx++;
ClientCache[clientRow].Clients[clientIdx].serverRow =
(word16)row;
ClientCache[clientRow].Clients[clientIdx].serverIdx =
(word16)idx;
ClientCache[clientRow].totalCount++;
if (ClientCache[clientRow].nextIdx == SESSIONS_PER_ROW)
ClientCache[clientRow].nextIdx = 0;
}
}
}
else
session->idLen = 0;
}
#endif /* NO_CLIENT_CACHE */
#if defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS)
#ifdef HAVE_EXT_CACHE
if (!ssl->options.internalCacheOff)
#endif
{
if (error == 0) {
word32 active = 0;
error = get_locked_session_stats(&active, NULL, NULL);
if (error == WOLFSSL_SUCCESS) {
error = 0; /* back to this function ok */
if (active > PeakSessions)
PeakSessions = active;
}
}
}
#endif /* defined(WOLFSSL_SESSION_STATS) && defined(WOLFSSL_PEAK_SESSIONS) */
#ifdef HAVE_EXT_CACHE
if (!ssl->options.internalCacheOff)
#endif
{
if (wc_UnLockMutex(&session_mutex) != 0)
return BAD_MUTEX_E;
}
#ifdef HAVE_EXT_CACHE
if (error == 0 && ssl->ctx->new_sess_cb != NULL)
cbRet = ssl->ctx->new_sess_cb(ssl, session);
if (ssl->options.internalCacheOff && cbRet == 0)
FreeSession(session, 1);
#endif
return error;
}
#ifdef SESSION_INDEX
int wolfSSL_GetSessionIndex(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_GetSessionIndex");
WOLFSSL_LEAVE("wolfSSL_GetSessionIndex", ssl->sessionIndex);
return ssl->sessionIndex;
}
int wolfSSL_GetSessionAtIndex(int idx, WOLFSSL_SESSION* session)
{
int row, col, result = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_GetSessionAtIndex");
row = idx >> SESSIDX_ROW_SHIFT;
col = idx & SESSIDX_IDX_MASK;
if (wc_LockMutex(&session_mutex) != 0) {
return BAD_MUTEX_E;
}
if (row < SESSION_ROWS &&
col < (int)min(SessionCache[row].totalCount, SESSIONS_PER_ROW)) {
XMEMCPY(session,
&SessionCache[row].Sessions[col], sizeof(WOLFSSL_SESSION));
result = WOLFSSL_SUCCESS;
}
if (wc_UnLockMutex(&session_mutex) != 0)
result = BAD_MUTEX_E;
WOLFSSL_LEAVE("wolfSSL_GetSessionAtIndex", result);
return result;
}
#endif /* SESSION_INDEX */
#if defined(SESSION_CERTS)
WOLFSSL_X509_CHAIN* wolfSSL_SESSION_get_peer_chain(WOLFSSL_SESSION* session)
{
WOLFSSL_X509_CHAIN* chain = NULL;
WOLFSSL_ENTER("wolfSSL_SESSION_get_peer_chain");
if (session)
chain = &session->chain;
WOLFSSL_LEAVE("wolfSSL_SESSION_get_peer_chain", chain ? 1 : 0);
return chain;
}
#ifdef OPENSSL_EXTRA
/* gets the peer certificate associated with the session passed in
* returns null on failure, the caller should not free the returned pointer */
WOLFSSL_X509* wolfSSL_SESSION_get0_peer(WOLFSSL_SESSION* session)
{
WOLFSSL_ENTER("wolfSSL_SESSION_get_peer_chain");
if (session) {
int count;
count = wolfSSL_get_chain_count(&session->chain);
if (count < 1 || count >= MAX_CHAIN_DEPTH) {
WOLFSSL_MSG("bad count found");
return NULL;
}
if (session->peer == NULL) {
session->peer = wolfSSL_get_chain_X509(&session->chain, 0);
}
return session->peer;
}
WOLFSSL_MSG("No session passed in");
return NULL;
}
#endif /* OPENSSL_EXTRA */
#endif /* SESSION_INDEX && SESSION_CERTS */
#ifdef WOLFSSL_SESSION_STATS
/* requires session_mutex lock held, WOLFSSL_SUCCESS on ok */
static int get_locked_session_stats(word32* active, word32* total, word32* peak)
{
int result = WOLFSSL_SUCCESS;
int i;
int count;
int idx;
word32 now = 0;
word32 seen = 0;
word32 ticks = LowResTimer();
(void)peak;
WOLFSSL_ENTER("get_locked_session_stats");
for (i = 0; i < SESSION_ROWS; i++) {
seen += SessionCache[i].totalCount;
if (active == NULL)
continue; /* no need to calculate what we can't set */
count = min((word32)SessionCache[i].totalCount, SESSIONS_PER_ROW);
idx = SessionCache[i].nextIdx - 1;
if (idx < 0)
idx = SESSIONS_PER_ROW - 1; /* if back to front previous was end */
for (; count > 0; --count, idx = idx ? idx - 1 : SESSIONS_PER_ROW - 1) {
if (idx >= SESSIONS_PER_ROW || idx < 0) { /* sanity check */
WOLFSSL_MSG("Bad idx");
break;
}
/* if not expired then good */
if (ticks < (SessionCache[i].Sessions[idx].bornOn +
SessionCache[i].Sessions[idx].timeout) ) {
now++;
}
}
}
if (active)
*active = now;
if (total)
*total = seen;
#ifdef WOLFSSL_PEAK_SESSIONS
if (peak)
*peak = PeakSessions;
#endif
WOLFSSL_LEAVE("get_locked_session_stats", result);
return result;
}
/* return WOLFSSL_SUCCESS on ok */
int wolfSSL_get_session_stats(word32* active, word32* total, word32* peak,
word32* maxSessions)
{
int result = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_get_session_stats");
if (maxSessions) {
*maxSessions = SESSIONS_PER_ROW * SESSION_ROWS;
if (active == NULL && total == NULL && peak == NULL)
return result; /* we're done */
}
/* user must provide at least one query value */
if (active == NULL && total == NULL && peak == NULL)
return BAD_FUNC_ARG;
if (wc_LockMutex(&session_mutex) != 0) {
return BAD_MUTEX_E;
}
result = get_locked_session_stats(active, total, peak);
if (wc_UnLockMutex(&session_mutex) != 0)
result = BAD_MUTEX_E;
WOLFSSL_LEAVE("wolfSSL_get_session_stats", result);
return result;
}
#endif /* WOLFSSL_SESSION_STATS */
#ifdef PRINT_SESSION_STATS
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_PrintSessionStats(void)
{
word32 totalSessionsSeen = 0;
word32 totalSessionsNow = 0;
word32 peak = 0;
word32 maxSessions = 0;
int i;
int ret;
double E; /* expected freq */
double chiSquare = 0;
ret = wolfSSL_get_session_stats(&totalSessionsNow, &totalSessionsSeen,
&peak, &maxSessions);
if (ret != WOLFSSL_SUCCESS)
return ret;
printf("Total Sessions Seen = %d\n", totalSessionsSeen);
printf("Total Sessions Now = %d\n", totalSessionsNow);
#ifdef WOLFSSL_PEAK_SESSIONS
printf("Peak Sessions = %d\n", peak);
#endif
printf("Max Sessions = %d\n", maxSessions);
E = (double)totalSessionsSeen / SESSION_ROWS;
for (i = 0; i < SESSION_ROWS; i++) {
double diff = SessionCache[i].totalCount - E;
diff *= diff; /* square */
diff /= E; /* normalize */
chiSquare += diff;
}
printf(" chi-square = %5.1f, d.f. = %d\n", chiSquare,
SESSION_ROWS - 1);
#if (SESSION_ROWS == 11)
printf(" .05 p value = 18.3, chi-square should be less\n");
#elif (SESSION_ROWS == 211)
printf(".05 p value = 244.8, chi-square should be less\n");
#elif (SESSION_ROWS == 5981)
printf(".05 p value = 6161.0, chi-square should be less\n");
#elif (SESSION_ROWS == 3)
printf(".05 p value = 6.0, chi-square should be less\n");
#elif (SESSION_ROWS == 2861)
printf(".05 p value = 2985.5, chi-square should be less\n");
#endif
printf("\n");
return ret;
}
#endif /* SESSION_STATS */
#else /* NO_SESSION_CACHE */
/* No session cache version */
WOLFSSL_SESSION* GetSession(WOLFSSL* ssl, byte* masterSecret,
byte restoreSessionCerts)
{
(void)ssl;
(void)masterSecret;
(void)restoreSessionCerts;
return NULL;
}
#endif /* NO_SESSION_CACHE */
/* call before SSL_connect, if verifying will add name check to
date check and signature check */
WOLFSSL_ABI
int wolfSSL_check_domain_name(WOLFSSL* ssl, const char* dn)
{
WOLFSSL_ENTER("wolfSSL_check_domain_name");
if (ssl == NULL || dn == NULL) {
WOLFSSL_MSG("Bad function argument: NULL");
return WOLFSSL_FAILURE;
}
if (ssl->buffers.domainName.buffer)
XFREE(ssl->buffers.domainName.buffer, ssl->heap, DYNAMIC_TYPE_DOMAIN);
ssl->buffers.domainName.length = (word32)XSTRLEN(dn);
ssl->buffers.domainName.buffer = (byte*)XMALLOC(
ssl->buffers.domainName.length + 1, ssl->heap, DYNAMIC_TYPE_DOMAIN);
if (ssl->buffers.domainName.buffer) {
unsigned char* domainName = ssl->buffers.domainName.buffer;
XMEMCPY(domainName, dn, ssl->buffers.domainName.length);
domainName[ssl->buffers.domainName.length] = '\0';
return WOLFSSL_SUCCESS;
}
else {
ssl->error = MEMORY_ERROR;
return WOLFSSL_FAILURE;
}
}
/* turn on wolfSSL zlib compression
returns WOLFSSL_SUCCESS for success, else error (not built in)
*/
int wolfSSL_set_compression(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_set_compression");
(void)ssl;
#ifdef HAVE_LIBZ
ssl->options.usingCompression = 1;
return WOLFSSL_SUCCESS;
#else
return NOT_COMPILED_IN;
#endif
}
#ifndef USE_WINDOWS_API
#ifndef NO_WRITEV
/* simulate writev semantics, doesn't actually do block at a time though
because of SSL_write behavior and because front adds may be small */
int wolfSSL_writev(WOLFSSL* ssl, const struct iovec* iov, int iovcnt)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
int sending = 0;
int idx = 0;
int i;
int ret;
WOLFSSL_ENTER("wolfSSL_writev");
for (i = 0; i < iovcnt; i++)
sending += (int)iov[i].iov_len;
if (sending > (int)sizeof(staticBuffer)) {
myBuffer = (byte*)XMALLOC(sending, ssl->heap,
DYNAMIC_TYPE_WRITEV);
if (!myBuffer)
return MEMORY_ERROR;
dynamic = 1;
}
for (i = 0; i < iovcnt; i++) {
XMEMCPY(&myBuffer[idx], iov[i].iov_base, iov[i].iov_len);
idx += (int)iov[i].iov_len;
}
ret = wolfSSL_write(ssl, myBuffer, sending);
if (dynamic)
XFREE(myBuffer, ssl->heap, DYNAMIC_TYPE_WRITEV);
return ret;
}
#endif
#endif
#ifdef WOLFSSL_CALLBACKS
typedef struct itimerval Itimerval;
/* don't keep calling simple functions while setting up timer and signals
if no inlining these are the next best */
#define AddTimes(a, b, c) \
do { \
c.tv_sec = a.tv_sec + b.tv_sec; \
c.tv_usec = a.tv_usec + b.tv_usec; \
if (c.tv_usec >= 1000000) { \
c.tv_sec++; \
c.tv_usec -= 1000000; \
} \
} while (0)
#define SubtractTimes(a, b, c) \
do { \
c.tv_sec = a.tv_sec - b.tv_sec; \
c.tv_usec = a.tv_usec - b.tv_usec; \
if (c.tv_usec < 0) { \
c.tv_sec--; \
c.tv_usec += 1000000; \
} \
} while (0)
#define CmpTimes(a, b, cmp) \
((a.tv_sec == b.tv_sec) ? \
(a.tv_usec cmp b.tv_usec) : \
(a.tv_sec cmp b.tv_sec)) \
/* do nothing handler */
static void myHandler(int signo)
{
(void)signo;
return;
}
static int wolfSSL_ex_wrapper(WOLFSSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout)
{
int ret = WOLFSSL_FATAL_ERROR;
int oldTimerOn = 0; /* was timer already on */
WOLFSSL_TIMEVAL startTime;
WOLFSSL_TIMEVAL endTime;
WOLFSSL_TIMEVAL totalTime;
Itimerval myTimeout;
Itimerval oldTimeout; /* if old timer adjust from total time to reset */
struct sigaction act, oact;
#define ERR_OUT(x) { ssl->hsInfoOn = 0; ssl->toInfoOn = 0; return x; }
if (hsCb) {
ssl->hsInfoOn = 1;
InitHandShakeInfo(&ssl->handShakeInfo, ssl);
}
if (toCb) {
ssl->toInfoOn = 1;
InitTimeoutInfo(&ssl->timeoutInfo);
if (gettimeofday(&startTime, 0) < 0)
ERR_OUT(GETTIME_ERROR);
/* use setitimer to simulate getitimer, init 0 myTimeout */
myTimeout.it_interval.tv_sec = 0;
myTimeout.it_interval.tv_usec = 0;
myTimeout.it_value.tv_sec = 0;
myTimeout.it_value.tv_usec = 0;
if (setitimer(ITIMER_REAL, &myTimeout, &oldTimeout) < 0)
ERR_OUT(SETITIMER_ERROR);
if (oldTimeout.it_value.tv_sec || oldTimeout.it_value.tv_usec) {
oldTimerOn = 1;
/* is old timer going to expire before ours */
if (CmpTimes(oldTimeout.it_value, timeout, <)) {
timeout.tv_sec = oldTimeout.it_value.tv_sec;
timeout.tv_usec = oldTimeout.it_value.tv_usec;
}
}
myTimeout.it_value.tv_sec = timeout.tv_sec;
myTimeout.it_value.tv_usec = timeout.tv_usec;
/* set up signal handler, don't restart socket send/recv */
act.sa_handler = myHandler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
#ifdef SA_INTERRUPT
act.sa_flags |= SA_INTERRUPT;
#endif
if (sigaction(SIGALRM, &act, &oact) < 0)
ERR_OUT(SIGACT_ERROR);
if (setitimer(ITIMER_REAL, &myTimeout, 0) < 0)
ERR_OUT(SETITIMER_ERROR);
}
/* do main work */
#ifndef NO_WOLFSSL_CLIENT
if (ssl->options.side == WOLFSSL_CLIENT_END)
ret = wolfSSL_connect(ssl);
#endif
#ifndef NO_WOLFSSL_SERVER
if (ssl->options.side == WOLFSSL_SERVER_END)
ret = wolfSSL_accept(ssl);
#endif
/* do callbacks */
if (toCb) {
if (oldTimerOn) {
gettimeofday(&endTime, 0);
SubtractTimes(endTime, startTime, totalTime);
/* adjust old timer for elapsed time */
if (CmpTimes(totalTime, oldTimeout.it_value, <))
SubtractTimes(oldTimeout.it_value, totalTime,
oldTimeout.it_value);
else {
/* reset value to interval, may be off */
oldTimeout.it_value.tv_sec = oldTimeout.it_interval.tv_sec;
oldTimeout.it_value.tv_usec =oldTimeout.it_interval.tv_usec;
}
/* keep iter the same whether there or not */
}
/* restore old handler */
if (sigaction(SIGALRM, &oact, 0) < 0)
ret = SIGACT_ERROR; /* more pressing error, stomp */
else
/* use old settings which may turn off (expired or not there) */
if (setitimer(ITIMER_REAL, &oldTimeout, 0) < 0)
ret = SETITIMER_ERROR;
/* if we had a timeout call callback */
if (ssl->timeoutInfo.timeoutName[0]) {
ssl->timeoutInfo.timeoutValue.tv_sec = timeout.tv_sec;
ssl->timeoutInfo.timeoutValue.tv_usec = timeout.tv_usec;
(toCb)(&ssl->timeoutInfo);
}
/* clean up */
FreeTimeoutInfo(&ssl->timeoutInfo, ssl->heap);
ssl->toInfoOn = 0;
}
if (hsCb) {
FinishHandShakeInfo(&ssl->handShakeInfo);
(hsCb)(&ssl->handShakeInfo);
ssl->hsInfoOn = 0;
}
return ret;
}
#ifndef NO_WOLFSSL_CLIENT
int wolfSSL_connect_ex(WOLFSSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout)
{
WOLFSSL_ENTER("wolfSSL_connect_ex");
return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout);
}
#endif
#ifndef NO_WOLFSSL_SERVER
int wolfSSL_accept_ex(WOLFSSL* ssl, HandShakeCallBack hsCb,
TimeoutCallBack toCb, WOLFSSL_TIMEVAL timeout)
{
WOLFSSL_ENTER("wolfSSL_accept_ex");
return wolfSSL_ex_wrapper(ssl, hsCb, toCb, timeout);
}
#endif
#endif /* WOLFSSL_CALLBACKS */
#ifndef NO_PSK
void wolfSSL_CTX_set_psk_client_callback(WOLFSSL_CTX* ctx,
wc_psk_client_callback cb)
{
WOLFSSL_ENTER("SSL_CTX_set_psk_client_callback");
if (ctx == NULL)
return;
ctx->havePSK = 1;
ctx->client_psk_cb = cb;
}
void wolfSSL_set_psk_client_callback(WOLFSSL* ssl,wc_psk_client_callback cb)
{
byte haveRSA = 1;
int keySz = 0;
WOLFSSL_ENTER("SSL_set_psk_client_callback");
if (ssl == NULL)
return;
ssl->options.havePSK = 1;
ssl->options.client_psk_cb = cb;
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
}
void wolfSSL_CTX_set_psk_server_callback(WOLFSSL_CTX* ctx,
wc_psk_server_callback cb)
{
WOLFSSL_ENTER("SSL_CTX_set_psk_server_callback");
if (ctx == NULL)
return;
ctx->havePSK = 1;
ctx->server_psk_cb = cb;
}
void wolfSSL_set_psk_server_callback(WOLFSSL* ssl,wc_psk_server_callback cb)
{
byte haveRSA = 1;
int keySz = 0;
WOLFSSL_ENTER("SSL_set_psk_server_callback");
if (ssl == NULL)
return;
ssl->options.havePSK = 1;
ssl->options.server_psk_cb = cb;
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, TRUE,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
}
const char* wolfSSL_get_psk_identity_hint(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_psk_identity_hint");
if (ssl == NULL || ssl->arrays == NULL)
return NULL;
return ssl->arrays->server_hint;
}
const char* wolfSSL_get_psk_identity(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_psk_identity");
if (ssl == NULL || ssl->arrays == NULL)
return NULL;
return ssl->arrays->client_identity;
}
int wolfSSL_CTX_use_psk_identity_hint(WOLFSSL_CTX* ctx, const char* hint)
{
WOLFSSL_ENTER("SSL_CTX_use_psk_identity_hint");
if (hint == 0)
ctx->server_hint[0] = '\0';
else {
/* Qt does not call CTX_set_*_psk_callbacks where havePSK is set */
#ifdef WOLFSSL_QT
ctx->havePSK=1;
#endif
XSTRNCPY(ctx->server_hint, hint, MAX_PSK_ID_LEN);
ctx->server_hint[MAX_PSK_ID_LEN] = '\0'; /* null term */
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_use_psk_identity_hint(WOLFSSL* ssl, const char* hint)
{
WOLFSSL_ENTER("SSL_use_psk_identity_hint");
if (ssl == NULL || ssl->arrays == NULL)
return WOLFSSL_FAILURE;
if (hint == 0)
ssl->arrays->server_hint[0] = 0;
else {
XSTRNCPY(ssl->arrays->server_hint, hint,
sizeof(ssl->arrays->server_hint)-1);
ssl->arrays->server_hint[sizeof(ssl->arrays->server_hint)-1] = '\0';
}
return WOLFSSL_SUCCESS;
}
void* wolfSSL_get_psk_callback_ctx(WOLFSSL* ssl)
{
return ssl ? ssl->options.psk_ctx : NULL;
}
void* wolfSSL_CTX_get_psk_callback_ctx(WOLFSSL_CTX* ctx)
{
return ctx ? ctx->psk_ctx : NULL;
}
int wolfSSL_set_psk_callback_ctx(WOLFSSL* ssl, void* psk_ctx)
{
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->options.psk_ctx = psk_ctx;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_set_psk_callback_ctx(WOLFSSL_CTX* ctx, void* psk_ctx)
{
if (ctx == NULL)
return WOLFSSL_FAILURE;
ctx->psk_ctx = psk_ctx;
return WOLFSSL_SUCCESS;
}
#endif /* NO_PSK */
#ifdef HAVE_ANON
int wolfSSL_CTX_allow_anon_cipher(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_allow_anon_cipher");
if (ctx == NULL)
return WOLFSSL_FAILURE;
ctx->haveAnon = 1;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ANON */
#ifndef NO_CERTS
/* used to be defined on NO_FILESYSTEM only, but are generally useful */
int wolfSSL_CTX_load_verify_buffer_ex(WOLFSSL_CTX* ctx,
const unsigned char* in,
long sz, int format, int userChain,
word32 flags)
{
int verify;
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_CTX_load_verify_buffer_ex");
verify = GET_VERIFY_SETTING_CTX(ctx);
if (flags & WOLFSSL_LOAD_FLAG_DATE_ERR_OKAY)
verify = VERIFY_SKIP_DATE;
if (format == WOLFSSL_FILETYPE_PEM)
ret = ProcessChainBuffer(ctx, in, sz, format, CA_TYPE, NULL,
verify);
else
ret = ProcessBuffer(ctx, in, sz, format, CA_TYPE, NULL, NULL,
userChain, verify);
WOLFSSL_LEAVE("wolfSSL_CTX_load_verify_buffer_ex", ret);
return ret;
}
/* wolfSSL extension allows DER files to be loaded from buffers as well */
int wolfSSL_CTX_load_verify_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in,
long sz, int format)
{
return wolfSSL_CTX_load_verify_buffer_ex(ctx, in, sz, format, 0,
WOLFSSL_LOAD_VERIFY_DEFAULT_FLAGS);
}
int wolfSSL_CTX_load_verify_chain_buffer_format(WOLFSSL_CTX* ctx,
const unsigned char* in,
long sz, int format)
{
return wolfSSL_CTX_load_verify_buffer_ex(ctx, in, sz, format, 1,
WOLFSSL_LOAD_VERIFY_DEFAULT_FLAGS);
}
#ifdef WOLFSSL_TRUST_PEER_CERT
int wolfSSL_CTX_trust_peer_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in,
long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_trust_peer_buffer");
/* sanity check on arguments */
if (sz < 0 || in == NULL || ctx == NULL) {
return BAD_FUNC_ARG;
}
if (format == WOLFSSL_FILETYPE_PEM)
return ProcessChainBuffer(ctx, in, sz, format, TRUSTED_PEER_TYPE,
NULL, GET_VERIFY_SETTING_CTX(ctx));
else
return ProcessBuffer(ctx, in, sz, format, TRUSTED_PEER_TYPE, NULL,
NULL, 0, GET_VERIFY_SETTING_CTX(ctx));
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
int wolfSSL_CTX_use_certificate_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in, long sz, int format)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_buffer");
ret = ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 0,
GET_VERIFY_SETTING_CTX(ctx));
WOLFSSL_LEAVE("wolfSSL_CTX_use_certificate_buffer", ret);
return ret;
}
int wolfSSL_CTX_use_PrivateKey_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in, long sz, int format)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey_buffer");
ret = ProcessBuffer(ctx, in, sz, format, PRIVATEKEY_TYPE, NULL, NULL,
0, GET_VERIFY_SETTING_CTX(ctx));
WOLFSSL_LEAVE("wolfSSL_CTX_use_PrivateKey_buffer", ret);
return ret;
}
#ifdef HAVE_PKCS11
int wolfSSL_CTX_use_PrivateKey_id(WOLFSSL_CTX* ctx, const unsigned char* id,
long sz, int devId, long keySz)
{
int ret = wolfSSL_CTX_use_PrivateKey_Id(ctx, id, sz, devId);
if (ret == WOLFSSL_SUCCESS)
ctx->privateKeySz = (word32)keySz;
return ret;
}
int wolfSSL_CTX_use_PrivateKey_Id(WOLFSSL_CTX* ctx, const unsigned char* id,
long sz, int devId)
{
int ret = WOLFSSL_FAILURE;
FreeDer(&ctx->privateKey);
if (AllocDer(&ctx->privateKey, (word32)sz, PRIVATEKEY_TYPE,
ctx->heap) == 0) {
XMEMCPY(ctx->privateKey->buffer, id, sz);
ctx->privateKeyId = 1;
if (devId != INVALID_DEVID)
ctx->privateKeyDevId = devId;
else
ctx->privateKeyDevId = ctx->devId;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
int wolfSSL_CTX_use_PrivateKey_Label(WOLFSSL_CTX* ctx, const char* label,
int devId)
{
int ret = WOLFSSL_FAILURE;
word32 sz = (word32)XSTRLEN(label) + 1;
FreeDer(&ctx->privateKey);
if (AllocDer(&ctx->privateKey, (word32)sz, PRIVATEKEY_TYPE,
ctx->heap) == 0) {
XMEMCPY(ctx->privateKey->buffer, label, sz);
ctx->privateKeyLabel = 1;
if (devId != INVALID_DEVID)
ctx->privateKeyDevId = devId;
else
ctx->privateKeyDevId = ctx->devId;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
#endif
int wolfSSL_CTX_use_certificate_chain_buffer_format(WOLFSSL_CTX* ctx,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_chain_buffer_format");
return ProcessBuffer(ctx, in, sz, format, CERT_TYPE, NULL, NULL, 1,
GET_VERIFY_SETTING_CTX(ctx));
}
int wolfSSL_CTX_use_certificate_chain_buffer(WOLFSSL_CTX* ctx,
const unsigned char* in, long sz)
{
return wolfSSL_CTX_use_certificate_chain_buffer_format(ctx, in, sz,
WOLFSSL_FILETYPE_PEM);
}
#ifndef NO_DH
/* server wrapper for ctx or ssl Diffie-Hellman parameters */
static int wolfSSL_SetTmpDH_buffer_wrapper(WOLFSSL_CTX* ctx, WOLFSSL* ssl,
const unsigned char* buf,
long sz, int format)
{
DerBuffer* der = NULL;
int ret = 0;
word32 pSz = MAX_DH_SIZE;
word32 gSz = MAX_DH_SIZE;
#ifdef WOLFSSL_SMALL_STACK
byte* p = NULL;
byte* g = NULL;
#else
byte p[MAX_DH_SIZE];
byte g[MAX_DH_SIZE];
#endif
if (ctx == NULL || buf == NULL)
return BAD_FUNC_ARG;
ret = AllocDer(&der, 0, DH_PARAM_TYPE, ctx->heap);
if (ret != 0) {
return ret;
}
der->buffer = (byte*)buf;
der->length = (word32)sz;
#ifdef WOLFSSL_SMALL_STACK
p = (byte*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
g = (byte*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (p == NULL || g == NULL) {
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
return MEMORY_E;
}
#endif
if (format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM)
ret = WOLFSSL_BAD_FILETYPE;
else {
if (format == WOLFSSL_FILETYPE_PEM) {
#ifdef WOLFSSL_PEM_TO_DER
FreeDer(&der);
ret = PemToDer(buf, sz, DH_PARAM_TYPE, &der, ctx->heap,
NULL, NULL);
#ifdef WOLFSSL_WPAS
#ifndef NO_DSA
if (ret < 0) {
ret = PemToDer(buf, sz, DSA_PARAM_TYPE, &der, ctx->heap,
NULL, NULL);
}
#endif
#endif /* WOLFSSL_WPAS */
#else
ret = NOT_COMPILED_IN;
#endif /* WOLFSSL_PEM_TO_DER */
}
if (ret == 0) {
if (wc_DhParamsLoad(der->buffer, der->length, p, &pSz, g, &gSz) < 0)
ret = WOLFSSL_BAD_FILETYPE;
else if (ssl)
ret = wolfSSL_SetTmpDH(ssl, p, pSz, g, gSz);
else
ret = wolfSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz);
}
}
FreeDer(&der);
#ifdef WOLFSSL_SMALL_STACK
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
#endif
return ret;
}
/* server Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */
int wolfSSL_SetTmpDH_buffer(WOLFSSL* ssl, const unsigned char* buf, long sz,
int format)
{
if (ssl == NULL)
return BAD_FUNC_ARG;
return wolfSSL_SetTmpDH_buffer_wrapper(ssl->ctx, ssl, buf, sz, format);
}
/* server ctx Diffie-Hellman parameters, WOLFSSL_SUCCESS on ok */
int wolfSSL_CTX_SetTmpDH_buffer(WOLFSSL_CTX* ctx, const unsigned char* buf,
long sz, int format)
{
return wolfSSL_SetTmpDH_buffer_wrapper(ctx, NULL, buf, sz, format);
}
#endif /* NO_DH */
int wolfSSL_use_certificate_buffer(WOLFSSL* ssl,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_use_certificate_buffer");
if (ssl == NULL)
return BAD_FUNC_ARG;
return ProcessBuffer(ssl->ctx, in, sz, format, CERT_TYPE, ssl, NULL, 0,
GET_VERIFY_SETTING_SSL(ssl));
}
int wolfSSL_use_PrivateKey_buffer(WOLFSSL* ssl,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_use_PrivateKey_buffer");
if (ssl == NULL)
return BAD_FUNC_ARG;
return ProcessBuffer(ssl->ctx, in, sz, format, PRIVATEKEY_TYPE,
ssl, NULL, 0, GET_VERIFY_SETTING_SSL(ssl));
}
#ifdef WOLF_CRYPTO_CB
int wolfSSL_use_PrivateKey_id(WOLFSSL* ssl, const unsigned char* id,
long sz, int devId, long keySz)
{
int ret = wolfSSL_use_PrivateKey_Id(ssl, id, sz, devId);
if (ret == WOLFSSL_SUCCESS)
ssl->buffers.keySz = (word32)keySz;
return ret;
}
int wolfSSL_use_PrivateKey_Id(WOLFSSL* ssl, const unsigned char* id,
long sz, int devId)
{
int ret = WOLFSSL_FAILURE;
if (ssl->buffers.weOwnKey)
FreeDer(&ssl->buffers.key);
if (AllocDer(&ssl->buffers.key, (word32)sz, PRIVATEKEY_TYPE,
ssl->heap) == 0) {
XMEMCPY(ssl->buffers.key->buffer, id, sz);
ssl->buffers.weOwnKey = 1;
ssl->buffers.keyId = 1;
if (devId != INVALID_DEVID)
ssl->buffers.keyDevId = devId;
else
ssl->buffers.keyDevId = ssl->devId;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
int wolfSSL_use_PrivateKey_Label(WOLFSSL* ssl, const char* label, int devId)
{
int ret = WOLFSSL_FAILURE;
word32 sz = (word32)XSTRLEN(label) + 1;
if (ssl->buffers.weOwnKey)
FreeDer(&ssl->buffers.key);
if (AllocDer(&ssl->buffers.key, (word32)sz, PRIVATEKEY_TYPE,
ssl->heap) == 0) {
XMEMCPY(ssl->buffers.key->buffer, label, sz);
ssl->buffers.weOwnKey = 1;
ssl->buffers.keyLabel = 1;
if (devId != INVALID_DEVID)
ssl->buffers.keyDevId = devId;
else
ssl->buffers.keyDevId = ssl->devId;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
#endif
int wolfSSL_use_certificate_chain_buffer_format(WOLFSSL* ssl,
const unsigned char* in, long sz, int format)
{
WOLFSSL_ENTER("wolfSSL_use_certificate_chain_buffer_format");
if (ssl == NULL)
return BAD_FUNC_ARG;
return ProcessBuffer(ssl->ctx, in, sz, format, CERT_TYPE,
ssl, NULL, 1, GET_VERIFY_SETTING_SSL(ssl));
}
int wolfSSL_use_certificate_chain_buffer(WOLFSSL* ssl,
const unsigned char* in, long sz)
{
return wolfSSL_use_certificate_chain_buffer_format(ssl, in, sz,
WOLFSSL_FILETYPE_PEM);
}
/* unload any certs or keys that SSL owns, leave CTX as is
WOLFSSL_SUCCESS on ok */
int wolfSSL_UnloadCertsKeys(WOLFSSL* ssl)
{
if (ssl == NULL) {
WOLFSSL_MSG("Null function arg");
return BAD_FUNC_ARG;
}
if (ssl->buffers.weOwnCert && !ssl->keepCert) {
WOLFSSL_MSG("Unloading cert");
FreeDer(&ssl->buffers.certificate);
#ifdef KEEP_OUR_CERT
wolfSSL_X509_free(ssl->ourCert);
ssl->ourCert = NULL;
#endif
ssl->buffers.weOwnCert = 0;
}
if (ssl->buffers.weOwnCertChain) {
WOLFSSL_MSG("Unloading cert chain");
FreeDer(&ssl->buffers.certChain);
ssl->buffers.weOwnCertChain = 0;
}
if (ssl->buffers.weOwnKey) {
WOLFSSL_MSG("Unloading key");
FreeDer(&ssl->buffers.key);
ssl->buffers.weOwnKey = 0;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_UnloadCAs(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_UnloadCAs");
if (ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerUnloadCAs(ctx->cm);
}
#ifdef WOLFSSL_TRUST_PEER_CERT
int wolfSSL_CTX_Unload_trust_peers(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_Unload_trust_peers");
if (ctx == NULL)
return BAD_FUNC_ARG;
return wolfSSL_CertManagerUnload_trust_peers(ctx->cm);
}
#endif /* WOLFSSL_TRUST_PEER_CERT */
/* old NO_FILESYSTEM end */
#endif /* !NO_CERTS */
#ifdef OPENSSL_EXTRA
int wolfSSL_add_all_algorithms(void)
{
WOLFSSL_ENTER("wolfSSL_add_all_algorithms");
if (wolfSSL_Init() == WOLFSSL_SUCCESS)
return WOLFSSL_SUCCESS;
else
return WOLFSSL_FATAL_ERROR;
}
int wolfSSL_OpenSSL_add_all_algorithms_noconf(void)
{
WOLFSSL_ENTER("wolfSSL_OpenSSL_add_all_algorithms_noconf");
if (wolfSSL_add_all_algorithms() == WOLFSSL_FATAL_ERROR)
return WOLFSSL_FATAL_ERROR;
return WOLFSSL_SUCCESS;
}
int wolfSSL_OpenSSL_add_all_algorithms_conf(void)
{
WOLFSSL_ENTER("wolfSSL_OpenSSL_add_all_algorithms_conf");
/* This function is currently the same as
wolfSSL_OpenSSL_add_all_algorithms_noconf since we do not employ
the use of a wolfssl.cnf type configuration file and is only used for
OpenSSL compatability. */
if (wolfSSL_add_all_algorithms() == WOLFSSL_FATAL_ERROR) {
return WOLFSSL_FATAL_ERROR;
}
return WOLFSSL_SUCCESS;
}
/* returns previous set cache size which stays constant */
long wolfSSL_CTX_sess_set_cache_size(WOLFSSL_CTX* ctx, long sz)
{
/* cache size fixed at compile time in wolfSSL */
(void)ctx;
(void)sz;
WOLFSSL_MSG("session cache is set at compile time");
#ifndef NO_SESSION_CACHE
return (long)(SESSIONS_PER_ROW * SESSION_ROWS);
#else
return 0;
#endif
}
#endif
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
void wolfSSL_CTX_set_quiet_shutdown(WOLFSSL_CTX* ctx, int mode)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown");
if (mode)
ctx->quietShutdown = 1;
}
void wolfSSL_set_quiet_shutdown(WOLFSSL* ssl, int mode)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_quiet_shutdown");
if (mode)
ssl->options.quietShutdown = 1;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
#ifndef NO_BIO
void wolfSSL_set_bio(WOLFSSL* ssl, WOLFSSL_BIO* rd, WOLFSSL_BIO* wr)
{
WOLFSSL_ENTER("wolfSSL_set_bio");
if (ssl == NULL) {
WOLFSSL_MSG("Bad argument, ssl was NULL");
return;
}
/* if WOLFSSL_BIO is socket type then set WOLFSSL socket to use */
if (rd != NULL && rd->type == WOLFSSL_BIO_SOCKET) {
wolfSSL_set_rfd(ssl, rd->num);
}
if (wr != NULL && wr->type == WOLFSSL_BIO_SOCKET) {
wolfSSL_set_wfd(ssl, wr->num);
}
/* free any existing WOLFSSL_BIOs in use */
if (ssl->biord != NULL) {
if (ssl->biord != ssl->biowr) {
if (ssl->biowr != NULL) {
wolfSSL_BIO_free(ssl->biowr);
ssl->biowr = NULL;
}
}
wolfSSL_BIO_free(ssl->biord);
ssl->biord = NULL;
}
ssl->biord = rd;
ssl->biowr = wr;
/* set SSL to use BIO callbacks instead */
if (((ssl->cbioFlag & WOLFSSL_CBIO_RECV) == 0) &&
(rd != NULL && rd->type != WOLFSSL_BIO_SOCKET)) {
ssl->CBIORecv = BioReceive;
}
if (((ssl->cbioFlag & WOLFSSL_CBIO_SEND) == 0) &&
(wr != NULL && wr->type != WOLFSSL_BIO_SOCKET)) {
ssl->CBIOSend = BioSend;
}
/* User programs should always retry reading from these BIOs */
if (rd) {
/* User writes to rd */
BIO_set_retry_write(rd);
}
if (wr) {
/* User reads from wr */
BIO_set_retry_read(wr);
}
}
#endif /* !NO_BIO */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) || defined(HAVE_WEBSERVER)
void wolfSSL_CTX_set_client_CA_list(WOLFSSL_CTX* ctx,
WOLF_STACK_OF(WOLFSSL_X509_NAME)* names)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_client_CA_list");
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA)
if (ctx != NULL)
ctx->ca_names = names;
#else
(void)ctx;
(void)names;
#endif
}
/* returns the CA's set on server side or the CA's sent from server when
* on client side */
#if defined(SESSION_CERTS) && defined(OPENSSL_ALL)
WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_get_client_CA_list(
const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_client_CA_list");
if (ssl == NULL) {
WOLFSSL_MSG("Bad argument passed to wolfSSL_get_client_CA_list");
return NULL;
}
/* return list of CAs sent from the server */
if (ssl->options.side == WOLFSSL_CLIENT_END) {
WOLF_STACK_OF(WOLFSSL_X509)* sk;
sk = wolfSSL_get_peer_cert_chain(ssl);
if (sk != NULL) {
WOLF_STACK_OF(WOLFSSL_X509_NAME)* ret;
WOLFSSL_X509* x509;
ret = wolfSSL_sk_X509_NAME_new(NULL);
do {
x509 = wolfSSL_sk_X509_pop(sk);
if (x509 != NULL) {
if (wolfSSL_X509_get_isCA(x509)) {
if (wolfSSL_sk_X509_NAME_push(ret,
wolfSSL_X509_get_subject_name(x509)) != 0) {
WOLFSSL_MSG("Error pushing X509 name to stack");
/* continue on to try other certificates and
* do not fail out here */
}
}
wolfSSL_X509_free(x509);
}
} while (x509 != NULL);
wolfSSL_sk_X509_free(sk);
return ret;
}
return NULL;
}
else {
/* currently only can be set in the CTX */
return ssl->ctx->ca_names;
}
}
#endif /* SESSION_CERTS */
#if defined(OPENSSL_ALL) || defined(OPENSSL_EXTRA) || \
defined(WOLFSSL_NGINX) || defined (WOLFSSL_HAPROXY)
/* registers client cert callback, called during handshake if server
requests client auth but user has not loaded client cert/key */
void wolfSSL_CTX_set_client_cert_cb(WOLFSSL_CTX *ctx, client_cert_cb cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_client_cert_cb");
if (ctx != NULL) {
ctx->CBClientCert = cb;
}
}
#endif /* OPENSSL_ALL || OPENSSL_EXTRA || WOLFSSL_NGINX || WOLFSSL_HAPROXY */
#endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || HAVE_WEBSERVER */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA)
WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_CTX_get_client_CA_list(
const WOLFSSL_CTX *s)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_client_CA_list");
if (s == NULL)
return NULL;
return s->ca_names;
}
#endif
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
#ifndef NO_BIO
#if !defined(NO_RSA) && !defined(NO_CERTS)
WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_load_client_CA_file(const char* fname)
{
/* The webserver build is using this to load a CA into the server
* for client authentication as an option. Have this return NULL in
* that case. If OPENSSL_EXTRA is enabled, go ahead and include
* the function. */
#ifdef OPENSSL_EXTRA
WOLFSSL_STACK *list = NULL;
WOLFSSL_STACK *node;
WOLFSSL_BIO* bio;
WOLFSSL_X509 *cert = NULL;
WOLFSSL_X509_NAME *subjectName = NULL;
unsigned long err;
WOLFSSL_ENTER("wolfSSL_load_client_CA_file");
bio = wolfSSL_BIO_new_file(fname, "rb");
if (bio == NULL)
return NULL;
/* Read each certificate in the chain out of the file. */
while (wolfSSL_PEM_read_bio_X509(bio, &cert, NULL, NULL) != NULL) {
subjectName = wolfSSL_X509_get_subject_name(cert);
if (subjectName == NULL)
break;
node = wolfSSL_sk_new_node(NULL);
if (node == NULL)
break;
node->type = STACK_TYPE_X509_NAME;
/* Need a persistent copy of the subject name. */
node->data.name = wolfSSL_X509_NAME_dup(subjectName);
if (node->data.name != NULL) {
/*
* Original cert will be freed so make sure not to try to access
* it in the future.
*/
node->data.name->x509 = NULL;
}
/* Put node on the front of the list. */
node->num = (list == NULL) ? 1 : list->num + 1;
node->next = list;
list = node;
wolfSSL_X509_free(cert);
cert = NULL;
}
err = wolfSSL_ERR_peek_last_error();
if (ERR_GET_LIB(err) == ERR_LIB_PEM &&
ERR_GET_REASON(err) == PEM_R_NO_START_LINE) {
/*
* wolfSSL_PEM_read_bio_X509 pushes an ASN_NO_PEM_HEADER error
* to the error queue on file end. This should not be left
* for the caller to find so we clear the last error.
*/
wc_RemoveErrorNode(-1);
}
wolfSSL_X509_free(cert);
wolfSSL_BIO_free(bio);
return list;
#else
(void)fname;
return NULL;
#endif
}
#endif
#endif /* !NO_BIO */
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
#ifdef OPENSSL_EXTRA
#if !defined(NO_RSA) && !defined(NO_CERTS)
int wolfSSL_CTX_add_client_CA(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509)
{
WOLFSSL_STACK *node = NULL;
WOLFSSL_X509_NAME *subjectName = NULL;
WOLFSSL_ENTER("wolfSSL_CTX_add_client_CA");
if (ctx == NULL || x509 == NULL){
WOLFSSL_MSG("Bad argument");
return SSL_FAILURE;
}
subjectName = wolfSSL_X509_get_subject_name(x509);
if (subjectName == NULL){
WOLFSSL_MSG("invalid x509 data");
return SSL_FAILURE;
}
/* Alloc stack struct */
node = (WOLF_STACK_OF(WOLFSSL_X509_NAME)*)XMALLOC(
sizeof(WOLF_STACK_OF(WOLFSSL_X509_NAME)),
NULL, DYNAMIC_TYPE_OPENSSL);
if (node == NULL){
WOLFSSL_MSG("memory allocation error");
return SSL_FAILURE;
}
XMEMSET(node, 0, sizeof(WOLF_STACK_OF(WOLFSSL_X509_NAME)));
/* Alloc and copy WOLFSSL_X509_NAME */
node->data.name = (WOLFSSL_X509_NAME*)XMALLOC(
sizeof(WOLFSSL_X509_NAME),
NULL, DYNAMIC_TYPE_OPENSSL);
if (node->data.name == NULL) {
XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL);
WOLFSSL_MSG("memory allocation error");
return SSL_FAILURE;
}
XMEMCPY(node->data.name, subjectName, sizeof(WOLFSSL_X509_NAME));
XMEMSET(subjectName, 0, sizeof(WOLFSSL_X509_NAME));
/* push new node onto head of stack */
node->num = (ctx->ca_names == NULL) ? 1 : ctx->ca_names->num + 1;
node->next = ctx->ca_names;
ctx->ca_names = node;
return WOLFSSL_SUCCESS;
}
#endif
#ifndef NO_WOLFSSL_STUB
int wolfSSL_CTX_set_default_verify_paths(WOLFSSL_CTX* ctx)
{
/* TODO:, not needed in goahead */
(void)ctx;
WOLFSSL_STUB("SSL_CTX_set_default_verify_paths");
return SSL_NOT_IMPLEMENTED;
}
#endif
#if defined(WOLFCRYPT_HAVE_SRP) && !defined(NO_SHA256) \
&& !defined(WC_NO_RNG)
static const byte srp_N[] = {
0xEE, 0xAF, 0x0A, 0xB9, 0xAD, 0xB3, 0x8D, 0xD6, 0x9C, 0x33, 0xF8,
0x0A, 0xFA, 0x8F, 0xC5, 0xE8, 0x60, 0x72, 0x61, 0x87, 0x75, 0xFF,
0x3C, 0x0B, 0x9E, 0xA2, 0x31, 0x4C, 0x9C, 0x25, 0x65, 0x76, 0xD6,
0x74, 0xDF, 0x74, 0x96, 0xEA, 0x81, 0xD3, 0x38, 0x3B, 0x48, 0x13,
0xD6, 0x92, 0xC6, 0xE0, 0xE0, 0xD5, 0xD8, 0xE2, 0x50, 0xB9, 0x8B,
0xE4, 0x8E, 0x49, 0x5C, 0x1D, 0x60, 0x89, 0xDA, 0xD1, 0x5D, 0xC7,
0xD7, 0xB4, 0x61, 0x54, 0xD6, 0xB6, 0xCE, 0x8E, 0xF4, 0xAD, 0x69,
0xB1, 0x5D, 0x49, 0x82, 0x55, 0x9B, 0x29, 0x7B, 0xCF, 0x18, 0x85,
0xC5, 0x29, 0xF5, 0x66, 0x66, 0x0E, 0x57, 0xEC, 0x68, 0xED, 0xBC,
0x3C, 0x05, 0x72, 0x6C, 0xC0, 0x2F, 0xD4, 0xCB, 0xF4, 0x97, 0x6E,
0xAA, 0x9A, 0xFD, 0x51, 0x38, 0xFE, 0x83, 0x76, 0x43, 0x5B, 0x9F,
0xC6, 0x1D, 0x2F, 0xC0, 0xEB, 0x06, 0xE3
};
static const byte srp_g[] = {
0x02
};
int wolfSSL_CTX_set_srp_username(WOLFSSL_CTX* ctx, char* username)
{
int r = 0;
SrpSide srp_side = SRP_CLIENT_SIDE;
byte salt[SRP_SALT_SIZE];
WOLFSSL_ENTER("wolfSSL_CTX_set_srp_username");
if (ctx == NULL || ctx->srp == NULL || username==NULL)
return SSL_FAILURE;
if (ctx->method->side == WOLFSSL_SERVER_END){
srp_side = SRP_SERVER_SIDE;
} else if (ctx->method->side == WOLFSSL_CLIENT_END){
srp_side = SRP_CLIENT_SIDE;
} else {
WOLFSSL_MSG("Init CTX failed");
return SSL_FAILURE;
}
if (wc_SrpInit(ctx->srp, SRP_TYPE_SHA256, srp_side) < 0) {
WOLFSSL_MSG("Init SRP CTX failed");
XFREE(ctx->srp, ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp = NULL;
return SSL_FAILURE;
}
r = wc_SrpSetUsername(ctx->srp, (const byte*)username,
(word32)XSTRLEN(username));
if (r < 0) {
WOLFSSL_MSG("fail to set srp username.");
return SSL_FAILURE;
}
/* if wolfSSL_CTX_set_srp_password has already been called, */
/* execute wc_SrpSetPassword here */
if (ctx->srp_password != NULL) {
WC_RNG rng;
if (wc_InitRng(&rng) < 0){
WOLFSSL_MSG("wc_InitRng failed");
return SSL_FAILURE;
}
XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0]));
r = wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0]));
wc_FreeRng(&rng);
if (r < 0) {
WOLFSSL_MSG("wc_RNG_GenerateBlock failed");
return SSL_FAILURE;
}
if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]),
srp_g, sizeof(srp_g)/sizeof(srp_g[0]),
salt, sizeof(salt)/sizeof(salt[0])) < 0) {
WOLFSSL_MSG("wc_SrpSetParam failed");
return SSL_FAILURE;
}
r = wc_SrpSetPassword(ctx->srp,
(const byte*)ctx->srp_password,
(word32)XSTRLEN((char *)ctx->srp_password));
if (r < 0) {
WOLFSSL_MSG("fail to set srp password.");
return SSL_FAILURE;
}
XFREE(ctx->srp_password, ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp_password = NULL;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_set_srp_password(WOLFSSL_CTX* ctx, char* password)
{
int r;
byte salt[SRP_SALT_SIZE];
WOLFSSL_ENTER("wolfSSL_CTX_set_srp_password");
if (ctx == NULL || ctx->srp == NULL || password == NULL)
return SSL_FAILURE;
if (ctx->srp->user != NULL) {
WC_RNG rng;
if (wc_InitRng(&rng) < 0) {
WOLFSSL_MSG("wc_InitRng failed");
return SSL_FAILURE;
}
XMEMSET(salt, 0, sizeof(salt)/sizeof(salt[0]));
r = wc_RNG_GenerateBlock(&rng, salt, sizeof(salt)/sizeof(salt[0]));
wc_FreeRng(&rng);
if (r < 0) {
WOLFSSL_MSG("wc_RNG_GenerateBlock failed");
return SSL_FAILURE;
}
if (wc_SrpSetParams(ctx->srp, srp_N, sizeof(srp_N)/sizeof(srp_N[0]),
srp_g, sizeof(srp_g)/sizeof(srp_g[0]),
salt, sizeof(salt)/sizeof(salt[0])) < 0){
WOLFSSL_MSG("wc_SrpSetParam failed");
wc_FreeRng(&rng);
return SSL_FAILURE;
}
r = wc_SrpSetPassword(ctx->srp, (const byte*)password,
(word32)XSTRLEN(password));
if (r < 0) {
WOLFSSL_MSG("wc_SrpSetPassword failed.");
wc_FreeRng(&rng);
return SSL_FAILURE;
}
if (ctx->srp_password != NULL){
XFREE(ctx->srp_password,NULL,
DYNAMIC_TYPE_SRP);
ctx->srp_password = NULL;
}
wc_FreeRng(&rng);
} else {
/* save password for wolfSSL_set_srp_username */
if (ctx->srp_password != NULL)
XFREE(ctx->srp_password,ctx->heap, DYNAMIC_TYPE_SRP);
ctx->srp_password = (byte*)XMALLOC(XSTRLEN(password) + 1, ctx->heap,
DYNAMIC_TYPE_SRP);
if (ctx->srp_password == NULL){
WOLFSSL_MSG("memory allocation error");
return SSL_FAILURE;
}
XMEMCPY(ctx->srp_password, password, XSTRLEN(password) + 1);
}
return WOLFSSL_SUCCESS;
}
/**
* The modulus passed to wc_SrpSetParams in ssl.c is constant so check
* that the requested strength is less than or equal to the size of the
* static modulus size.
* @param ctx Not used
* @param strength Minimum number of bits for the modulus
* @return 1 if strength is less than or equal to static modulus
* 0 if strength is greater than static modulus
*/
int wolfSSL_CTX_set_srp_strength(WOLFSSL_CTX *ctx, int strength)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_CTX_set_srp_strength");
if (strength > (int)(sizeof(srp_N)*8)) {
WOLFSSL_MSG("Bad Parameter");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
char* wolfSSL_get_srp_username(WOLFSSL *ssl)
{
if (ssl && ssl->ctx && ssl->ctx->srp) {
return (char*) ssl->ctx->srp->user;
}
return NULL;
}
#endif /* WOLFCRYPT_HAVE_SRP && !NO_SHA256 && !WC_NO_RNG */
/* keyblock size in bytes or -1 */
int wolfSSL_get_keyblock_size(WOLFSSL* ssl)
{
if (ssl == NULL)
return WOLFSSL_FATAL_ERROR;
return 2 * (ssl->specs.key_size + ssl->specs.iv_size +
ssl->specs.hash_size);
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* store keys returns WOLFSSL_SUCCESS or -1 on error */
int wolfSSL_get_keys(WOLFSSL* ssl, unsigned char** ms, unsigned int* msLen,
unsigned char** sr, unsigned int* srLen,
unsigned char** cr, unsigned int* crLen)
{
if (ssl == NULL || ssl->arrays == NULL)
return WOLFSSL_FATAL_ERROR;
*ms = ssl->arrays->masterSecret;
*sr = ssl->arrays->serverRandom;
*cr = ssl->arrays->clientRandom;
*msLen = SECRET_LEN;
*srLen = RAN_LEN;
*crLen = RAN_LEN;
return WOLFSSL_SUCCESS;
}
void wolfSSL_set_accept_state(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_set_accept_state");
if (ssl->options.side == WOLFSSL_CLIENT_END) {
#ifdef HAVE_ECC
ecc_key key;
word32 idx = 0;
if (ssl->options.haveStaticECC && ssl->buffers.key != NULL) {
if (wc_ecc_init(&key) >= 0) {
if (wc_EccPrivateKeyDecode(ssl->buffers.key->buffer, &idx, &key,
ssl->buffers.key->length) != 0) {
ssl->options.haveECDSAsig = 0;
ssl->options.haveECC = 0;
ssl->options.haveStaticECC = 0;
}
wc_ecc_free(&key);
}
}
#endif
#ifndef NO_DH
if (!ssl->options.haveDH && ssl->ctx->haveDH) {
ssl->buffers.serverDH_P = ssl->ctx->serverDH_P;
ssl->buffers.serverDH_G = ssl->ctx->serverDH_G;
ssl->options.haveDH = 1;
}
#endif
}
if (InitSSL_Side(ssl, WOLFSSL_SERVER_END) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error initializing server side");
}
}
#endif /* OPENSSL_EXTRA || WOLFSSL_EXTRA || WOLFSSL_WPAS_SMALL */
/* return true if connection established */
int wolfSSL_is_init_finished(WOLFSSL* ssl)
{
if (ssl == NULL)
return 0;
if (ssl->options.handShakeState == HANDSHAKE_DONE)
return 1;
return 0;
}
#ifdef OPENSSL_EXTRA
void wolfSSL_CTX_set_tmp_rsa_callback(WOLFSSL_CTX* ctx,
WOLFSSL_RSA*(*f)(WOLFSSL*, int, int))
{
/* wolfSSL verifies all these internally */
(void)ctx;
(void)f;
}
void wolfSSL_set_shutdown(WOLFSSL* ssl, int opt)
{
WOLFSSL_ENTER("wolfSSL_set_shutdown");
if(ssl==NULL) {
WOLFSSL_MSG("Shutdown not set. ssl is null");
return;
}
ssl->options.sentNotify = (opt&WOLFSSL_SENT_SHUTDOWN) > 0;
ssl->options.closeNotify = (opt&WOLFSSL_RECEIVED_SHUTDOWN) > 0;
}
long wolfSSL_CTX_get_options(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_options");
WOLFSSL_MSG("wolfSSL options are set through API calls and macros");
if(ctx == NULL)
return BAD_FUNC_ARG;
return ctx->mask;
}
#endif
static long wolf_set_options(long old_op, long op);
long wolfSSL_CTX_set_options(WOLFSSL_CTX* ctx, long opt)
{
WOLFSSL_ENTER("SSL_CTX_set_options");
if (ctx == NULL)
return BAD_FUNC_ARG;
ctx->mask = wolf_set_options(ctx->mask, opt);
return ctx->mask;
}
#ifdef OPENSSL_EXTRA
long wolfSSL_CTX_clear_options(WOLFSSL_CTX* ctx, long opt)
{
WOLFSSL_ENTER("SSL_CTX_clear_options");
if(ctx == NULL)
return BAD_FUNC_ARG;
ctx->mask &= ~opt;
return ctx->mask;
}
int wolfSSL_set_rfd(WOLFSSL* ssl, int rfd)
{
WOLFSSL_ENTER("SSL_set_rfd");
ssl->rfd = rfd; /* not used directly to allow IO callbacks */
ssl->IOCB_ReadCtx = &ssl->rfd;
return WOLFSSL_SUCCESS;
}
int wolfSSL_set_wfd(WOLFSSL* ssl, int wfd)
{
WOLFSSL_ENTER("SSL_set_wfd");
ssl->wfd = wfd; /* not used directly to allow IO callbacks */
ssl->IOCB_WriteCtx = &ssl->wfd;
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_EXTRA */
#if !defined(NO_CERTS) && (defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL))
WOLFSSL_X509_STORE* wolfSSL_CTX_get_cert_store(WOLFSSL_CTX* ctx)
{
if (ctx == NULL) {
return NULL;
}
return &ctx->x509_store;
}
void wolfSSL_CTX_set_cert_store(WOLFSSL_CTX* ctx, WOLFSSL_X509_STORE* str)
{
if (ctx == NULL || str == NULL || ctx->cm == str->cm) {
return;
}
if (wolfSSL_CertManager_up_ref(str->cm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_CertManager_up_ref error");
return;
}
/* free cert manager if have one */
if (ctx->cm != NULL) {
wolfSSL_CertManagerFree(ctx->cm);
}
ctx->cm = str->cm;
ctx->x509_store.cm = str->cm;
/* free existing store if it exists */
wolfSSL_X509_STORE_free(ctx->x509_store_pt);
ctx->x509_store.cache = str->cache;
ctx->x509_store_pt = str; /* take ownership of store and free it
with CTX free */
}
WOLFSSL_X509* wolfSSL_X509_STORE_CTX_get_current_cert(
WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_current_cert");
if (ctx)
return ctx->current_cert;
return NULL;
}
int wolfSSL_X509_STORE_CTX_get_error(WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_error");
if (ctx != NULL)
return ctx->error;
return 0;
}
int wolfSSL_X509_STORE_CTX_get_error_depth(WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_error_depth");
if(ctx)
return ctx->error_depth;
return WOLFSSL_FATAL_ERROR;
}
#endif /* !NO_CERTS && (OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL) */
#ifdef OPENSSL_EXTRA
#ifndef NO_CERTS
void wolfSSL_X509_STORE_CTX_set_verify_cb(WOLFSSL_X509_STORE_CTX *ctx,
WOLFSSL_X509_STORE_CTX_verify_cb verify_cb)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_set_verify_cb");
if(ctx == NULL)
return;
ctx->verify_cb = verify_cb;
}
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
void wolfSSL_X509_STORE_set_verify_cb(WOLFSSL_X509_STORE *st,
WOLFSSL_X509_STORE_CTX_verify_cb verify_cb)
{
WOLFSSL_ENTER("WOLFSSL_X509_STORE_set_verify_cb");
if (st != NULL) {
st->verify_cb = verify_cb;
}
}
#endif /* WOLFSSL_QT || OPENSSL_ALL */
#endif /* !NO_CERTS */
#ifndef NO_BIO
WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_md(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("wolfSSL_BIO_f_md");
meth.type = WOLFSSL_BIO_MD;
return &meth;
}
/* return the context and initialize the BIO state */
int wolfSSL_BIO_get_md_ctx(WOLFSSL_BIO *bio, WOLFSSL_EVP_MD_CTX **mdcp)
{
int ret = WOLFSSL_FAILURE;
if ((bio != NULL) && (mdcp != NULL)) {
*mdcp = (WOLFSSL_EVP_MD_CTX*)bio->ptr;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_buffer(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("BIO_f_buffer");
meth.type = WOLFSSL_BIO_BUFFER;
return &meth;
}
#ifndef NO_WOLFSSL_STUB
long wolfSSL_BIO_set_write_buffer_size(WOLFSSL_BIO* bio, long size)
{
/* wolfSSL has internal buffer, compatibility only */
WOLFSSL_ENTER("BIO_set_write_buffer_size");
WOLFSSL_MSG("Buffer resize failed");
WOLFSSL_STUB("BIO_set_write_buffer_size");
(void)bio;
(void) size;
/* Even though this is only a STUB at the moment many user applications
* may attempt to use this. OpenSSL documentation specifies the return
* "return 1 if the buffer was successfully resized or 0 for failure."
* since wolfSSL does not resize the buffer will always return failure
* by default due to memory concerns until this stub is promoted to
* a non-stub function */
return WOLFSSL_FAILURE; /* 0, no resize happened */
}
#endif
WOLFSSL_BIO_METHOD* wolfSSL_BIO_s_bio(void)
{
static WOLFSSL_BIO_METHOD bio_meth;
WOLFSSL_ENTER("wolfSSL_BIO_s_bio");
bio_meth.type = WOLFSSL_BIO_BIO;
return &bio_meth;
}
#ifndef NO_FILESYSTEM
WOLFSSL_BIO_METHOD* wolfSSL_BIO_s_file(void)
{
static WOLFSSL_BIO_METHOD file_meth;
WOLFSSL_ENTER("wolfSSL_BIO_s_file");
file_meth.type = WOLFSSL_BIO_FILE;
return &file_meth;
}
#endif
WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_ssl(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("wolfSSL_BIO_f_ssl");
meth.type = WOLFSSL_BIO_SSL;
return &meth;
}
WOLFSSL_BIO_METHOD *wolfSSL_BIO_s_socket(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("wolfSSL_BIO_s_socket");
meth.type = WOLFSSL_BIO_SOCKET;
return &meth;
}
WOLFSSL_BIO* wolfSSL_BIO_new_socket(int sfd, int closeF)
{
WOLFSSL_BIO* bio = wolfSSL_BIO_new(wolfSSL_BIO_s_socket());
WOLFSSL_ENTER("BIO_new_socket");
if (bio) {
bio->type = WOLFSSL_BIO_SOCKET;
bio->shutdown = (byte)closeF;
bio->num = sfd;
}
return bio;
}
/**
* Create new socket BIO object. This is a pure TCP connection with
* no SSL or TLS protection.
* @param str IP address to connect to
* @return New BIO object or NULL on failure
*/
WOLFSSL_BIO *wolfSSL_BIO_new_connect(const char *str)
{
WOLFSSL_BIO *bio;
WOLFSSL_ENTER("wolfSSL_BIO_new_connect");
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_socket());
if (bio) {
bio->ip = str;
bio->type = WOLFSSL_BIO_SOCKET;
}
return bio;
}
/**
* Set the port to connect to in the BIO object
* @param b BIO object
* @param port destination port
* @return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure
*/
long wolfSSL_BIO_set_conn_port(WOLFSSL_BIO *b, char* port)
{
int p;
WOLFSSL_ENTER("wolfSSL_BIO_set_conn_port");
if (!b || !port) {
WOLFSSL_ENTER("Bad parameter");
return WOLFSSL_FAILURE;
}
p = XATOI(port);
if (!p || p < 0) {
WOLFSSL_ENTER("Port parsing error");
return WOLFSSL_FAILURE;
}
b->port = (word16)p;
return WOLFSSL_SUCCESS;
}
#ifdef HAVE_HTTP_CLIENT
/**
* Attempt to connect to the destination address and port
* @param b BIO object
* @return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure
*/
long wolfSSL_BIO_do_connect(WOLFSSL_BIO *b)
{
SOCKET_T sfd = SOCKET_INVALID;
WOLFSSL_ENTER("wolfSSL_BIO_do_connect");
if (!b) {
WOLFSSL_ENTER("Bad parameter");
return WOLFSSL_FAILURE;
}
while (b && b->type != WOLFSSL_BIO_SOCKET)
b = b->next;
if (!b) {
WOLFSSL_ENTER("No socket BIO in chain");
return WOLFSSL_FAILURE;
}
if (wolfIO_TcpConnect(&sfd, b->ip, b->port, 0) < 0 ) {
WOLFSSL_ENTER("wolfIO_TcpConnect error");
return WOLFSSL_FAILURE;
}
b->num = sfd;
b->shutdown = BIO_CLOSE;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_HTTP_CLIENT */
int wolfSSL_BIO_eof(WOLFSSL_BIO* b)
{
WOLFSSL_ENTER("BIO_eof");
if ((b != NULL) && (b->eof))
return 1;
return 0;
}
long wolfSSL_BIO_set_ssl(WOLFSSL_BIO* b, WOLFSSL* ssl, int closeF)
{
WOLFSSL_ENTER("wolfSSL_BIO_set_ssl");
if (b != NULL) {
b->ptr = ssl;
b->shutdown = (byte)closeF;
/* add to ssl for bio free if SSL_free called before/instead of free_all? */
}
return 0;
}
#ifndef NO_FILESYSTEM
long wolfSSL_BIO_set_fd(WOLFSSL_BIO* b, int fd, int closeF)
{
WOLFSSL_ENTER("wolfSSL_BIO_set_fd");
if (b != NULL) {
b->num = fd;
b->shutdown = (byte)closeF;
}
return WOLFSSL_SUCCESS;
}
#endif
/* Sets the close flag */
int wolfSSL_BIO_set_close(WOLFSSL_BIO *b, long flag)
{
WOLFSSL_ENTER("wolfSSL_BIO_set_close");
if (b != NULL) {
b->shutdown = (byte)flag;
}
return WOLFSSL_SUCCESS;
}
WOLFSSL_BIO* wolfSSL_BIO_new(WOLFSSL_BIO_METHOD* method)
{
WOLFSSL_BIO* bio;
WOLFSSL_ENTER("wolfSSL_BIO_new");
if (method == NULL) {
WOLFSSL_MSG("Bad method pointer passed in");
return NULL;
}
bio = (WOLFSSL_BIO*) XMALLOC(sizeof(WOLFSSL_BIO), 0,
DYNAMIC_TYPE_OPENSSL);
if (bio) {
XMEMSET(bio, 0, sizeof(WOLFSSL_BIO));
bio->type = (byte)method->type;
bio->method = method;
bio->shutdown = BIO_CLOSE; /* default to close things */
bio->num = -1; /* Default to invalid socket */
bio->init = 1;
if (method->type != WOLFSSL_BIO_FILE &&
method->type != WOLFSSL_BIO_SOCKET &&
method->type != WOLFSSL_BIO_MD) {
bio->mem_buf =(WOLFSSL_BUF_MEM*)XMALLOC(sizeof(WOLFSSL_BUF_MEM),
0, DYNAMIC_TYPE_OPENSSL);
if (bio->mem_buf == NULL) {
WOLFSSL_MSG("Memory error");
wolfSSL_BIO_free(bio);
return NULL;
}
bio->mem_buf->data = (char*)bio->ptr;
}
if (method->type == WOLFSSL_BIO_MD) {
bio->ptr = wolfSSL_EVP_MD_CTX_new();
if (bio->ptr == NULL) {
WOLFSSL_MSG("Memory error");
wolfSSL_BIO_free(bio);
return NULL;
}
}
/* check if is custom method */
if (method->createCb) {
method->createCb(bio);
}
}
return bio;
}
WOLFSSL_BIO* wolfSSL_BIO_new_mem_buf(const void* buf, int len)
{
WOLFSSL_BIO* bio = NULL;
if (buf == NULL) {
return bio;
}
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem());
if (bio == NULL) {
return bio;
}
if (len < 0) {
len = (int)XSTRLEN((const char*)buf);
}
bio->num = bio->wrSz = len;
bio->ptr = (byte*)XMALLOC(len, 0, DYNAMIC_TYPE_OPENSSL);
if (bio->ptr == NULL) {
wolfSSL_BIO_free(bio);
return NULL;
}
if (bio->mem_buf != NULL) {
bio->mem_buf->data = (char*)bio->ptr;
bio->mem_buf->length = bio->num;
}
XMEMCPY(bio->ptr, buf, len);
return bio;
}
/*
* Note : If the flag BIO_NOCLOSE is set then freeing memory buffers is up
* to the application.
* Returns 1 on success, 0 on failure
*/
int wolfSSL_BIO_free(WOLFSSL_BIO* bio)
{
int ret;
/* unchain?, doesn't matter in goahead since from free all */
WOLFSSL_ENTER("wolfSSL_BIO_free");
if (bio) {
if (bio->infoCb) {
/* info callback is called before free */
ret = (int)bio->infoCb(bio, WOLFSSL_BIO_CB_FREE, NULL, 0, 0, 1);
if (ret <= 0) {
return ret;
}
}
/* call custom set free callback */
if (bio->method && bio->method->freeCb) {
bio->method->freeCb(bio);
}
/* remove from pair by setting the paired bios pair to NULL */
if (bio->pair != NULL) {
bio->pair->pair = NULL;
}
if (bio->shutdown) {
if (bio->type == WOLFSSL_BIO_SSL && bio->ptr)
wolfSSL_free((WOLFSSL*)bio->ptr);
#ifdef CloseSocket
if (bio->type == WOLFSSL_BIO_SOCKET && bio->num)
CloseSocket(bio->num);
#endif
}
#ifndef NO_FILESYSTEM
if (bio->type == WOLFSSL_BIO_FILE && bio->shutdown == BIO_CLOSE) {
if (bio->ptr) {
XFCLOSE((XFILE)bio->ptr);
}
#if !defined(USE_WINDOWS_API) && !defined(NO_WOLFSSL_DIR)\
&& !defined(WOLFSSL_NUCLEUS) && !defined(WOLFSSL_NUCLEUS_1_2)
else if (bio->num != -1) {
XCLOSE(bio->num);
}
#endif
}
#endif
if (bio->shutdown != BIO_NOCLOSE) {
if (bio->type == WOLFSSL_BIO_MEMORY && bio->ptr != NULL) {
if (bio->mem_buf != NULL) {
if (bio->mem_buf->data != (char*)bio->ptr) {
XFREE(bio->ptr, bio->heap, DYNAMIC_TYPE_OPENSSL);
bio->ptr = NULL;
}
}
else {
XFREE(bio->ptr, bio->heap, DYNAMIC_TYPE_OPENSSL);
bio->ptr = NULL;
}
}
if (bio->mem_buf != NULL) {
wolfSSL_BUF_MEM_free(bio->mem_buf);
bio->mem_buf = NULL;
}
}
if (bio->type == WOLFSSL_BIO_MD) {
wolfSSL_EVP_MD_CTX_free((WOLFSSL_EVP_MD_CTX*)bio->ptr);
}
XFREE(bio, 0, DYNAMIC_TYPE_OPENSSL);
}
return 1;
}
/* like BIO_free, but no return value */
void wolfSSL_BIO_vfree(WOLFSSL_BIO* bio)
{
wolfSSL_BIO_free(bio);
}
int wolfSSL_BIO_free_all(WOLFSSL_BIO* bio)
{
WOLFSSL_ENTER("BIO_free_all");
while (bio) {
WOLFSSL_BIO* next = bio->next;
wolfSSL_BIO_free(bio);
bio = next;
}
return 0;
}
WOLFSSL_BIO* wolfSSL_BIO_push(WOLFSSL_BIO* top, WOLFSSL_BIO* append)
{
WOLFSSL_ENTER("BIO_push");
top->next = append;
append->prev = top;
return top;
}
#endif /* !NO_BIO */
#endif /* OPENSSL_EXTRA */
#ifdef WOLFSSL_ENCRYPTED_KEYS
void wolfSSL_CTX_set_default_passwd_cb_userdata(WOLFSSL_CTX* ctx,
void* userdata)
{
WOLFSSL_ENTER("SSL_CTX_set_default_passwd_cb_userdata");
if (ctx)
ctx->passwd_userdata = userdata;
}
void wolfSSL_CTX_set_default_passwd_cb(WOLFSSL_CTX* ctx,pem_password_cb* cb)
{
WOLFSSL_ENTER("SSL_CTX_set_default_passwd_cb");
if (ctx)
ctx->passwd_cb = cb;
}
pem_password_cb* wolfSSL_CTX_get_default_passwd_cb(WOLFSSL_CTX *ctx)
{
if (ctx == NULL || ctx->passwd_cb == NULL) {
return NULL;
}
return ctx->passwd_cb;
}
void* wolfSSL_CTX_get_default_passwd_cb_userdata(WOLFSSL_CTX *ctx)
{
if (ctx == NULL) {
return NULL;
}
return ctx->passwd_userdata;
}
#endif /* WOLFSSL_ENCRYPTED_KEYS */
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
int wolfSSL_num_locks(void)
{
return 0;
}
void wolfSSL_set_locking_callback(void (*f)(int, int, const char*, int))
{
WOLFSSL_ENTER("wolfSSL_set_locking_callback");
if (wc_SetMutexCb(f) != 0) {
WOLFSSL_MSG("Error when setting mutex call back");
}
}
typedef unsigned long (idCb)(void);
static idCb* inner_idCb = NULL;
unsigned long wolfSSL_thread_id(void)
{
if (inner_idCb != NULL) {
return inner_idCb();
}
else {
return 0;
}
}
void wolfSSL_set_id_callback(unsigned long (*f)(void))
{
inner_idCb = f;
}
unsigned long wolfSSL_ERR_get_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_get_error");
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
{
unsigned long ret = wolfSSL_ERR_peek_error_line_data(NULL, NULL,
NULL, NULL);
wc_RemoveErrorNode(-1);
return ret;
}
#elif (defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE))
{
int ret = wc_PullErrorNode(NULL, NULL, NULL);
if (ret < 0) {
if (ret == BAD_STATE_E) return 0; /* no errors in queue */
WOLFSSL_MSG("Error with pulling error node!");
WOLFSSL_LEAVE("wolfSSL_ERR_get_error", ret);
ret = 0 - ret; /* return absolute value of error */
/* panic and try to clear out nodes */
wc_ClearErrorNodes();
}
return (unsigned long)ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#if (defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE))
#ifndef NO_BIO
/* print out and clear all errors */
void wolfSSL_ERR_print_errors(WOLFSSL_BIO* bio)
{
const char* file = NULL;
const char* reason = NULL;
int ret;
int line = 0;
char buf[WOLFSSL_MAX_ERROR_SZ * 2];
WOLFSSL_ENTER("wolfSSL_ERR_print_errors");
if (bio == NULL) {
WOLFSSL_MSG("BIO passed in was null");
return;
}
do {
ret = wc_PeekErrorNode(0, &file, &reason, &line);
if (ret >= 0) {
const char* r = wolfSSL_ERR_reason_error_string(0 - ret);
XSNPRINTF(buf, sizeof(buf), "error:%d:wolfSSL library:%s:%s:%d\n",
ret, r, file, line);
wolfSSL_BIO_write(bio, buf, (int)XSTRLEN(buf));
wc_RemoveErrorNode(0);
}
} while (ret >= 0);
wolfSSL_BIO_write(bio, "", 1);
}
#endif /* !NO_BIO */
#endif /* OPENSSL_EXTRA || DEBUG_WOLFSSL_VERBOSE */
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
#if !defined(NO_WOLFSSL_SERVER)
size_t wolfSSL_get_server_random(const WOLFSSL *ssl, unsigned char *out,
size_t outSz)
{
size_t size;
/* return max size of buffer */
if (outSz == 0) {
return RAN_LEN;
}
if (ssl == NULL || out == NULL) {
return 0;
}
if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) {
WOLFSSL_MSG("Arrays struct not saved after handshake");
return 0;
}
if (outSz > RAN_LEN) {
size = RAN_LEN;
}
else {
size = outSz;
}
XMEMCPY(out, ssl->arrays->serverRandom, size);
return size;
}
#endif /* !NO_WOLFSSL_SERVER */
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
#if !defined(NO_WOLFSSL_SERVER)
/* Used to get the peer ephemeral public key sent during the connection
* NOTE: currently wolfSSL_KeepHandshakeResources(WOLFSSL* ssl) must be called
* before the ephemeral key is stored.
* return WOLFSSL_SUCCESS on success */
int wolfSSL_get_server_tmp_key(const WOLFSSL* ssl, WOLFSSL_EVP_PKEY** pkey)
{
WOLFSSL_EVP_PKEY* ret = NULL;
WOLFSSL_ENTER("wolfSSL_get_server_tmp_key");
if (ssl == NULL || pkey == NULL) {
WOLFSSL_MSG("Bad argument passed in");
return WOLFSSL_FAILURE;
}
#ifdef HAVE_ECC
if (ssl->peerEccKey != NULL) {
unsigned char* der;
const unsigned char* pt;
unsigned int derSz = 0;
int sz;
if (wc_ecc_export_x963(ssl->peerEccKey, NULL, &derSz) !=
LENGTH_ONLY_E) {
WOLFSSL_MSG("get ecc der size failed");
return WOLFSSL_FAILURE;
}
derSz += MAX_SEQ_SZ + (2 * MAX_ALGO_SZ) + MAX_SEQ_SZ + TRAILING_ZERO;
der = (unsigned char*)XMALLOC(derSz, ssl->heap, DYNAMIC_TYPE_KEY);
if (der == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
if ((sz = wc_EccPublicKeyToDer(ssl->peerEccKey, der, derSz, 1)) <= 0) {
WOLFSSL_MSG("get ecc der failed");
XFREE(der, ssl->heap, DYNAMIC_TYPE_KEY);
return WOLFSSL_FAILURE;
}
pt = der; /* in case pointer gets advanced */
ret = wolfSSL_d2i_PUBKEY(NULL, &pt, sz);
XFREE(der, ssl->heap, DYNAMIC_TYPE_KEY);
}
#endif
*pkey = ret;
if (ret == NULL)
return WOLFSSL_FAILURE;
else
return WOLFSSL_SUCCESS;
}
#endif /* !NO_WOLFSSL_SERVER */
static int sanityCheckProtoVersion(WOLFSSL_CTX* ctx)
{
if ((ctx->mask & WOLFSSL_OP_NO_SSLv3) &&
(ctx->mask & WOLFSSL_OP_NO_TLSv1) &&
(ctx->mask & WOLFSSL_OP_NO_TLSv1_1) &&
(ctx->mask & WOLFSSL_OP_NO_TLSv1_2) &&
(ctx->mask & WOLFSSL_OP_NO_TLSv1_3)) {
WOLFSSL_MSG("All TLS versions disabled");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_set_min_proto_version(WOLFSSL_CTX* ctx, int version)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_min_proto_version");
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
switch (version) {
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
case SSL3_VERSION:
ctx->minDowngrade = SSLv3_MINOR;
break;
#endif
#ifndef NO_TLS
#ifndef NO_OLD_TLS
#ifdef WOLFSSL_ALLOW_TLSV10
case TLS1_VERSION:
ctx->minDowngrade = TLSv1_MINOR;
break;
#endif
case TLS1_1_VERSION:
ctx->minDowngrade = TLSv1_1_MINOR;
break;
#endif
#ifndef WOLFSSL_NO_TLS12
case TLS1_2_VERSION:
ctx->minDowngrade = TLSv1_2_MINOR;
break;
#endif
#ifdef WOLFSSL_TLS13
case TLS1_3_VERSION:
ctx->minDowngrade = TLSv1_3_MINOR;
break;
#endif
#endif
#ifdef WOLFSSL_DTLS
#ifndef NO_OLD_TLS
case DTLS1_VERSION:
ctx->minDowngrade = DTLS_MINOR;
break;
#endif
case DTLS1_2_VERSION:
ctx->minDowngrade = DTLSv1_2_MINOR;
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
switch (version) {
#ifndef NO_TLS
case TLS1_3_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_2);
FALL_THROUGH;
case TLS1_2_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_1);
FALL_THROUGH;
case TLS1_1_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1);
FALL_THROUGH;
case TLS1_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_SSLv3);
break;
#endif
#if defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)
case SSL3_VERSION:
case SSL2_VERSION:
/* Nothing to do here */
#endif
break;
#ifdef WOLFSSL_DTLS
#ifndef NO_OLD_TLS
case DTLS1_VERSION:
#endif
case DTLS1_2_VERSION:
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
return sanityCheckProtoVersion(ctx);
}
int wolfSSL_CTX_set_max_proto_version(WOLFSSL_CTX* ctx, int ver)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_max_proto_version");
if (!ctx || !ctx->method) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
switch (ver) {
case SSL2_VERSION:
WOLFSSL_MSG("wolfSSL does not support SSLv2");
return WOLFSSL_FAILURE;
#if (defined(WOLFSSL_ALLOW_SSLV3) && !defined(NO_OLD_TLS)) || !defined(NO_TLS)
case SSL3_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1);
FALL_THROUGH;
case TLS1_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_1);
FALL_THROUGH;
case TLS1_1_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_2);
FALL_THROUGH;
case TLS1_2_VERSION:
wolfSSL_CTX_set_options(ctx, WOLFSSL_OP_NO_TLSv1_3);
FALL_THROUGH;
case TLS1_3_VERSION:
/* Nothing to do here */
break;
#endif
#ifdef WOLFSSL_DTLS
#ifndef NO_OLD_TLS
case DTLS1_VERSION:
#endif
case DTLS1_2_VERSION:
break;
#endif
default:
WOLFSSL_MSG("Unrecognized protocol version or not compiled in");
return WOLFSSL_FAILURE;
}
return sanityCheckProtoVersion(ctx);
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
#if !defined(NO_WOLFSSL_CLIENT)
/* Return the amount of random bytes copied over or error case.
* ssl : ssl struct after handshake
* out : buffer to hold random bytes
* outSz : either 0 (return max buffer sz) or size of out buffer
*
* NOTE: wolfSSL_KeepArrays(ssl) must be called to retain handshake information.
*/
size_t wolfSSL_get_client_random(const WOLFSSL* ssl, unsigned char* out,
size_t outSz)
{
size_t size;
/* return max size of buffer */
if (outSz == 0) {
return RAN_LEN;
}
if (ssl == NULL || out == NULL) {
return 0;
}
if (ssl->options.saveArrays == 0 || ssl->arrays == NULL) {
WOLFSSL_MSG("Arrays struct not saved after handshake");
return 0;
}
if (outSz > RAN_LEN) {
size = RAN_LEN;
}
else {
size = outSz;
}
XMEMCPY(out, ssl->arrays->clientRandom, size);
return size;
}
#endif /* !NO_WOLFSSL_CLIENT */
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
unsigned long wolfSSLeay(void)
{
return SSLEAY_VERSION_NUMBER;
}
unsigned long wolfSSL_OpenSSL_version_num(void)
{
return OPENSSL_VERSION_NUMBER;
}
const char* wolfSSLeay_version(int type)
{
static const char* version = "SSLeay wolfSSL compatibility";
(void)type;
return version;
}
#ifndef NO_MD5
int wolfSSL_MD5_Init(WOLFSSL_MD5_CTX* md5)
{
int ret;
typedef char md5_test[sizeof(MD5_CTX) >= sizeof(wc_Md5) ? 1 : -1];
(void)sizeof(md5_test);
WOLFSSL_ENTER("MD5_Init");
ret = wc_InitMd5((wc_Md5*)md5);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_MD5_Update(WOLFSSL_MD5_CTX* md5, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("wolfSSL_MD5_Update");
ret = wc_Md5Update((wc_Md5*)md5, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_MD5_Final(byte* input, WOLFSSL_MD5_CTX* md5)
{
int ret;
WOLFSSL_ENTER("MD5_Final");
ret = wc_Md5Final((wc_Md5*)md5, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* !NO_MD5 */
#ifndef NO_SHA
int wolfSSL_SHA_Init(WOLFSSL_SHA_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA_CTX) >= sizeof(wc_Sha) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA_Init");
ret = wc_InitSha((wc_Sha*)sha);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA_Update(WOLFSSL_SHA_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA_Update");
ret = wc_ShaUpdate((wc_Sha*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA_Final(byte* input, WOLFSSL_SHA_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA_Final");
ret = wc_ShaFinal((wc_Sha*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA1_Init(WOLFSSL_SHA_CTX* sha)
{
WOLFSSL_ENTER("SHA1_Init");
return SHA_Init(sha);
}
int wolfSSL_SHA1_Update(WOLFSSL_SHA_CTX* sha, const void* input,
unsigned long sz)
{
WOLFSSL_ENTER("SHA1_Update");
return SHA_Update(sha, input, sz);
}
int wolfSSL_SHA1_Final(byte* input, WOLFSSL_SHA_CTX* sha)
{
WOLFSSL_ENTER("SHA1_Final");
return SHA_Final(input, sha);
}
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
int wolfSSL_SHA224_Init(WOLFSSL_SHA224_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA224_CTX) >= sizeof(wc_Sha224) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA224_Init");
ret = wc_InitSha224((wc_Sha224*)sha);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA224_Update(WOLFSSL_SHA224_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA224_Update");
ret = wc_Sha224Update((wc_Sha224*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA224_Final(byte* input, WOLFSSL_SHA224_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA224_Final");
ret = wc_Sha224Final((wc_Sha224*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* WOLFSSL_SHA224 */
int wolfSSL_SHA256_Init(WOLFSSL_SHA256_CTX* sha256)
{
int ret;
typedef char sha_test[sizeof(SHA256_CTX) >= sizeof(wc_Sha256) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA256_Init");
ret = wc_InitSha256((wc_Sha256*)sha256);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA256_Update(WOLFSSL_SHA256_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA256_Update");
ret = wc_Sha256Update((wc_Sha256*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA256_Final(byte* input, WOLFSSL_SHA256_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA256_Final");
ret = wc_Sha256Final((wc_Sha256*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#ifdef WOLFSSL_SHA384
int wolfSSL_SHA384_Init(WOLFSSL_SHA384_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA384_CTX) >= sizeof(wc_Sha384) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA384_Init");
ret = wc_InitSha384((wc_Sha384*)sha);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA384_Update(WOLFSSL_SHA384_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA384_Update");
ret = wc_Sha384Update((wc_Sha384*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA384_Final(byte* input, WOLFSSL_SHA384_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA384_Final");
ret = wc_Sha384Final((wc_Sha384*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
int wolfSSL_SHA512_Init(WOLFSSL_SHA512_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA512_CTX) >= sizeof(wc_Sha512) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA512_Init");
ret = wc_InitSha512((wc_Sha512*)sha);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA512_Update(WOLFSSL_SHA512_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA512_Update");
ret = wc_Sha512Update((wc_Sha512*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA512_Final(byte* input, WOLFSSL_SHA512_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA512_Final");
ret = wc_Sha512Final((wc_Sha512*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
int wolfSSL_SHA3_224_Init(WOLFSSL_SHA3_224_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA3_224_CTX) >= sizeof(wc_Sha3) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA3_224_Init");
ret = wc_InitSha3_224((wc_Sha3*)sha, NULL, 0);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA3_224_Update(WOLFSSL_SHA3_224_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA3_224_Update");
ret = wc_Sha3_224_Update((wc_Sha3*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA3_224_Final(byte* input, WOLFSSL_SHA3_224_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA3_224_Final");
ret = wc_Sha3_224_Final((wc_Sha3*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* WOLFSSL_NOSHA3_224 */
#ifndef WOLFSSL_NOSHA3_256
int wolfSSL_SHA3_256_Init(WOLFSSL_SHA3_256_CTX* sha3_256)
{
int ret;
typedef char sha_test[sizeof(SHA3_256_CTX) >= sizeof(wc_Sha3) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA3_256_Init");
ret = wc_InitSha3_256((wc_Sha3*)sha3_256, NULL, INVALID_DEVID);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA3_256_Update(WOLFSSL_SHA3_256_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA3_256_Update");
ret = wc_Sha3_256_Update((wc_Sha3*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA3_256_Final(byte* input, WOLFSSL_SHA3_256_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA3_256_Final");
ret = wc_Sha3_256_Final((wc_Sha3*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* WOLFSSL_NOSHA3_256 */
int wolfSSL_SHA3_384_Init(WOLFSSL_SHA3_384_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA3_384_CTX) >= sizeof(wc_Sha3) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA3_384_Init");
ret = wc_InitSha3_384((wc_Sha3*)sha, NULL, 0);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA3_384_Update(WOLFSSL_SHA3_384_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA3_384_Update");
ret = wc_Sha3_384_Update((wc_Sha3*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA3_384_Final(byte* input, WOLFSSL_SHA3_384_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA3_384_Final");
ret = wc_Sha3_384_Final((wc_Sha3*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#ifndef WOLFSSL_NOSHA3_512
int wolfSSL_SHA3_512_Init(WOLFSSL_SHA3_512_CTX* sha)
{
int ret;
typedef char sha_test[sizeof(SHA3_512_CTX) >= sizeof(wc_Sha3) ? 1 : -1];
(void)sizeof(sha_test);
WOLFSSL_ENTER("SHA3_512_Init");
ret = wc_InitSha3_512((wc_Sha3*)sha, NULL, 0);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA3_512_Update(WOLFSSL_SHA3_512_CTX* sha, const void* input,
unsigned long sz)
{
int ret;
WOLFSSL_ENTER("SHA3_512_Update");
ret = wc_Sha3_512_Update((wc_Sha3*)sha, (const byte*)input, (word32)sz);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
int wolfSSL_SHA3_512_Final(byte* input, WOLFSSL_SHA3_512_CTX* sha)
{
int ret;
WOLFSSL_ENTER("SHA3_512_Final");
ret = wc_Sha3_512_Final((wc_Sha3*)sha, input);
/* return 1 on success, 0 otherwise */
if (ret == 0)
return 1;
return 0;
}
#endif /* WOLFSSL_NOSHA3_512 */
#endif /* WOLFSSL_SHA3 */
/* store for external read of iv, WOLFSSL_SUCCESS on success */
int wolfSSL_StoreExternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_StoreExternalIV");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
return WOLFSSL_FATAL_ERROR;
}
switch (ctx->cipherType) {
#ifndef NO_AES
#ifdef HAVE_AES_CBC
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
WOLFSSL_MSG("AES CBC");
XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
break;
#endif
#ifdef HAVE_AESGCM
case AES_128_GCM_TYPE :
case AES_192_GCM_TYPE :
case AES_256_GCM_TYPE :
WOLFSSL_MSG("AES GCM");
XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
break;
#endif /* HAVE_AESGCM */
#ifdef HAVE_AES_ECB
case AES_128_ECB_TYPE :
case AES_192_ECB_TYPE :
case AES_256_ECB_TYPE :
WOLFSSL_MSG("AES ECB");
break;
#endif
#ifdef WOLFSSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
WOLFSSL_MSG("AES CTR");
XMEMCPY(ctx->iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
break;
#endif /* WOLFSSL_AES_COUNTER */
#ifdef WOLFSSL_AES_CFB
#if !defined(HAVE_SELFTEST) && !defined(HAVE_FIPS)
case AES_128_CFB1_TYPE:
case AES_192_CFB1_TYPE:
case AES_256_CFB1_TYPE:
WOLFSSL_MSG("AES CFB1");
break;
case AES_128_CFB8_TYPE:
case AES_192_CFB8_TYPE:
case AES_256_CFB8_TYPE:
WOLFSSL_MSG("AES CFB8");
break;
#endif /* !HAVE_SELFTEST && !HAVE_FIPS */
case AES_128_CFB128_TYPE:
case AES_192_CFB128_TYPE:
case AES_256_CFB128_TYPE:
WOLFSSL_MSG("AES CFB128");
break;
#endif /* WOLFSSL_AES_CFB */
#if defined(WOLFSSL_AES_OFB)
case AES_128_OFB_TYPE:
case AES_192_OFB_TYPE:
case AES_256_OFB_TYPE:
WOLFSSL_MSG("AES OFB");
break;
#endif /* WOLFSSL_AES_OFB */
#ifdef WOLFSSL_AES_XTS
case AES_128_XTS_TYPE:
case AES_256_XTS_TYPE:
WOLFSSL_MSG("AES XTS");
break;
#endif /* WOLFSSL_AES_XTS */
#endif /* NO_AES */
#ifndef NO_DES3
case DES_CBC_TYPE :
WOLFSSL_MSG("DES CBC");
XMEMCPY(ctx->iv, &ctx->cipher.des.reg, DES_BLOCK_SIZE);
break;
case DES_EDE3_CBC_TYPE :
WOLFSSL_MSG("DES EDE3 CBC");
XMEMCPY(ctx->iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE);
break;
#endif
#ifdef WOLFSSL_DES_ECB
case DES_ECB_TYPE :
WOLFSSL_MSG("DES ECB");
break;
case DES_EDE3_ECB_TYPE :
WOLFSSL_MSG("DES3 ECB");
break;
#endif
#ifdef HAVE_IDEA
case IDEA_CBC_TYPE :
WOLFSSL_MSG("IDEA CBC");
XMEMCPY(ctx->iv, &ctx->cipher.idea.reg, IDEA_BLOCK_SIZE);
break;
#endif
case ARC4_TYPE :
WOLFSSL_MSG("ARC4");
break;
case NULL_CIPHER_TYPE :
WOLFSSL_MSG("NULL");
break;
default: {
WOLFSSL_MSG("bad type");
return WOLFSSL_FATAL_ERROR;
}
}
return WOLFSSL_SUCCESS;
}
/* set internal IV from external, WOLFSSL_SUCCESS on success */
int wolfSSL_SetInternalIV(WOLFSSL_EVP_CIPHER_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_SetInternalIV");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
return WOLFSSL_FATAL_ERROR;
}
switch (ctx->cipherType) {
#ifndef NO_AES
#ifdef HAVE_AES_CBC
case AES_128_CBC_TYPE :
case AES_192_CBC_TYPE :
case AES_256_CBC_TYPE :
WOLFSSL_MSG("AES CBC");
XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#endif
#ifdef HAVE_AESGCM
case AES_128_GCM_TYPE :
case AES_192_GCM_TYPE :
case AES_256_GCM_TYPE :
WOLFSSL_MSG("AES GCM");
XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#endif
#ifdef HAVE_AES_ECB
case AES_128_ECB_TYPE :
case AES_192_ECB_TYPE :
case AES_256_ECB_TYPE :
WOLFSSL_MSG("AES ECB");
break;
#endif
#ifdef WOLFSSL_AES_COUNTER
case AES_128_CTR_TYPE :
case AES_192_CTR_TYPE :
case AES_256_CTR_TYPE :
WOLFSSL_MSG("AES CTR");
XMEMCPY(&ctx->cipher.aes.reg, ctx->iv, AES_BLOCK_SIZE);
break;
#endif
#endif /* NO_AES */
#ifndef NO_DES3
case DES_CBC_TYPE :
WOLFSSL_MSG("DES CBC");
XMEMCPY(&ctx->cipher.des.reg, ctx->iv, DES_BLOCK_SIZE);
break;
case DES_EDE3_CBC_TYPE :
WOLFSSL_MSG("DES EDE3 CBC");
XMEMCPY(&ctx->cipher.des3.reg, ctx->iv, DES_BLOCK_SIZE);
break;
#endif
#ifdef WOLFSSL_DES_ECB
case DES_ECB_TYPE :
WOLFSSL_MSG("DES ECB");
break;
case DES_EDE3_ECB_TYPE :
WOLFSSL_MSG("DES3 ECB");
break;
#endif
#ifdef HAVE_IDEA
case IDEA_CBC_TYPE :
WOLFSSL_MSG("IDEA CBC");
XMEMCPY(&ctx->cipher.idea.reg, ctx->iv, IDEA_BLOCK_SIZE);
break;
#endif
case ARC4_TYPE :
WOLFSSL_MSG("ARC4");
break;
case NULL_CIPHER_TYPE :
WOLFSSL_MSG("NULL");
break;
default: {
WOLFSSL_MSG("bad type");
return WOLFSSL_FATAL_ERROR;
}
}
return WOLFSSL_SUCCESS;
}
unsigned char* wolfSSL_HMAC(const WOLFSSL_EVP_MD* evp_md, const void* key,
int key_len, const unsigned char* d, int n,
unsigned char* md, unsigned int* md_len)
{
int type;
int mdlen;
unsigned char* ret = NULL;
#ifdef WOLFSSL_SMALL_STACK
Hmac* hmac = NULL;
#else
Hmac hmac[1];
#endif
void* heap = NULL;
WOLFSSL_ENTER("wolfSSL_HMAC");
if (!md) {
WOLFSSL_MSG("Static buffer not supported, pass in md buffer");
return NULL; /* no static buffer support */
}
#ifndef NO_MD5
if (XSTRNCMP(evp_md, "MD5", 3) == 0) {
type = WC_MD5;
mdlen = WC_MD5_DIGEST_SIZE;
} else
#endif
#ifdef WOLFSSL_SHA224
if (XSTRNCMP(evp_md, "SHA224", 6) == 0) {
type = WC_SHA224;
mdlen = WC_SHA224_DIGEST_SIZE;
} else
#endif
#ifndef NO_SHA256
if (XSTRNCMP(evp_md, "SHA256", 6) == 0) {
type = WC_SHA256;
mdlen = WC_SHA256_DIGEST_SIZE;
} else
#endif
#ifdef WOLFSSL_SHA384
if (XSTRNCMP(evp_md, "SHA384", 6) == 0) {
type = WC_SHA384;
mdlen = WC_SHA384_DIGEST_SIZE;
} else
#endif
#ifdef WOLFSSL_SHA512
if (XSTRNCMP(evp_md, "SHA512", 6) == 0) {
type = WC_SHA512;
mdlen = WC_SHA512_DIGEST_SIZE;
} else
#endif
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
if (XSTRNCMP(evp_md, "SHA3_224", 8) == 0) {
type = WC_SHA3_224;
mdlen = WC_SHA3_224_DIGEST_SIZE;
} else
#endif
#ifndef WOLFSSL_NOSHA3_256
if (XSTRNCMP(evp_md, "SHA3_256", 8) == 0) {
type = WC_SHA3_256;
mdlen = WC_SHA3_256_DIGEST_SIZE;
} else
#endif
if (XSTRNCMP(evp_md, "SHA3_384", 8) == 0) {
type = WC_SHA3_384;
mdlen = WC_SHA3_384_DIGEST_SIZE;
} else
#ifndef WOLFSSL_NOSHA3_512
if (XSTRNCMP(evp_md, "SHA3_512", 8) == 0) {
type = WC_SHA3_512;
mdlen = WC_SHA3_512_DIGEST_SIZE;
} else
#endif
#endif
#ifndef NO_SHA
if (XSTRNCMP(evp_md, "SHA", 3) == 0) {
type = WC_SHA;
mdlen = WC_SHA_DIGEST_SIZE;
} else
#endif
{
return NULL;
}
#ifdef WOLFSSL_SMALL_STACK
hmac = (Hmac*)XMALLOC(sizeof(Hmac), heap, DYNAMIC_TYPE_HMAC);
if (hmac == NULL)
return NULL;
#endif
if (wc_HmacInit(hmac, heap, INVALID_DEVID) == 0) {
if (wc_HmacSetKey(hmac, type, (const byte*)key, key_len) == 0) {
if (wc_HmacUpdate(hmac, d, n) == 0) {
if (wc_HmacFinal(hmac, md) == 0) {
if (md_len)
*md_len = mdlen;
ret = md;
}
}
}
wc_HmacFree(hmac);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(hmac, heap, DYNAMIC_TYPE_HMAC);
#endif
(void)evp_md;
return ret;
}
void wolfSSL_ERR_clear_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_clear_error");
#if defined(DEBUG_WOLFSSL) || defined(WOLFSSL_NGINX) || \
defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)
wc_ClearErrorNodes();
#endif
}
int wolfSSL_RAND_status(void)
{
return WOLFSSL_SUCCESS; /* wolfCrypt provides enough seed internally */
}
#ifndef NO_WOLFSSL_STUB
void wolfSSL_RAND_add(const void* add, int len, double entropy)
{
(void)add;
(void)len;
(void)entropy;
WOLFSSL_STUB("RAND_add");
/* wolfSSL seeds/adds internally, use explicit RNG if you want
to take control */
}
#endif
#ifndef NO_DES3
/* 0 on ok */
int wolfSSL_DES_key_sched(WOLFSSL_const_DES_cblock* key,
WOLFSSL_DES_key_schedule* schedule)
{
WOLFSSL_ENTER("wolfSSL_DES_key_sched");
if (key == NULL || schedule == NULL) {
WOLFSSL_MSG("Null argument passed in");
}
else {
XMEMCPY(schedule, key, sizeof(WOLFSSL_const_DES_cblock));
}
return 0;
}
/* intended to behave similar to Kerberos mit_des_cbc_cksum
* return the last 4 bytes of cipher text */
WOLFSSL_DES_LONG wolfSSL_DES_cbc_cksum(const unsigned char* in,
WOLFSSL_DES_cblock* out, long length, WOLFSSL_DES_key_schedule* sc,
WOLFSSL_const_DES_cblock* iv)
{
WOLFSSL_DES_LONG ret;
unsigned char* tmp;
unsigned char* data = (unsigned char*)in;
long dataSz = length;
byte dynamicFlag = 0; /* when padding the buffer created needs free'd */
WOLFSSL_ENTER("wolfSSL_DES_cbc_cksum");
if (in == NULL || out == NULL || sc == NULL || iv == NULL) {
WOLFSSL_MSG("Bad argument passed in");
return 0;
}
/* if input length is not a multiple of DES_BLOCK_SIZE pad with 0s */
if (dataSz % DES_BLOCK_SIZE) {
dataSz += DES_BLOCK_SIZE - (dataSz % DES_BLOCK_SIZE);
data = (unsigned char*)XMALLOC(dataSz, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (data == NULL) {
WOLFSSL_MSG("Issue creating temporary buffer");
return 0;
}
dynamicFlag = 1; /* set to free buffer at end */
XMEMCPY(data, in, length);
XMEMSET(data + length, 0, dataSz - length); /* padding */
}
tmp = (unsigned char*)XMALLOC(dataSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (tmp == NULL) {
WOLFSSL_MSG("Issue creating temporary buffer");
if (dynamicFlag == 1) {
XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
return 0;
}
wolfSSL_DES_cbc_encrypt(data, tmp, dataSz, sc,
(WOLFSSL_DES_cblock*)iv, 1);
XMEMCPY((unsigned char*)out, tmp + (dataSz - DES_BLOCK_SIZE),
DES_BLOCK_SIZE);
ret = (((*((unsigned char*)out + 4) & 0xFF) << 24)|
((*((unsigned char*)out + 5) & 0xFF) << 16)|
((*((unsigned char*)out + 6) & 0xFF) << 8) |
(*((unsigned char*)out + 7) & 0xFF));
XFREE(tmp, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (dynamicFlag == 1) {
XFREE(data, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
void wolfSSL_DES_cbc_encrypt(const unsigned char* input,
unsigned char* output, long length,
WOLFSSL_DES_key_schedule* schedule,
WOLFSSL_DES_cblock* ivec, int enc)
{
Des myDes;
byte lastblock[DES_BLOCK_SIZE];
int lb_sz;
long blk;
WOLFSSL_ENTER("DES_cbc_encrypt");
/* OpenSSL compat, no ret */
wc_Des_SetKey(&myDes, (const byte*)schedule, (const byte*)ivec, !enc);
lb_sz = length%DES_BLOCK_SIZE;
blk = length/DES_BLOCK_SIZE;
if (enc){
wc_Des_CbcEncrypt(&myDes, output, input, (word32)blk*DES_BLOCK_SIZE);
if(lb_sz){
XMEMSET(lastblock, 0, DES_BLOCK_SIZE);
XMEMCPY(lastblock, input+length-lb_sz, lb_sz);
wc_Des_CbcEncrypt(&myDes, output+blk*DES_BLOCK_SIZE,
lastblock, (word32)DES_BLOCK_SIZE);
}
}
else {
wc_Des_CbcDecrypt(&myDes, output, input, (word32)blk*DES_BLOCK_SIZE);
if(lb_sz){
wc_Des_CbcDecrypt(&myDes, lastblock, input+length-lb_sz, (word32)DES_BLOCK_SIZE);
XMEMCPY(output+length-lb_sz, lastblock, lb_sz);
}
}
}
/* WOLFSSL_DES_key_schedule is a unsigned char array of size 8 */
void wolfSSL_DES_ede3_cbc_encrypt(const unsigned char* input,
unsigned char* output, long sz,
WOLFSSL_DES_key_schedule* ks1,
WOLFSSL_DES_key_schedule* ks2,
WOLFSSL_DES_key_schedule* ks3,
WOLFSSL_DES_cblock* ivec, int enc)
{
int ret;
Des3 des;
byte key[24];/* EDE uses 24 size key */
byte lastblock[DES_BLOCK_SIZE];
int lb_sz;
long blk;
WOLFSSL_ENTER("wolfSSL_DES_ede3_cbc_encrypt");
XMEMSET(key, 0, sizeof(key));
XMEMCPY(key, *ks1, DES_BLOCK_SIZE);
XMEMCPY(&key[DES_BLOCK_SIZE], *ks2, DES_BLOCK_SIZE);
XMEMCPY(&key[DES_BLOCK_SIZE * 2], *ks3, DES_BLOCK_SIZE);
lb_sz = sz%DES_BLOCK_SIZE;
blk = sz/DES_BLOCK_SIZE;
/* OpenSSL compat, no ret */
(void)wc_Des3Init(&des, NULL, INVALID_DEVID);
if (enc) {
wc_Des3_SetKey(&des, key, (const byte*)ivec, DES_ENCRYPTION);
ret = wc_Des3_CbcEncrypt(&des, output, input, (word32)blk*DES_BLOCK_SIZE);
#if defined(WOLFSSL_ASYNC_CRYPT)
ret = wc_AsyncWait(ret, &des.asyncDev, WC_ASYNC_FLAG_NONE);
#endif
(void)ret; /* ignore return codes for processing */
if(lb_sz){
XMEMSET(lastblock, 0, DES_BLOCK_SIZE);
XMEMCPY(lastblock, input+sz-lb_sz, lb_sz);
ret = wc_Des3_CbcEncrypt(&des, output+blk*DES_BLOCK_SIZE,
lastblock, (word32)DES_BLOCK_SIZE);
#if defined(WOLFSSL_ASYNC_CRYPT)
ret = wc_AsyncWait(ret, &des.asyncDev, WC_ASYNC_FLAG_NONE);
#endif
(void)ret; /* ignore return codes for processing */
}
}
else {
wc_Des3_SetKey(&des, key, (const byte*)ivec, DES_DECRYPTION);
ret = wc_Des3_CbcDecrypt(&des, output, input, (word32)blk*DES_BLOCK_SIZE);
#if defined(WOLFSSL_ASYNC_CRYPT)
ret = wc_AsyncWait(ret, &des.asyncDev, WC_ASYNC_FLAG_NONE);
#endif
(void)ret; /* ignore return codes for processing */
if(lb_sz){
ret = wc_Des3_CbcDecrypt(&des, lastblock, input+sz-lb_sz, (word32)DES_BLOCK_SIZE);
#if defined(WOLFSSL_ASYNC_CRYPT)
ret = wc_AsyncWait(ret, &des.asyncDev, WC_ASYNC_FLAG_NONE);
#endif
(void)ret; /* ignore return codes for processing */
XMEMCPY(output+sz-lb_sz, lastblock, lb_sz);
}
}
wc_Des3Free(&des);
}
/* correctly sets ivec for next call */
void wolfSSL_DES_ncbc_encrypt(const unsigned char* input,
unsigned char* output, long length,
WOLFSSL_DES_key_schedule* schedule, WOLFSSL_DES_cblock* ivec,
int enc)
{
Des myDes;
byte lastblock[DES_BLOCK_SIZE];
int lb_sz;
long idx = length;
long blk;
WOLFSSL_ENTER("DES_ncbc_encrypt");
/* OpenSSL compat, no ret */
if (wc_Des_SetKey(&myDes, (const byte*)schedule,
(const byte*)ivec, !enc) != 0) {
WOLFSSL_MSG("wc_Des_SetKey return error.");
return;
}
lb_sz = length%DES_BLOCK_SIZE;
blk = length/DES_BLOCK_SIZE;
idx -= sizeof(DES_cblock);
if (lb_sz) {
idx += DES_BLOCK_SIZE - lb_sz;
}
if (enc){
wc_Des_CbcEncrypt(&myDes, output, input,
(word32)blk * DES_BLOCK_SIZE);
if (lb_sz){
XMEMSET(lastblock, 0, DES_BLOCK_SIZE);
XMEMCPY(lastblock, input+length-lb_sz, lb_sz);
wc_Des_CbcEncrypt(&myDes, output + blk * DES_BLOCK_SIZE,
lastblock, (word32)DES_BLOCK_SIZE);
}
XMEMCPY(ivec, output + idx, sizeof(DES_cblock));
} else {
WOLFSSL_DES_cblock tmp;
XMEMCPY(tmp, input + idx, sizeof(DES_cblock));
wc_Des_CbcDecrypt(&myDes, output, input,
(word32)blk * DES_BLOCK_SIZE);
if (lb_sz){
wc_Des_CbcDecrypt(&myDes, lastblock, input + length - lb_sz,
(word32)DES_BLOCK_SIZE);
XMEMCPY(output+length-lb_sz, lastblock, lb_sz);
}
XMEMCPY(ivec, tmp, sizeof(WOLFSSL_DES_cblock));
}
}
#endif /* NO_DES3 */
void wolfSSL_ERR_free_strings(void)
{
/* handled internally */
}
void wolfSSL_cleanup_all_ex_data(void)
{
/* nothing to do here */
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
int wolfSSL_clear(WOLFSSL* ssl)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
ssl->options.isClosed = 0;
ssl->options.connReset = 0;
ssl->options.sentNotify = 0;
ssl->options.sendVerify = 0;
ssl->options.serverState = NULL_STATE;
ssl->options.clientState = NULL_STATE;
ssl->options.connectState = CONNECT_BEGIN;
ssl->options.acceptState = ACCEPT_BEGIN;
ssl->options.handShakeState = NULL_STATE;
ssl->options.handShakeDone = 0;
ssl->options.processReply = 0; /* doProcessInit */
ssl->keys.encryptionOn = 0;
XMEMSET(&ssl->msgsReceived, 0, sizeof(ssl->msgsReceived));
if (ssl->hsHashes != NULL) {
#ifndef NO_OLD_TLS
#ifndef NO_MD5
if (wc_InitMd5_ex(&ssl->hsHashes->hashMd5, ssl->heap,
ssl->devId) != 0) {
return WOLFSSL_FAILURE;
}
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
wc_Md5SetFlags(&ssl->hsHashes->hashMd5, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
#ifndef NO_SHA
if (wc_InitSha_ex(&ssl->hsHashes->hashSha, ssl->heap,
ssl->devId) != 0) {
return WOLFSSL_FAILURE;
}
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
wc_ShaSetFlags(&ssl->hsHashes->hashSha, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
#endif
#ifndef NO_SHA256
if (wc_InitSha256_ex(&ssl->hsHashes->hashSha256, ssl->heap,
ssl->devId) != 0) {
return WOLFSSL_FAILURE;
}
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
wc_Sha256SetFlags(&ssl->hsHashes->hashSha256, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
#ifdef WOLFSSL_SHA384
if (wc_InitSha384_ex(&ssl->hsHashes->hashSha384, ssl->heap,
ssl->devId) != 0) {
return WOLFSSL_FAILURE;
}
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
wc_Sha384SetFlags(&ssl->hsHashes->hashSha384, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
#ifdef WOLFSSL_SHA512
if (wc_InitSha512_ex(&ssl->hsHashes->hashSha512, ssl->heap,
ssl->devId) != 0) {
return WOLFSSL_FAILURE;
}
#if defined(WOLFSSL_HASH_FLAGS) || defined(WOLF_CRYPTO_CB)
wc_Sha512SetFlags(&ssl->hsHashes->hashSha512, WC_HASH_FLAG_WILLCOPY);
#endif
#endif
}
#ifdef SESSION_CERTS
ssl->session.chain.count = 0;
#endif
#ifdef KEEP_PEER_CERT
FreeX509(&ssl->peerCert);
InitX509(&ssl->peerCert, 0, ssl->heap);
#endif
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
long wolfSSL_CTX_set_mode(WOLFSSL_CTX* ctx, long mode)
{
/* WOLFSSL_MODE_ACCEPT_MOVING_WRITE_BUFFER is wolfSSL default mode */
WOLFSSL_ENTER("SSL_CTX_set_mode");
switch(mode) {
case SSL_MODE_ENABLE_PARTIAL_WRITE:
ctx->partialWrite = 1;
break;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
case SSL_MODE_RELEASE_BUFFERS:
WOLFSSL_MSG("SSL_MODE_RELEASE_BUFFERS not implemented.");
break;
#endif
default:
WOLFSSL_MSG("Mode Not Implemented");
}
/* SSL_MODE_AUTO_RETRY
* Should not return -1 with renegotiation on read/write */
return mode;
}
#endif
#ifdef OPENSSL_EXTRA
#ifndef NO_WOLFSSL_STUB
long wolfSSL_SSL_get_mode(WOLFSSL* ssl)
{
/* TODO: */
(void)ssl;
WOLFSSL_STUB("SSL_get_mode");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_get_mode(WOLFSSL_CTX* ctx)
{
/* TODO: */
(void)ctx;
WOLFSSL_STUB("SSL_CTX_get_mode");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_CTX_set_default_read_ahead(WOLFSSL_CTX* ctx, int m)
{
/* TODO: maybe? */
(void)ctx;
(void)m;
WOLFSSL_STUB("SSL_CTX_set_default_read_ahead");
}
#endif
/* Storing app session context id, this value is inherited by WOLFSSL
* objects created from WOLFSSL_CTX. Any session that is imported with a
* different session context id will be rejected.
*
* ctx structure to set context in
* sid_ctx value of context to set
* sid_ctx_len length of sid_ctx buffer
*
* Returns WOLFSSL_SUCCESS in success case and SSL_FAILURE when failing
*/
int wolfSSL_CTX_set_session_id_context(WOLFSSL_CTX* ctx,
const unsigned char* sid_ctx,
unsigned int sid_ctx_len)
{
WOLFSSL_ENTER("SSL_CTX_set_session_id_context");
/* No application specific context needed for wolfSSL */
if (sid_ctx_len > ID_LEN || ctx == NULL || sid_ctx == NULL) {
return SSL_FAILURE;
}
XMEMCPY(ctx->sessionCtx, sid_ctx, sid_ctx_len);
ctx->sessionCtxSz = (byte)sid_ctx_len;
return WOLFSSL_SUCCESS;
}
/* Storing app session context id. Any session that is imported with a
* different session context id will be rejected.
*
* ssl structure to set context in
* id value of context to set
* len length of sid_ctx buffer
*
* Returns WOLFSSL_SUCCESS in success case and SSL_FAILURE when failing
*/
int wolfSSL_set_session_id_context(WOLFSSL* ssl, const unsigned char* id,
unsigned int len)
{
WOLFSSL_ENTER("wolfSSL_set_session_id_context");
if (len > ID_LEN || ssl == NULL || id == NULL) {
return SSL_FAILURE;
}
XMEMCPY(ssl->sessionCtx, id, len);
ssl->sessionCtxSz = (byte)len;
return WOLFSSL_SUCCESS;
}
long wolfSSL_CTX_sess_get_cache_size(WOLFSSL_CTX* ctx)
{
(void)ctx;
#ifndef NO_SESSION_CACHE
return (long)(SESSIONS_PER_ROW * SESSION_ROWS);
#else
return 0;
#endif
}
/* returns the unsigned error value and increments the pointer into the
* error queue.
*
* file pointer to file name
* line gets set to line number of error when not NULL
*/
unsigned long wolfSSL_ERR_get_error_line(const char** file, int* line)
{
#ifdef DEBUG_WOLFSSL
int ret = wc_PullErrorNode(file, NULL, line);
if (ret < 0) {
if (ret == BAD_STATE_E) return 0; /* no errors in queue */
WOLFSSL_MSG("Issue getting error node");
WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line", ret);
ret = 0 - ret; /* return absolute value of error */
/* panic and try to clear out nodes */
wc_ClearErrorNodes();
}
return (unsigned long)ret;
#else
(void)file;
(void)line;
return 0;
#endif
}
#if (defined(DEBUG_WOLFSSL) || defined(OPENSSL_EXTRA)) && \
(!defined(_WIN32) && !defined(NO_ERROR_QUEUE))
static const char WOLFSSL_SYS_ACCEPT_T[] = "accept";
static const char WOLFSSL_SYS_BIND_T[] = "bind";
static const char WOLFSSL_SYS_CONNECT_T[] = "connect";
static const char WOLFSSL_SYS_FOPEN_T[] = "fopen";
static const char WOLFSSL_SYS_FREAD_T[] = "fread";
static const char WOLFSSL_SYS_GETADDRINFO_T[] = "getaddrinfo";
static const char WOLFSSL_SYS_GETSOCKOPT_T[] = "getsockopt";
static const char WOLFSSL_SYS_GETSOCKNAME_T[] = "getsockname";
static const char WOLFSSL_SYS_GETHOSTBYNAME_T[] = "gethostbyname";
static const char WOLFSSL_SYS_GETNAMEINFO_T[] = "getnameinfo";
static const char WOLFSSL_SYS_GETSERVBYNAME_T[] = "getservbyname";
static const char WOLFSSL_SYS_IOCTLSOCKET_T[] = "ioctlsocket";
static const char WOLFSSL_SYS_LISTEN_T[] = "listen";
static const char WOLFSSL_SYS_OPENDIR_T[] = "opendir";
static const char WOLFSSL_SYS_SETSOCKOPT_T[] = "setsockopt";
static const char WOLFSSL_SYS_SOCKET_T[] = "socket";
/* switch with int mapped to function name for compatibility */
static const char* wolfSSL_ERR_sys_func(int fun)
{
switch (fun) {
case WOLFSSL_SYS_ACCEPT: return WOLFSSL_SYS_ACCEPT_T;
case WOLFSSL_SYS_BIND: return WOLFSSL_SYS_BIND_T;
case WOLFSSL_SYS_CONNECT: return WOLFSSL_SYS_CONNECT_T;
case WOLFSSL_SYS_FOPEN: return WOLFSSL_SYS_FOPEN_T;
case WOLFSSL_SYS_FREAD: return WOLFSSL_SYS_FREAD_T;
case WOLFSSL_SYS_GETADDRINFO: return WOLFSSL_SYS_GETADDRINFO_T;
case WOLFSSL_SYS_GETSOCKOPT: return WOLFSSL_SYS_GETSOCKOPT_T;
case WOLFSSL_SYS_GETSOCKNAME: return WOLFSSL_SYS_GETSOCKNAME_T;
case WOLFSSL_SYS_GETHOSTBYNAME: return WOLFSSL_SYS_GETHOSTBYNAME_T;
case WOLFSSL_SYS_GETNAMEINFO: return WOLFSSL_SYS_GETNAMEINFO_T;
case WOLFSSL_SYS_GETSERVBYNAME: return WOLFSSL_SYS_GETSERVBYNAME_T;
case WOLFSSL_SYS_IOCTLSOCKET: return WOLFSSL_SYS_IOCTLSOCKET_T;
case WOLFSSL_SYS_LISTEN: return WOLFSSL_SYS_LISTEN_T;
case WOLFSSL_SYS_OPENDIR: return WOLFSSL_SYS_OPENDIR_T;
case WOLFSSL_SYS_SETSOCKOPT: return WOLFSSL_SYS_SETSOCKOPT_T;
case WOLFSSL_SYS_SOCKET: return WOLFSSL_SYS_SOCKET_T;
default:
return "NULL";
}
}
#endif /* DEBUG_WOLFSSL */
/* @TODO when having an error queue this needs to push to the queue */
void wolfSSL_ERR_put_error(int lib, int fun, int err, const char* file,
int line)
{
WOLFSSL_ENTER("wolfSSL_ERR_put_error");
#if !defined(DEBUG_WOLFSSL) && !defined(OPENSSL_EXTRA)
(void)fun;
(void)err;
(void)file;
(void)line;
WOLFSSL_MSG("Not compiled in debug mode");
#elif defined(OPENSSL_EXTRA) && \
(defined(_WIN32) || defined(NO_ERROR_QUEUE))
(void)fun;
(void)file;
(void)line;
WOLFSSL_ERROR(err);
#else
WOLFSSL_ERROR_LINE(err, wolfSSL_ERR_sys_func(fun), (unsigned int)line,
file, NULL);
#endif
(void)lib;
}
/* Similar to wolfSSL_ERR_get_error_line but takes in a flags argument for
* more flexibility.
*
* file output pointer to file where error happened
* line output to line number of error
* data output data. Is a string if ERR_TXT_STRING flag is used
* flags bit flag to adjust data output
*
* Returns the error value or 0 if no errors are in the queue
*/
unsigned long wolfSSL_ERR_get_error_line_data(const char** file, int* line,
const char** data, int *flags)
{
int ret;
WOLFSSL_STUB("wolfSSL_ERR_get_error_line_data");
if (flags != NULL) {
if ((*flags & ERR_TXT_STRING) == ERR_TXT_STRING) {
ret = wc_PullErrorNode(file, data, line);
if (ret < 0) {
if (ret == BAD_STATE_E) return 0; /* no errors in queue */
WOLFSSL_MSG("Error with pulling error node!");
WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line_data", ret);
ret = 0 - ret; /* return absolute value of error */
/* panic and try to clear out nodes */
wc_ClearErrorNodes();
}
return (unsigned long)ret;
}
}
ret = wc_PullErrorNode(file, NULL, line);
if (ret < 0) {
if (ret == BAD_STATE_E) return 0; /* no errors in queue */
WOLFSSL_MSG("Error with pulling error node!");
WOLFSSL_LEAVE("wolfSSL_ERR_get_error_line_data", ret);
ret = 0 - ret; /* return absolute value of error */
/* panic and try to clear out nodes */
wc_ClearErrorNodes();
}
return (unsigned long)ret;
}
#endif /* OPENSSL_EXTRA */
#if (defined(KEEP_PEER_CERT) && defined(SESSION_CERTS)) || \
(defined(OPENSSL_ALL) && defined(HAVE_PKCS7))
/* Decode the X509 DER encoded certificate into a WOLFSSL_X509 object.
*
* x509 WOLFSSL_X509 object to decode into.
* in X509 DER data.
* len Length of the X509 DER data.
* returns the new certificate on success, otherwise NULL.
*/
static int DecodeToX509(WOLFSSL_X509* x509, const byte* in, int len)
{
int ret;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert;
#else
DecodedCert cert[1];
#endif
if (x509 == NULL || in == NULL || len <= 0)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return MEMORY_E;
#endif
/* Create a DecodedCert object and copy fields into WOLFSSL_X509 object.
*/
InitDecodedCert(cert, (byte*)in, len, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) == 0) {
/* Check if x509 was not previously initialized by wolfSSL_X509_new() */
if (x509->dynamicMemory != TRUE)
InitX509(x509, 0, NULL);
ret = CopyDecodedToX509(x509, cert);
FreeDecodedCert(cert);
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
return ret;
}
#endif /* (KEEP_PEER_CERT && SESSION_CERTS) || (OPENSSL_ALL && HAVE_PKCS7) */
#ifdef KEEP_PEER_CERT
WOLFSSL_ABI
WOLFSSL_X509* wolfSSL_get_peer_certificate(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_peer_certificate");
if (ssl == NULL)
return NULL;
if (ssl->peerCert.issuer.sz)
return &ssl->peerCert;
#ifdef SESSION_CERTS
else if (ssl->session.chain.count > 0) {
if (DecodeToX509(&ssl->peerCert, ssl->session.chain.certs[0].buffer,
ssl->session.chain.certs[0].length) == 0) {
return &ssl->peerCert;
}
}
#endif
return 0;
}
#endif /* KEEP_PEER_CERT */
#if defined(SESSION_CERTS)
/* Return stack of peer certs.
* If Qt or OPENSSL_ALL is defined then return ssl->peerCertChain.
* All other cases return &ssl->session.chain
* ssl->peerCertChain is type WOLFSSL_STACK*
* ssl->session.chain is type WOLFSSL_X509_CHAIN
* Caller does not need to free return. The stack is Free'd when WOLFSSL* ssl is.
*/
WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_get_peer_cert_chain(const WOLFSSL* ssl)
{
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_get_peer_cert_chain");
if (ssl == NULL)
return NULL;
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
if (ssl->peerCertChain == NULL)
wolfSSL_set_peer_cert_chain((WOLFSSL*) ssl);
sk = ssl->peerCertChain;
#else
sk = (WOLF_STACK_OF(WOLFSSL_X509)* )&ssl->session.chain;
#endif
if (sk == NULL) {
WOLFSSL_MSG("Error: Null Peer Cert Chain");
}
return sk;
}
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
/* Builds up and creates a stack of peer certificates for ssl->peerCertChain
based off of the ssl session chain. Returns stack of WOLFSSL_X509 certs or
NULL on failure */
WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_set_peer_cert_chain(WOLFSSL* ssl)
{
WOLFSSL_STACK* sk;
WOLFSSL_X509* x509;
int i = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_set_peer_cert_chain");
if ((ssl == NULL) || (ssl->session.chain.count == 0))
return NULL;
sk = wolfSSL_sk_X509_new();
i = ssl->session.chain.count-1;
for (; i >= 0; i--) {
/* For servers, the peer certificate chain does not include the peer
certificate, so do not add it to the stack */
if (ssl->options.side == WOLFSSL_SERVER_END && i == 0)
continue;
x509 = wolfSSL_X509_new();
if (x509 == NULL) {
WOLFSSL_MSG("Error Creating X509");
return NULL;
}
ret = DecodeToX509(x509, ssl->session.chain.certs[i].buffer,
ssl->session.chain.certs[i].length);
if (ret != 0 || wolfSSL_sk_X509_push(sk, x509) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error decoding cert");
wolfSSL_X509_free(x509);
wolfSSL_sk_X509_free(sk);
return NULL;
}
}
if (sk == NULL) {
WOLFSSL_MSG("Null session chain");
}
/* This is Free'd when ssl is Free'd */
ssl->peerCertChain = sk;
return sk;
}
#endif /* OPENSSL_ALL || WOLFSSL_QT */
#endif /* SESSION_CERTS */
#ifndef NO_CERTS
#if defined(KEEP_PEER_CERT) || defined(SESSION_CERTS) || \
defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* user externally called free X509, if dynamic go ahead with free, otherwise
* don't */
static void ExternalFreeX509(WOLFSSL_X509* x509)
{
int doFree = 0;
WOLFSSL_ENTER("ExternalFreeX509");
if (x509) {
if (x509->dynamicMemory) {
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
if (wc_LockMutex(&x509->refMutex) != 0) {
WOLFSSL_MSG("Couldn't lock x509 mutex");
}
/* only free if all references to it are done */
x509->refCount--;
if (x509->refCount == 0)
doFree = 1;
wc_UnLockMutex(&x509->refMutex);
#else
doFree = 1;
#endif /* OPENSSL_EXTRA */
if (doFree) {
FreeX509(x509);
XFREE(x509, x509->heap, DYNAMIC_TYPE_X509);
}
} else {
WOLFSSL_MSG("free called on non dynamic object, not freeing");
}
}
}
/* Frees an external WOLFSSL_X509 structure */
WOLFSSL_ABI
void wolfSSL_X509_free(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_FreeX509");
ExternalFreeX509(x509);
}
/* copy name into in buffer, at most sz bytes, if buffer is null will
malloc buffer, call responsible for freeing */
WOLFSSL_ABI
char* wolfSSL_X509_NAME_oneline(WOLFSSL_X509_NAME* name, char* in, int sz)
{
int copySz;
if (name == NULL) {
WOLFSSL_MSG("WOLFSSL_X509_NAME pointer was NULL");
return NULL;
}
copySz = min(sz, name->sz);
WOLFSSL_ENTER("wolfSSL_X509_NAME_oneline");
if (!name->sz) return in;
if (!in) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("Using static memory -- please pass in a buffer");
return NULL;
#else
in = (char*)XMALLOC(name->sz, NULL, DYNAMIC_TYPE_OPENSSL);
if (!in ) return in;
copySz = name->sz;
#endif
}
if (copySz <= 0)
return in;
XMEMCPY(in, name->name, copySz - 1);
in[copySz - 1] = 0;
return in;
}
#if defined(OPENSSL_EXTRA) && defined(XSNPRINTF)
/* Copies X509 subject name into a buffer, with comma-separated name entries
* (matching OpenSSL v1.0.0 format)
* Example Output for Issuer:
*
* C=US, ST=Montana, L=Bozeman, O=Sawtooth, OU=Consulting,
* CN=www.wolfssl.com, emailAddress=info@wolfssl.com
*/
char* wolfSSL_X509_get_name_oneline(WOLFSSL_X509_NAME* name, char* in, int sz)
{
WOLFSSL_X509_NAME_ENTRY* entry;
int nameSz, strSz, count, i, idx = 0;
int totalSz = 0;
char *str;
char tmpBuf[256];
char buf[80];
const char* sn;
WOLFSSL_ENTER("wolfSSL_X509_get_name_oneline");
if (name == NULL) {
WOLFSSL_MSG("wolfSSL_X509_get_subject_name failed");
return NULL;
}
#ifdef WOLFSSL_STATIC_MEMORY
if (!in) {
WOLFSSL_MSG("Using static memory -- please pass in a buffer");
return NULL;
}
#endif
tmpBuf[0] = '\0'; /* Make sure tmpBuf is NULL terminated */
/* Loop through X509 name entries and copy new format to buffer */
count = wolfSSL_X509_NAME_entry_count(name);
for (i = 0; i < count; i++) {
/* Get name entry and size */
entry = wolfSSL_X509_NAME_get_entry(name, i);
if (entry == NULL) {
WOLFSSL_MSG("wolfSSL_X509_NAME_get_entry failed");
return NULL;
}
nameSz = wolfSSL_X509_NAME_get_text_by_NID(name, entry->nid, buf,
sizeof(buf));
if (nameSz < 0) {
WOLFSSL_MSG("wolfSSL_X509_NAME_get_text_by_NID failed");
return NULL;
}
/* Get short name */
sn = wolfSSL_OBJ_nid2sn(entry->nid);
if (sn == NULL) {
WOLFSSL_MSG("OBJ_nid2sn failed");
return NULL;
}
/* Copy sn and name text to buffer
* Add extra strSz for '=', ',', ' ' and '\0' characters in XSNPRINTF.
*/
if (i != count - 1) {
strSz = (int)XSTRLEN(sn) + nameSz + 4;
totalSz+= strSz;
str = (char*)XMALLOC(strSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (str == NULL) {
WOLFSSL_MSG("Memory error");
return NULL;
}
XSNPRINTF(str, strSz, "%s=%s, ", sn, buf);
}
else {
/* Copy last name entry
* Add extra strSz for '=' and '\0' characters in XSNPRINTF.
*/
strSz = (int)XSTRLEN(sn) + nameSz + 2;
totalSz+= strSz;
str = (char*)XMALLOC(strSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (str == NULL) {
WOLFSSL_MSG("Memory error");
return NULL;
}
XSNPRINTF(str, strSz, "%s=%s", sn, buf);
}
/* Copy string to tmpBuf */
XSTRNCAT(tmpBuf, str, strSz);
idx += strSz;
XFREE(str, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
/* Allocate space based on total string size if no buffer was provided */
if (!in) {
in = (char*)XMALLOC(totalSz+1, NULL, DYNAMIC_TYPE_OPENSSL);
if (in == NULL) {
WOLFSSL_MSG("Memory error");
return in;
}
}
else {
if (totalSz > sz) {
WOLFSSL_MSG("Memory error");
return NULL;
}
}
XMEMCPY(in, tmpBuf, totalSz);
in[totalSz] = '\0';
return in;
}
#endif
/* Wraps wolfSSL_X509_d2i
*
* returns a WOLFSSL_X509 structure pointer on success and NULL on fail
*/
WOLFSSL_X509* wolfSSL_d2i_X509(WOLFSSL_X509** x509, const unsigned char** in,
int len)
{
WOLFSSL_X509* newX509 = NULL;
WOLFSSL_ENTER("wolfSSL_d2i_X509");
if (in == NULL) {
WOLFSSL_MSG("NULL input for wolfSSL_d2i_X509");
return NULL;
}
newX509 = wolfSSL_X509_d2i(x509, *in, len);
if (newX509 != NULL) {
*in += newX509->derCert->length;
}
return newX509;
}
static WOLFSSL_X509* d2i_X509orX509REQ(WOLFSSL_X509** x509,
const byte* in, int len, int req)
{
WOLFSSL_X509 *newX509 = NULL;
int type = req ? CERTREQ_TYPE : CERT_TYPE;
WOLFSSL_ENTER("wolfSSL_X509_d2i");
if (in != NULL && len != 0
#ifndef WOLFSSL_CERT_REQ
&& req == 0
#else
&& (req == 0 || req == 1)
#endif
) {
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert;
#else
DecodedCert cert[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return NULL;
#endif
InitDecodedCert(cert, (byte*)in, len, NULL);
#ifdef WOLFSSL_CERT_REQ
cert->isCSR = req;
#endif
if (ParseCertRelative(cert, type, 0, NULL) == 0) {
newX509 = wolfSSL_X509_new();
if (newX509 != NULL) {
if (CopyDecodedToX509(newX509, cert) != 0) {
wolfSSL_X509_free(newX509);
newX509 = NULL;
}
}
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
}
if (x509 != NULL)
*x509 = newX509;
return newX509;
}
int wolfSSL_X509_get_isCA(WOLFSSL_X509* x509)
{
int isCA = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_isCA");
if (x509 != NULL)
isCA = x509->isCa;
WOLFSSL_LEAVE("wolfSSL_X509_get_isCA", isCA);
return isCA;
}
WOLFSSL_X509* wolfSSL_X509_d2i(WOLFSSL_X509** x509, const byte* in, int len)
{
return d2i_X509orX509REQ(x509, in, len, 0);
}
#ifdef WOLFSSL_CERT_REQ
WOLFSSL_X509* wolfSSL_X509_REQ_d2i(WOLFSSL_X509** x509,
const unsigned char* in, int len)
{
return d2i_X509orX509REQ(x509, in, len, 1);
}
#endif
#endif /* KEEP_PEER_CERT || SESSION_CERTS || OPENSSL_EXTRA ||
OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* returns the number of entries in the WOLFSSL_X509_NAME */
int wolfSSL_X509_NAME_entry_count(WOLFSSL_X509_NAME* name)
{
int count = 0;
WOLFSSL_ENTER("wolfSSL_X509_NAME_entry_count");
if (name != NULL)
count = name->entrySz;
WOLFSSL_LEAVE("wolfSSL_X509_NAME_entry_count", count);
return count;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_EXTRA) || \
defined(KEEP_OUR_CERT) || defined(KEEP_PEER_CERT) || defined(SESSION_CERTS)
/* return the next, if any, altname from the peer cert */
WOLFSSL_ABI
char* wolfSSL_X509_get_next_altname(WOLFSSL_X509* cert)
{
char* ret = NULL;
WOLFSSL_ENTER("wolfSSL_X509_get_next_altname");
/* don't have any to work with */
if (cert == NULL || cert->altNames == NULL)
return NULL;
/* already went through them */
if (cert->altNamesNext == NULL)
return NULL;
ret = cert->altNamesNext->name;
cert->altNamesNext = cert->altNamesNext->next;
return ret;
}
int wolfSSL_X509_get_signature(WOLFSSL_X509* x509,
unsigned char* buf, int* bufSz)
{
WOLFSSL_ENTER("wolfSSL_X509_get_signature");
if (x509 == NULL || bufSz == NULL || (*bufSz < (int)x509->sig.length &&
buf != NULL))
return WOLFSSL_FATAL_ERROR;
if (buf != NULL)
XMEMCPY(buf, x509->sig.buffer, x509->sig.length);
*bufSz = x509->sig.length;
return WOLFSSL_SUCCESS;
}
/* Getter function that copies over the DER public key buffer to "buf" and
* sets the size in bufSz. If "buf" is NULL then just bufSz is set to needed
* buffer size. "bufSz" passed in should initially be set by the user to be
* the size of "buf". This gets checked to make sure the buffer is large
* enough to hold the public key.
*
* Note: this is the X.509 form of key with "header" info.
* return WOLFSSL_SUCCESS on success
*/
int wolfSSL_X509_get_pubkey_buffer(WOLFSSL_X509* x509,
unsigned char* buf, int* bufSz)
{
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert;
#else
DecodedCert cert[1];
#endif
word32 idx;
const byte* der;
int length = 0;
int ret, derSz = 0;
int badDate = 0;
const byte* pubKeyX509 = NULL;
int pubKeyX509Sz = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_pubkey_buffer");
if (x509 == NULL || bufSz == NULL) {
WOLFSSL_LEAVE("wolfSSL_X509_get_pubkey_buffer", BAD_FUNC_ARG);
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert),
x509->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (cert == NULL) {
WOLFSSL_LEAVE("wolfSSL_X509_get_pubkey_buffer", MEMORY_E);
return WOLFSSL_FATAL_ERROR;
}
#endif
der = wolfSSL_X509_get_der(x509, &derSz);
InitDecodedCert(cert, der, derSz, NULL);
ret = wc_GetPubX509(cert, 0, &badDate);
if (ret >= 0) {
idx = cert->srcIdx;
pubKeyX509 = cert->source + cert->srcIdx;
ret = GetSequence(cert->source, &cert->srcIdx, &length,
cert->maxIdx);
pubKeyX509Sz = length + (cert->srcIdx - idx);
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, x509->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
if (ret < 0) {
WOLFSSL_LEAVE("wolfSSL_X509_get_pubkey_buffer", ret);
return WOLFSSL_FATAL_ERROR;
}
if (buf != NULL) {
if (pubKeyX509Sz > *bufSz) {
WOLFSSL_LEAVE("wolfSSL_X509_get_pubkey_buffer", BUFFER_E);
return WOLFSSL_FATAL_ERROR;
}
XMEMCPY(buf, pubKeyX509, pubKeyX509Sz);
}
*bufSz = pubKeyX509Sz;
return WOLFSSL_SUCCESS;
}
/* Getter function for the public key OID value
* return public key OID stored in WOLFSSL_X509 structure */
int wolfSSL_X509_get_pubkey_type(WOLFSSL_X509* x509)
{
if (x509 == NULL)
return WOLFSSL_FAILURE;
return x509->pubKeyOID;
}
#endif /* OPENSSL_EXTRA || KEEP_OUR_CERT || KEEP_PEER_CERT || SESSION_CERTS */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \
defined(KEEP_OUR_CERT) || defined(KEEP_PEER_CERT) || defined(SESSION_CERTS)
/* write X509 serial number in unsigned binary to buffer
buffer needs to be at least EXTERNAL_SERIAL_SIZE (32) for all cases
return WOLFSSL_SUCCESS on success */
int wolfSSL_X509_get_serial_number(WOLFSSL_X509* x509,
byte* in, int* inOutSz)
{
WOLFSSL_ENTER("wolfSSL_X509_get_serial_number");
if (x509 == NULL || inOutSz == NULL) {
WOLFSSL_MSG("Null argument passed in");
return BAD_FUNC_ARG;
}
if (in != NULL) {
if (*inOutSz < x509->serialSz) {
WOLFSSL_MSG("Serial buffer too small");
return BUFFER_E;
}
XMEMCPY(in, x509->serial, x509->serialSz);
}
*inOutSz = x509->serialSz;
return WOLFSSL_SUCCESS;
}
/* not an openssl compatibility function - getting for derCert */
const byte* wolfSSL_X509_get_der(WOLFSSL_X509* x509, int* outSz)
{
WOLFSSL_ENTER("wolfSSL_X509_get_der");
if (x509 == NULL || x509->derCert == NULL || outSz == NULL)
return NULL;
*outSz = (int)x509->derCert->length;
return x509->derCert->buffer;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL || KEEP_OUR_CERT || KEEP_PEER_CERT || SESSION_CERTS */
#ifdef OPENSSL_EXTRA
/* used by JSSE (not a standard compatibility function) */
WOLFSSL_ABI
const byte* wolfSSL_X509_notBefore(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_X509_notBefore");
if (x509 == NULL)
return NULL;
XMEMSET(x509->notBeforeData, 0, sizeof(x509->notBeforeData));
x509->notBeforeData[0] = (byte)x509->notBefore.type;
x509->notBeforeData[1] = (byte)x509->notBefore.length;
XMEMCPY(&x509->notBeforeData[2], x509->notBefore.data, x509->notBefore.length);
return x509->notBeforeData;
}
/* used by JSSE (not a standard compatibility function) */
WOLFSSL_ABI
const byte* wolfSSL_X509_notAfter(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_X509_notAfter");
if (x509 == NULL)
return NULL;
XMEMSET(x509->notAfterData, 0, sizeof(x509->notAfterData));
x509->notAfterData[0] = (byte)x509->notAfter.type;
x509->notAfterData[1] = (byte)x509->notAfter.length;
XMEMCPY(&x509->notAfterData[2], x509->notAfter.data, x509->notAfter.length);
return x509->notAfterData;
}
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) && !defined(NO_WOLFSSL_STUB)
WOLFSSL_ASN1_TIME* wolfSSL_X509_gmtime_adj(WOLFSSL_ASN1_TIME *s, long adj)
{
(void) s;
(void) adj;
WOLFSSL_STUB("wolfSSL_X509_gmtime_adj");
return NULL;
}
#endif
/* get the buffer to be signed (tbs) from the WOLFSSL_X509 certificate
*
* outSz : gets set to the size of the buffer
* returns a pointer to the internal buffer at the location of TBS on
* on success and NULL on failure.
*/
const unsigned char* wolfSSL_X509_get_tbs(WOLFSSL_X509* x509, int* outSz)
{
int sz = 0, len;
unsigned int idx = 0, tmpIdx;
const unsigned char* der = NULL;
const unsigned char* tbs = NULL;
if (x509 == NULL || outSz == NULL) {
return NULL;
}
der = wolfSSL_X509_get_der(x509, &sz);
if (der == NULL) {
return NULL;
}
if (GetSequence(der, &idx, &len, sz) < 0) {
return NULL;
}
tbs = der + idx;
tmpIdx = idx;
if (GetSequence(der, &idx, &len, sz) < 0) {
return NULL;
}
*outSz = len + (idx - tmpIdx);
return tbs;
}
int wolfSSL_X509_version(WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_X509_version");
if (x509 == NULL)
return 0;
return x509->version;
}
#ifdef WOLFSSL_SEP
/* copy oid into in buffer, at most *inOutSz bytes, if buffer is null will
malloc buffer, call responsible for freeing. Actual size returned in
*inOutSz. Requires inOutSz be non-null */
byte* wolfSSL_X509_get_device_type(WOLFSSL_X509* x509, byte* in, int *inOutSz)
{
int copySz;
WOLFSSL_ENTER("wolfSSL_X509_get_dev_type");
if (inOutSz == NULL) return NULL;
if (!x509->deviceTypeSz) return in;
copySz = min(*inOutSz, x509->deviceTypeSz);
if (!in) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("Using static memory -- please pass in a buffer");
return NULL;
#else
in = (byte*)XMALLOC(x509->deviceTypeSz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in) return in;
copySz = x509->deviceTypeSz;
#endif
}
XMEMCPY(in, x509->deviceType, copySz);
*inOutSz = copySz;
return in;
}
byte* wolfSSL_X509_get_hw_type(WOLFSSL_X509* x509, byte* in, int* inOutSz)
{
int copySz;
WOLFSSL_ENTER("wolfSSL_X509_get_hw_type");
if (inOutSz == NULL) return NULL;
if (!x509->hwTypeSz) return in;
copySz = min(*inOutSz, x509->hwTypeSz);
if (!in) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("Using static memory -- please pass in a buffer");
return NULL;
#else
in = (byte*)XMALLOC(x509->hwTypeSz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in) return in;
copySz = x509->hwTypeSz;
#endif
}
XMEMCPY(in, x509->hwType, copySz);
*inOutSz = copySz;
return in;
}
byte* wolfSSL_X509_get_hw_serial_number(WOLFSSL_X509* x509,byte* in,
int* inOutSz)
{
int copySz;
WOLFSSL_ENTER("wolfSSL_X509_get_hw_serial_number");
if (inOutSz == NULL) return NULL;
if (!x509->hwTypeSz) return in;
copySz = min(*inOutSz, x509->hwSerialNumSz);
if (!in) {
#ifdef WOLFSSL_STATIC_MEMORY
WOLFSSL_MSG("Using static memory -- please pass in a buffer");
return NULL;
#else
in = (byte*)XMALLOC(x509->hwSerialNumSz, 0, DYNAMIC_TYPE_OPENSSL);
if (!in) return in;
copySz = x509->hwSerialNumSz;
#endif
}
XMEMCPY(in, x509->hwSerialNum, copySz);
*inOutSz = copySz;
return in;
}
#endif /* WOLFSSL_SEP */
#endif /* OPENSSL_EXTRA */
/* require OPENSSL_EXTRA since wolfSSL_X509_free is wrapped by OPENSSL_EXTRA */
#if !defined(NO_CERTS) && defined(OPENSSL_EXTRA)
WOLFSSL_ASN1_TIME* wolfSSL_X509_get_notBefore(const WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_X509_get_notBefore");
if (x509 == NULL)
return NULL;
return (WOLFSSL_ASN1_TIME*)&x509->notBefore;
}
WOLFSSL_ASN1_TIME* wolfSSL_X509_get_notAfter(const WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_X509_get_notAfter");
if (x509 == NULL)
return NULL;
return (WOLFSSL_ASN1_TIME*)&x509->notAfter;
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_X509_push(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk, WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_push");
if (sk == NULL || x509 == NULL) {
return WOLFSSL_FAILURE;
}
return wolfSSL_sk_push(sk, x509);
}
WOLFSSL_X509* wolfSSL_sk_X509_pop(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk) {
WOLFSSL_STACK* node;
WOLFSSL_X509* x509;
if (sk == NULL) {
return NULL;
}
node = sk->next;
x509 = sk->data.x509;
if (node != NULL) { /* update sk and remove node from stack */
sk->data.x509 = node->data.x509;
sk->next = node->next;
XFREE(node, NULL, DYNAMIC_TYPE_X509);
}
else { /* last x509 in stack */
sk->data.x509 = NULL;
}
if (sk->num > 0) {
sk->num -= 1;
}
return x509;
}
/* Getter function for WOLFSSL_X509 pointer
*
* sk is the stack to retrieve pointer from
* i is the index value in stack
*
* returns a pointer to a WOLFSSL_X509 structure on success and NULL on
* fail
*/
WOLFSSL_X509* wolfSSL_sk_X509_value(STACK_OF(WOLFSSL_X509)* sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_value");
for (; sk != NULL && i > 0; i--)
sk = sk->next;
if (i != 0 || sk == NULL)
return NULL;
return sk->data.x509;
}
WOLFSSL_X509* wolfSSL_sk_X509_shift(WOLF_STACK_OF(WOLFSSL_X509)* sk)
{
return wolfSSL_sk_X509_pop(sk);
}
#ifndef NO_WOLFSSL_STUB
void* wolfSSL_sk_X509_OBJECT_value(WOLF_STACK_OF(WOLFSSL_X509_OBJECT)* sk, int x)
{
(void) sk;
(void) x;
return NULL;
}
#endif
#endif /* !NO_CERTS && OPENSSL_EXTRA */
#if !defined(NO_CERTS) && (defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL))
/* Free's all nodes in X509 stack. This is different then wolfSSL_sk_X509_free
* in that it allows for choosing the function to use when freeing an X509s.
*
* sk stack to free nodes in
* f X509 free function
*/
void wolfSSL_sk_X509_pop_free(STACK_OF(WOLFSSL_X509)* sk,
void (*f) (WOLFSSL_X509*))
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_X509_pop_free");
if (sk == NULL) {
return;
}
/* parse through stack freeing each node */
node = sk->next;
while (node && sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
if (f)
f(tmp->data.x509);
else
wolfSSL_X509_free(tmp->data.x509);
tmp->data.x509 = NULL;
XFREE(tmp, NULL, DYNAMIC_TYPE_X509);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
if (f)
f(sk->data.x509);
else
wolfSSL_X509_free(sk->data.x509);
sk->data.x509 = NULL;
}
XFREE(sk, NULL, DYNAMIC_TYPE_X509);
}
/* free structure for x509 stack */
void wolfSSL_sk_X509_free(WOLF_STACK_OF(WOLFSSL_X509)* sk)
{
wolfSSL_sk_X509_pop_free(sk, NULL);
}
#endif /* !NO_CERTS && (OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL) */
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
/* return 1 on success 0 on fail */
int wolfSSL_sk_ACCESS_DESCRIPTION_push(WOLF_STACK_OF(ACCESS_DESCRIPTION)* sk,
WOLFSSL_ACCESS_DESCRIPTION* access)
{
WOLFSSL_ENTER("wolfSSL_sk_ACCESS_DESCRIPTION_push");
return wolfSSL_sk_push(sk, access);
}
/* Frees all nodes in ACCESS_DESCRIPTION stack
*
* sk stack of nodes to free
* f free function to use, not called with wolfSSL
*/
void wolfSSL_sk_ACCESS_DESCRIPTION_pop_free(WOLFSSL_STACK* sk,
void (*f) (WOLFSSL_ACCESS_DESCRIPTION*))
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_ACCESS_DESCRIPTION_pop_free");
if (sk == NULL) {
return;
}
/* parse through stack freeing each node */
node = sk->next;
while (node && sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
if (f)
f(tmp->data.access);
else
wolfSSL_ACCESS_DESCRIPTION_free(tmp->data.access);
tmp->data.access = NULL;
XFREE(tmp, NULL, DYNAMIC_TYPE_ASN1);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
if (f)
f(sk->data.access);
else {
if(sk->data.access->method) {
wolfSSL_ASN1_OBJECT_free(sk->data.access->method);
}
if(sk->data.access->location) {
wolfSSL_GENERAL_NAME_free(sk->data.access->location);
}
}
sk->data.access = NULL;
}
XFREE(sk, NULL, DYNAMIC_TYPE_ASN1);
}
void wolfSSL_sk_ACCESS_DESCRIPTION_free(WOLFSSL_STACK* sk)
{
wolfSSL_sk_ACCESS_DESCRIPTION_pop_free(sk, NULL);
}
void wolfSSL_ACCESS_DESCRIPTION_free(WOLFSSL_ACCESS_DESCRIPTION* access)
{
WOLFSSL_ENTER("wolfSSL_ACCESS_DESCRIPTION_free");
if (access == NULL)
return;
if (access->method)
wolfSSL_ASN1_OBJECT_free(access->method);
if (access->location)
wolfSSL_GENERAL_NAME_free(access->location);
/* access = NULL, don't try to access or double free it */
}
#endif /* OPENSSL_ALL || WOLFSSL_QT */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* create a generic wolfSSL stack node
* returns a new WOLFSSL_STACK structure on success */
WOLFSSL_STACK* wolfSSL_sk_new_node(void* heap)
{
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_sk_new_node");
sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), heap,
DYNAMIC_TYPE_OPENSSL);
if (sk != NULL) {
XMEMSET(sk, 0, sizeof(*sk));
sk->heap = heap;
}
return sk;
}
/* free's node but does not free internal data such as in->data.x509 */
void wolfSSL_sk_free_node(WOLFSSL_STACK* in)
{
if (in != NULL) {
XFREE(in, in->heap, DYNAMIC_TYPE_OPENSSL);
}
}
/* pushes node "in" onto "stack" and returns pointer to the new stack on success
* also handles internal "num" for number of nodes on stack
* return WOLFSSL_SUCCESS on success
*/
int wolfSSL_sk_push_node(WOLFSSL_STACK** stack, WOLFSSL_STACK* in)
{
if (stack == NULL || in == NULL) {
return WOLFSSL_FAILURE;
}
if (*stack == NULL) {
in->num = 1;
*stack = in;
return WOLFSSL_SUCCESS;
}
in->num = (*stack)->num + 1;
in->next = *stack;
*stack = in;
return WOLFSSL_SUCCESS;
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_push(WOLFSSL_STACK* sk, const void *data)
{
WOLFSSL_STACK* node;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
WOLFSSL_CIPHER ciph;
#endif
WOLFSSL_ENTER("wolfSSL_sk_push");
if (!sk) {
return WOLFSSL_FAILURE;
}
/* Check if empty data */
switch (sk->type) {
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
case STACK_TYPE_CIPHER:
/* check if entire struct is zero */
XMEMSET(&ciph, 0, sizeof(WOLFSSL_CIPHER));
if (XMEMCMP(&sk->data.cipher, &ciph,
sizeof(WOLFSSL_CIPHER)) == 0) {
sk->data.cipher = *(WOLFSSL_CIPHER*)data;
sk->num = 1;
if (sk->hash_fn) {
sk->hash = sk->hash_fn(&sk->data.cipher);
}
return WOLFSSL_SUCCESS;
}
break;
#endif
default:
/* All other types are pointers */
if (!sk->data.generic) {
sk->data.generic = (void*)data;
sk->num = 1;
#ifdef OPENSSL_ALL
if (sk->hash_fn) {
sk->hash = sk->hash_fn(sk->data.generic);
}
#endif
return WOLFSSL_SUCCESS;
}
break;
}
/* stack already has value(s) create a new node and add more */
node = wolfSSL_sk_new_node(sk->heap);
if (!node) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
/* push new x509 onto head of stack */
node->next = sk->next;
node->type = sk->type;
sk->next = node;
sk->num += 1;
#ifdef OPENSSL_ALL
node->comp = sk->comp;
node->hash_fn = sk->hash_fn;
node->hash = sk->hash;
sk->hash = 0;
#endif
switch (sk->type) {
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
case STACK_TYPE_CIPHER:
node->data.cipher = sk->data.cipher;
sk->data.cipher = *(WOLFSSL_CIPHER*)data;
if (sk->hash_fn) {
sk->hash = sk->hash_fn(&sk->data.cipher);
}
break;
#endif
default:
/* All other types are pointers */
node->data.generic = sk->data.generic;
sk->data.generic = (void*)data;
#ifdef OPENSSL_ALL
if (sk->hash_fn) {
sk->hash = sk->hash_fn(sk->data.generic);
}
#endif
break;
}
return WOLFSSL_SUCCESS;
}
/* Creates and returns new GENERAL_NAME structure */
WOLFSSL_GENERAL_NAME* wolfSSL_GENERAL_NAME_new(void)
{
WOLFSSL_GENERAL_NAME* gn;
WOLFSSL_ENTER("GENERAL_NAME_new");
gn = (WOLFSSL_GENERAL_NAME*)XMALLOC(sizeof(WOLFSSL_GENERAL_NAME), NULL,
DYNAMIC_TYPE_ASN1);
if (gn == NULL) {
return NULL;
}
XMEMSET(gn, 0, sizeof(WOLFSSL_GENERAL_NAME));
gn->d.ia5 = wolfSSL_ASN1_STRING_new();
if (gn->d.ia5 == NULL) {
WOLFSSL_MSG("Issue creating ASN1_STRING struct");
wolfSSL_GENERAL_NAME_free(gn);
return NULL;
}
return gn;
}
static WOLFSSL_GENERAL_NAME* wolfSSL_GENERAL_NAME_dup(WOLFSSL_GENERAL_NAME* gn)
{
WOLFSSL_GENERAL_NAME* dupl = NULL;
WOLFSSL_ENTER("wolfSSL_GENERAL_NAME_dup");
if (!gn) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
if (!(dupl = wolfSSL_GENERAL_NAME_new())) {
WOLFSSL_MSG("wolfSSL_GENERAL_NAME_new error");
return NULL;
}
switch (gn->type) {
/* WOLFSSL_ASN1_STRING types */
case GEN_DNS:
if (!(dupl->d.dNSName = wolfSSL_ASN1_STRING_dup(gn->d.dNSName))) {
WOLFSSL_MSG("wolfSSL_ASN1_STRING_dup error");
goto error;
}
break;
case GEN_IPADD:
if (!(dupl->d.iPAddress = wolfSSL_ASN1_STRING_dup(gn->d.iPAddress))) {
WOLFSSL_MSG("wolfSSL_ASN1_STRING_dup error");
goto error;
}
break;
case GEN_EMAIL:
if (!(dupl->d.rfc822Name = wolfSSL_ASN1_STRING_dup(gn->d.rfc822Name))) {
WOLFSSL_MSG("wolfSSL_ASN1_STRING_dup error");
goto error;
}
break;
case GEN_URI:
if (!(dupl->d.uniformResourceIdentifier =
wolfSSL_ASN1_STRING_dup(gn->d.uniformResourceIdentifier))) {
WOLFSSL_MSG("wolfSSL_ASN1_STRING_dup error");
goto error;
}
break;
case GEN_OTHERNAME:
case GEN_X400:
case GEN_DIRNAME:
case GEN_EDIPARTY:
case GEN_RID:
default:
WOLFSSL_MSG("Unrecognized or unsupported GENERAL_NAME type");
goto error;
}
return dupl;
error:
if (dupl) {
wolfSSL_GENERAL_NAME_free(dupl);
}
return NULL;
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_GENERAL_NAME_push(WOLFSSL_GENERAL_NAMES* sk,
WOLFSSL_GENERAL_NAME* gn)
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_GENERAL_NAME_push");
if (sk == NULL || gn == NULL) {
return WOLFSSL_FAILURE;
}
/* no previous values in stack */
if (sk->data.gn == NULL) {
sk->data.gn = gn;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
/* stack already has value(s) create a new node and add more */
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_ASN1);
if (node == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
XMEMSET(node, 0, sizeof(WOLFSSL_STACK));
/* push new obj onto head of stack */
node->data.gn = sk->data.gn;
node->next = sk->next;
sk->next = node;
sk->data.gn = gn;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
/* Returns the general name at index i from the stack
*
* sk stack to get general name from
* idx index to get
*
* return a pointer to the internal node of the stack
*/
WOLFSSL_GENERAL_NAME* wolfSSL_sk_GENERAL_NAME_value(WOLFSSL_STACK* sk, int idx)
{
WOLFSSL_STACK* ret;
if (sk == NULL) {
return NULL;
}
ret = wolfSSL_sk_get_node(sk, idx);
if (ret != NULL) {
return ret->data.gn;
}
return NULL;
}
/* Gets the number of nodes in the stack
*
* sk stack to get the number of nodes from
*
* returns the number of nodes, -1 if no nodes
*/
int wolfSSL_sk_GENERAL_NAME_num(WOLFSSL_STACK* sk)
{
WOLFSSL_ENTER("wolfSSL_sk_GENERAL_NAME_num");
if (sk == NULL) {
return -1;
}
return (int)sk->num;
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* Frees all nodes in a GENERAL NAME stack
*
* sk stack of nodes to free
* f free function to use, not called with wolfSSL
*/
void wolfSSL_sk_GENERAL_NAME_pop_free(WOLFSSL_STACK* sk,
void (*f) (WOLFSSL_GENERAL_NAME*))
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_GENERAL_NAME_pop_free");
if (sk == NULL) {
return;
}
/* parse through stack freeing each node */
node = sk->next;
while (node && sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
if (f)
f(tmp->data.gn);
else
wolfSSL_GENERAL_NAME_free(tmp->data.gn);
XFREE(tmp, NULL, DYNAMIC_TYPE_ASN1);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
if (f)
f(sk->data.gn);
else
wolfSSL_GENERAL_NAME_free(sk->data.gn);
}
XFREE(sk, NULL, DYNAMIC_TYPE_ASN1);
}
void wolfSSL_sk_GENERAL_NAME_free(WOLFSSL_STACK* sk)
{
WOLFSSL_ENTER("sk_GENERAL_NAME_free");
wolfSSL_sk_GENERAL_NAME_pop_free(sk, NULL);
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
/* returns the number of nodes in stack on success and WOLFSSL_FATAL_ERROR
* on fail */
int wolfSSL_sk_ACCESS_DESCRIPTION_num(WOLFSSL_STACK* sk)
{
if (sk == NULL) {
return WOLFSSL_FATAL_ERROR;
}
return (int)sk->num;
}
#ifndef NO_WOLFSSL_STUB
/* similar to call to sk_ACCESS_DESCRIPTION_pop_free */
void wolfSSL_AUTHORITY_INFO_ACCESS_free(
WOLF_STACK_OF(WOLFSSL_ACCESS_DESCRIPTION)* sk)
{
WOLFSSL_STUB("wolfSSL_AUTHORITY_INFO_ACCESS_free");
(void)sk;
}
#endif
/* returns the node at index "idx", NULL if not found */
WOLFSSL_STACK* wolfSSL_sk_get_node(WOLFSSL_STACK* sk, int idx)
{
int i;
WOLFSSL_STACK* ret = NULL;
WOLFSSL_STACK* current;
current = sk;
for (i = 0; i <= idx && current != NULL; i++) {
if (i == idx) {
ret = current;
break;
}
current = current->next;
}
return ret;
}
/* returns NULL on fail and pointer to internal data on success */
WOLFSSL_ACCESS_DESCRIPTION* wolfSSL_sk_ACCESS_DESCRIPTION_value(
WOLFSSL_STACK* sk, int idx)
{
WOLFSSL_STACK* ret;
if (sk == NULL) {
return NULL;
}
ret = wolfSSL_sk_get_node(sk, idx);
if (ret != NULL) {
return ret->data.access;
}
return NULL;
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* Frees GENERAL_NAME objects.
*/
void wolfSSL_GENERAL_NAME_free(WOLFSSL_GENERAL_NAME* name)
{
WOLFSSL_ENTER("wolfSSL_GENERAL_NAME_Free");
if(name != NULL) {
if (name->d.dNSName != NULL) {
wolfSSL_ASN1_STRING_free(name->d.dNSName);
name->d.dNSName = NULL;
}
if (name->d.uniformResourceIdentifier != NULL) {
wolfSSL_ASN1_STRING_free(name->d.uniformResourceIdentifier);
name->d.uniformResourceIdentifier = NULL;
}
if (name->d.iPAddress != NULL) {
wolfSSL_ASN1_STRING_free(name->d.iPAddress);
name->d.iPAddress = NULL;
}
if (name->d.registeredID != NULL) {
wolfSSL_ASN1_OBJECT_free(name->d.registeredID);
name->d.registeredID = NULL;
}
if (name->d.ia5 != NULL) {
wolfSSL_ASN1_STRING_free(name->d.ia5);
name->d.ia5 = NULL;
}
XFREE(name, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
void wolfSSL_GENERAL_NAMES_free(WOLFSSL_GENERAL_NAMES *gens)
{
WOLFSSL_ENTER("wolfSSL_GENERAL_NAMES_free");
if (gens == NULL) {
return;
}
wolfSSL_sk_free(gens);
}
#if defined(OPENSSL_ALL)
void *wolfSSL_lh_retrieve(WOLFSSL_STACK *sk, void *data)
{
unsigned long hash;
WOLFSSL_ENTER("wolfSSL_lh_retrieve");
if (!sk || !data) {
WOLFSSL_MSG("Bad parameters");
return NULL;
}
if (!sk->hash_fn) {
WOLFSSL_MSG("No hash function defined");
return NULL;
}
hash = sk->hash_fn(data);
while (sk) {
/* Calc hash if not done so yet */
if (!sk->hash) {
switch (sk->type) {
case STACK_TYPE_CIPHER:
sk->hash = sk->hash_fn(&sk->data.cipher);
break;
default:
sk->hash = sk->hash_fn(sk->data.generic);
break;
}
}
if (sk->hash == hash) {
switch (sk->type) {
case STACK_TYPE_CIPHER:
return &sk->data.cipher;
default:
return sk->data.generic;
}
}
sk = sk->next;
}
return NULL;
}
/**
* This is the same hashing algo for WOLFSSL_CONF_VALUE as OpenSSL
*/
static unsigned long wolfSSL_CONF_VALUE_hash(const WOLFSSL_CONF_VALUE *val)
{
if (val)
return (wolfSSL_LH_strhash(val->section) << 2) ^
wolfSSL_LH_strhash(val->name);
else
return 0;
}
static int wolfssl_conf_value_cmp(const WOLFSSL_CONF_VALUE *a,
const WOLFSSL_CONF_VALUE *b)
{
int cmp_val;
if (!a || !b) {
return WOLFSSL_FATAL_ERROR;
}
if (a->section != b->section) {
if ((cmp_val = XSTRCMP(a->section, b->section)) != 0) {
return cmp_val;
}
}
if (a->name && b->name) {
return XSTRCMP(a->name, b->name);
}
else if (a->name == b->name) {
return 0;
}
else {
return a->name ? 1 : -1;
}
}
/* Use MD5 for hashing as OpenSSL uses a hash algorithm that is
* "not as good as MD5, but still good" so using MD5 should
* be good enough for this application. The produced hashes don't
* need to line up between OpenSSL and wolfSSL. The hashes are for
* internal indexing only */
unsigned long wolfSSL_LH_strhash(const char *str)
{
unsigned long ret = 0;
int strLen;
byte digest[WC_MD5_DIGEST_SIZE];
WOLFSSL_ENTER("wolfSSL_LH_strhash");
if (!str)
return 0;
#ifndef NO_MD5
strLen = (int)XSTRLEN(str);
if (wc_Md5Hash((const byte*)str, strLen, digest) != 0) {
WOLFSSL_MSG("wc_Md5Hash error");
return 0;
}
/* Take first 4 bytes in small endian as unsigned long */
ret = (unsigned int)digest[0];
ret |= ((unsigned int)digest[1] << 8 );
ret |= ((unsigned int)digest[2] << 16);
ret |= ((unsigned int)digest[3] << 24);
#else
WOLFSSL_MSG("No md5 available for wolfSSL_LH_strhash");
#endif
return ret;
}
WOLFSSL_CONF_VALUE *wolfSSL_lh_WOLFSSL_CONF_VALUE_retrieve(
WOLF_LHASH_OF(WOLFSSL_CONF_VALUE) *sk, WOLFSSL_CONF_VALUE *data)
{
WOLFSSL_ENTER("wolfSSL_lh_WOLFSSL_CONF_VALUE_retrieve");
if (!sk || !data) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
return (WOLFSSL_CONF_VALUE*)wolfSSL_lh_retrieve(sk, data);
}
int wolfSSL_CONF_modules_load(const WOLFSSL_CONF *cnf, const char *appname,
unsigned long flags)
{
WOLFSSL_ENTER("wolfSSL_CONF_modules_load");
WOLFSSL_MSG("All wolfSSL modules are already compiled in. "
"wolfSSL_CONF_modules_load doesn't load anything new.");
(void)cnf;
(void)appname;
(void)flags;
return WOLFSSL_SUCCESS;
}
WOLFSSL_CONF_VALUE *wolfSSL_CONF_VALUE_new(void)
{
WOLFSSL_CONF_VALUE* ret;
WOLFSSL_ENTER("wolfSSL_CONF_new");
ret = (WOLFSSL_CONF_VALUE*)XMALLOC(sizeof(WOLFSSL_CONF_VALUE),
NULL, DYNAMIC_TYPE_OPENSSL);
if (ret)
XMEMSET(ret, 0, sizeof(WOLFSSL_CONF_VALUE));
return ret;
}
int wolfSSL_CONF_add_string(WOLFSSL_CONF *conf,
WOLFSSL_CONF_VALUE *section, WOLFSSL_CONF_VALUE *value)
{
WOLF_STACK_OF(WOLFSSL_CONF_VALUE) *sk = NULL;
if (!conf || !section || !value) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
sk = (WOLF_STACK_OF(WOLFSSL_CONF_VALUE) *)section->value;
value->section = section->section;
if (wolfSSL_sk_CONF_VALUE_push(sk, value) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_sk_CONF_VALUE_push error");
return WOLFSSL_FAILURE;
}
if (wolfSSL_sk_CONF_VALUE_push(conf->data, value) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_sk_CONF_VALUE_push error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
WOLFSSL_CONF_VALUE *wolfSSL_CONF_new_section(WOLFSSL_CONF *conf,
const char *section)
{
WOLFSSL_CONF_VALUE* ret = NULL;
WOLF_STACK_OF(WOLFSSL_CONF_VALUE) *sk = NULL;
int slen;
WOLFSSL_ENTER("wolfSSL_CONF_new_section");
if (!conf || !section) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
slen = (int)XSTRLEN(section);
if (!(ret = wolfSSL_CONF_VALUE_new())) {
WOLFSSL_MSG("wolfSSL_CONF_new error");
goto error;
}
if (!(ret->section = (char*)XMALLOC(slen+1, NULL, DYNAMIC_TYPE_OPENSSL))) {
WOLFSSL_MSG("section malloc error");
goto error;
}
XMEMCPY(ret->section, section, slen+1);
if (!(sk = wolfSSL_sk_CONF_VALUE_new(NULL))) {
WOLFSSL_MSG("wolfSSL_sk_CONF_VALUE_new error");
goto error;
}
ret->value = (char*)sk;
if (wolfSSL_sk_CONF_VALUE_push(conf->data, ret) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_sk_CONF_VALUE_push error");
goto error;
}
return ret;
error:
if (ret) {
/* NULL so that wolfSSL_X509V3_conf_free doesn't attempt to free it */
ret->value = NULL;
wolfSSL_X509V3_conf_free(ret);
}
if (sk) {
wolfSSL_sk_CONF_VALUE_free(sk);
}
return NULL;
}
WOLFSSL_CONF_VALUE *wolfSSL_CONF_get_section(WOLFSSL_CONF *conf,
const char *section)
{
WOLF_STACK_OF(WOLFSSL_CONF_VALUE) *sk = NULL;
WOLFSSL_ENTER("wolfSSL_CONF_get_section");
if (!conf || !section) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
sk = conf->data;
while (sk) {
WOLFSSL_CONF_VALUE* val = sk->data.conf;
if (val) {
if (!val->name && XSTRCMP(section, val->section) == 0) {
return val;
}
}
sk = sk->next;
}
return NULL;
}
WOLFSSL_CONF *wolfSSL_NCONF_new(void *meth)
{
WOLFSSL_CONF* ret;
WOLFSSL_ENTER("wolfSSL_NCONF_new");
if (meth) {
WOLFSSL_MSG("wolfSSL does not support CONF_METHOD");
}
ret = (WOLFSSL_CONF*)XMALLOC(sizeof(WOLFSSL_CONF), NULL, DYNAMIC_TYPE_OPENSSL);
if (ret) {
XMEMSET(ret, 0, sizeof(WOLFSSL_CONF));
ret->data = wolfSSL_sk_CONF_VALUE_new(NULL);
if (!ret->data) {
wolfSSL_NCONF_free(ret);
return NULL;
}
}
return ret;
}
char *wolfSSL_NCONF_get_string(const WOLFSSL_CONF *conf,
const char *group, const char *name)
{
WOLFSSL_CONF_VALUE find_val;
WOLFSSL_CONF_VALUE *val;
WOLFSSL_ENTER("wolfSSL_NCONF_get_string");
if (!conf) {
#ifdef HAVE_SECURE_GETENV
return secure_getenv(name);
#else
WOLFSSL_MSG("Missing secure_getenv");
return NULL;
#endif
}
find_val.name = (char *)name;
if (group) {
find_val.section = (char *)group;
val = wolfSSL_lh_WOLFSSL_CONF_VALUE_retrieve(conf->data, &find_val);
if (val)
return val->value;
if (XSTRCMP(group, "ENV") == 0) {
#ifdef HAVE_SECURE_GETENV
return secure_getenv(name);
#else
WOLFSSL_MSG("Missing secure_getenv");
return NULL;
#endif
}
}
find_val.section = (char *)"default";
val = wolfSSL_lh_WOLFSSL_CONF_VALUE_retrieve(conf->data, &find_val);
if (val)
return val->value;
else
return NULL;
}
int wolfSSL_NCONF_get_number(const CONF *conf, const char *group,
const char *name, long *result)
{
char *str;
WOLFSSL_ENTER("wolfSSL_NCONF_get_number");
if (!conf || !name || !result) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (!(str = wolfSSL_NCONF_get_string(conf, group, name))) {
WOLFSSL_MSG("wolfSSL_NCONF_get_string error");
return WOLFSSL_FAILURE;
}
*result = atol(str);
return WOLFSSL_SUCCESS;
}
/**
* The WOLFSSL_CONF->value member is treated as a
* WOLFSSL_STACK_OF(WOLFSSL_CONF_VALUE) which becomes
* the return value.
* @param conf
* @param section
* @return WOLFSSL_STACK_OF(WOLFSSL_CONF_VALUE)
*/
WOLFSSL_STACK *wolfSSL_NCONF_get_section(
const WOLFSSL_CONF *conf, const char *section)
{
WOLFSSL_CONF_VALUE *val;
WOLFSSL_CONF_VALUE find_val;
WOLFSSL_ENTER("wolfSSL_NCONF_get_section");
if (!conf || !section) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
find_val.name = NULL;
find_val.section = (char*)section;
val = wolfSSL_lh_WOLFSSL_CONF_VALUE_retrieve(conf->data, &find_val);
if (val)
return (WOLFSSL_STACK*)val->value;
else
return NULL;
}
static WOLFSSL_CONF_VALUE *wolfSSL_CONF_VALUE_new_values(char* section,
char* name, char* value)
{
WOLFSSL_CONF_VALUE* ret;
int len;
WOLFSSL_ENTER("wolfSSL_CONF_VALUE_new_values");
if (!(ret = wolfSSL_CONF_VALUE_new())) {
WOLFSSL_MSG("wolfSSL_CONF_VALUE_new error");
return NULL;
}
if (section) {
len = (int)XSTRLEN(section);
ret->section = (char*)XMALLOC(len+1, NULL, DYNAMIC_TYPE_OPENSSL);
if (!ret->section) {
WOLFSSL_MSG("malloc error");
wolfSSL_X509V3_conf_free(ret);
return NULL;
}
XMEMCPY(ret->section, section, len+1);
}
if (name) {
len = (int)XSTRLEN(name);
ret->name = (char*)XMALLOC(len+1, NULL, DYNAMIC_TYPE_OPENSSL);
if (!ret->name) {
WOLFSSL_MSG("malloc error");
wolfSSL_X509V3_conf_free(ret);
return NULL;
}
XMEMCPY(ret->name, name, len+1);
}
if (value) {
len = (int)XSTRLEN(value);
ret->value = (char*)XMALLOC(len+1, NULL, DYNAMIC_TYPE_OPENSSL);
if (!ret->value) {
WOLFSSL_MSG("malloc error");
wolfSSL_X509V3_conf_free(ret);
return NULL;
}
XMEMCPY(ret->value, value, len+1);
}
return ret;
}
static char* expandValue(WOLFSSL_CONF *conf, const char* section,
char *str)
{
int strLen = (int)XSTRLEN(str);
char* ret = NULL;
/* Check to see if there is anything to expand */
if (XSTRNSTR(str, "$", strLen)) {
int idx = 0;
char* strIdx = str;
ret = (char*)XMALLOC(strLen + 1, NULL, DYNAMIC_TYPE_OPENSSL);
if (!ret) {
WOLFSSL_MSG("malloc error");
return str;
}
while (*strIdx) {
if (*strIdx == '$') {
/* Expand variable */
char* startIdx = ++strIdx;
char* endIdx;
const char* s = section;
const char* value;
char prevValue;
if (*startIdx == '{') {
/* First read the section.
* format: ${section_name::var_name} */
s = ++startIdx;
while (*strIdx && *strIdx != ':') strIdx++;
if (!*strIdx || s == strIdx || strIdx[1] != ':') {
WOLFSSL_MSG("invalid section name in "
"variable expansion");
goto expand_cleanup;
}
*strIdx = '\0';
strIdx += 2;
startIdx = strIdx;
}
while (*strIdx && (XISALNUM(*strIdx) || *strIdx == '_'))
strIdx++;
endIdx = strIdx;
if (startIdx == endIdx) {
WOLFSSL_MSG("invalid variable name in config");
goto expand_cleanup;
}
if (s != section) {
/* We are expecting a trailing '}' */
if (*strIdx != '}') {
WOLFSSL_MSG("Missing '}' in variable");
goto expand_cleanup;
}
strIdx++;
}
/* Save char value at the end of the name so that we can place
* a null char there. */
prevValue = *endIdx;
*endIdx = '\0';
value = wolfSSL_NCONF_get_string(conf, s, startIdx);
*endIdx = prevValue;
/* Skip copy if no value or zero-length value */
if (value && *value) {
int valueLen = (int)XSTRLEN(value);
char* newRet;
/* This will allocate slightly more memory than necessary
* but better be safe */
strLen += valueLen;
newRet = (char*)XREALLOC(ret, strLen + 1, NULL,
DYNAMIC_TYPE_OPENSSL);
if (!newRet) {
WOLFSSL_MSG("realloc error");
goto expand_cleanup;
}
ret = newRet;
XMEMCPY(ret + idx, value, valueLen);
idx += valueLen;
}
}
else {
ret[idx++] = *strIdx++;
}
}
ret[idx] = '\0';
}
return ret ? ret : str;
expand_cleanup:
if (ret)
XFREE(ret, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
#define SKIP_WHITESPACE(idx, max_idx) \
while (idx < max_idx && (*idx == ' ' || *idx == '\t')) \
{idx++;}
int wolfSSL_NCONF_load(WOLFSSL_CONF *conf, const char *file, long *eline)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_BIO *in = NULL;
char* buf = NULL;
char* idx = NULL;
char* bufEnd = NULL;
CONF_VALUE* section = NULL;
long line = 0;
int bufLen = 0;
if (!conf || !file) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
/* Open file */
if (!(in = wolfSSL_BIO_new_file(file, "rb"))) {
WOLFSSL_MSG("wolfSSL_BIO_new_file error");
return WOLFSSL_FAILURE;
}
/* Read file */
bufLen = wolfSSL_BIO_get_len(in);
if (bufLen <= 0) {
WOLFSSL_MSG("wolfSSL_BIO_get_len error");
goto cleanup;
}
if (!(buf = (char*)XMALLOC(bufLen + 1, NULL, DYNAMIC_TYPE_TMP_BUFFER))) {
WOLFSSL_MSG("malloc error");
goto cleanup;
}
if (wolfSSL_BIO_read(in, buf, bufLen) != bufLen) {
WOLFSSL_MSG("wolfSSL_BIO_read error");
goto cleanup;
}
if (!(section = wolfSSL_CONF_new_section(conf, "default"))) {
WOLFSSL_MSG("wolfSSL_CONF_new_section error");
goto cleanup;
}
/* LETS START READING SOME CONFIGS */
idx = buf;
bufEnd = buf + bufLen;
while (idx < bufEnd) {
char* lineEnd = XSTRNSTR(idx, "\n", (unsigned int)(bufEnd - idx));
char* maxIdx;
if (!lineEnd)
lineEnd = bufEnd; /* Last line in file */
maxIdx = XSTRNSTR(idx, "#", (unsigned int)(lineEnd - idx));
if (!maxIdx)
maxIdx = lineEnd;
line++;
SKIP_WHITESPACE(idx, maxIdx);
if (idx == maxIdx) {
/* Empty line */
idx = lineEnd + 1;
continue;
}
if (*idx == '[') {
/* New section. Spaces not allowed in section name. */
char* sectionName;
int sectionNameLen;
if (idx < maxIdx)
idx++;
else {
WOLFSSL_MSG("Invalid section definition.");
goto cleanup;
}
SKIP_WHITESPACE(idx, maxIdx);
sectionName = idx;
/* Find end of section name */
while (idx < maxIdx && *idx != ' ' && *idx != ']')
idx++;
sectionNameLen = (int)(idx - sectionName);
SKIP_WHITESPACE(idx, maxIdx);
if (*idx != ']') {
WOLFSSL_MSG("Section definition error. "
"Closing brace not found.");
goto cleanup;
}
sectionName[sectionNameLen] = '\0';
if (!(section = wolfSSL_CONF_get_section(conf, sectionName)))
section = wolfSSL_CONF_new_section(conf, sectionName);
}
else {
char* name;
int nameLen;
char* value;
char* exValue; /* expanded value */
int valueLen;
WOLFSSL_CONF_VALUE* newVal = NULL;
SKIP_WHITESPACE(idx, maxIdx);
name = idx;
/* Find end of name */
while (idx < maxIdx && *idx != ' ' && *idx != '=')
idx++;
nameLen = (int)(idx - name);
SKIP_WHITESPACE(idx, maxIdx);
if (*idx != '=') {
WOLFSSL_MSG("Missing equals sign");
goto cleanup;
}
idx++;
SKIP_WHITESPACE(idx, maxIdx);
value = idx;
/* Find end of value */
idx = maxIdx-1;
while (idx >= value && (*idx == ' ' || *idx == '\t'))
idx--;
valueLen = (int)(idx - value + 1);
/* Sanity checks */
if (nameLen <= 0 || valueLen <= 0) {
WOLFSSL_MSG("Sanity checks failed");
goto cleanup;
}
name[nameLen] = '\0';
value[valueLen] = '\0';
if (!(exValue = expandValue(conf, section->section, value))) {
WOLFSSL_MSG("Variable expansion failed");
goto cleanup;
}
if (!(newVal = wolfSSL_CONF_VALUE_new_values(NULL,
name, exValue))) {
WOLFSSL_MSG("wolfSSL_CONF_VALUE_new_values error");
if (exValue != value)
XFREE(exValue, NULL, DYNAMIC_TYPE_OPENSSL);
goto cleanup;
}
if (exValue != value)
XFREE(exValue, NULL, DYNAMIC_TYPE_OPENSSL);
if (wolfSSL_CONF_add_string(conf, section, newVal) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_CONF_add_string error");
goto cleanup;
}
}
idx = lineEnd + 1;
}
ret = WOLFSSL_SUCCESS;
cleanup:
if (in)
wolfSSL_BIO_free(in);
if (buf)
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (eline)
*eline = line;
return ret;
}
void wolfSSL_NCONF_free(WOLFSSL_CONF *conf)
{
WOLFSSL_ENTER("wolfSSL_NCONF_free");
if (conf) {
wolfSSL_sk_CONF_VALUE_free(conf->data);
XFREE(conf, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
void wolfSSL_X509V3_conf_free(WOLFSSL_CONF_VALUE *val)
{
WOLF_STACK_OF(WOLFSSL_CONF_VALUE) *sk = NULL;
if (val) {
if (val->name) {
/* Not a section. Don't free section as it is a shared pointer. */
XFREE(val->name, NULL, DYNAMIC_TYPE_OPENSSL);
if (val->value)
XFREE(val->value, NULL, DYNAMIC_TYPE_OPENSSL);
}
else {
/* Section so val->value is a stack */
if (val->section)
XFREE(val->section, NULL, DYNAMIC_TYPE_OPENSSL);
/* Only free the stack structures. The contained conf values
* will be freed in wolfSSL_NCONF_free */
sk = (WOLF_STACK_OF(WOLFSSL_CONF_VALUE)*)val->value;
while (sk) {
WOLF_STACK_OF(WOLFSSL_CONF_VALUE) *tmp = sk->next;
XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL);
sk = tmp;
}
}
XFREE(val, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
WOLFSSL_STACK *wolfSSL_sk_CONF_VALUE_new(wolf_sk_compare_cb compFunc)
{
WOLFSSL_STACK* ret;
WOLFSSL_ENTER("wolfSSL_sk_CONF_VALUE_new");
ret = wolfSSL_sk_new_node(NULL);
if (!ret)
return NULL;
ret->comp = compFunc ? compFunc : (wolf_sk_compare_cb)wolfssl_conf_value_cmp;
ret->hash_fn = (wolf_sk_hash_cb)wolfSSL_CONF_VALUE_hash;
ret->type = STACK_TYPE_CONF_VALUE;
return ret;
}
/* Free the structure for WOLFSSL_CONF_VALUE stack
*
* sk stack to free nodes in
*/
void wolfSSL_sk_CONF_VALUE_free(WOLF_STACK_OF(WOLFSSL_CONF_VALUE)* sk)
{
WOLFSSL_STACK* tmp;
WOLFSSL_ENTER("wolfSSL_sk_CONF_VALUE_free");
if (sk == NULL)
return;
/* parse through stack freeing each node */
while (sk) {
tmp = sk->next;
wolfSSL_X509V3_conf_free(sk->data.conf);
XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL);
sk = tmp;
}
}
int wolfSSL_sk_CONF_VALUE_num(const WOLFSSL_STACK *sk)
{
WOLFSSL_ENTER("wolfSSL_sk_CONF_VALUE_num");
if (sk)
return wolfSSL_sk_num(sk);
return 0;
}
WOLFSSL_CONF_VALUE *wolfSSL_sk_CONF_VALUE_value(const WOLFSSL_STACK *sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_CONF_VALUE_value");
if (sk)
return (WOLFSSL_CONF_VALUE*)wolfSSL_sk_value(sk, i);
return NULL;
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_CONF_VALUE_push(WOLF_STACK_OF(WOLFSSL_CONF_VALUE)* sk,
WOLFSSL_CONF_VALUE* val)
{
WOLFSSL_ENTER("wolfSSL_sk_CONF_VALUE_push");
if (sk == NULL || val == NULL) {
return WOLFSSL_FAILURE;
}
return wolfSSL_sk_push(sk, val);
}
WOLF_STACK_OF(WOLFSSL_X509_EXTENSION)* wolfSSL_sk_X509_EXTENSION_new_null(void)
{
WOLFSSL_STACK* sk = wolfSSL_sk_new_node(NULL);
if (sk) {
sk->type = STACK_TYPE_X509_EXT;
}
return (WOLF_STACK_OF(WOLFSSL_X509_EXTENSION)*)sk;;
}
/* returns the number of nodes on the stack */
int wolfSSL_sk_X509_EXTENSION_num(WOLF_STACK_OF(WOLFSSL_X509_EXTENSION)* sk)
{
if (sk != NULL) {
return (int)sk->num;
}
return WOLFSSL_FATAL_ERROR;
}
/* returns null on failure and pointer to internal value on success */
WOLFSSL_X509_EXTENSION* wolfSSL_sk_X509_EXTENSION_value(
WOLF_STACK_OF(WOLFSSL_X509_EXTENSION)* sk, int idx)
{
WOLFSSL_STACK* ret;
if (sk == NULL) {
return NULL;
}
ret = wolfSSL_sk_get_node(sk, idx);
if (ret != NULL) {
return ret->data.ext;
}
return NULL;
}
/* frees all of the nodes and the values in stack */
void wolfSSL_sk_X509_EXTENSION_pop_free(
WOLF_STACK_OF(WOLFSSL_X509_EXTENSION)* sk,
void (*f) (WOLFSSL_X509_EXTENSION*))
{
WOLFSSL_STACK* current;
if (sk == NULL) {
return;
}
current = sk;
while (current != NULL) {
WOLFSSL_STACK* toFree = current;
current = current->next;
if (f)
f(toFree->data.ext);
wolfSSL_sk_free_node(toFree);
}
}
#if defined(HAVE_ECC)
/* Copies ecc_key into new WOLFSSL_EC_KEY object
*
* src : EC_KEY to duplicate. If EC_KEY is not null, create new EC_KEY and copy
* internal ecc_key from src to dup.
*
* Returns pointer to duplicate EC_KEY.
*/
WOLFSSL_EC_KEY *wolfSSL_EC_KEY_dup(const WOLFSSL_EC_KEY *src)
{
WOLFSSL_EC_KEY *dup;
ecc_key *key, *srcKey;
int ret;
WOLFSSL_ENTER("wolfSSL_EC_KEY_dup");
if (src == NULL || src->internal == NULL || src->group == NULL || \
src->pub_key == NULL || src->priv_key == NULL) {
WOLFSSL_MSG("src NULL error");
return NULL;
}
dup = wolfSSL_EC_KEY_new();
if (dup == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new error");
return NULL;
}
key = (ecc_key*)dup->internal;
if (key == NULL) {
WOLFSSL_MSG("ecc_key NULL error");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
srcKey = (ecc_key*)src->internal;
/* ecc_key */
/* copy pubkey */
ret = wc_ecc_copy_point(&srcKey->pubkey, &key->pubkey);
if (ret != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_copy_point error");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
/* copy private key k */
ret = mp_copy(&srcKey->k, &key->k);
if (ret != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
/* copy domain parameters */
if (srcKey->dp) {
ret = wc_ecc_set_curve(key, 0, srcKey->dp->id);
if (ret != 0) {
WOLFSSL_MSG("wc_ecc_set_curve error");
return NULL;
}
}
key->type = srcKey->type;
key->idx = srcKey->idx;
key->state = srcKey->state;
key->flags = srcKey->flags;
/* Copy group */
if (dup->group == NULL) {
WOLFSSL_MSG("EC_GROUP_new_by_curve_name error");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
dup->group->curve_idx = src->group->curve_idx;
dup->group->curve_nid = src->group->curve_nid;
dup->group->curve_oid = src->group->curve_oid;
/* Copy public key */
if (src->pub_key->internal == NULL || dup->pub_key->internal == NULL) {
WOLFSSL_MSG("NULL pub_key error");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
/* Copy public key internal */
ret = wc_ecc_copy_point((ecc_point*)src->pub_key->internal, \
(ecc_point*)dup->pub_key->internal);
if (ret != MP_OKAY) {
WOLFSSL_MSG("ecc_copy_point error");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
/* Copy X, Y, Z */
dup->pub_key->X = wolfSSL_BN_dup(src->pub_key->X);
if (!dup->pub_key->X && src->pub_key->X) {
WOLFSSL_MSG("Error copying EC_POINT");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
dup->pub_key->Y = wolfSSL_BN_dup(src->pub_key->Y);
if (!dup->pub_key->Y && src->pub_key->Y) {
WOLFSSL_MSG("Error copying EC_POINT");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
dup->pub_key->Z = wolfSSL_BN_dup(src->pub_key->Z);
if (!dup->pub_key->Z && src->pub_key->Z) {
WOLFSSL_MSG("Error copying EC_POINT");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
dup->pub_key->inSet = src->pub_key->inSet;
dup->pub_key->exSet = src->pub_key->exSet;
/* Copy private key */
if (src->priv_key->internal == NULL || dup->priv_key->internal == NULL) {
WOLFSSL_MSG("NULL priv_key error");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
/* Free priv_key before call to dup function */
wolfSSL_BN_free(dup->priv_key);
dup->priv_key = wolfSSL_BN_dup(src->priv_key);
if (dup->priv_key == NULL) {
WOLFSSL_MSG("BN_dup error");
wolfSSL_EC_KEY_free(dup);
return NULL;
}
return dup;
}
#endif /* HAVE_ECC */
#if !defined(NO_DH)
int wolfSSL_DH_check(const WOLFSSL_DH *dh, int *codes)
{
int isPrime = MP_NO, codeTmp = 0;
WC_RNG rng;
WOLFSSL_ENTER("wolfSSL_DH_check");
if (dh == NULL){
return WOLFSSL_FAILURE;
}
if (dh->g == NULL || dh->g->internal == NULL){
codeTmp = DH_NOT_SUITABLE_GENERATOR;
}
if (dh->p == NULL || dh->p->internal == NULL){
codeTmp = DH_CHECK_P_NOT_PRIME;
}
else
{
/* test if dh->p has prime */
if (wc_InitRng(&rng) == 0){
mp_prime_is_prime_ex((mp_int*)dh->p->internal,8,&isPrime,&rng);
}
else {
WOLFSSL_MSG("Error initializing rng\n");
return WOLFSSL_FAILURE;
}
wc_FreeRng(&rng);
if (isPrime != MP_YES){
codeTmp = DH_CHECK_P_NOT_PRIME;
}
}
/* User may choose to enter NULL for codes if they don't want to check it*/
if (codes != NULL){
*codes = codeTmp;
}
/* if codeTmp was set,some check was flagged invalid */
if (codeTmp){
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
/* Converts DER encoded DH parameters to a WOLFSSL_DH structure.
*
* dh : structure to copy DH parameters into.
* pp : DER encoded DH parameters
* length : length to copy
*
* Returns pointer to WOLFSSL_DH structure on success, or NULL on failure
*/
WOLFSSL_DH *wolfSSL_d2i_DHparams(WOLFSSL_DH **dh, const unsigned char **pp,
long length)
{
WOLFSSL_DH *newDH = NULL;
int ret;
word32 idx = 0;
WOLFSSL_ENTER("wolfSSL_d2i_DHparams");
if (pp == NULL || length <= 0) {
WOLFSSL_MSG("bad argument");
return NULL;
}
if ((newDH = wolfSSL_DH_new()) == NULL) {
WOLFSSL_MSG("wolfSSL_DH_new() failed");
return NULL;
}
ret = wc_DhKeyDecode(*pp, &idx, (DhKey*)newDH->internal, (word32)length);
if (ret != 0) {
WOLFSSL_MSG("DhKeyDecode() failed");
wolfSSL_DH_free(newDH);
return NULL;
}
newDH->inSet = 1;
if (SetDhExternal(newDH) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDhExternal failed");
wolfSSL_DH_free(newDH);
return NULL;
}
*pp += length;
if (dh != NULL){
*dh = newDH;
}
return newDH;
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
/* Converts internal WOLFSSL_DH structure to DER encoded DH.
*
* dh : structure to copy DH parameters from.
* out : DER buffer for DH parameters
*
* Returns size of DER on success and WOLFSSL_FAILURE if error
*/
int wolfSSL_i2d_DHparams(const WOLFSSL_DH *dh, unsigned char **out)
{
word32 len;
int ret = 0;
WOLFSSL_ENTER("wolfSSL_i2d_DHparams");
if (dh == NULL) {
WOLFSSL_MSG("Bad parameters");
return WOLFSSL_FAILURE;
}
/* Get total length */
len = 2 + mp_leading_bit((mp_int*)dh->p->internal) +
mp_unsigned_bin_size((mp_int*)dh->p->internal) +
2 + mp_leading_bit((mp_int*)dh->g->internal) +
mp_unsigned_bin_size((mp_int*)dh->g->internal);
/* Two bytes required for length if ASN.1 SEQ data greater than 127 bytes
* and less than 256 bytes.
*/
len = ((len > 127) ? 2 : 1) + len;
if (out != NULL && *out != NULL) {
ret = StoreDHparams(*out, &len, (mp_int*)dh->p->internal,
(mp_int*)dh->g->internal);
if (ret != MP_OKAY) {
WOLFSSL_MSG("StoreDHparams error");
len = 0;
}
else{
*out += len;
}
}
return (int)len;
}
#endif /* !NO_DH */
#endif /* OPENSSL_ALL */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) && !defined(NO_FILESYSTEM) && !defined(NO_STDIO_FILESYSTEM)
WOLFSSL_X509* wolfSSL_X509_d2i_fp(WOLFSSL_X509** x509, XFILE file)
{
WOLFSSL_X509* newX509 = NULL;
WOLFSSL_ENTER("wolfSSL_X509_d2i_fp");
if (file != XBADFILE) {
byte* fileBuffer = NULL;
long sz = 0;
if (XFSEEK(file, 0, XSEEK_END) != 0)
return NULL;
sz = XFTELL(file);
XREWIND(file);
if (sz > MAX_WOLFSSL_FILE_SIZE || sz < 0) {
WOLFSSL_MSG("X509_d2i file size error");
return NULL;
}
fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE);
if (fileBuffer != NULL) {
int ret = (int)XFREAD(fileBuffer, 1, sz, file);
if (ret == sz) {
newX509 = wolfSSL_X509_d2i(NULL, fileBuffer, (int)sz);
}
XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
}
}
if (x509 != NULL)
*x509 = newX509;
return newX509;
}
#endif /* OPENSSL_EXTRA && !NO_FILESYSTEM && !NO_STDIO_FILESYSTEM */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \
defined(KEEP_PEER_CERT) || defined(SESSION_CERTS)
#ifndef NO_FILESYSTEM
WOLFSSL_ABI
WOLFSSL_X509* wolfSSL_X509_load_certificate_file(const char* fname, int format)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* fileBuffer = staticBuffer;
int dynamic = 0;
int ret;
long sz = 0;
XFILE file;
WOLFSSL_X509* x509 = NULL;
/* Check the inputs */
if ((fname == NULL) ||
(format != WOLFSSL_FILETYPE_ASN1 && format != WOLFSSL_FILETYPE_PEM))
return NULL;
file = XFOPEN(fname, "rb");
if (file == XBADFILE)
return NULL;
if (XFSEEK(file, 0, XSEEK_END) != 0){
XFCLOSE(file);
return NULL;
}
sz = XFTELL(file);
XREWIND(file);
if (sz > MAX_WOLFSSL_FILE_SIZE || sz < 0) {
WOLFSSL_MSG("X509_load_certificate_file size error");
XFCLOSE(file);
return NULL;
}
if (sz > (long)sizeof(staticBuffer)) {
fileBuffer = (byte*)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE);
if (fileBuffer == NULL) {
XFCLOSE(file);
return NULL;
}
dynamic = 1;
}
ret = (int)XFREAD(fileBuffer, 1, sz, file);
if (ret != sz) {
XFCLOSE(file);
if (dynamic)
XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
return NULL;
}
XFCLOSE(file);
x509 = wolfSSL_X509_load_certificate_buffer(fileBuffer, (int)sz, format);
if (dynamic)
XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
return x509;
}
#endif /* !NO_FILESYSTEM */
static WOLFSSL_X509* loadX509orX509REQFromBuffer(
const unsigned char* buf, int sz, int format, int type)
{
int ret;
WOLFSSL_X509* x509 = NULL;
DerBuffer* der = NULL;
WOLFSSL_ENTER("wolfSSL_X509_load_certificate_ex");
if (format == WOLFSSL_FILETYPE_PEM) {
#ifdef WOLFSSL_PEM_TO_DER
if (PemToDer(buf, sz, type, &der, NULL, NULL, NULL) != 0) {
FreeDer(&der);
}
#else
ret = NOT_COMPILED_IN;
#endif
}
else {
ret = AllocDer(&der, (word32)sz, type, NULL);
if (ret == 0) {
XMEMCPY(der->buffer, buf, sz);
}
}
/* At this point we want `der` to have the certificate in DER format */
/* ready to be decoded. */
if (der != NULL && der->buffer != NULL) {
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert;
#else
DecodedCert cert[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert != NULL)
#endif
{
InitDecodedCert(cert, der->buffer, der->length, NULL);
if (ParseCertRelative(cert, type, 0, NULL) == 0) {
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL,
DYNAMIC_TYPE_X509);
if (x509 != NULL) {
InitX509(x509, 1, NULL);
if (CopyDecodedToX509(x509, cert) != 0) {
wolfSSL_X509_free(x509);
x509 = NULL;
}
}
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
}
FreeDer(&der);
}
return x509;
}
WOLFSSL_X509* wolfSSL_X509_load_certificate_buffer(
const unsigned char* buf, int sz, int format)
{
return loadX509orX509REQFromBuffer(buf, sz,
format, CERT_TYPE);
}
#ifdef WOLFSSL_CERT_REQ
WOLFSSL_X509* wolfSSL_X509_REQ_load_certificate_buffer(
const unsigned char* buf, int sz, int format)
{
return loadX509orX509REQFromBuffer(buf, sz,
format, CERTREQ_TYPE);
}
#endif
#endif /* KEEP_PEER_CERT || SESSION_CERTS */
/* OPENSSL_EXTRA is needed for wolfSSL_X509_d21 function
KEEP_OUR_CERT is to insure ability for returning ssl certificate */
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \
defined(KEEP_OUR_CERT)
WOLFSSL_X509* wolfSSL_get_certificate(WOLFSSL* ssl)
{
if (ssl == NULL) {
return NULL;
}
if (ssl->buffers.weOwnCert) {
if (ssl->ourCert == NULL) {
if (ssl->buffers.certificate == NULL) {
WOLFSSL_MSG("Certificate buffer not set!");
return NULL;
}
#ifndef WOLFSSL_X509_STORE_CERTS
ssl->ourCert = wolfSSL_X509_d2i(NULL,
ssl->buffers.certificate->buffer,
ssl->buffers.certificate->length);
#endif
}
return ssl->ourCert;
}
else { /* if cert not owned get parent ctx cert or return null */
if (ssl->ctx) {
if (ssl->ctx->ourCert == NULL) {
if (ssl->ctx->certificate == NULL) {
WOLFSSL_MSG("Ctx Certificate buffer not set!");
return NULL;
}
#ifndef WOLFSSL_X509_STORE_CERTS
ssl->ctx->ourCert = wolfSSL_X509_d2i(NULL,
ssl->ctx->certificate->buffer,
ssl->ctx->certificate->length);
#endif
ssl->ctx->ownOurCert = 1;
}
return ssl->ctx->ourCert;
}
}
return NULL;
}
WOLFSSL_X509* wolfSSL_CTX_get0_certificate(WOLFSSL_CTX* ctx)
{
if (ctx) {
if (ctx->ourCert == NULL) {
if (ctx->certificate == NULL) {
WOLFSSL_MSG("Ctx Certificate buffer not set!");
return NULL;
}
#ifndef WOLFSSL_X509_STORE_CERTS
ctx->ourCert = wolfSSL_X509_d2i(NULL,
ctx->certificate->buffer,
ctx->certificate->length);
#endif
ctx->ownOurCert = 1;
}
return ctx->ourCert;
}
return NULL;
}
#endif /* OPENSSL_EXTRA && KEEP_OUR_CERT */
#endif /* NO_CERTS */
#if !defined(NO_ASN) && (defined(OPENSSL_EXTRA) || \
defined(OPENSSL_EXTRA_X509_SMALL))
void wolfSSL_ASN1_OBJECT_free(WOLFSSL_ASN1_OBJECT* obj)
{
if (obj == NULL) {
return;
}
if ((obj->obj != NULL) && ((obj->dynamic & WOLFSSL_ASN1_DYNAMIC_DATA) != 0)) {
WOLFSSL_MSG("Freeing ASN1 data");
XFREE((void*)obj->obj, obj->heap, DYNAMIC_TYPE_ASN1);
obj->obj = NULL;
}
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
if (obj->pathlen != NULL) {
wolfSSL_ASN1_INTEGER_free(obj->pathlen);
obj->pathlen = NULL;
}
#endif
if ((obj->dynamic & WOLFSSL_ASN1_DYNAMIC) != 0) {
WOLFSSL_MSG("Freeing ASN1 OBJECT");
XFREE(obj, NULL, DYNAMIC_TYPE_ASN1);
}
}
WOLFSSL_ASN1_OBJECT* wolfSSL_ASN1_OBJECT_new(void)
{
WOLFSSL_ASN1_OBJECT* obj;
obj = (WOLFSSL_ASN1_OBJECT*)XMALLOC(sizeof(WOLFSSL_ASN1_OBJECT), NULL,
DYNAMIC_TYPE_ASN1);
if (obj == NULL) {
return NULL;
}
XMEMSET(obj, 0, sizeof(WOLFSSL_ASN1_OBJECT));
obj->d.ia5 = &(obj->d.ia5_internal);
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
obj->d.iPAddress = &(obj->d.iPAddress_internal);
#endif
obj->dynamic |= WOLFSSL_ASN1_DYNAMIC;
return obj;
}
WOLFSSL_ASN1_OBJECT* wolfSSL_ASN1_OBJECT_dup(WOLFSSL_ASN1_OBJECT* obj)
{
WOLFSSL_ASN1_OBJECT* dupl = NULL;
WOLFSSL_ENTER("wolfSSL_ASN1_OBJECT_dup");
if (!obj) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
dupl = wolfSSL_ASN1_OBJECT_new();
if (!dupl) {
WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_new error");
return NULL;
}
/* Copy data */
XMEMCPY(dupl->sName, obj->sName, WOLFSSL_MAX_SNAME);
dupl->type = obj->type;
dupl->grp = obj->grp;
dupl->nid = obj->nid;
dupl->objSz = obj->objSz;
if (obj->obj) {
dupl->obj = (const unsigned char*)XMALLOC(
obj->objSz, NULL, DYNAMIC_TYPE_ASN1);
if (!dupl->obj) {
WOLFSSL_MSG("ASN1 obj malloc error");
wolfSSL_ASN1_OBJECT_free(dupl);
return NULL;
}
XMEMCPY((byte*)dupl->obj, obj->obj, obj->objSz);
dupl->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA;
}
return dupl;
}
#endif /* !NO_ASN && (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) */
#ifndef NO_ASN
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* Creates and returns a new WOLFSSL_CIPHER stack. */
WOLFSSL_STACK* wolfSSL_sk_new_asn1_obj(void)
{
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_sk_new_asn1_obj");
sk = wolfSSL_sk_new_null();
if (sk == NULL)
return NULL;
sk->type = STACK_TYPE_OBJ;
return sk;
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_ASN1_OBJECT_push(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk,
WOLFSSL_ASN1_OBJECT* obj)
{
WOLFSSL_ENTER("wolfSSL_sk_ASN1_OBJECT_push");
if (sk == NULL || obj == NULL) {
return WOLFSSL_FAILURE;
}
return wolfSSL_sk_push(sk, obj);
}
WOLFSSL_ASN1_OBJECT* wolfSSL_sk_ASN1_OBJECT_pop(
WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk)
{
WOLFSSL_STACK* node;
WOLFSSL_ASN1_OBJECT* obj;
if (sk == NULL) {
return NULL;
}
node = sk->next;
obj = sk->data.obj;
if (node != NULL) { /* update sk and remove node from stack */
sk->data.obj = node->data.obj;
sk->next = node->next;
XFREE(node, NULL, DYNAMIC_TYPE_ASN1);
}
else { /* last obj in stack */
sk->data.obj = NULL;
}
if (sk->num > 0) {
sk->num -= 1;
}
return obj;
}
/* Free the structure for ASN1_OBJECT stack
*
* sk stack to free nodes in
*/
void wolfSSL_sk_ASN1_OBJECT_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk)
{
wolfSSL_sk_ASN1_OBJECT_pop_free(sk, NULL);
}
/* Free's all nodes in ASN1_OBJECT stack.
* This is different then wolfSSL_ASN1_OBJECT_free in that it allows for
* choosing the function to use when freeing an ASN1_OBJECT stack.
*
* sk stack to free nodes in
* f X509 free function
*/
void wolfSSL_sk_ASN1_OBJECT_pop_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk,
void (*f) (WOLFSSL_ASN1_OBJECT*))
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_ASN1_OBJECT_pop_free");
if (sk == NULL) {
WOLFSSL_MSG("Parameter error");
return;
}
/* parse through stack freeing each node */
node = sk->next;
while (node && sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
if (f)
f(tmp->data.obj);
else
wolfSSL_ASN1_OBJECT_free(tmp->data.obj);
tmp->data.obj = NULL;
XFREE(tmp, NULL, DYNAMIC_TYPE_ASN1);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
if (f)
f(sk->data.obj);
else
wolfSSL_ASN1_OBJECT_free(sk->data.obj);
sk->data.obj = NULL;
}
XFREE(sk, NULL, DYNAMIC_TYPE_ASN1);
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#endif /* !NO_ASN */
#ifdef OPENSSL_EXTRA
#ifndef NO_ASN
int wolfSSL_ASN1_STRING_to_UTF8(unsigned char **out, WOLFSSL_ASN1_STRING *in)
{
/*
ASN1_STRING_to_UTF8() converts the string in to UTF8 format,
the converted data is allocated in a buffer in *out.
The length of out is returned or a negative error code.
The buffer *out should be free using OPENSSL_free().
*/
unsigned char* buf;
unsigned char* inPtr;
int inLen;
if (!out || !in) {
return -1;
}
inPtr = wolfSSL_ASN1_STRING_data(in);
inLen = wolfSSL_ASN1_STRING_length(in);
if (!inPtr || inLen < 0) {
return -1;
}
buf = (unsigned char*)XMALLOC(inLen + 1, NULL, DYNAMIC_TYPE_OPENSSL);
if (!buf) {
return -1;
}
XMEMCPY(buf, inPtr, inLen + 1);
*out = buf;
return inLen;
}
int wolfSSL_ASN1_UNIVERSALSTRING_to_string(WOLFSSL_ASN1_STRING *s)
{
char *idx;
char *copy;
WOLFSSL_ENTER("wolfSSL_ASN1_UNIVERSALSTRING_to_string");
if (!s) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (s->type != V_ASN1_UNIVERSALSTRING) {
WOLFSSL_MSG("Input is not a universal string");
return WOLFSSL_FAILURE;
}
if ((s->length % 4) != 0) {
WOLFSSL_MSG("Input string must be divisible by 4");
return WOLFSSL_FAILURE;
}
for (idx = s->data; idx < s->data + s->length; idx += 4)
if ((idx[0] != '\0') || (idx[1] != '\0') || (idx[2] != '\0'))
break;
if (idx != s->data + s->length) {
WOLFSSL_MSG("Wrong string format");
return WOLFSSL_FAILURE;
}
for (copy = idx = s->data; idx < s->data + s->length; idx += 4)
*copy++ = idx[3];
*copy = '\0';
s->length /= 4;
s->type = V_ASN1_PRINTABLESTRING;
return WOLFSSL_SUCCESS;
}
/* Returns string representation of ASN1_STRING */
char* wolfSSL_i2s_ASN1_STRING(WOLFSSL_v3_ext_method *method,
const WOLFSSL_ASN1_STRING *s)
{
int i;
int tmpSz = 100;
int valSz = 5;
char* tmp;
char val[5];
unsigned char* str;
WOLFSSL_ENTER("wolfSSL_i2s_ASN1_STRING");
(void)method;
if(s == NULL || s->data == NULL) {
WOLFSSL_MSG("Bad Function Argument");
return NULL;
}
str = (unsigned char*)XMALLOC(s->length, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (str == NULL) {
WOLFSSL_MSG("Memory Error");
return NULL;
}
XMEMCPY(str, (unsigned char*)s->data, s->length);
tmp = (char*)XMALLOC(tmpSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (tmp == NULL) {
WOLFSSL_MSG("Memory Error");
XFREE(str, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
XMEMSET(tmp, 0, tmpSz);
for (i = 0; i < tmpSz && i < (s->length - 1); i++) {
XSNPRINTF(val, valSz - 1, "%02X:", str[i]);
XSTRNCAT(tmp, val, valSz);
}
XSNPRINTF(val, valSz - 1, "%02X", str[i]);
XSTRNCAT(tmp, val, valSz);
XFREE(str, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return tmp;
}
#endif /* NO_ASN */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
void wolfSSL_set_connect_state(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_set_connect_state");
if (ssl == NULL) {
WOLFSSL_MSG("WOLFSSL struct pointer passed in was null");
return;
}
#ifndef NO_DH
/* client creates its own DH parameters on handshake */
if (ssl->buffers.serverDH_P.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_P.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
}
ssl->buffers.serverDH_P.buffer = NULL;
if (ssl->buffers.serverDH_G.buffer && ssl->buffers.weOwnDH) {
XFREE(ssl->buffers.serverDH_G.buffer, ssl->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
}
ssl->buffers.serverDH_G.buffer = NULL;
#endif
if (InitSSL_Side(ssl, WOLFSSL_CLIENT_END) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error initializing client side");
}
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
int wolfSSL_get_shutdown(const WOLFSSL* ssl)
{
int isShutdown = 0;
WOLFSSL_ENTER("wolfSSL_get_shutdown");
if (ssl) {
/* in OpenSSL, WOLFSSL_SENT_SHUTDOWN = 1, when closeNotifySent *
* WOLFSSL_RECEIVED_SHUTDOWN = 2, from close notify or fatal err */
isShutdown = ((ssl->options.closeNotify||ssl->options.connReset) << 1)
| (ssl->options.sentNotify);
}
return isShutdown;
}
int wolfSSL_session_reused(WOLFSSL* ssl)
{
int resuming = 0;
if (ssl)
resuming = ssl->options.resuming;
return resuming;
}
#if defined(OPENSSL_EXTRA) || defined(HAVE_EXT_CACHE)
/* return a new malloc'd session with default settings on success */
static WOLFSSL_SESSION* NewSession(void)
{
WOLFSSL_SESSION* ret = NULL;
ret = (WOLFSSL_SESSION*)XMALLOC(sizeof(WOLFSSL_SESSION), NULL,
DYNAMIC_TYPE_OPENSSL);
if (ret != NULL) {
XMEMSET(ret, 0, sizeof(WOLFSSL_SESSION));
ret->isAlloced = 1;
}
return ret;
}
WOLFSSL_SESSION* wolfSSL_SESSION_new(void)
{
WOLFSSL_SESSION* ret = NewSession();
#ifdef OPENSSL_EXTRA
if (ret != NULL) {
if (wc_InitMutex(&ret->refMutex) != 0) {
WOLFSSL_MSG("Error setting up session reference mutex");
XFREE(ret, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
ret->refCount = 1;
}
#endif
return ret;
}
/* add one to session reference count
* return WOFLSSL_SUCCESS on success and WOLFSSL_FAILURE on error */
int wolfSSL_SESSION_up_ref(WOLFSSL_SESSION* session)
{
if (session == NULL)
return WOLFSSL_FAILURE;
#ifdef OPENSSL_EXTRA
if (wc_LockMutex(&session->refMutex) != 0) {
WOLFSSL_MSG("Failed to lock session mutex");
}
session->refCount++;
wc_UnLockMutex(&session->refMutex);
#endif
return WOLFSSL_SUCCESS;
}
WOLFSSL_SESSION* wolfSSL_SESSION_dup(WOLFSSL_SESSION* session)
{
#ifdef HAVE_EXT_CACHE
WOLFSSL_SESSION* copy;
WOLFSSL_ENTER("wolfSSL_SESSION_dup");
if (session == NULL)
return NULL;
#ifdef HAVE_SESSION_TICKET
if (session->isDynamic && !session->ticket) {
WOLFSSL_MSG("Session dynamic flag is set but ticket pointer is null");
return NULL;
}
#endif
copy = NewSession();
if (copy != NULL) {
XMEMCPY(copy, session, sizeof(WOLFSSL_SESSION));
copy->isAlloced = 1;
#ifdef OPENSSL_EXTRA
if (wc_InitMutex(&copy->refMutex) != 0) {
WOLFSSL_MSG("Error setting up session reference mutex");
XFREE(copy, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
copy->refCount = 1;
#endif
#ifdef HAVE_SESSION_TICKET
if (session->isDynamic) {
copy->ticket = (byte*)XMALLOC(session->ticketLen, NULL,
DYNAMIC_TYPE_SESSION_TICK);
XMEMCPY(copy->ticket, session->ticket, session->ticketLen);
} else {
copy->ticket = copy->staticTicket;
}
#endif
#if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA)
copy->peer = wolfSSL_X509_dup(session->peer);
#endif
}
return copy;
#else
WOLFSSL_MSG("wolfSSL_SESSION_dup was called "
"but HAVE_EXT_CACHE is not defined");
(void)session;
return NULL;
#endif /* HAVE_EXT_CACHE */
}
void FreeSession(WOLFSSL_SESSION* session, int isAlloced)
{
if (session == NULL)
return;
#if defined(SESSION_CERTS) && defined(OPENSSL_EXTRA)
if (session->peer) {
wolfSSL_X509_free(session->peer);
session->peer = NULL;
}
#endif
#ifdef OPENSSL_EXTRA
/* refCount will always be 1 or more if created externally.
* Internal cache sessions don't initialize a refMutex. */
if (session->refCount > 0) {
if (wc_LockMutex(&session->refMutex) != 0) {
WOLFSSL_MSG("Failed to lock session mutex");
}
if (session->refCount > 1) {
session->refCount--;
wc_UnLockMutex(&session->refMutex);
return;
}
wc_UnLockMutex(&session->refMutex);
}
#endif
#if defined(HAVE_EXT_CACHE) || defined(OPENSSL_EXTRA)
if (isAlloced) {
#ifdef HAVE_SESSION_TICKET
if (session->isDynamic)
XFREE(session->ticket, NULL, DYNAMIC_TYPE_SESSION_TICK);
#endif
XFREE(session, NULL, DYNAMIC_TYPE_OPENSSL);
}
#else
/* No need to free since cache is static */
(void)session;
(void)isAlloced;
#endif
}
void wolfSSL_SESSION_free(WOLFSSL_SESSION* session)
{
if (session == NULL)
return;
#if defined(HAVE_EXT_CACHE) || defined(OPENSSL_EXTRA)
FreeSession(session, session->isAlloced);
#else
FreeSession(session, 0);
#endif
}
#endif /* OPENSSL_EXTRA || HAVE_EXT_CACHE */
/* helper function that takes in a protocol version struct and returns string */
static const char* wolfSSL_internal_get_version(const ProtocolVersion* version)
{
WOLFSSL_ENTER("wolfSSL_get_version");
if (version == NULL) {
return "Bad arg";
}
if (version->major == SSLv3_MAJOR) {
switch (version->minor) {
case SSLv3_MINOR :
return "SSLv3";
case TLSv1_MINOR :
return "TLSv1";
case TLSv1_1_MINOR :
return "TLSv1.1";
case TLSv1_2_MINOR :
return "TLSv1.2";
case TLSv1_3_MINOR :
return "TLSv1.3";
default:
return "unknown";
}
}
#ifdef WOLFSSL_DTLS
else if (version->major == DTLS_MAJOR) {
switch (version->minor) {
case DTLS_MINOR :
return "DTLS";
case DTLSv1_2_MINOR :
return "DTLSv1.2";
default:
return "unknown";
}
}
#endif /* WOLFSSL_DTLS */
return "unknown";
}
const char* wolfSSL_get_version(const WOLFSSL* ssl)
{
if (ssl == NULL) {
WOLFSSL_MSG("Bad argument");
return "unknown";
}
return wolfSSL_internal_get_version(&ssl->version);
}
/* current library version */
const char* wolfSSL_lib_version(void)
{
return LIBWOLFSSL_VERSION_STRING;
}
#ifdef OPENSSL_EXTRA
const char* wolfSSL_OpenSSL_version(void)
{
return "wolfSSL " LIBWOLFSSL_VERSION_STRING;
}
#endif
/* current library version in hex */
word32 wolfSSL_lib_version_hex(void)
{
return LIBWOLFSSL_VERSION_HEX;
}
int wolfSSL_get_current_cipher_suite(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_current_cipher_suite");
if (ssl)
return (ssl->options.cipherSuite0 << 8) | ssl->options.cipherSuite;
return 0;
}
WOLFSSL_CIPHER* wolfSSL_get_current_cipher(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_get_current_cipher");
if (ssl) {
ssl->cipher.cipherSuite0 = ssl->options.cipherSuite0;
ssl->cipher.cipherSuite = ssl->options.cipherSuite;
return &ssl->cipher;
}
else
return NULL;
}
const char* wolfSSL_CIPHER_get_name(const WOLFSSL_CIPHER* cipher)
{
WOLFSSL_ENTER("wolfSSL_CIPHER_get_name");
if (cipher == NULL) {
return NULL;
}
#if !defined(WOLFSSL_CIPHER_INTERNALNAME) && !defined(NO_ERROR_STRINGS) && \
!defined(WOLFSSL_QT)
return GetCipherNameIana(cipher->cipherSuite0, cipher->cipherSuite);
#else
return wolfSSL_get_cipher_name_from_suite(cipher->cipherSuite0,
cipher->cipherSuite);
#endif
}
const char* wolfSSL_CIPHER_get_version(const WOLFSSL_CIPHER* cipher)
{
WOLFSSL_ENTER("SSL_CIPHER_get_version");
if (cipher == NULL || cipher->ssl == NULL) {
return NULL;
}
return wolfSSL_get_version(cipher->ssl);
}
const char* wolfSSL_SESSION_CIPHER_get_name(WOLFSSL_SESSION* session)
{
if (session == NULL) {
return NULL;
}
#if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET))
#if !defined(WOLFSSL_CIPHER_INTERNALNAME) && !defined(NO_ERROR_STRINGS)
return GetCipherNameIana(session->cipherSuite0, session->cipherSuite);
#else
return GetCipherNameInternal(session->cipherSuite0, session->cipherSuite);
#endif
#else
return NULL;
#endif
}
const char* wolfSSL_get_cipher(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_cipher");
return wolfSSL_CIPHER_get_name(wolfSSL_get_current_cipher(ssl));
}
/* gets cipher name in the format DHE-RSA-... rather then TLS_DHE... */
const char* wolfSSL_get_cipher_name(WOLFSSL* ssl)
{
/* get access to cipher_name_idx in internal.c */
return wolfSSL_get_cipher_name_internal(ssl);
}
const char* wolfSSL_get_cipher_name_from_suite(const byte cipherSuite0,
const byte cipherSuite)
{
return GetCipherNameInternal(cipherSuite0, cipherSuite);
}
const char* wolfSSL_get_cipher_name_iana_from_suite(const byte cipherSuite0,
const byte cipherSuite)
{
return GetCipherNameIana(cipherSuite0, cipherSuite);
}
int wolfSSL_get_cipher_suite_from_name(const char* name, byte* cipherSuite0,
byte* cipherSuite, int *flags) {
if ((name == NULL) ||
(cipherSuite0 == NULL) ||
(cipherSuite == NULL) ||
(flags == NULL))
return BAD_FUNC_ARG;
return GetCipherSuiteFromName(name, cipherSuite0, cipherSuite, flags);
}
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
/* Creates and returns a new WOLFSSL_CIPHER stack. */
WOLFSSL_STACK* wolfSSL_sk_new_cipher(void)
{
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_sk_new_cipher");
sk = wolfSSL_sk_new_null();
if (sk == NULL)
return NULL;
sk->type = STACK_TYPE_CIPHER;
return sk;
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_CIPHER_push(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk,
WOLFSSL_CIPHER* cipher)
{
return wolfSSL_sk_push(sk, cipher);
}
#ifndef NO_WOLFSSL_STUB
WOLFSSL_CIPHER* wolfSSL_sk_CIPHER_pop(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk)
{
WOLFSSL_STUB("wolfSSL_sk_CIPHER_pop");
(void)sk;
return NULL;
}
#endif /* NO_WOLFSSL_STUB */
#endif /* WOLFSSL_QT || OPENSSL_ALL */
word32 wolfSSL_CIPHER_get_id(const WOLFSSL_CIPHER* cipher)
{
word16 cipher_id = 0;
WOLFSSL_ENTER("SSL_CIPHER_get_id");
if (cipher && cipher->ssl) {
cipher_id = (cipher->ssl->options.cipherSuite0 << 8) |
cipher->ssl->options.cipherSuite;
}
return cipher_id;
}
const WOLFSSL_CIPHER* wolfSSL_get_cipher_by_value(word16 value)
{
const WOLFSSL_CIPHER* cipher = NULL;
byte cipherSuite0, cipherSuite;
WOLFSSL_ENTER("SSL_get_cipher_by_value");
/* extract cipher id information */
cipherSuite = (value & 0xFF);
cipherSuite0 = ((value >> 8) & 0xFF);
/* TODO: lookup by cipherSuite0 / cipherSuite */
(void)cipherSuite0;
(void)cipherSuite;
return cipher;
}
#if defined(OPENSSL_ALL)
/* Free the structure for WOLFSSL_CIPHER stack
*
* sk stack to free nodes in
*/
void wolfSSL_sk_CIPHER_free(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk)
{
WOLFSSL_STACK* node;
WOLFSSL_STACK* tmp;
WOLFSSL_ENTER("wolfSSL_sk_CIPHER_free");
if (sk == NULL)
return;
/* parse through stack freeing each node */
node = sk->next;
while (node) {
tmp = node;
node = node->next;
XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL);
}
/* free head of stack */
XFREE(sk, NULL, DYNAMIC_TYPE_ASN1);
}
/**
* This function reads a tab delimetered CSV input and returns
* a populated WOLFSSL_TXT_DB structure.
* @param in Tab delimetered CSV input
* @param num Number of fields in each row.
* @return
*/
WOLFSSL_TXT_DB *wolfSSL_TXT_DB_read(WOLFSSL_BIO *in, int num)
{
WOLFSSL_TXT_DB *ret = NULL;
char *buf = NULL;
char *bufEnd = NULL;
char *idx = NULL;
char* lineEnd = NULL;
int bufSz;
int failed = 1;
/* Space in front of str reserved for field pointers + \0 */
int fieldsSz = (num + 1) * sizeof(char *);
WOLFSSL_ENTER("wolfSSL_TXT_DB_read");
if (!in || num <= 0 || num > WOLFSSL_TXT_DB_MAX_FIELDS) {
WOLFSSL_MSG("Bad parameter or too many fields");
return NULL;
}
if (!(ret = (WOLFSSL_TXT_DB*)XMALLOC(sizeof(WOLFSSL_TXT_DB), NULL,
DYNAMIC_TYPE_OPENSSL))) {
WOLFSSL_MSG("malloc error");
goto error;
}
XMEMSET (ret, 0, sizeof(WOLFSSL_TXT_DB));
ret->num_fields = num;
if (!(ret->data = wolfSSL_sk_WOLFSSL_STRING_new())) {
WOLFSSL_MSG("wolfSSL_sk_WOLFSSL_STRING_new error");
goto error;
}
bufSz = wolfSSL_BIO_get_len(in);
if (bufSz <= 0 ||
!(buf = (char*)XMALLOC(bufSz+1, NULL,
DYNAMIC_TYPE_TMP_BUFFER))) {
WOLFSSL_MSG("malloc error or no data in BIO");
goto error;
}
if (wolfSSL_BIO_read(in, buf, bufSz) != bufSz) {
WOLFSSL_MSG("malloc error or no data in BIO");
goto error;
}
buf[bufSz] = '\0';
idx = buf;
for (bufEnd = buf + bufSz; idx < bufEnd; idx = lineEnd + 1) {
char* strBuf = NULL;
char** fieldPtr = NULL;
int fieldPtrIdx = 0;
char* fieldCheckIdx = NULL;
lineEnd = XSTRNSTR(idx, "\n", (unsigned int)(bufEnd - idx));
if (!lineEnd)
lineEnd = bufEnd;
if (idx == lineEnd) /* empty line */
continue;
if (*idx == '#')
continue;
*lineEnd = '\0';
strBuf = (char*)XMALLOC(fieldsSz + lineEnd - idx + 1, NULL,
DYNAMIC_TYPE_OPENSSL);
if (!strBuf) {
WOLFSSL_MSG("malloc error");
goto error;
}
XMEMCPY(strBuf + fieldsSz, idx, lineEnd - idx + 1); /* + 1 for NULL */
XMEMSET(strBuf, 0, fieldsSz);
/* Check for appropriate number of fields */
fieldPtr = (char**)strBuf;
fieldCheckIdx = strBuf + fieldsSz;
fieldPtr[fieldPtrIdx++] = fieldCheckIdx;
while (*fieldCheckIdx != '\0') {
/* Handle escaped tabs */
if (*fieldCheckIdx == '\t' && fieldCheckIdx[-1] != '\\') {
fieldPtr[fieldPtrIdx++] = fieldCheckIdx + 1;
*fieldCheckIdx = '\0';
if (fieldPtrIdx > num) {
WOLFSSL_MSG("too many fields");
XFREE(strBuf, NULL, DYNAMIC_TYPE_OPENSSL);
goto error;
}
}
fieldCheckIdx++;
}
if (fieldPtrIdx != num) {
WOLFSSL_MSG("wrong number of fields");
XFREE(strBuf, NULL, DYNAMIC_TYPE_OPENSSL);
goto error;
}
if (wolfSSL_sk_push(ret->data, strBuf) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_sk_push error");
XFREE(strBuf, NULL, DYNAMIC_TYPE_OPENSSL);
goto error;
}
}
failed = 0;
error:
if (failed && ret) {
XFREE(ret, NULL, DYNAMIC_TYPE_OPENSSL);
ret = NULL;
}
if (buf) {
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
long wolfSSL_TXT_DB_write(WOLFSSL_BIO *out, WOLFSSL_TXT_DB *db)
{
const WOLF_STACK_OF(WOLFSSL_STRING)* data;
long totalLen = 0;
char buf[512]; /* Should be more than enough for a single row */
char* bufEnd = buf + sizeof(buf);
int sz;
int i;
WOLFSSL_ENTER("wolfSSL_TXT_DB_write");
if (!out || !db || !db->num_fields) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
data = db->data;
while (data) {
char** fields = (char**)data->data.string;
char* idx = buf;
if (!fields) {
WOLFSSL_MSG("Missing row");
return WOLFSSL_FAILURE;
}
for (i = 0; i < db->num_fields; i++) {
const char* fieldValue = fields[i];
if (!fieldValue) {
fieldValue = "";
}
/* Copy over field escaping tabs */
while (*fieldValue != '\0') {
if (idx+1 < bufEnd) {
if (*fieldValue == '\t')
*idx++ = '\\';
*idx++ = *fieldValue++;
}
else {
WOLFSSL_MSG("Data row is too big");
return WOLFSSL_FAILURE;
}
}
if (idx < bufEnd) {
*idx++ = '\t';
}
else {
WOLFSSL_MSG("Data row is too big");
return WOLFSSL_FAILURE;
}
}
idx[-1] = '\n';
sz = (int)(idx - buf);
if (wolfSSL_BIO_write(out, buf, sz) != sz) {
WOLFSSL_MSG("wolfSSL_BIO_write error");
return WOLFSSL_FAILURE;
}
totalLen += sz;
data = data->next;
}
return totalLen;
}
int wolfSSL_TXT_DB_insert(WOLFSSL_TXT_DB *db, WOLFSSL_STRING *row)
{
WOLFSSL_ENTER("wolfSSL_TXT_DB_insert");
if (!db || !row || !db->data) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (wolfSSL_sk_push(db->data, row) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_sk_push error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
void wolfSSL_TXT_DB_free(WOLFSSL_TXT_DB *db)
{
WOLFSSL_ENTER("wolfSSL_TXT_DB_free");
if (db) {
if (db->data) {
wolfSSL_sk_free(db->data);
}
XFREE(db, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
int wolfSSL_TXT_DB_create_index(WOLFSSL_TXT_DB *db, int field,
void* qual, wolf_sk_hash_cb hash, wolf_sk_compare_cb cmp)
{
WOLFSSL_ENTER("wolfSSL_TXT_DB_create_index");
(void)qual;
if (!db || !hash || !cmp || field >= db->num_fields || field < 0) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
db->hash_fn[field] = hash;
db->comp[field] = cmp;
return WOLFSSL_SUCCESS;
}
WOLFSSL_STRING *wolfSSL_TXT_DB_get_by_index(WOLFSSL_TXT_DB *db, int idx,
WOLFSSL_STRING *value)
{
WOLFSSL_ENTER("wolfSSL_TXT_DB_get_by_index");
if (!db || !db->data || idx < 0 || idx >= db->num_fields) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
if (!db->hash_fn[idx] || !db->comp[idx]) {
WOLFSSL_MSG("Missing hash or cmp functions");
return NULL;
}
/* If first data struct has correct hash and cmp function then
* assume others do too */
if (db->data->hash_fn != db->hash_fn[idx] ||
db->data->comp != db->comp[idx]) {
/* Set the hash and comp functions */
WOLF_STACK_OF(WOLFSSL_STRING)* data = db->data;
while (data) {
if (data->comp != db->comp[idx] ||
data->hash_fn != db->hash_fn[idx]) {
data->comp = db->comp[idx];
data->hash_fn = db->hash_fn[idx];
data->hash = 0;
}
data= data->next;
}
}
return (WOLFSSL_STRING*) wolfSSL_lh_retrieve(db->data, value);
}
#endif
#if defined(HAVE_ECC) || defined(HAVE_CURVE25519) || defined(HAVE_CURVE448) || \
!defined(NO_DH)
#ifdef HAVE_FFDHE
static const char* wolfssl_ffdhe_name(word16 group)
{
const char* str = NULL;
switch (group) {
case WOLFSSL_FFDHE_2048:
str = "FFDHE_2048";
break;
case WOLFSSL_FFDHE_3072:
str = "FFDHE_3072";
break;
case WOLFSSL_FFDHE_4096:
str = "FFDHE_4096";
break;
case WOLFSSL_FFDHE_6144:
str = "FFDHE_6144";
break;
case WOLFSSL_FFDHE_8192:
str = "FFDHE_8192";
break;
}
return str;
}
#endif
/* Return the name of the curve used for key exchange as a printable string.
*
* ssl The SSL/TLS object.
* returns NULL if ECDH was not used, otherwise the name as a string.
*/
const char* wolfSSL_get_curve_name(WOLFSSL* ssl)
{
const char* cName = NULL;
if (ssl == NULL)
return NULL;
#ifdef HAVE_FFDHE
if (ssl->namedGroup != 0) {
cName = wolfssl_ffdhe_name(ssl->namedGroup);
}
#endif
#ifdef HAVE_CURVE25519
if (ssl->ecdhCurveOID == ECC_X25519_OID && cName == NULL) {
cName = "X25519";
}
#endif
#ifdef HAVE_CURVE448
if (ssl->ecdhCurveOID == ECC_X448_OID && cName == NULL) {
cName = "X448";
}
#endif
#ifdef HAVE_ECC
if (ssl->ecdhCurveOID != 0 && cName == NULL) {
cName = wc_ecc_get_name(wc_ecc_get_oid(ssl->ecdhCurveOID, NULL,
NULL));
}
#endif
return cName;
}
#endif
#if defined(OPENSSL_EXTRA_X509_SMALL) || defined(KEEP_PEER_CERT) || \
defined(SESSION_CERTS)
/* Smaller subset of X509 compatibility functions. Avoid increasing the size of
* this subset and its memory usage */
#if !defined(NO_CERTS)
/* returns a pointer to a new WOLFSSL_X509 structure on success and NULL on
* fail
*/
WOLFSSL_X509* wolfSSL_X509_new(void)
{
WOLFSSL_X509* x509;
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL,
DYNAMIC_TYPE_X509);
if (x509 != NULL) {
InitX509(x509, 1, NULL);
}
return x509;
}
WOLFSSL_ABI
WOLFSSL_X509_NAME* wolfSSL_X509_get_subject_name(WOLFSSL_X509* cert)
{
WOLFSSL_ENTER("wolfSSL_X509_get_subject_name");
if (cert)
return &cert->subject;
return NULL;
}
#if defined(OPENSSL_EXTRA) && (!defined(NO_SHA) || !defined(NO_SHA256))
/******************************************************************************
* wolfSSL_X509_subject_name_hash - compute the hash digest of the raw subject name
* This function prefers SHA-1 (if available) for compatibility
*
* RETURNS:
* The beginning of the hash digest. Otherwise, returns zero.
* Note:
* Returns a different hash value from OpenSSL's X509_subject_name_hash() API
* depending on the subject name.
*/
unsigned long wolfSSL_X509_subject_name_hash(const WOLFSSL_X509* x509)
{
unsigned long ret = 0;
int retHash = NOT_COMPILED_IN;
WOLFSSL_X509_NAME *subjectName = NULL;
byte digest[WC_MAX_DIGEST_SIZE];
if (x509 == NULL) {
return ret;
}
subjectName = wolfSSL_X509_get_subject_name((WOLFSSL_X509*)x509);
if (subjectName != NULL) {
#ifndef NO_SHA
retHash = wc_ShaHash((const byte*)subjectName->name,
(word32)subjectName->sz, digest);
#elif !defined(NO_SHA256)
retHash = wc_Sha256Hash((const byte*)subjectName->name,
(word32)subjectName->sz, digest);
#endif
if (retHash == 0) {
ret = (unsigned long)MakeWordFromHash(digest);
}
}
return ret;
}
unsigned long wolfSSL_X509_issuer_name_hash(const WOLFSSL_X509* x509)
{
unsigned long ret = 0;
int retHash = NOT_COMPILED_IN;
WOLFSSL_X509_NAME *issuerName = NULL;
byte digest[WC_MAX_DIGEST_SIZE];
if (x509 == NULL) {
return ret;
}
issuerName = wolfSSL_X509_get_issuer_name((WOLFSSL_X509*)x509);
if (issuerName != NULL) {
#ifndef NO_SHA
retHash = wc_ShaHash((const byte*)issuerName->name,
(word32)issuerName->sz, digest);
#elif !defined(NO_SHA256)
retHash = wc_Sha256Hash((const byte*)issuerName->name,
(word32)issuerName->sz, digest);
#endif
if (retHash == 0) {
ret = (unsigned long)MakeWordFromHash(digest);
}
}
return ret;
}
#endif /* OPENSSL_EXTRA && (!NO_SHA || !NO_SHA256) */
WOLFSSL_ABI
WOLFSSL_X509_NAME* wolfSSL_X509_get_issuer_name(WOLFSSL_X509* cert)
{
WOLFSSL_ENTER("X509_get_issuer_name");
if (cert && cert->issuer.sz != 0)
return &cert->issuer;
return NULL;
}
int wolfSSL_X509_get_signature_type(WOLFSSL_X509* x509)
{
int type = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_signature_type");
if (x509 != NULL)
type = x509->sigOID;
return type;
}
#if defined(OPENSSL_EXTRA_X509_SMALL)
/* Searches for the first ENTRY of type NID
* idx is the location to start searching from, the value at when the entry was
* found is stored into idx
* returns a pointer to the entry on success and null on fail */
static WOLFSSL_X509_NAME_ENTRY* GetEntryByNID(WOLFSSL_X509_NAME* name, int nid,
int* idx)
{
int i;
WOLFSSL_X509_NAME_ENTRY* ret = NULL;
/* and index of less than 0 is assumed to be starting from 0 */
if (*idx < 0) {
*idx = 0;
}
for (i = *idx; i < MAX_NAME_ENTRIES; i++) {
if (name->entry[i].nid == nid) {
ret = &name->entry[i];
*idx = i;
break;
}
}
return ret;
}
/* Used to get a string from the WOLFSSL_X509_NAME structure that
* corresponds with the NID value passed in. This finds the first entry with
* matching NID value, if searching for the case where there is multiple
* entries with the same NID value than other functions should be used
* (i.e. wolfSSL_X509_NAME_get_index_by_NID, wolfSSL_X509_NAME_get_entry)
*
* name structure to get string from
* nid NID value to search for
* buf [out] buffer to hold results. If NULL then the buffer size minus the
* null char is returned.
* len size of "buf" passed in
*
* returns the length of string found, not including the NULL terminator.
* It's possible the function could return a negative value in the
* case that len is less than or equal to 0. A negative value is
* considered an error case.
*/
int wolfSSL_X509_NAME_get_text_by_NID(WOLFSSL_X509_NAME* name,
int nid, char* buf, int len)
{
WOLFSSL_X509_NAME_ENTRY* e;
unsigned char *text = NULL;
int textSz = 0;
int idx = 0;
WOLFSSL_ENTER("wolfSSL_X509_NAME_get_text_by_NID");
if (name == NULL) {
WOLFSSL_MSG("NULL argument passed in");
return WOLFSSL_FATAL_ERROR;
}
e = GetEntryByNID(name, nid, &idx);
if (e == NULL) {
WOLFSSL_MSG("Entry type not found");
return WOLFSSL_FATAL_ERROR;
}
text = wolfSSL_ASN1_STRING_data(e->value);
textSz = wolfSSL_ASN1_STRING_length(e->value);
if (text == NULL) {
WOLFSSL_MSG("Unable to get entry text");
return WOLFSSL_FATAL_ERROR;
}
/* if buf is NULL return size of buffer needed (minus null char) */
if (buf == NULL) {
WOLFSSL_MSG("Buffer is NULL, returning buffer size only");
return textSz;
}
if (buf != NULL && text != NULL) {
textSz = min(textSz + 1, len); /* + 1 to account for null char */
if (textSz > 0) {
XMEMCPY(buf, text, textSz - 1);
buf[textSz - 1] = '\0';
}
}
WOLFSSL_LEAVE("wolfSSL_X509_NAME_get_text_by_NID", textSz);
return (textSz - 1); /* do not include null character in size */
}
/* Creates a new WOLFSSL_EVP_PKEY structure that has the public key from x509
*
* returns a pointer to the created WOLFSSL_EVP_PKEY on success and NULL on fail
*/
WOLFSSL_EVP_PKEY* wolfSSL_X509_get_pubkey(WOLFSSL_X509* x509)
{
WOLFSSL_EVP_PKEY* key = NULL;
WOLFSSL_ENTER("X509_get_pubkey");
if (x509 != NULL) {
key = wolfSSL_EVP_PKEY_new_ex(x509->heap);
if (key != NULL) {
if (x509->pubKeyOID == RSAk) {
key->type = EVP_PKEY_RSA;
}
else if (x509->pubKeyOID == DSAk) {
key->type = EVP_PKEY_DSA;
}
else {
key->type = EVP_PKEY_EC;
}
key->save_type = 0;
key->pkey.ptr = (char*)XMALLOC(
x509->pubKey.length, x509->heap,
DYNAMIC_TYPE_PUBLIC_KEY);
if (key->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(key);
return NULL;
}
XMEMCPY(key->pkey.ptr, x509->pubKey.buffer, x509->pubKey.length);
key->pkey_sz = x509->pubKey.length;
#ifdef HAVE_ECC
key->pkey_curve = (int)x509->pkCurveOID;
#endif /* HAVE_ECC */
/* decode RSA key */
#ifndef NO_RSA
if (key->type == EVP_PKEY_RSA) {
key->ownRsa = 1;
key->rsa = wolfSSL_RSA_new();
if (key->rsa == NULL) {
wolfSSL_EVP_PKEY_free(key);
return NULL;
}
if (wolfSSL_RSA_LoadDer_ex(key->rsa,
(const unsigned char*)key->pkey.ptr, key->pkey_sz,
WOLFSSL_RSA_LOAD_PUBLIC) != WOLFSSL_SUCCESS) {
wolfSSL_EVP_PKEY_free(key);
return NULL;
}
}
#endif /* NO_RSA */
/* decode ECC key */
#if defined(HAVE_ECC) && defined(OPENSSL_EXTRA)
if (key->type == EVP_PKEY_EC) {
word32 idx = 0;
key->ownEcc = 1;
key->ecc = wolfSSL_EC_KEY_new();
if (key->ecc == NULL || key->ecc->internal == NULL) {
wolfSSL_EVP_PKEY_free(key);
return NULL;
}
/* not using wolfSSL_EC_KEY_LoadDer because public key in x509
* is in the format of x963 (no sequence at start of buffer) */
if (wc_EccPublicKeyDecode((const unsigned char*)key->pkey.ptr,
&idx, (ecc_key*)key->ecc->internal, key->pkey_sz) < 0) {
WOLFSSL_MSG("wc_EccPublicKeyDecode failed");
wolfSSL_EVP_PKEY_free(key);
return NULL;
}
if (SetECKeyExternal(key->ecc) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyExternal failed");
wolfSSL_EVP_PKEY_free(key);
return NULL;
}
key->ecc->inSet = 1;
}
#endif /* HAVE_ECC */
#ifndef NO_DSA
if (key->type == EVP_PKEY_DSA) {
key->ownDsa = 1;
key->dsa = wolfSSL_DSA_new();
if (key->dsa == NULL) {
wolfSSL_EVP_PKEY_free(key);
return NULL;
}
if (wolfSSL_DSA_LoadDer_ex(key->dsa,
(const unsigned char*)key->pkey.ptr, key->pkey_sz, \
WOLFSSL_DSA_LOAD_PUBLIC) != WOLFSSL_SUCCESS) {
wolfSSL_DSA_free(key->dsa);
key->dsa = NULL;
wolfSSL_EVP_PKEY_free(key);
return NULL;
}
}
#endif /* NO_DSA */
}
}
return key;
}
#endif /* OPENSSL_EXTRA_X509_SMALL */
#endif /* !NO_CERTS */
/* End of smaller subset of X509 compatibility functions. Avoid increasing the
* size of this subset and its memory usage */
#endif /* OPENSSL_EXTRA_X509_SMALL || KEEP_PEER_CERT || SESSION_CERTS */
#if defined(OPENSSL_ALL)
/* Takes two WOLFSSL_X509* certificates and performs a Sha hash of each, if the
* hash values are the same, then it will do an XMEMCMP to confirm they are
* identical. Returns a 0 when certificates match, returns a negative number
* when certificates are not a match.
*/
int wolfSSL_X509_cmp(const WOLFSSL_X509 *a, const WOLFSSL_X509 *b)
{
const byte* derA;
const byte* derB;
int outSzA = 0;
int outSzB = 0;
if (a == NULL || b == NULL){
return BAD_FUNC_ARG;
}
derA = wolfSSL_X509_get_der((WOLFSSL_X509*)a, &outSzA);
if (derA == NULL){
WOLFSSL_MSG("wolfSSL_X509_get_der - certificate A has failed");
return WOLFSSL_FATAL_ERROR;
}
derB = wolfSSL_X509_get_der((WOLFSSL_X509*)b, &outSzB);
if (derB == NULL){
WOLFSSL_MSG("wolfSSL_X509_get_der - certificate B has failed");
return WOLFSSL_FATAL_ERROR;
}
if (outSzA != outSzB || XMEMCMP(derA, derB, outSzA) != 0) {
WOLFSSL_LEAVE("wolfSSL_X509_cmp", WOLFSSL_FATAL_ERROR);
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_LEAVE("wolfSSL_X509_cmp", 0);
return 0;
}
#endif /* OPENSSL_ALL */
#if defined(OPENSSL_EXTRA) && !defined(NO_CERTS)
int wolfSSL_X509_ext_isSet_by_NID(WOLFSSL_X509* x509, int nid)
{
int isSet = 0;
WOLFSSL_ENTER("wolfSSL_X509_ext_isSet_by_NID");
if (x509 != NULL) {
switch (nid) {
case BASIC_CA_OID: isSet = x509->basicConstSet; break;
case ALT_NAMES_OID: isSet = x509->subjAltNameSet; break;
case AUTH_KEY_OID: isSet = x509->authKeyIdSet; break;
case SUBJ_KEY_OID: isSet = x509->subjKeyIdSet; break;
case KEY_USAGE_OID: isSet = x509->keyUsageSet; break;
case CRL_DIST_OID: isSet = x509->CRLdistSet; break;
case EXT_KEY_USAGE_OID: isSet = ((x509->extKeyUsageSrc) ? 1 : 0);
break;
case AUTH_INFO_OID: isSet = x509->authInfoSet; break;
#if defined(WOLFSSL_SEP) || defined(WOLFSSL_QT)
case CERT_POLICY_OID: isSet = x509->certPolicySet; break;
#endif /* WOLFSSL_SEP || WOLFSSL_QT */
default:
WOLFSSL_MSG("NID not in table");
}
}
WOLFSSL_LEAVE("wolfSSL_X509_ext_isSet_by_NID", isSet);
return isSet;
}
int wolfSSL_X509_ext_get_critical_by_NID(WOLFSSL_X509* x509, int nid)
{
int crit = 0;
WOLFSSL_ENTER("wolfSSL_X509_ext_get_critical_by_NID");
if (x509 != NULL) {
switch (nid) {
case BASIC_CA_OID: crit = x509->basicConstCrit; break;
case ALT_NAMES_OID: crit = x509->subjAltNameCrit; break;
case AUTH_KEY_OID: crit = x509->authKeyIdCrit; break;
case SUBJ_KEY_OID: crit = x509->subjKeyIdCrit; break;
case KEY_USAGE_OID: crit = x509->keyUsageCrit; break;
case CRL_DIST_OID: crit= x509->CRLdistCrit; break;
#if defined(WOLFSSL_SEP) || defined(WOLFSSL_QT)
case CERT_POLICY_OID: crit = x509->certPolicyCrit; break;
#endif /* WOLFSSL_SEP || WOLFSSL_QT */
}
}
WOLFSSL_LEAVE("wolfSSL_X509_ext_get_critical_by_NID", crit);
return crit;
}
int wolfSSL_X509_get_isSet_pathLength(WOLFSSL_X509* x509)
{
int isSet = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_isSet_pathLength");
if (x509 != NULL)
isSet = x509->basicConstPlSet;
WOLFSSL_LEAVE("wolfSSL_X509_get_isSet_pathLength", isSet);
return isSet;
}
word32 wolfSSL_X509_get_pathLength(WOLFSSL_X509* x509)
{
word32 pathLength = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_pathLength");
if (x509 != NULL)
pathLength = x509->pathLength;
WOLFSSL_LEAVE("wolfSSL_X509_get_pathLength", pathLength);
return pathLength;
}
unsigned int wolfSSL_X509_get_keyUsage(WOLFSSL_X509* x509)
{
word16 usage = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_keyUsage");
if (x509 != NULL)
usage = x509->keyUsage;
WOLFSSL_LEAVE("wolfSSL_X509_get_keyUsage", usage);
return usage;
}
byte* wolfSSL_X509_get_authorityKeyID(WOLFSSL_X509* x509,
byte* dst, int* dstLen)
{
byte *id = NULL;
int copySz = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_authorityKeyID");
if (x509 != NULL) {
if (x509->authKeyIdSet) {
copySz = min(dstLen != NULL ? *dstLen : 0,
(int)x509->authKeyIdSz);
id = x509->authKeyId;
}
if (dst != NULL && dstLen != NULL && id != NULL && copySz > 0) {
XMEMCPY(dst, id, copySz);
id = dst;
*dstLen = copySz;
}
}
WOLFSSL_LEAVE("wolfSSL_X509_get_authorityKeyID", copySz);
return id;
}
byte* wolfSSL_X509_get_subjectKeyID(WOLFSSL_X509* x509,
byte* dst, int* dstLen)
{
byte *id = NULL;
int copySz = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_subjectKeyID");
if (x509 != NULL) {
if (x509->subjKeyIdSet) {
copySz = min(dstLen != NULL ? *dstLen : 0,
(int)x509->subjKeyIdSz);
id = x509->subjKeyId;
}
if (dst != NULL && dstLen != NULL && id != NULL && copySz > 0) {
XMEMCPY(dst, id, copySz);
id = dst;
*dstLen = copySz;
}
}
WOLFSSL_LEAVE("wolfSSL_X509_get_subjectKeyID", copySz);
return id;
}
#endif /* !NO_CERTS && OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \
defined(OPENSSL_EXTRA_X509_SMALL)
/* Looks up the index of the first entry encountered with matching NID
* The search starts from index 'pos'
* returns a negative value on failure and positive index value on success*/
int wolfSSL_X509_NAME_get_index_by_NID(WOLFSSL_X509_NAME* name,
int nid, int pos)
{
int value = nid, i;
WOLFSSL_ENTER("wolfSSL_X509_NAME_get_index_by_NID");
if (name == NULL) {
return BAD_FUNC_ARG;
}
i = pos + 1; /* start search after index passed in */
if (i < 0) {
i = 0;
}
for (;i < name->entrySz && i < MAX_NAME_ENTRIES; i++) {
if (name->entry[i].nid == value) {
return i;
}
}
return WOLFSSL_FATAL_ERROR;
}
WOLFSSL_ASN1_STRING* wolfSSL_X509_NAME_ENTRY_get_data(
WOLFSSL_X509_NAME_ENTRY* in)
{
WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_get_data");
if (in == NULL)
return NULL;
return in->value;
}
/* Creates a new WOLFSSL_ASN1_STRING structure.
*
* returns a pointer to the new structure created on success or NULL if fail
*/
WOLFSSL_ASN1_STRING* wolfSSL_ASN1_STRING_new(void)
{
WOLFSSL_ASN1_STRING* asn1;
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_new");
asn1 = (WOLFSSL_ASN1_STRING*)XMALLOC(sizeof(WOLFSSL_ASN1_STRING), NULL,
DYNAMIC_TYPE_OPENSSL);
if (asn1 != NULL) {
XMEMSET(asn1, 0, sizeof(WOLFSSL_ASN1_STRING));
}
return asn1; /* no check for null because error case is returning null*/
}
/**
* Used to duplicate a passed in WOLFSSL_ASN1_STRING*
* @param asn1 WOLFSSL_ASN1_STRING* to be duplicated
* @return WOLFSSL_ASN1_STRING* the duplicate struct or NULL on error
*/
WOLFSSL_ASN1_STRING* wolfSSL_ASN1_STRING_dup(WOLFSSL_ASN1_STRING* asn1)
{
WOLFSSL_ASN1_STRING* dupl = NULL;
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_dup");
if (!asn1) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
dupl = wolfSSL_ASN1_STRING_new();
if (!dupl) {
WOLFSSL_MSG("wolfSSL_ASN1_STRING_new error");
return NULL;
}
dupl->type = asn1->type;
dupl->flags = asn1->flags;
if (wolfSSL_ASN1_STRING_set(dupl, asn1->data, asn1->length)
!= WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_ASN1_STRING_set error");
wolfSSL_ASN1_STRING_free(dupl);
return NULL;
}
return dupl;
}
/* used to free a WOLFSSL_ASN1_STRING structure */
void wolfSSL_ASN1_STRING_free(WOLFSSL_ASN1_STRING* asn1)
{
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_free");
if (asn1 != NULL) {
if (asn1->length > 0 && asn1->data != NULL && asn1->isDynamic) {
XFREE(asn1->data, NULL, DYNAMIC_TYPE_OPENSSL);
}
XFREE(asn1, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
int wolfSSL_ASN1_STRING_cmp(const WOLFSSL_ASN1_STRING *a, const WOLFSSL_ASN1_STRING *b)
{
int i;
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_cmp");
if (!a || !b) {
return WOLFSSL_FATAL_ERROR;
}
if (a->length != b->length) {
return a->length - b->length;
}
if ((i = XMEMCMP(a->data, b->data, a->length)) != 0) {
return i;
}
return a->type - b->type;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#if !defined(NO_CERTS) && (defined(OPENSSL_EXTRA) || \
defined(OPENSSL_EXTRA_X509_SMALL))
/* Creates a new WOLFSSL_ASN1_STRING structure given the input type.
*
* type is the type of set when WOLFSSL_ASN1_STRING is created
*
* returns a pointer to the new structure created on success or NULL if fail
*/
WOLFSSL_ASN1_STRING* wolfSSL_ASN1_STRING_type_new(int type)
{
WOLFSSL_ASN1_STRING* asn1;
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_type_new");
asn1 = wolfSSL_ASN1_STRING_new();
if (asn1 == NULL) {
return NULL;
}
asn1->type = type;
return asn1;
}
/******************************************************************************
* wolfSSL_ASN1_STRING_type - returns the type of <asn1>
*
* RETURNS:
* returns the type set for <asn1>. Otherwise, returns WOLFSSL_FAILURE.
*/
int wolfSSL_ASN1_STRING_type(const WOLFSSL_ASN1_STRING* asn1)
{
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_type");
if (asn1 == NULL) {
return WOLFSSL_FAILURE;
}
return asn1->type;
}
#endif /* !NO_CERTS && OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \
defined(OPENSSL_EXTRA_X509_SMALL)
/* if dataSz is negative then use XSTRLEN to find length of data
* return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure */
/* `data` can be NULL and only buffer will be allocated */
int wolfSSL_ASN1_STRING_set(WOLFSSL_ASN1_STRING* asn1, const void* data,
int dataSz)
{
int sz;
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_set");
if (asn1 == NULL || (data == NULL && dataSz < 0)) {
return WOLFSSL_FAILURE;
}
if (dataSz < 0) {
sz = (int)XSTRLEN((const char*)data);
}
else {
sz = dataSz;
}
if (sz < 0) {
return WOLFSSL_FAILURE;
}
/* free any existing data before copying */
if (asn1->data != NULL && asn1->isDynamic) {
XFREE(asn1->data, NULL, DYNAMIC_TYPE_OPENSSL);
asn1->data = NULL;
}
if (sz + 1 > CTC_NAME_SIZE) { /* account for null char */
/* create new data buffer and copy over */
asn1->data = (char*)XMALLOC(sz + 1, NULL, DYNAMIC_TYPE_OPENSSL);
if (asn1->data == NULL) {
return WOLFSSL_FAILURE;
}
asn1->isDynamic = 1;
}
else {
XMEMSET(asn1->strData, 0, CTC_NAME_SIZE);
asn1->data = asn1->strData;
asn1->isDynamic = 0;
}
if (data != NULL) {
XMEMCPY(asn1->data, data, sz);
asn1->data[sz] = '\0';
}
asn1->length = sz;
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifndef NO_CERTS
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
unsigned char* wolfSSL_ASN1_STRING_data(WOLFSSL_ASN1_STRING* asn)
{
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_data");
if (asn) {
return (unsigned char*)asn->data;
}
else {
return NULL;
}
}
int wolfSSL_ASN1_STRING_length(WOLFSSL_ASN1_STRING* asn)
{
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_length");
if (asn) {
return asn->length;
}
else {
return 0;
}
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#ifdef OPENSSL_EXTRA
#ifndef NO_WOLFSSL_STUB
WOLFSSL_ASN1_STRING* wolfSSL_d2i_DISPLAYTEXT(WOLFSSL_ASN1_STRING **asn,
const unsigned char **in, long len)
{
WOLFSSL_STUB("d2i_DISPLAYTEXT");
(void)asn;
(void)in;
(void)len;
return NULL;
}
#endif
#ifndef NO_BIO
#ifdef XSNPRINTF /* a snprintf function needs to be available */
/* Writes the human readable form of x509 to bio.
*
* bio WOLFSSL_BIO to write to.
* x509 Certificate to write.
*
* returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure
*/
int wolfSSL_X509_print_ex(WOLFSSL_BIO* bio, WOLFSSL_X509* x509,
unsigned long nmflags, unsigned long cflag)
{
WOLFSSL_ENTER("wolfSSL_X509_print_ex");
/* flags currently not supported */
(void)nmflags;
(void)cflag;
if (bio == NULL || x509 == NULL) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, "Certificate:\n",
(int)XSTRLEN("Certificate:\n")) <= 0) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, " Data:\n",
(int)XSTRLEN(" Data:\n")) <= 0) {
return WOLFSSL_FAILURE;
}
/* print version of cert */
{
int version;
char tmp[20];
if ((version = wolfSSL_X509_version(x509)) < 0) {
WOLFSSL_MSG("Error getting X509 version");
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, " Version:",
(int)XSTRLEN(" Version:")) <= 0) {
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp), " %d (0x%x)\n", version, (byte)version-1);
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
}
/* print serial number out */
{
unsigned char serial[32];
int sz = sizeof(serial);
XMEMSET(serial, 0, sz);
if (wolfSSL_X509_get_serial_number(x509, serial, &sz)
!= WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error getting x509 serial number");
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, " Serial Number:",
(int)XSTRLEN(" Serial Number:")) <= 0) {
return WOLFSSL_FAILURE;
}
/* if serial can fit into byte than print on the same line */
if (sz <= (int)sizeof(byte)) {
char tmp[17];
XSNPRINTF(tmp, sizeof(tmp), " %d (0x%x)\n", serial[0],serial[0]);
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
}
else {
int i;
char tmp[100];
int tmpSz = 100;
char val[5];
int valSz = 5;
/* serial is larger than int size so print off hex values */
if (wolfSSL_BIO_write(bio, "\n ",
(int)XSTRLEN("\n ")) <= 0) {
return WOLFSSL_FAILURE;
}
tmp[0] = '\0';
for (i = 0; i < sz - 1 && (3 * i) < tmpSz - valSz; i++) {
XSNPRINTF(val, sizeof(val) - 1, "%02x:", serial[i]);
val[3] = '\0'; /* make sure is null terminated */
XSTRNCAT(tmp, val, valSz);
}
XSNPRINTF(val, sizeof(val) - 1, "%02x\n", serial[i]);
val[3] = '\0'; /* make sure is null terminated */
XSTRNCAT(tmp, val, valSz);
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
}
}
/* print signature algo */
{
int oid;
const char* sig;
if ((oid = wolfSSL_X509_get_signature_type(x509)) <= 0) {
WOLFSSL_MSG("Error getting x509 signature type");
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, " Signature Algorithm: ",
(int)XSTRLEN(" Signature Algorithm: ")) <= 0) {
return WOLFSSL_FAILURE;
}
sig = GetSigName(oid);
if (wolfSSL_BIO_write(bio, sig, (int)XSTRLEN(sig)) <= 0) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, "\n", (int)XSTRLEN("\n")) <= 0) {
return WOLFSSL_FAILURE;
}
}
/* print issuer */
{
char* issuer;
#ifdef WOLFSSL_SMALL_STACK
char* buff = NULL;
int issSz = 0;
#else
char buff[256];
int issSz = 256;
#endif
#if defined(WOLFSSL_QT)
issuer = wolfSSL_X509_get_name_oneline(
wolfSSL_X509_get_issuer_name(x509), buff, issSz);
#else
issuer = wolfSSL_X509_NAME_oneline(
wolfSSL_X509_get_issuer_name(x509), buff, issSz);
#endif
if (wolfSSL_BIO_write(bio, " Issuer: ",
(int)XSTRLEN(" Issuer: ")) <= 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(issuer, NULL, DYNAMIC_TYPE_OPENSSL);
#endif
return WOLFSSL_FAILURE;
}
if (issuer != NULL) {
if (wolfSSL_BIO_write(bio, issuer, (int)XSTRLEN(issuer)) <= 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(issuer, NULL, DYNAMIC_TYPE_OPENSSL);
#endif
return WOLFSSL_FAILURE;
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(issuer, NULL, DYNAMIC_TYPE_OPENSSL);
#endif
if (wolfSSL_BIO_write(bio, "\n", (int)XSTRLEN("\n")) <= 0) {
return WOLFSSL_FAILURE;
}
}
#ifndef NO_ASN_TIME
/* print validity */
{
char tmp[80];
if (wolfSSL_BIO_write(bio, " Validity\n",
(int)XSTRLEN(" Validity\n")) <= 0) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, " Not Before: ",
(int)XSTRLEN(" Not Before: ")) <= 0) {
return WOLFSSL_FAILURE;
}
if (x509->notBefore.length > 0) {
if (GetTimeString(x509->notBefore.data, ASN_UTC_TIME,
tmp, sizeof(tmp)) != WOLFSSL_SUCCESS) {
if (GetTimeString(x509->notBefore.data, ASN_GENERALIZED_TIME,
tmp, sizeof(tmp)) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error getting not before date");
return WOLFSSL_FAILURE;
}
}
}
else {
XSTRNCPY(tmp, "Not Set", sizeof(tmp)-1);
}
tmp[sizeof(tmp) - 1] = '\0'; /* make sure null terminated */
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, "\n Not After : ",
(int)XSTRLEN("\n Not After : ")) <= 0) {
return WOLFSSL_FAILURE;
}
if (x509->notAfter.length > 0) {
if (GetTimeString(x509->notAfter.data, ASN_UTC_TIME,
tmp, sizeof(tmp)) != WOLFSSL_SUCCESS) {
if (GetTimeString(x509->notAfter.data, ASN_GENERALIZED_TIME,
tmp, sizeof(tmp)) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error getting not after date");
return WOLFSSL_FAILURE;
}
}
}
else {
XSTRNCPY(tmp, "Not Set", sizeof(tmp)-1);
}
tmp[sizeof(tmp) - 1] = '\0'; /* make sure null terminated */
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
}
#endif
/* print subject */
{
char* subject;
#ifdef WOLFSSL_SMALL_STACK
char* buff = NULL;
int subSz = 0;
#else
char buff[256];
int subSz = 256;
#endif
#if defined(WOLFSSL_QT)
subject = wolfSSL_X509_get_name_oneline(
wolfSSL_X509_get_subject_name(x509), buff, subSz);
#else
subject = wolfSSL_X509_NAME_oneline(
wolfSSL_X509_get_subject_name(x509), buff, subSz);
#endif
if (wolfSSL_BIO_write(bio, "\n Subject: ",
(int)XSTRLEN("\n Subject: ")) <= 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(subject, NULL, DYNAMIC_TYPE_OPENSSL);
#endif
return WOLFSSL_FAILURE;
}
if (subject != NULL) {
if (wolfSSL_BIO_write(bio, subject, (int)XSTRLEN(subject)) <= 0) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(subject, NULL, DYNAMIC_TYPE_OPENSSL);
#endif
return WOLFSSL_FAILURE;
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(subject, NULL, DYNAMIC_TYPE_OPENSSL);
#endif
}
/* get and print public key */
if (wolfSSL_BIO_write(bio, "\n Subject Public Key Info:\n",
(int)XSTRLEN("\n Subject Public Key Info:\n")) <= 0) {
return WOLFSSL_FAILURE;
}
{
#if (!defined(NO_RSA) && !defined(HAVE_USER_RSA)) || defined(HAVE_ECC)
char tmp[100];
#endif
switch (x509->pubKeyOID) {
#ifndef NO_RSA
case RSAk:
if (wolfSSL_BIO_write(bio,
" Public Key Algorithm: rsaEncryption\n",
(int)XSTRLEN(" Public Key Algorithm: rsaEncryption\n")) <= 0) {
return WOLFSSL_FAILURE;
}
#ifdef HAVE_USER_RSA
if (wolfSSL_BIO_write(bio,
" Build without user RSA to print key\n",
(int)XSTRLEN(" Build without user RSA to print key\n"))
<= 0) {
return WOLFSSL_FAILURE;
}
#else
{
RsaKey rsa;
word32 idx = 0;
int sz;
byte lbit = 0;
int rawLen;
unsigned char* rawKey;
if (wc_InitRsaKey(&rsa, NULL) != 0) {
WOLFSSL_MSG("wc_InitRsaKey failure");
return WOLFSSL_FAILURE;
}
if (wc_RsaPublicKeyDecode(x509->pubKey.buffer,
&idx, &rsa, x509->pubKey.length) != 0) {
WOLFSSL_MSG("Error decoding RSA key");
wc_FreeRsaKey(&rsa);
return WOLFSSL_FAILURE;
}
if ((sz = wc_RsaEncryptSize(&rsa)) < 0) {
WOLFSSL_MSG("Error getting RSA key size");
wc_FreeRsaKey(&rsa);
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1, "%s%s: (%d bit)\n%s\n",
" ", "Public-Key", 8 * sz,
" Modulus:");
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp,
(int)XSTRLEN(tmp)) <= 0) {
wc_FreeRsaKey(&rsa);
return WOLFSSL_FAILURE;
}
/* print out modulus */
XSNPRINTF(tmp, sizeof(tmp) - 1," ");
tmp[sizeof(tmp) - 1] = '\0';
if (mp_leading_bit(&rsa.n)) {
lbit = 1;
XSTRNCAT(tmp, "00", 3);
}
rawLen = mp_unsigned_bin_size(&rsa.n);
rawKey = (unsigned char*)XMALLOC(rawLen, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (rawKey == NULL) {
WOLFSSL_MSG("Memory error");
wc_FreeRsaKey(&rsa);
return WOLFSSL_FAILURE;
}
mp_to_unsigned_bin(&rsa.n, rawKey);
for (idx = 0; idx < (word32)rawLen; idx++) {
char val[5];
int valSz = 5;
if ((idx == 0) && !lbit) {
XSNPRINTF(val, valSz - 1, "%02x", rawKey[idx]);
}
else if ((idx != 0) && (((idx + lbit) % 15) == 0)) {
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp,
(int)XSTRLEN(tmp)) <= 0) {
XFREE(rawKey, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
wc_FreeRsaKey(&rsa);
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1,
":\n ");
XSNPRINTF(val, valSz - 1, "%02x", rawKey[idx]);
}
else {
XSNPRINTF(val, valSz - 1, ":%02x", rawKey[idx]);
}
XSTRNCAT(tmp, val, valSz);
}
XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER);
/* print out remaining modulus values */
if ((idx > 0) && (((idx - 1 + lbit) % 15) != 0)) {
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp,
(int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
}
/* print out exponent values */
rawLen = mp_unsigned_bin_size(&rsa.e);
if (rawLen < 0) {
WOLFSSL_MSG("Error getting exponent size");
wc_FreeRsaKey(&rsa);
return WOLFSSL_FAILURE;
}
if ((word32)rawLen < sizeof(word32)) {
rawLen = sizeof(word32);
}
rawKey = (unsigned char*)XMALLOC(rawLen, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (rawKey == NULL) {
WOLFSSL_MSG("Memory error");
wc_FreeRsaKey(&rsa);
return WOLFSSL_FAILURE;
}
XMEMSET(rawKey, 0, rawLen);
mp_to_unsigned_bin(&rsa.e, rawKey);
if ((word32)rawLen <= sizeof(word32)) {
idx = *(word32*)rawKey;
#ifdef BIG_ENDIAN_ORDER
idx = ByteReverseWord32(idx);
#endif
}
XSNPRINTF(tmp, sizeof(tmp) - 1,
"\n Exponent: %d (0x%x)\n",idx, idx);
if (wolfSSL_BIO_write(bio, tmp,
(int)XSTRLEN(tmp)) <= 0) {
XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER);
wc_FreeRsaKey(&rsa);
return WOLFSSL_FAILURE;
}
XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER);
wc_FreeRsaKey(&rsa);
}
#endif /* HAVE_USER_RSA */
break;
#endif /* NO_RSA */
#ifdef HAVE_ECC
case ECDSAk:
{
word32 i;
ecc_key ecc;
if (wolfSSL_BIO_write(bio,
" Public Key Algorithm: EC\n",
(int)XSTRLEN(" Public Key Algorithm: EC\n")) <= 0) {
return WOLFSSL_FAILURE;
}
if (wc_ecc_init_ex(&ecc, x509->heap, INVALID_DEVID)
!= 0) {
return WOLFSSL_FAILURE;
}
i = 0;
if (wc_EccPublicKeyDecode(x509->pubKey.buffer, &i,
&ecc, x509->pubKey.length) != 0) {
wc_ecc_free(&ecc);
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1, "%s%s: (%d bit)\n%s\n",
" ", "Public-Key",
8 * wc_ecc_size(&ecc),
" pub:");
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp,
(int)XSTRLEN(tmp)) <= 0) {
wc_ecc_free(&ecc);
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1," ");
{
word32 derSz;
byte* der;
derSz = wc_ecc_size(&ecc) * WOLFSSL_BIT_SIZE;
der = (byte*)XMALLOC(derSz, x509->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (der == NULL) {
wc_ecc_free(&ecc);
return WOLFSSL_FAILURE;
}
if (wc_ecc_export_x963(&ecc, der, &derSz) != 0) {
wc_ecc_free(&ecc);
XFREE(der, x509->heap, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
for (i = 0; i < derSz; i++) {
char val[5];
int valSz = 5;
if (i == 0) {
XSNPRINTF(val, valSz - 1, "%02x", der[i]);
}
else if ((i % 15) == 0) {
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp,
(int)XSTRLEN(tmp)) <= 0) {
wc_ecc_free(&ecc);
XFREE(der, x509->heap,
DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1,
":\n ");
XSNPRINTF(val, valSz - 1, "%02x", der[i]);
}
else {
XSNPRINTF(val, valSz - 1, ":%02x", der[i]);
}
XSTRNCAT(tmp, val, valSz);
}
/* print out remaining modulus values */
if ((i > 0) && (((i - 1) % 15) != 0)) {
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp,
(int)XSTRLEN(tmp)) <= 0) {
wc_ecc_free(&ecc);
XFREE(der, x509->heap,
DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
}
XFREE(der, x509->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
XSNPRINTF(tmp, sizeof(tmp) - 1, "\n%s%s: %s\n",
" ", "ASN1 OID",
ecc.dp->name);
if (wolfSSL_BIO_write(bio, tmp,
(int)XSTRLEN(tmp)) <= 0) {
wc_ecc_free(&ecc);
return WOLFSSL_FAILURE;
}
wc_ecc_free(&ecc);
}
break;
#endif /* HAVE_ECC */
default:
WOLFSSL_MSG("Unknown key type");
return WOLFSSL_FAILURE;
}
}
/* print out extensions */
if (wolfSSL_BIO_write(bio, " X509v3 extensions:\n",
(int)XSTRLEN(" X509v3 extensions:\n")) <= 0) {
return WOLFSSL_FAILURE;
}
/* print subject key id */
if (x509->subjKeyIdSet && x509->subjKeyId != NULL &&
x509->subjKeyIdSz > 0) {
char tmp[100];
word32 i;
char val[5];
int valSz = 5;
if (wolfSSL_BIO_write(bio,
" X509v3 Subject Key Identifier: \n",
(int)XSTRLEN(" X509v3 Subject Key Identifier: \n"))
<= 0) {
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1, " ");
for (i = 0; i < sizeof(tmp) && i < (x509->subjKeyIdSz - 1); i++) {
XSNPRINTF(val, valSz - 1, "%02X:", x509->subjKeyId[i]);
XSTRNCAT(tmp, val, valSz);
}
XSNPRINTF(val, valSz - 1, "%02X\n", x509->subjKeyId[i]);
XSTRNCAT(tmp, val, valSz);
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
}
/* printf out authority key id */
if (x509->authKeyIdSet && x509->authKeyId != NULL &&
x509->authKeyIdSz > 0) {
char tmp[100];
word32 i;
char val[5];
int valSz = 5;
int len = 0;
if (wolfSSL_BIO_write(bio,
" X509v3 Authority Key Identifier: \n",
(int)XSTRLEN(" X509v3 Authority Key Identifier: \n"))
<= 0) {
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1, " keyid");
for (i = 0; i < x509->authKeyIdSz; i++) {
/* check if buffer is almost full */
if (XSTRLEN(tmp) >= sizeof(tmp) - valSz) {
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
tmp[0] = '\0';
}
XSNPRINTF(val, valSz - 1, ":%02X", x509->authKeyId[i]);
XSTRNCAT(tmp, val, valSz);
}
len = (int)XSTRLEN("\n");
XSTRNCAT(tmp, "\n", len + 1);
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
}
/* print basic constraint */
if (x509->basicConstSet) {
char tmp[100];
if (wolfSSL_BIO_write(bio,
"\n X509v3 Basic Constraints: \n",
(int)XSTRLEN("\n X509v3 Basic Constraints: \n"))
<= 0) {
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp),
" CA:%s\n",
(x509->isCa)? "TRUE": "FALSE");
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
}
/* print out signature */
if (x509->sig.length > 0) {
unsigned char* sig;
int sigSz;
int i;
char tmp[100];
int sigOid = wolfSSL_X509_get_signature_type(x509);
if (wolfSSL_BIO_write(bio,
" Signature Algorithm: ",
(int)XSTRLEN(" Signature Algorithm: ")) <= 0) {
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1,"%s\n", GetSigName(sigOid));
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
sigSz = (int)x509->sig.length;
sig = (unsigned char*)XMALLOC(sigSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (sig == NULL) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_X509_get_signature(x509, sig, &sigSz) <= 0) {
XFREE(sig, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1," ");
tmp[sizeof(tmp) - 1] = '\0';
for (i = 0; i < sigSz; i++) {
char val[5];
int valSz = 5;
if (i == 0) {
XSNPRINTF(val, valSz - 1, "%02x", sig[i]);
}
else if (((i % 18) == 0)) {
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp))
<= 0) {
XFREE(sig, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1,
":\n ");
XSNPRINTF(val, valSz - 1, "%02x", sig[i]);
}
else {
XSNPRINTF(val, valSz - 1, ":%02x", sig[i]);
}
XSTRNCAT(tmp, val, valSz);
}
XFREE(sig, NULL, DYNAMIC_TYPE_TMP_BUFFER);
/* print out remaining sig values */
if ((i > 0) && (((i - 1) % 18) != 0)) {
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp))
<= 0) {
return WOLFSSL_FAILURE;
}
}
}
/* done with print out */
if (wolfSSL_BIO_write(bio, "\n\0", (int)XSTRLEN("\n\0")) <= 0) {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_print(WOLFSSL_BIO* bio, WOLFSSL_X509* x509)
{
return wolfSSL_X509_print_ex(bio, x509, 0, 0);
}
#ifndef NO_FILESYSTEM
int wolfSSL_X509_print_fp(XFILE fp, WOLFSSL_X509 *x509)
{
WOLFSSL_BIO* bio;
int ret;
WOLFSSL_ENTER("wolfSSL_X509_print_fp");
if (!fp || !x509) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (!(bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file()))) {
WOLFSSL_MSG("wolfSSL_BIO_new wolfSSL_BIO_s_file error");
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_set_fp(bio, fp, BIO_NOCLOSE) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_BIO_set_fp error");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_X509_print(bio, x509);
wolfSSL_BIO_free(bio);
return ret;
}
#endif /* NO_FILESYSTEM */
#endif /* XSNPRINTF */
#endif /* !NO_BIO */
int wolfSSL_X509_signature_print(WOLFSSL_BIO *bp,
const WOLFSSL_X509_ALGOR *sigalg, const WOLFSSL_ASN1_STRING *sig)
{
(void)sig;
WOLFSSL_ENTER("wolfSSL_X509_signature_print");
if (!bp || !sigalg) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_puts(bp, " Signature Algorithm: ") <= 0) {
WOLFSSL_MSG("wolfSSL_BIO_puts error");
return WOLFSSL_FAILURE;
}
if (wolfSSL_i2a_ASN1_OBJECT(bp, sigalg->algorithm) <= 0) {
WOLFSSL_MSG("wolfSSL_i2a_ASN1_OBJECT error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#ifndef NO_WOLFSSL_STUB
void wolfSSL_X509_get0_signature(const WOLFSSL_ASN1_BIT_STRING **psig,
const WOLFSSL_X509_ALGOR **palg, const WOLFSSL_X509 *x509)
{
(void)psig;
(void)palg;
(void)x509;
WOLFSSL_STUB("wolfSSL_X509_get0_signature");
}
#endif
#endif /* OPENSSL_EXTRA */
#endif /* !NO_CERTS */
#ifdef OPENSSL_EXTRA
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
/* Creates cipher->description based on cipher->offset
* cipher->offset is set in wolfSSL_get_ciphers_compat when it is added
* to a stack of ciphers.
* @param [in] cipher: A cipher from a stack of ciphers.
* return WOLFSSL_SUCCESS if cipher->description is set, else WOLFSSL_FAILURE
*/
int wolfSSL_sk_CIPHER_description(WOLFSSL_CIPHER* cipher)
{
int ret = WOLFSSL_FAILURE;
int i,j,k;
int strLen;
unsigned long offset;
char* dp;
const char* name;
const char *keaStr, *authStr, *encStr, *macStr, *protocol;
char n[MAX_SEGMENTS][MAX_SEGMENT_SZ] = {{0}};
unsigned char len = MAX_DESCRIPTION_SZ-1;
const CipherSuiteInfo* cipher_names;
ProtocolVersion pv;
WOLFSSL_ENTER("wolfSSL_sk_CIPHER_description");
if (cipher == NULL)
return WOLFSSL_FAILURE;
dp = cipher->description;
if (dp == NULL)
return WOLFSSL_FAILURE;
cipher_names = GetCipherNames();
offset = cipher->offset;
if (offset >= (unsigned long)GetCipherNamesSize())
return WOLFSSL_FAILURE;
pv.major = cipher_names[offset].major;
pv.minor = cipher_names[offset].minor;
protocol = wolfSSL_internal_get_version(&pv);
name = cipher_names[offset].name;
if (name == NULL)
return ret;
/* Segment cipher name into n[n0,n1,n2,n4]
* These are used later for comparisons to create:
* keaStr, authStr, encStr, macStr
*
* If cipher_name = ECDHE-ECDSA-AES256-SHA
* then n0 = "ECDHE", n1 = "ECDSA", n2 = "AES256", n3 = "SHA"
* and n = [n0,n1,n2,n3,0]
*/
strLen = (int)XSTRLEN(name);
for (i = 0, j = 0, k = 0; i <= strLen; i++) {
if (k > MAX_SEGMENTS || j > MAX_SEGMENT_SZ)
break;
if (name[i] != '-' && name[i] != '\0') {
n[k][j] = name[i]; /* Fill kth segment string until '-' */
j++;
}
else {
n[k][j] = '\0';
j = 0;
k++;
}
}
/* keaStr */
keaStr = GetCipherKeaStr(n);
/* authStr */
authStr = GetCipherAuthStr(n);
/* encStr */
encStr = GetCipherEncStr(n);
if ((cipher->bits = SetCipherBits(encStr)) == WOLFSSL_FAILURE) {
WOLFSSL_MSG("Cipher Bits Not Set.");
}
/* macStr */
macStr = GetCipherMacStr(n);
/* Build up the string by copying onto the end. */
XSTRNCPY(dp, name, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, " ", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, protocol, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, " Kx=", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, keaStr, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, " Au=", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, authStr, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, " Enc=", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, encStr, len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, " Mac=", len);
dp[len-1] = '\0'; strLen = (int)XSTRLEN(dp);
len -= (int)strLen; dp += strLen;
XSTRNCPY(dp, macStr, len);
dp[len-1] = '\0';
return WOLFSSL_SUCCESS;
}
#endif /* OPENSSL_ALL || WOLFSSL_QT */
char* wolfSSL_CIPHER_description(const WOLFSSL_CIPHER* cipher, char* in,
int len)
{
char *ret = in;
const char *keaStr, *authStr, *encStr, *macStr;
size_t strLen;
WOLFSSL_ENTER("wolfSSL_CIPHER_description");
if (cipher == NULL || in == NULL)
return NULL;
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
/* if cipher is in the stack from wolfSSL_get_ciphers_compat then
* Return the description based on cipher_names[cipher->offset]
*/
if (cipher->in_stack == TRUE) {
wolfSSL_sk_CIPHER_description((WOLFSSL_CIPHER*)cipher);
XSTRNCPY(in,cipher->description,len);
return ret;
}
#endif
/* Get the cipher description based on the SSL session cipher */
switch (cipher->ssl->specs.kea) {
case no_kea:
keaStr = "None";
break;
#ifndef NO_RSA
case rsa_kea:
keaStr = "RSA";
break;
#endif
#ifndef NO_DH
case diffie_hellman_kea:
keaStr = "DHE";
break;
#endif
case fortezza_kea:
keaStr = "FZ";
break;
#ifndef NO_PSK
case psk_kea:
keaStr = "PSK";
break;
#ifndef NO_DH
case dhe_psk_kea:
keaStr = "DHEPSK";
break;
#endif
#ifdef HAVE_ECC
case ecdhe_psk_kea:
keaStr = "ECDHEPSK";
break;
#endif
#endif
#ifdef HAVE_NTRU
case ntru_kea:
keaStr = "NTRU";
break;
#endif
#ifdef HAVE_ECC
case ecc_diffie_hellman_kea:
keaStr = "ECDHE";
break;
case ecc_static_diffie_hellman_kea:
keaStr = "ECDH";
break;
#endif
default:
keaStr = "unknown";
break;
}
switch (cipher->ssl->specs.sig_algo) {
case anonymous_sa_algo:
authStr = "None";
break;
#ifndef NO_RSA
case rsa_sa_algo:
authStr = "RSA";
break;
#endif
#ifndef NO_DSA
case dsa_sa_algo:
authStr = "DSA";
break;
#endif
#ifdef HAVE_ECC
case ecc_dsa_sa_algo:
authStr = "ECDSA";
break;
#endif
default:
authStr = "unknown";
break;
}
switch (cipher->ssl->specs.bulk_cipher_algorithm) {
case wolfssl_cipher_null:
encStr = "None";
break;
#ifndef NO_RC4
case wolfssl_rc4:
encStr = "RC4(128)";
break;
#endif
#ifndef NO_DES3
case wolfssl_triple_des:
encStr = "3DES(168)";
break;
#endif
#ifdef HAVE_IDEA
case wolfssl_idea:
encStr = "IDEA(128)";
break;
#endif
#ifndef NO_AES
case wolfssl_aes:
if (cipher->ssl->specs.key_size == 128)
encStr = "AES(128)";
else if (cipher->ssl->specs.key_size == 256)
encStr = "AES(256)";
else
encStr = "AES(?)";
break;
#ifdef HAVE_AESGCM
case wolfssl_aes_gcm:
if (cipher->ssl->specs.key_size == 128)
encStr = "AESGCM(128)";
else if (cipher->ssl->specs.key_size == 256)
encStr = "AESGCM(256)";
else
encStr = "AESGCM(?)";
break;
#endif
#ifdef HAVE_AESCCM
case wolfssl_aes_ccm:
if (cipher->ssl->specs.key_size == 128)
encStr = "AESCCM(128)";
else if (cipher->ssl->specs.key_size == 256)
encStr = "AESCCM(256)";
else
encStr = "AESCCM(?)";
break;
#endif
#endif
#ifdef HAVE_CHACHA
case wolfssl_chacha:
encStr = "CHACHA20/POLY1305(256)";
break;
#endif
#ifdef HAVE_CAMELLIA
case wolfssl_camellia:
if (cipher->ssl->specs.key_size == 128)
encStr = "Camellia(128)";
else if (cipher->ssl->specs.key_size == 256)
encStr = "Camellia(256)";
else
encStr = "Camellia(?)";
break;
#endif
#if defined(HAVE_HC128) && !defined(NO_HC128)
case wolfssl_hc128:
encStr = "HC128(128)";
break;
#endif
#if defined(HAVE_RABBIT) && !defined(NO_RABBIT)
case wolfssl_rabbit:
encStr = "RABBIT(128)";
break;
#endif
default:
encStr = "unknown";
break;
}
switch (cipher->ssl->specs.mac_algorithm) {
case no_mac:
macStr = "None";
break;
#ifndef NO_MD5
case md5_mac:
macStr = "MD5";
break;
#endif
#ifndef NO_SHA
case sha_mac:
macStr = "SHA1";
break;
#endif
#ifdef HAVE_SHA224
case sha224_mac:
macStr = "SHA224";
break;
#endif
#ifndef NO_SHA256
case sha256_mac:
macStr = "SHA256";
break;
#endif
#ifdef HAVE_SHA384
case sha384_mac:
macStr = "SHA384";
break;
#endif
#ifdef HAVE_SHA512
case sha512_mac:
macStr = "SHA512";
break;
#endif
default:
macStr = "unknown";
break;
}
/* Build up the string by copying onto the end. */
XSTRNCPY(in, wolfSSL_CIPHER_get_name(cipher), len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " ", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, wolfSSL_get_version(cipher->ssl), len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Kx=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, keaStr, len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Au=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, authStr, len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Enc=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, encStr, len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, " Mac=", len);
in[len-1] = '\0'; strLen = XSTRLEN(in); len -= (int)strLen; in += strLen;
XSTRNCPY(in, macStr, len);
in[len-1] = '\0';
return ret;
}
#ifndef NO_SESSION_CACHE
WOLFSSL_SESSION* wolfSSL_get1_session(WOLFSSL* ssl)
{
if (ssl == NULL) {
return NULL;
}
/* sessions are stored statically, no need for reference count */
return wolfSSL_get_session(ssl);
}
#endif /* NO_SESSION_CACHE */
/* was do nothing */
/*
void OPENSSL_free(void* buf)
{
(void)buf;
}
*/
#ifndef NO_WOLFSSL_STUB
int wolfSSL_OCSP_parse_url(char* url, char** host, char** port, char** path,
int* ssl)
{
(void)url;
(void)host;
(void)port;
(void)path;
(void)ssl;
WOLFSSL_STUB("OCSP_parse_url");
return 0;
}
#endif
#ifndef NO_MD4
void wolfSSL_MD4_Init(WOLFSSL_MD4_CTX* md4)
{
/* make sure we have a big enough buffer */
typedef char ok[sizeof(md4->buffer) >= sizeof(Md4) ? 1 : -1];
(void) sizeof(ok);
WOLFSSL_ENTER("MD4_Init");
wc_InitMd4((Md4*)md4);
}
void wolfSSL_MD4_Update(WOLFSSL_MD4_CTX* md4, const void* data,
unsigned long len)
{
WOLFSSL_ENTER("MD4_Update");
wc_Md4Update((Md4*)md4, (const byte*)data, (word32)len);
}
void wolfSSL_MD4_Final(unsigned char* digest, WOLFSSL_MD4_CTX* md4)
{
WOLFSSL_ENTER("MD4_Final");
wc_Md4Final((Md4*)md4, digest);
}
#endif /* NO_MD4 */
#ifndef NO_BIO
/* Removes a WOLFSSL_BIO struct from the WOLFSSL_BIO linked list.
*
* bio is the WOLFSSL_BIO struct in the list and removed.
*
* The return WOLFSSL_BIO struct is the next WOLFSSL_BIO in the list or NULL if
* there is none.
*/
WOLFSSL_BIO* wolfSSL_BIO_pop(WOLFSSL_BIO* bio)
{
if (bio == NULL) {
WOLFSSL_MSG("Bad argument passed in");
return NULL;
}
if (bio->prev != NULL) {
bio->prev->next = bio->next;
}
if (bio->next != NULL) {
bio->next->prev = bio->prev;
}
return bio->next;
}
WOLFSSL_BIO_METHOD* wolfSSL_BIO_s_mem(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("wolfSSL_BIO_s_mem");
meth.type = WOLFSSL_BIO_MEMORY;
return &meth;
}
WOLFSSL_BIO_METHOD* wolfSSL_BIO_f_base64(void)
{
static WOLFSSL_BIO_METHOD meth;
WOLFSSL_ENTER("wolfSSL_BIO_f_base64");
meth.type = WOLFSSL_BIO_BASE64;
return &meth;
}
/* Set the flag for the bio.
*
* bio the structure to set the flag in
* flags the flag to use
*/
void wolfSSL_BIO_set_flags(WOLFSSL_BIO* bio, int flags)
{
WOLFSSL_ENTER("wolfSSL_BIO_set_flags");
if (bio != NULL) {
bio->flags |= flags;
}
}
void wolfSSL_BIO_clear_flags(WOLFSSL_BIO *bio, int flags)
{
WOLFSSL_ENTER("wolfSSL_BIO_clear_flags");
if (bio != NULL) {
bio->flags &= ~flags;
}
}
/* Set ex_data for WOLFSSL_BIO
*
* bio : BIO structure to set ex_data in
* idx : Index of ex_data to set
* data : Data to set in ex_data
*
* Returns WOLFSSL_SUCCESS on success or WOLFSSL_FAILURE on failure
*/
int wolfSSL_BIO_set_ex_data(WOLFSSL_BIO *bio, int idx, void *data)
{
WOLFSSL_ENTER("wolfSSL_BIO_set_ex_data");
#ifdef HAVE_EX_DATA
if (bio != NULL && idx < MAX_EX_DATA) {
return wolfSSL_CRYPTO_set_ex_data(&bio->ex_data, idx, data);
}
#else
(void)bio;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
/* Get ex_data in WOLFSSL_BIO at given index
*
* bio : BIO structure to get ex_data from
* idx : Index of ex_data to get data from
*
* Returns void pointer to ex_data on success or NULL on failure
*/
void *wolfSSL_BIO_get_ex_data(WOLFSSL_BIO *bio, int idx)
{
WOLFSSL_ENTER("wolfSSL_BIO_get_ex_data");
#ifdef HAVE_EX_DATA
if (bio != NULL && idx < MAX_EX_DATA && idx >= 0) {
return wolfSSL_CRYPTO_get_ex_data(&bio->ex_data, idx);
}
#else
(void)bio;
(void)idx;
#endif
return NULL;
}
#endif /* !NO_BIO */
#ifndef NO_WOLFSSL_STUB
void wolfSSL_RAND_screen(void)
{
WOLFSSL_STUB("RAND_screen");
}
#endif
int wolfSSL_RAND_load_file(const char* fname, long len)
{
(void)fname;
/* wolfCrypt provides enough entropy internally or will report error */
if (len == -1)
return 1024;
else
return (int)len;
}
#ifndef NO_WOLFSSL_STUB
WOLFSSL_COMP_METHOD* wolfSSL_COMP_zlib(void)
{
WOLFSSL_STUB("COMP_zlib");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
WOLFSSL_COMP_METHOD* wolfSSL_COMP_rle(void)
{
WOLFSSL_STUB("COMP_rle");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
int wolfSSL_COMP_add_compression_method(int method, void* data)
{
(void)method;
(void)data;
WOLFSSL_STUB("COMP_add_compression_method");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_set_dynlock_create_callback(WOLFSSL_dynlock_value* (*f)(
const char*, int))
{
WOLFSSL_STUB("CRYPTO_set_dynlock_create_callback");
(void)f;
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_set_dynlock_lock_callback(
void (*f)(int, WOLFSSL_dynlock_value*, const char*, int))
{
WOLFSSL_STUB("CRYPTO_set_set_dynlock_lock_callback");
(void)f;
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_set_dynlock_destroy_callback(
void (*f)(WOLFSSL_dynlock_value*, const char*, int))
{
WOLFSSL_STUB("CRYPTO_set_set_dynlock_destroy_callback");
(void)f;
}
#endif
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
const char* wolfSSL_X509_verify_cert_error_string(long err)
{
return wolfSSL_ERR_reason_error_string(err);
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
#ifndef NO_WOLFSSL_STUB
int wolfSSL_X509_LOOKUP_add_dir(WOLFSSL_X509_LOOKUP* lookup, const char* dir,
long len)
{
(void)lookup;
(void)dir;
(void)len;
WOLFSSL_STUB("X509_LOOKUP_add_dir");
return 0;
}
#endif
int wolfSSL_X509_LOOKUP_load_file(WOLFSSL_X509_LOOKUP* lookup,
const char* file, long type)
{
#if !defined(NO_FILESYSTEM) && \
(defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM))
int ret = WOLFSSL_FAILURE;
XFILE fp;
long sz;
byte* pem = NULL;
byte* curr = NULL;
byte* prev = NULL;
WOLFSSL_X509* x509;
const char* header = NULL;
const char* footer = NULL;
if (type != X509_FILETYPE_PEM)
return BAD_FUNC_ARG;
fp = XFOPEN(file, "rb");
if (fp == XBADFILE)
return BAD_FUNC_ARG;
if(XFSEEK(fp, 0, XSEEK_END) != 0) {
XFCLOSE(fp);
return WOLFSSL_BAD_FILE;
}
sz = XFTELL(fp);
XREWIND(fp);
if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) {
WOLFSSL_MSG("X509_LOOKUP_load_file size error");
goto end;
}
pem = (byte*)XMALLOC(sz, 0, DYNAMIC_TYPE_PEM);
if (pem == NULL) {
ret = MEMORY_ERROR;
goto end;
}
/* Read in file which may be CRLs or certificates. */
if (XFREAD(pem, (size_t)sz, 1, fp) != 1)
goto end;
prev = curr = pem;
do {
/* get PEM header and footer based on type */
if (wc_PemGetHeaderFooter(CRL_TYPE, &header, &footer) == 0 &&
XSTRNSTR((char*)curr, header, (unsigned int)sz) != NULL) {
#ifdef HAVE_CRL
WOLFSSL_CERT_MANAGER* cm = lookup->store->cm;
if (cm->crl == NULL) {
if (wolfSSL_CertManagerEnableCRL(cm, 0) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Enable CRL failed");
goto end;
}
}
ret = BufferLoadCRL(cm->crl, curr, sz, WOLFSSL_FILETYPE_PEM,
NO_VERIFY);
if (ret != WOLFSSL_SUCCESS)
goto end;
#endif
curr = (byte*)XSTRNSTR((char*)curr, footer, (unsigned int)sz);
}
else if (wc_PemGetHeaderFooter(CERT_TYPE, &header, &footer) == 0 &&
XSTRNSTR((char*)curr, header, (unsigned int)sz) != NULL) {
x509 = wolfSSL_X509_load_certificate_buffer(curr, (int)sz,
WOLFSSL_FILETYPE_PEM);
if (x509 == NULL)
goto end;
ret = wolfSSL_X509_STORE_add_cert(lookup->store, x509);
wolfSSL_X509_free(x509);
if (ret != WOLFSSL_SUCCESS)
goto end;
curr = (byte*)XSTRNSTR((char*)curr, footer, (unsigned int)sz);
}
else
goto end;
if (curr == NULL)
goto end;
curr++;
sz -= (long)(curr - prev);
prev = curr;
}
while (ret == WOLFSSL_SUCCESS);
end:
if (pem != NULL)
XFREE(pem, 0, DYNAMIC_TYPE_PEM);
XFCLOSE(fp);
return ret;
#else
(void)lookup;
(void)file;
(void)type;
return WOLFSSL_FAILURE;
#endif
}
WOLFSSL_X509_LOOKUP_METHOD* wolfSSL_X509_LOOKUP_hash_dir(void)
{
/* Method implementation in functions. */
static WOLFSSL_X509_LOOKUP_METHOD meth = { 1 };
return &meth;
}
WOLFSSL_X509_LOOKUP_METHOD* wolfSSL_X509_LOOKUP_file(void)
{
/* Method implementation in functions. */
static WOLFSSL_X509_LOOKUP_METHOD meth = { 0 };
return &meth;
}
int wolfSSL_X509_LOOKUP_ctrl(WOLFSSL_X509_LOOKUP *ctx, int cmd,
const char *argc, long argl, char **ret)
{
/* control commands:
* X509_L_FILE_LOAD, X509_L_ADD_DIR, X509_L_ADD_STORE, X509_L_LOAD_STORE
*/
/* returns -1 if the X509_LOOKUP doesn't have an associated X509_LOOKUP_METHOD */
if (ctx != NULL) {
switch (cmd) {
case WOLFSSL_X509_L_FILE_LOAD:
case WOLFSSL_X509_L_ADD_DIR:
case WOLFSSL_X509_L_ADD_STORE:
case WOLFSSL_X509_L_LOAD_STORE:
return WOLFSSL_SUCCESS;
default:
break;
}
}
(void)argc; (void)argl; (void)ret;
return WOLFSSL_FAILURE;
}
WOLFSSL_X509_LOOKUP* wolfSSL_X509_STORE_add_lookup(WOLFSSL_X509_STORE* store,
WOLFSSL_X509_LOOKUP_METHOD* m)
{
WOLFSSL_ENTER("SSL_X509_STORE_add_lookup");
if (store == NULL)
return NULL;
/* Method is a dummy value and is not needed. */
(void)m;
/* Make sure the lookup has a back reference to the store. */
store->lookup.store = store;
return &store->lookup;
}
#if !defined(NO_CERTS) && defined(WOLFSSL_CERT_GEN)
static int wolfssl_x509_make_der(WOLFSSL_X509* x509, int req,
unsigned char* der, int* derSz, int includeSig);
#endif
#ifndef NO_CERTS
#ifdef WOLFSSL_CERT_GEN
#ifndef NO_BIO
/* Converts the X509 to DER format and outputs it into bio.
*
* bio is the structure to hold output DER
* x509 certificate to create DER from
* req if set then a CSR is generated
*
* returns WOLFSSL_SUCCESS on success
*/
static int loadX509orX509REQFromBio(WOLFSSL_BIO* bio, WOLFSSL_X509* x509, int req)
{
int ret = WOLFSSL_FAILURE;
/* Get large buffer to hold cert der */
int derSz = X509_BUFFER_SZ;
#ifdef WOLFSSL_SMALL_STACK
byte* der;
#else
byte der[X509_BUFFER_SZ];
#endif
WOLFSSL_ENTER("wolfSSL_i2d_X509_bio");
if (bio == NULL || x509 == NULL) {
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
der = (byte*)XMALLOC(derSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (!der) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
#endif
if (wolfssl_x509_make_der(x509, req, der, &derSz, 1) != WOLFSSL_SUCCESS) {
goto cleanup;
}
if (wolfSSL_BIO_write(bio, der, derSz) != derSz) {
goto cleanup;
}
ret = WOLFSSL_SUCCESS;
cleanup:
#ifdef WOLFSSL_SMALL_STACK
XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
#endif /* !NO_BIO */
/* Converts the X509 to DER format and outputs it into bio.
*
* bio is the structure to hold output DER
* x509 certificate to create DER from
*
* returns WOLFSSL_SUCCESS on success
*/
int wolfSSL_i2d_X509_bio(WOLFSSL_BIO* bio, WOLFSSL_X509* x509)
{
return loadX509orX509REQFromBio(bio, x509, 0);
}
#ifdef WOLFSSL_CERT_REQ
int wolfSSL_i2d_X509_REQ_bio(WOLFSSL_BIO* bio, WOLFSSL_X509* x509)
{
return loadX509orX509REQFromBio(bio, x509, 1);
}
#endif /* WOLFSSL_CERT_REQ */
#endif /* WOLFSSL_CERT_GEN */
/* Converts an internal structure to a DER buffer
*
* x509 structure to get DER buffer from
* out buffer to hold result. If NULL then *out is NULL then a new buffer is
* created.
*
* returns the size of the DER result on success
*/
int wolfSSL_i2d_X509(WOLFSSL_X509* x509, unsigned char** out)
{
const unsigned char* der;
int derSz = 0;
WOLFSSL_ENTER("wolfSSL_i2d_X509");
if (x509 == NULL) {
WOLFSSL_LEAVE("wolfSSL_i2d_X509", BAD_FUNC_ARG);
return BAD_FUNC_ARG;
}
der = wolfSSL_X509_get_der(x509, &derSz);
if (der == NULL) {
WOLFSSL_LEAVE("wolfSSL_i2d_X509", MEMORY_E);
return MEMORY_E;
}
if (out != NULL && *out == NULL) {
*out = (unsigned char*)XMALLOC(derSz, NULL, DYNAMIC_TYPE_OPENSSL);
if (*out == NULL) {
WOLFSSL_LEAVE("wolfSSL_i2d_X509", MEMORY_E);
return MEMORY_E;
}
}
if (out != NULL)
XMEMCPY(*out, der, derSz);
WOLFSSL_LEAVE("wolfSSL_i2d_X509", derSz);
return derSz;
}
#ifndef NO_BIO
/**
* Converts the DER from bio and creates a WOLFSSL_X509 structure from it.
* @param bio is the structure holding DER
* @param x509 certificate to create from DER. Can be NULL
* @param req 1 for a CSR and 0 for a x509 cert
* @return pointer to WOLFSSL_X509 structure on success and NULL on fail
*/
static WOLFSSL_X509* d2i_X509orX509REQ_bio(WOLFSSL_BIO* bio,
WOLFSSL_X509** x509, int req)
{
WOLFSSL_X509* localX509 = NULL;
byte* mem = NULL;
int size;
WOLFSSL_ENTER("wolfSSL_d2i_X509_bio");
if (bio == NULL) {
WOLFSSL_MSG("Bad Function Argument bio is NULL");
return NULL;
}
size = wolfSSL_BIO_get_len(bio);
if (size == 0) {
WOLFSSL_MSG("wolfSSL_BIO_get_len error. Possibly no pending data.");
return NULL;
}
if (!(mem = (byte*)XMALLOC(size, NULL, DYNAMIC_TYPE_OPENSSL))) {
WOLFSSL_MSG("malloc error");
return NULL;
}
if ((size = wolfSSL_BIO_read(bio, mem, size)) == 0) {
WOLFSSL_MSG("wolfSSL_BIO_read error");
XFREE(mem, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
if (req) {
#ifdef WOLFSSL_CERT_REQ
localX509 = wolfSSL_X509_REQ_d2i(NULL, mem, size);
#else
WOLFSSL_MSG("CSR not compiled in");
#endif
}
else {
localX509 = wolfSSL_X509_d2i(NULL, mem, size);
}
if (localX509 == NULL) {
WOLFSSL_MSG("wolfSSL_X509_d2i error");
XFREE(mem, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
if (x509 != NULL) {
*x509 = localX509;
}
XFREE(mem, NULL, DYNAMIC_TYPE_OPENSSL);
return localX509;
}
#endif /* !NO_BIO */
WOLFSSL_X509* wolfSSL_d2i_X509_bio(WOLFSSL_BIO* bio, WOLFSSL_X509** x509)
{
return d2i_X509orX509REQ_bio(bio, x509, 0);
}
#ifdef WOLFSSL_CERT_REQ
WOLFSSL_X509* wolfSSL_d2i_X509_REQ_bio(WOLFSSL_BIO* bio, WOLFSSL_X509** x509)
{
return d2i_X509orX509REQ_bio(bio, x509, 1);
}
#endif
#if !defined(NO_ASN) && !defined(NO_PWDBASED)
#ifndef NO_BIO
WC_PKCS12* wolfSSL_d2i_PKCS12_bio(WOLFSSL_BIO* bio, WC_PKCS12** pkcs12)
{
WC_PKCS12* localPkcs12 = NULL;
unsigned char* mem = NULL;
int ret;
word32 size;
WOLFSSL_ENTER("wolfSSL_d2i_PKCS12_bio");
if (bio == NULL) {
WOLFSSL_MSG("Bad Function Argument bio is NULL");
return NULL;
}
localPkcs12 = wc_PKCS12_new();
if (localPkcs12 == NULL) {
WOLFSSL_MSG("Memory error");
return NULL;
}
if (pkcs12 != NULL) {
*pkcs12 = localPkcs12;
}
ret = wolfSSL_BIO_get_mem_data(bio, &mem);
if (mem == NULL || ret <= 0) {
WOLFSSL_MSG("Failed to get data from bio struct");
wc_PKCS12_free(localPkcs12);
if (pkcs12 != NULL) {
*pkcs12 = NULL;
}
return NULL;
}
size = ret;
ret = wc_d2i_PKCS12(mem, size, localPkcs12);
if (ret < 0) {
WOLFSSL_MSG("Failed to get PKCS12 sequence");
wc_PKCS12_free(localPkcs12);
if (pkcs12 != NULL) {
*pkcs12 = NULL;
}
return NULL;
}
return localPkcs12;
}
/* Converts the PKCS12 to DER format and outputs it into bio.
*
* bio is the structure to hold output DER
* pkcs12 structure to create DER from
*
* return 1 for success or 0 if an error occurs
*/
int wolfSSL_i2d_PKCS12_bio(WOLFSSL_BIO *bio, WC_PKCS12 *pkcs12)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_i2d_PKCS12_bio");
if ((bio != NULL) && (pkcs12 != NULL)) {
word32 certSz = 0;
byte *certDer = NULL;
certSz = wc_i2d_PKCS12(pkcs12, &certDer, NULL);
if ((certSz > 0) && (certDer != NULL)) {
if (wolfSSL_BIO_write(bio, certDer, certSz) == (int)certSz) {
ret = WOLFSSL_SUCCESS;
}
}
if (certDer != NULL) {
XFREE(certDer, NULL, DYNAMIC_TYPE_PKCS);
}
}
return ret;
}
#endif /* !NO_BIO */
/* Copies unencrypted DER key buffer into "der". If "der" is null then the size
* of buffer needed is returned. If *der == NULL then it allocates a buffer.
* NOTE: This also advances the "der" pointer to be at the end of buffer.
*
* Returns size of key buffer on success
*/
int wolfSSL_i2d_PrivateKey(const WOLFSSL_EVP_PKEY* key, unsigned char** der)
{
return wolfSSL_EVP_PKEY_get_der(key, der);
}
/* Creates a new WC_PKCS12 structure
*
* pass password to use
* name friendlyName to use
* pkey private key to go into PKCS12 bundle
* cert certificate to go into PKCS12 bundle
* ca extra certificates that can be added to bundle. Can be NULL
* keyNID type of encryption to use on the key (-1 means no encryption)
* certNID type of encryption to use on the certificate
* itt number of iterations with encryption
* macItt number of iterations with mac creation
* keyType flag for signature and/or encryption key
*
* returns a pointer to a new WC_PKCS12 structure on success and NULL on fail
*/
WC_PKCS12* wolfSSL_PKCS12_create(char* pass, char* name,
WOLFSSL_EVP_PKEY* pkey, WOLFSSL_X509* cert,
WOLF_STACK_OF(WOLFSSL_X509)* ca,
int keyNID, int certNID, int itt, int macItt, int keyType)
{
WC_PKCS12* pkcs12;
WC_DerCertList* list = NULL;
word32 passSz;
byte* keyDer = NULL;
word32 keyDerSz;
byte* certDer;
int certDerSz;
WOLFSSL_ENTER("wolfSSL_PKCS12_create()");
if (pass == NULL || pkey == NULL || cert == NULL) {
WOLFSSL_LEAVE("wolfSSL_PKCS12_create()", BAD_FUNC_ARG);
return NULL;
}
passSz = (word32)XSTRLEN(pass);
keyDer = (byte*)pkey->pkey.ptr;
keyDerSz = pkey->pkey_sz;
certDer = (byte*)wolfSSL_X509_get_der(cert, &certDerSz);
if (certDer == NULL) {
return NULL;
}
if (ca != NULL) {
WC_DerCertList* cur;
unsigned long numCerts = ca->num;
byte* curDer;
int curDerSz = 0;
WOLFSSL_STACK* sk = ca;
while (numCerts > 0 && sk != NULL) {
cur = (WC_DerCertList*)XMALLOC(sizeof(WC_DerCertList), NULL,
DYNAMIC_TYPE_PKCS);
if (cur == NULL) {
wc_FreeCertList(list, NULL);
return NULL;
}
curDer = (byte*)wolfSSL_X509_get_der(sk->data.x509, &curDerSz);
if (curDer == NULL || curDerSz < 0) {
XFREE(cur, NULL, DYNAMIC_TYPE_PKCS);
wc_FreeCertList(list, NULL);
return NULL;
}
cur->buffer = (byte*)XMALLOC(curDerSz, NULL, DYNAMIC_TYPE_PKCS);
if (cur->buffer == NULL) {
XFREE(cur, NULL, DYNAMIC_TYPE_PKCS);
wc_FreeCertList(list, NULL);
return NULL;
}
XMEMCPY(cur->buffer, curDer, curDerSz);
cur->bufferSz = curDerSz;
cur->next = list;
list = cur;
sk = sk->next;
numCerts--;
}
}
pkcs12 = wc_PKCS12_create(pass, passSz, name, keyDer, keyDerSz,
certDer, certDerSz, list, keyNID, certNID, itt, macItt,
keyType, NULL);
if (ca != NULL) {
wc_FreeCertList(list, NULL);
}
return pkcs12;
}
/* return WOLFSSL_SUCCESS on success, WOLFSSL_FAILURE on failure */
int wolfSSL_PKCS12_parse(WC_PKCS12* pkcs12, const char* psw,
WOLFSSL_EVP_PKEY** pkey, WOLFSSL_X509** cert, WOLF_STACK_OF(WOLFSSL_X509)** ca)
{
DecodedCert DeCert;
void* heap = NULL;
int ret;
byte* certData = NULL;
word32 certDataSz;
byte* pk = NULL;
word32 pkSz;
WC_DerCertList* certList = NULL;
WOLFSSL_ENTER("wolfSSL_PKCS12_parse");
/* make sure we init return args */
if (pkey) *pkey = NULL;
if (cert) *cert = NULL;
if (ca) *ca = NULL;
if (pkcs12 == NULL || psw == NULL || pkey == NULL || cert == NULL) {
WOLFSSL_MSG("Bad argument value");
return WOLFSSL_FAILURE;
}
heap = wc_PKCS12_GetHeap(pkcs12);
if (ca == NULL) {
ret = wc_PKCS12_parse(pkcs12, psw, &pk, &pkSz, &certData, &certDataSz,
NULL);
}
else {
ret = wc_PKCS12_parse(pkcs12, psw, &pk, &pkSz, &certData, &certDataSz,
&certList);
}
if (ret < 0) {
WOLFSSL_LEAVE("wolfSSL_PKCS12_parse", ret);
return WOLFSSL_FAILURE;
}
/* Decode cert and place in X509 stack struct */
if (certList != NULL) {
WC_DerCertList* current = certList;
*ca = (WOLF_STACK_OF(WOLFSSL_X509)*)XMALLOC(sizeof(WOLF_STACK_OF(WOLFSSL_X509)),
heap, DYNAMIC_TYPE_X509);
if (*ca == NULL) {
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (certData != NULL) {
XFREE(*cert, heap, DYNAMIC_TYPE_PKCS); *cert = NULL;
}
/* Free up WC_DerCertList and move on */
while (current != NULL) {
WC_DerCertList* next = current->next;
XFREE(current->buffer, heap, DYNAMIC_TYPE_PKCS);
XFREE(current, heap, DYNAMIC_TYPE_PKCS);
current = next;
}
return WOLFSSL_FAILURE;
}
XMEMSET(*ca, 0, sizeof(WOLF_STACK_OF(WOLFSSL_X509)));
/* add list of DER certs as X509's to stack */
while (current != NULL) {
WC_DerCertList* toFree = current;
WOLFSSL_X509* x509;
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), heap,
DYNAMIC_TYPE_X509);
InitX509(x509, 1, heap);
InitDecodedCert(&DeCert, current->buffer, current->bufferSz, heap);
if (ParseCertRelative(&DeCert, CERT_TYPE, NO_VERIFY, NULL) != 0) {
WOLFSSL_MSG("Issue with parsing certificate");
FreeDecodedCert(&DeCert);
wolfSSL_X509_free(x509);
}
else {
if (CopyDecodedToX509(x509, &DeCert) != 0) {
WOLFSSL_MSG("Failed to copy decoded cert");
FreeDecodedCert(&DeCert);
wolfSSL_X509_free(x509);
wolfSSL_sk_X509_free(*ca); *ca = NULL;
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (certData != NULL) {
XFREE(certData, heap, DYNAMIC_TYPE_PKCS);
}
/* Free up WC_DerCertList */
while (current != NULL) {
WC_DerCertList* next = current->next;
XFREE(current->buffer, heap, DYNAMIC_TYPE_PKCS);
XFREE(current, heap, DYNAMIC_TYPE_PKCS);
current = next;
}
return WOLFSSL_FAILURE;
}
FreeDecodedCert(&DeCert);
if (wolfSSL_sk_X509_push(*ca, x509) != 1) {
WOLFSSL_MSG("Failed to push x509 onto stack");
wolfSSL_X509_free(x509);
wolfSSL_sk_X509_free(*ca); *ca = NULL;
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (certData != NULL) {
XFREE(certData, heap, DYNAMIC_TYPE_PKCS);
}
/* Free up WC_DerCertList */
while (current != NULL) {
WC_DerCertList* next = current->next;
XFREE(current->buffer, heap, DYNAMIC_TYPE_PKCS);
XFREE(current, heap, DYNAMIC_TYPE_PKCS);
current = next;
}
return WOLFSSL_FAILURE;
}
}
current = current->next;
XFREE(toFree->buffer, heap, DYNAMIC_TYPE_PKCS);
XFREE(toFree, heap, DYNAMIC_TYPE_PKCS);
}
}
/* Decode cert and place in X509 struct */
if (certData != NULL) {
*cert = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), heap,
DYNAMIC_TYPE_X509);
if (*cert == NULL) {
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
XFREE(certData, heap, DYNAMIC_TYPE_PKCS);
return WOLFSSL_FAILURE;
}
InitX509(*cert, 1, heap);
InitDecodedCert(&DeCert, certData, certDataSz, heap);
if (ParseCertRelative(&DeCert, CERT_TYPE, NO_VERIFY, NULL) != 0) {
WOLFSSL_MSG("Issue with parsing certificate");
}
if (CopyDecodedToX509(*cert, &DeCert) != 0) {
WOLFSSL_MSG("Failed to copy decoded cert");
FreeDecodedCert(&DeCert);
if (pk != NULL) {
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
wolfSSL_X509_free(*cert); *cert = NULL;
return WOLFSSL_FAILURE;
}
FreeDecodedCert(&DeCert);
XFREE(certData, heap, DYNAMIC_TYPE_PKCS);
}
/* get key type */
ret = BAD_STATE_E;
if (pk != NULL) { /* decode key if present */
*pkey = wolfSSL_EVP_PKEY_new_ex(heap);
if (*pkey == NULL) {
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
XFREE(pk, heap, DYNAMIC_TYPE_PUBLIC_KEY);
return WOLFSSL_FAILURE;
}
#ifndef NO_RSA
{
word32 keyIdx = 0;
RsaKey key;
if (wc_InitRsaKey(&key, heap) != 0) {
ret = BAD_STATE_E;
}
else {
if ((ret = wc_RsaPrivateKeyDecode(pk, &keyIdx, &key, pkSz))
== 0) {
(*pkey)->type = EVP_PKEY_RSA;
(*pkey)->rsa = wolfSSL_RSA_new();
(*pkey)->ownRsa = 1; /* we own RSA */
if ((*pkey)->rsa == NULL) {
WOLFSSL_MSG("issue creating EVP RSA key");
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL;
XFREE(pk, heap, DYNAMIC_TYPE_PKCS);
return WOLFSSL_FAILURE;
}
if (wolfSSL_RSA_LoadDer_ex((*pkey)->rsa, pk, pkSz,
WOLFSSL_RSA_LOAD_PRIVATE) != SSL_SUCCESS) {
WOLFSSL_MSG("issue loading RSA key");
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL;
XFREE(pk, heap, DYNAMIC_TYPE_PKCS);
return WOLFSSL_FAILURE;
}
WOLFSSL_MSG("Found PKCS12 RSA key");
ret = 0; /* set in success state for upcoming ECC check */
}
wc_FreeRsaKey(&key);
}
}
#endif /* NO_RSA */
#ifdef HAVE_ECC
{
word32 keyIdx = 0;
ecc_key key;
if (ret != 0) { /* if is in fail state check if ECC key */
if (wc_ecc_init(&key) != 0) {
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL;
XFREE(pk, heap, DYNAMIC_TYPE_PKCS);
return WOLFSSL_FAILURE;
}
if ((ret = wc_EccPrivateKeyDecode(pk, &keyIdx, &key, pkSz))
!= 0) {
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL;
XFREE(pk, heap, DYNAMIC_TYPE_PKCS);
WOLFSSL_MSG("Bad PKCS12 key format");
return WOLFSSL_FAILURE;
}
(*pkey)->type = EVP_PKEY_EC;
(*pkey)->pkey_curve = key.dp->oidSum;
wc_ecc_free(&key);
WOLFSSL_MSG("Found PKCS12 ECC key");
}
}
#else
if (ret != 0) { /* if is in fail state and no ECC then fail */
wolfSSL_X509_free(*cert); *cert = NULL;
if (ca != NULL) {
wolfSSL_sk_X509_free(*ca); *ca = NULL;
}
wolfSSL_EVP_PKEY_free(*pkey); *pkey = NULL;
XFREE(pk, heap, DYNAMIC_TYPE_PKCS);
WOLFSSL_MSG("Bad PKCS12 key format");
return WOLFSSL_FAILURE;
}
#endif /* HAVE_ECC */
(*pkey)->save_type = 0;
(*pkey)->pkey_sz = pkSz;
(*pkey)->pkey.ptr = (char*)pk;
}
(void)ret;
(void)ca;
return WOLFSSL_SUCCESS;
}
int wolfSSL_PKCS12_verify_mac(WC_PKCS12 *pkcs12, const char *psw,
int pswLen)
{
WOLFSSL_ENTER("wolfSSL_PKCS12_verify_mac");
if (!pkcs12) {
return WOLFSSL_FAILURE;
}
return wc_PKCS12_verify_ex(pkcs12, (const byte*)psw, pswLen) == 0 ?
WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
#endif /* !NO_ASN && !NO_PWDBASED */
/* no-op function. Was initially used for adding encryption algorithms available
* for PKCS12 */
void wolfSSL_PKCS12_PBE_add(void)
{
WOLFSSL_ENTER("wolfSSL_PKCS12_PBE_add");
}
WOLFSSL_STACK* wolfSSL_X509_STORE_CTX_get_chain(WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_chain");
if (ctx == NULL) {
return NULL;
}
#ifdef SESSION_CERTS
/* if chain is null but sesChain is available then populate stack */
if (ctx->chain == NULL && ctx->sesChain != NULL) {
int i;
WOLFSSL_X509_CHAIN* c = ctx->sesChain;
WOLFSSL_STACK* sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK),
NULL, DYNAMIC_TYPE_X509);
if (sk == NULL) {
return NULL;
}
XMEMSET(sk, 0, sizeof(WOLFSSL_STACK));
for (i = 0; i < c->count && i < MAX_CHAIN_DEPTH; i++) {
WOLFSSL_X509* x509 = wolfSSL_get_chain_X509(c, i);
if (x509 == NULL) {
WOLFSSL_MSG("Unable to get x509 from chain");
wolfSSL_sk_X509_free(sk);
return NULL;
}
if (wolfSSL_sk_X509_push(sk, x509) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Unable to load x509 into stack");
wolfSSL_sk_X509_free(sk);
wolfSSL_X509_free(x509);
return NULL;
}
}
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA)
/* add CA used to verify top of chain to the list */
if (c->count > 0) {
WOLFSSL_X509* x509 = wolfSSL_get_chain_X509(c, c->count - 1);
if (x509 != NULL) {
WOLFSSL_X509* issuer = NULL;
if (wolfSSL_X509_STORE_CTX_get1_issuer(&issuer, ctx, x509)
== WOLFSSL_SUCCESS) {
/* check that the certificate being looked up is not self
* signed and that a issuer was found */
if (issuer != NULL && wolfSSL_X509_NAME_cmp(&x509->issuer,
&x509->subject) != 0) {
if (wolfSSL_sk_X509_push(sk, issuer) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Unable to load CA x509 into stack");
wolfSSL_sk_X509_free(sk);
wolfSSL_X509_free(issuer);
return NULL;
}
}
else {
WOLFSSL_MSG("Certificate is self signed");
if (issuer != NULL)
wolfSSL_X509_free(issuer);
}
}
else {
WOLFSSL_MSG("Could not find CA for certificate");
}
}
}
#endif
ctx->chain = sk;
}
#endif /* SESSION_CERTS */
return ctx->chain;
}
/* like X509_STORE_CTX_get_chain(), but return a copy with data reference
counts increased */
WOLFSSL_STACK* wolfSSL_X509_STORE_CTX_get1_chain(WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_STACK* ref;
if (ctx == NULL) {
return NULL;
}
/* get chain in ctx */
ref = wolfSSL_X509_STORE_CTX_get_chain(ctx);
if (ref == NULL) {
return ref;
}
/* create duplicate of ctx chain */
return wolfSSL_sk_dup(ref);
}
#ifndef NO_WOLFSSL_STUB
WOLFSSL_X509_STORE_CTX *wolfSSL_X509_STORE_CTX_get0_parent_ctx(
WOLFSSL_X509_STORE_CTX *ctx)
{
(void)ctx;
WOLFSSL_STUB("wolfSSL_X509_STORE_CTX_get0_parent_ctx");
return NULL;
}
#endif
int wolfSSL_X509_STORE_add_cert(WOLFSSL_X509_STORE* store, WOLFSSL_X509* x509)
{
int result = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_X509_STORE_add_cert");
if (store != NULL && store->cm != NULL && x509 != NULL
&& x509->derCert != NULL) {
DerBuffer* derCert = NULL;
result = AllocDer(&derCert, x509->derCert->length,
x509->derCert->type, NULL);
if (result == 0) {
/* AddCA() frees the buffer. */
XMEMCPY(derCert->buffer,
x509->derCert->buffer, x509->derCert->length);
result = AddCA(store->cm, &derCert, WOLFSSL_USER_CA, VERIFY);
}
}
WOLFSSL_LEAVE("wolfSSL_X509_STORE_add_cert", result);
if (result != WOLFSSL_SUCCESS) {
result = WOLFSSL_FATAL_ERROR;
}
return result;
}
#endif /* !NO_CERTS */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
WOLFSSL_X509_STORE* wolfSSL_X509_STORE_new(void)
{
WOLFSSL_X509_STORE* store = NULL;
WOLFSSL_ENTER("SSL_X509_STORE_new");
if ((store = (WOLFSSL_X509_STORE*)XMALLOC(sizeof(WOLFSSL_X509_STORE), NULL,
DYNAMIC_TYPE_X509_STORE)) == NULL)
goto err_exit;
XMEMSET(store, 0, sizeof(WOLFSSL_X509_STORE));
store->isDynamic = 1;
if ((store->cm = wolfSSL_CertManagerNew()) == NULL)
goto err_exit;
#ifdef HAVE_CRL
store->crl = store->cm->crl;
#endif
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
if ((store->param = (WOLFSSL_X509_VERIFY_PARAM*)XMALLOC(
sizeof(WOLFSSL_X509_VERIFY_PARAM),
NULL, DYNAMIC_TYPE_OPENSSL)) == NULL) {
goto err_exit;
}
#endif
return store;
err_exit:
if (store == NULL)
return NULL;
wolfSSL_X509_STORE_free(store);
return NULL;
}
void wolfSSL_X509_STORE_free(WOLFSSL_X509_STORE* store)
{
if (store != NULL && store->isDynamic) {
if (store->cm != NULL) {
wolfSSL_CertManagerFree(store->cm);
store->cm = NULL;
}
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
if (store->param != NULL) {
XFREE(store->param, NULL, DYNAMIC_TYPE_OPENSSL);
store->param = NULL;
}
#endif
XFREE(store, NULL, DYNAMIC_TYPE_X509_STORE);
}
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
#ifndef NO_CERTS
int wolfSSL_X509_STORE_set_flags(WOLFSSL_X509_STORE* store, unsigned long flag)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_X509_STORE_set_flags");
if (store == NULL)
return WOLFSSL_FAILURE;
if ((flag & WOLFSSL_CRL_CHECKALL) || (flag & WOLFSSL_CRL_CHECK)) {
ret = wolfSSL_CertManagerEnableCRL(store->cm, (int)flag);
}
return ret;
}
int wolfSSL_X509_STORE_set_default_paths(WOLFSSL_X509_STORE* store)
{
(void)store;
return WOLFSSL_SUCCESS;
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_X509_STORE_get_by_subject(WOLFSSL_X509_STORE_CTX* ctx, int idx,
WOLFSSL_X509_NAME* name, WOLFSSL_X509_OBJECT* obj)
{
(void)ctx;
(void)idx;
(void)name;
(void)obj;
WOLFSSL_STUB("X509_STORE_get_by_subject");
return 0;
}
#endif
WOLFSSL_X509_STORE_CTX* wolfSSL_X509_STORE_CTX_new(void)
{
WOLFSSL_X509_STORE_CTX* ctx;
WOLFSSL_ENTER("X509_STORE_CTX_new");
ctx = (WOLFSSL_X509_STORE_CTX*)XMALLOC(sizeof(WOLFSSL_X509_STORE_CTX), NULL,
DYNAMIC_TYPE_X509_CTX);
if (ctx != NULL) {
ctx->param = NULL;
wolfSSL_X509_STORE_CTX_init(ctx, NULL, NULL, NULL);
}
return ctx;
}
int wolfSSL_X509_STORE_CTX_init(WOLFSSL_X509_STORE_CTX* ctx,
WOLFSSL_X509_STORE* store, WOLFSSL_X509* x509, WOLF_STACK_OF(WOLFSSL_X509)* sk)
{
WOLFSSL_X509* x509_cert;
int ret = 0;
(void)sk;
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_init");
if (ctx != NULL) {
ctx->store = store;
#ifndef WOLFSSL_X509_STORE_CERTS
ctx->current_cert = x509;
#else
if(x509 != NULL){
ctx->current_cert = wolfSSL_X509_d2i(NULL, x509->derCert->buffer,x509->derCert->length);
if(ctx->current_cert == NULL)
return WOLFSSL_FATAL_ERROR;
} else
ctx->current_cert = NULL;
#endif
ctx->chain = sk;
/* Add intermediate certificates from stack to store */
while (sk != NULL) {
x509_cert = sk->data.x509;
if (x509_cert != NULL && x509_cert->isCa) {
ret = wolfSSL_X509_STORE_add_cert(store, x509_cert);
if (ret < 0) {
return WOLFSSL_FATAL_ERROR;
}
}
sk = sk->next;
}
ctx->sesChain = NULL;
ctx->domain = NULL;
#if defined(HAVE_EX_DATA) || defined(FORTRESS)
XMEMSET(&ctx->ex_data, 0, sizeof(ctx->ex_data));
#endif
ctx->userCtx = NULL;
ctx->error = 0;
ctx->error_depth = 0;
ctx->discardSessionCerts = 0;
#ifdef OPENSSL_EXTRA
if (ctx->param == NULL) {
ctx->param = (WOLFSSL_X509_VERIFY_PARAM*)XMALLOC(
sizeof(WOLFSSL_X509_VERIFY_PARAM),
NULL,DYNAMIC_TYPE_OPENSSL);
if (ctx->param == NULL){
WOLFSSL_MSG("wolfSSL_X509_STORE_CTX_init failed");
return SSL_FATAL_ERROR;
}
}
#endif
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FATAL_ERROR;
}
/* free's extra data */
void wolfSSL_X509_STORE_CTX_free(WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_ENTER("X509_STORE_CTX_free");
if (ctx != NULL) {
#ifdef OPENSSL_EXTRA
if (ctx->param != NULL){
XFREE(ctx->param,NULL,DYNAMIC_TYPE_OPENSSL);
ctx->param = NULL;
}
#endif
XFREE(ctx, NULL, DYNAMIC_TYPE_X509_CTX);
}
}
void wolfSSL_X509_STORE_CTX_cleanup(WOLFSSL_X509_STORE_CTX* ctx)
{
if (ctx != NULL) {
#ifdef OPENSSL_EXTRA
if (ctx->param != NULL){
XFREE(ctx->param,NULL,DYNAMIC_TYPE_OPENSSL);
ctx->param = NULL;
}
#endif
wolfSSL_X509_STORE_CTX_init(ctx, NULL, NULL, NULL);
}
}
void wolfSSL_X509_STORE_CTX_trusted_stack(WOLFSSL_X509_STORE_CTX *ctx, WOLF_STACK_OF(WOLFSSL_X509) *sk)
{
if (ctx != NULL) {
ctx->chain = sk;
}
}
/* Returns corresponding X509 error from internal ASN error <e> */
static int GetX509Error(int e)
{
switch (e) {
case ASN_BEFORE_DATE_E:
return X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD;
case ASN_AFTER_DATE_E:
return X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD;
case ASN_NO_SIGNER_E:
return X509_V_ERR_INVALID_CA;
case ASN_SELF_SIGNED_E:
return X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT;
case ASN_PATHLEN_INV_E:
case ASN_PATHLEN_SIZE_E:
return X509_V_ERR_PATH_LENGTH_EXCEEDED;
case ASN_SIG_OID_E:
case ASN_SIG_CONFIRM_E:
case ASN_SIG_HASH_E:
case ASN_SIG_KEY_E:
return X509_V_ERR_CERT_SIGNATURE_FAILURE;
default:
WOLFSSL_MSG("Error not configured or implemented yet");
return e;
}
}
/* Verifies certificate chain using WOLFSSL_X509_STORE_CTX
* returns 0 on success or < 0 on failure.
*/
int wolfSSL_X509_verify_cert(WOLFSSL_X509_STORE_CTX* ctx)
{
int ret = 0;
int depth = 0;
int error;
byte *afterDate, *beforeDate;
WOLFSSL_ENTER("wolfSSL_X509_verify_cert");
if (ctx != NULL && ctx->store != NULL && ctx->store->cm != NULL
&& ctx->current_cert != NULL && ctx->current_cert->derCert != NULL) {
ret = wolfSSL_CertManagerVerifyBuffer(ctx->store->cm,
ctx->current_cert->derCert->buffer,
ctx->current_cert->derCert->length,
WOLFSSL_FILETYPE_ASN1);
/* If there was an error, process it and add it to CTX */
if (ret < 0) {
/* Get corresponding X509 error */
error = GetX509Error(ret);
/* Set error depth */
if (ctx->chain)
depth = (int)ctx->chain->num;
wolfSSL_X509_STORE_CTX_set_error(ctx, error);
wolfSSL_X509_STORE_CTX_set_error_depth(ctx, depth);
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
if (ctx->store && ctx->store->verify_cb)
ctx->store->verify_cb(0, ctx);
#endif
}
error = 0;
/* wolfSSL_CertManagerVerifyBuffer only returns ASN_AFTER_DATE_E or
ASN_BEFORE_DATE_E if there are no additional errors found in the
cert. Therefore, check if the cert is expired or not yet valid
in order to return the correct expected error. */
afterDate = ctx->current_cert->notAfter.data;
beforeDate = ctx->current_cert->notBefore.data;
if (XVALIDATE_DATE(afterDate, (byte)ctx->current_cert->notAfter.type,
AFTER) < 1) {
error = X509_V_ERR_CERT_HAS_EXPIRED;
}
else if (XVALIDATE_DATE(beforeDate,
(byte)ctx->current_cert->notBefore.type, BEFORE) < 1) {
error = X509_V_ERR_CERT_NOT_YET_VALID;
}
if (error != 0 ) {
wolfSSL_X509_STORE_CTX_set_error(ctx, error);
wolfSSL_X509_STORE_CTX_set_error_depth(ctx, depth);
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
if (ctx->store && ctx->store->verify_cb)
ctx->store->verify_cb(0, ctx);
#endif
}
/* OpenSSL returns 0 when a chain can't be built */
if (ret == ASN_NO_SIGNER_E)
return WOLFSSL_FAILURE;
else
return ret;
}
return WOLFSSL_FATAL_ERROR;
}
/* Use the public key to verify the signature. Note: this only verifies
* the certificate signature.
* returns WOLFSSL_SUCCESS on successful signature verification */
static int verifyX509orX509REQ(WOLFSSL_X509* x509, WOLFSSL_EVP_PKEY* pkey, int req)
{
int ret;
const byte* der;
int derSz = 0;
int type;
(void)req;
if (x509 == NULL || pkey == NULL) {
return WOLFSSL_FATAL_ERROR;
}
der = wolfSSL_X509_get_der(x509, &derSz);
if (der == NULL) {
WOLFSSL_MSG("Error getting WOLFSSL_X509 DER");
return WOLFSSL_FATAL_ERROR;
}
switch (pkey->type) {
case EVP_PKEY_RSA:
type = RSAk;
break;
case EVP_PKEY_EC:
type = ECDSAk;
break;
case EVP_PKEY_DSA:
type = DSAk;
break;
default:
WOLFSSL_MSG("Unknown pkey key type");
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_CERT_REQ
if (req)
ret = CheckCSRSignaturePubKey(der, derSz, x509->heap,
(unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, type);
else
#endif
ret = CheckCertSignaturePubKey(der, derSz, x509->heap,
(unsigned char*)pkey->pkey.ptr, pkey->pkey_sz, type);
if (ret == 0) {
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
int wolfSSL_X509_verify(WOLFSSL_X509* x509, WOLFSSL_EVP_PKEY* pkey)
{
return verifyX509orX509REQ(x509, pkey, 0);
}
#ifdef WOLFSSL_CERT_REQ
int wolfSSL_X509_REQ_verify(WOLFSSL_X509* x509, WOLFSSL_EVP_PKEY* pkey)
{
return verifyX509orX509REQ(x509, pkey, 1);
}
#endif /* WOLFSSL_CERT_REQ */
#endif /* !NO_CERTS */
#if !defined(NO_FILESYSTEM)
static void *wolfSSL_d2i_X509_fp_ex(XFILE file, void **x509, int type)
{
void *newx509 = NULL;
byte *fileBuffer = NULL;
long sz = 0;
/* init variable */
if (x509)
*x509 = NULL;
/* argument check */
if (file == XBADFILE) {
return NULL;
}
/* determine file size */
if (XFSEEK(file, 0, XSEEK_END) != 0) {
return NULL;
}
sz = XFTELL(file);
XREWIND(file);
if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0) {
WOLFSSL_MSG("d2i_X509_fp_ex file size error");
return NULL;
}
fileBuffer = (byte *)XMALLOC(sz, NULL, DYNAMIC_TYPE_FILE);
if (fileBuffer != NULL) {
if ((long)XFREAD(fileBuffer, 1, sz, file) != sz) {
WOLFSSL_MSG("File read failed");
goto err_exit;
}
if (type == CERT_TYPE) {
newx509 = (void *)wolfSSL_X509_d2i(NULL, fileBuffer, (int)sz);
}
#ifdef HAVE_CRL
else if (type == CRL_TYPE) {
newx509 = (void *)wolfSSL_d2i_X509_CRL(NULL, fileBuffer, (int)sz);
}
#endif
#if !defined(NO_ASN) && !defined(NO_PWDBASED)
else if (type == PKCS12_TYPE) {
if ((newx509 = wc_PKCS12_new()) == NULL) {
goto err_exit;
}
if (wc_d2i_PKCS12(fileBuffer, (int)sz, (WC_PKCS12*)newx509) < 0) {
goto err_exit;
}
}
#endif
else {
goto err_exit;
}
if (newx509 == NULL) {
WOLFSSL_MSG("X509 failed");
goto err_exit;
}
}
if (x509)
*x509 = newx509;
goto _exit;
err_exit:
#if !defined(NO_ASN) && !defined(NO_PWDBASED)
if ((newx509 != NULL) && (type == PKCS12_TYPE)) {
wc_PKCS12_free((WC_PKCS12*)newx509);
newx509 = NULL;
}
#endif
_exit:
if (fileBuffer != NULL)
XFREE(fileBuffer, NULL, DYNAMIC_TYPE_FILE);
return newx509;
}
WOLFSSL_X509_PKCS12 *wolfSSL_d2i_PKCS12_fp(XFILE fp, WOLFSSL_X509_PKCS12 **pkcs12)
{
WOLFSSL_ENTER("wolfSSL_d2i_PKCS12_fp");
return (WOLFSSL_X509_PKCS12 *)wolfSSL_d2i_X509_fp_ex(fp, (void **)pkcs12, PKCS12_TYPE);
}
WOLFSSL_X509 *wolfSSL_d2i_X509_fp(XFILE fp, WOLFSSL_X509 **x509)
{
WOLFSSL_ENTER("wolfSSL_d2i_X509_fp");
return (WOLFSSL_X509 *)wolfSSL_d2i_X509_fp_ex(fp, (void **)x509, CERT_TYPE);
}
#endif /* !NO_FILESYSTEM */
#ifdef HAVE_CRL
#ifndef NO_FILESYSTEM
WOLFSSL_X509_CRL *wolfSSL_d2i_X509_CRL_fp(XFILE fp, WOLFSSL_X509_CRL **crl)
{
WOLFSSL_ENTER("wolfSSL_d2i_X509_CRL_fp");
return (WOLFSSL_X509_CRL *)wolfSSL_d2i_X509_fp_ex(fp, (void **)crl, CRL_TYPE);
}
#endif /* !NO_FILESYSTEM */
WOLFSSL_X509_CRL* wolfSSL_d2i_X509_CRL(WOLFSSL_X509_CRL** crl,
const unsigned char* in, int len)
{
WOLFSSL_X509_CRL *newcrl = NULL;
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_d2i_X509_CRL");
if (in == NULL) {
WOLFSSL_MSG("Bad argument value");
} else {
newcrl =(WOLFSSL_X509_CRL*)XMALLOC(sizeof(WOLFSSL_X509_CRL), NULL,
DYNAMIC_TYPE_CRL);
if (newcrl == NULL){
WOLFSSL_MSG("New CRL allocation failed");
} else {
ret = InitCRL(newcrl, NULL);
if (ret < 0) {
WOLFSSL_MSG("Init tmp CRL failed");
} else {
ret = BufferLoadCRL(newcrl, in, len, WOLFSSL_FILETYPE_ASN1,
NO_VERIFY);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Buffer Load CRL failed");
} else {
if (crl) {
*crl = newcrl;
}
}
}
}
}
if((ret != WOLFSSL_SUCCESS) && (newcrl != NULL)) {
wolfSSL_X509_CRL_free(newcrl);
newcrl = NULL;
}
return newcrl;
}
#endif /* HAVE_CRL */
#endif /* OPENSSL_EXTRA */
#if defined(HAVE_CRL) && (defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL))
void wolfSSL_X509_CRL_free(WOLFSSL_X509_CRL *crl)
{
WOLFSSL_ENTER("wolfSSL_X509_CRL_free");
if (crl)
FreeCRL(crl, 1);
}
#endif /* HAVE_CRL && (OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL) */
#ifdef OPENSSL_EXTRA
#ifndef NO_WOLFSSL_STUB
WOLFSSL_ASN1_TIME* wolfSSL_X509_CRL_get_lastUpdate(WOLFSSL_X509_CRL* crl)
{
(void)crl;
WOLFSSL_STUB("X509_CRL_get_lastUpdate");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
WOLFSSL_ASN1_TIME* wolfSSL_X509_CRL_get_nextUpdate(WOLFSSL_X509_CRL* crl)
{
(void)crl;
WOLFSSL_STUB("X509_CRL_get_nextUpdate");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
int wolfSSL_X509_CRL_verify(WOLFSSL_X509_CRL* crl, WOLFSSL_EVP_PKEY* key)
{
(void)crl;
(void)key;
WOLFSSL_STUB("X509_CRL_verify");
return 0;
}
#endif
#endif /* OPENSSL_EXTRA */
#ifdef OPENSSL_EXTRA
/* Gets pointer to X509_STORE that was used to create context.
*
* Return valid pointer on success, NULL if ctx was NULL or not initialized
*/
WOLFSSL_X509_STORE* wolfSSL_X509_STORE_CTX_get0_store(
WOLFSSL_X509_STORE_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get0_store");
if (ctx == NULL)
return NULL;
return ctx->store;
}
WOLFSSL_X509* wolfSSL_X509_STORE_CTX_get0_cert(WOLFSSL_X509_STORE_CTX* ctx)
{
if (ctx == NULL)
return NULL;
return ctx->current_cert;
}
void wolfSSL_X509_STORE_CTX_set_time(WOLFSSL_X509_STORE_CTX* ctx,
unsigned long flags,
time_t t)
{
(void)flags;
if (ctx == NULL || ctx->param == NULL)
return;
ctx->param->check_time = t;
ctx->param->flags |= WOLFSSL_USE_CHECK_TIME;
}
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
#ifndef NO_WOLFSSL_STUB
int wolfSSL_X509_STORE_CTX_set_purpose(WOLFSSL_X509_STORE_CTX *ctx,
int purpose)
{
(void)ctx;
(void)purpose;
WOLFSSL_STUB("wolfSSL_X509_STORE_CTX_set_purpose");
return 0;
}
#endif
#endif /* WOLFSSL_QT || OPENSSL_ALL */
#ifndef NO_WOLFSSL_STUB
/* Returns default file name and path of config file. However
a wolfssl.cnf file is not currently supported */
char* wolfSSL_CONF_get1_default_config_file(void)
{
WOLFSSL_ENTER("wolfSSL_CONF_get1_default_config_file");
WOLFSSL_STUB("CONF_get1_default_config_file");
return NULL;
}
#endif
WOLFSSL_X509_VERIFY_PARAM* wolfSSL_X509_VERIFY_PARAM_new(void)
{
WOLFSSL_X509_VERIFY_PARAM *param = NULL;
param = (WOLFSSL_X509_VERIFY_PARAM*)XMALLOC(
sizeof(WOLFSSL_X509_VERIFY_PARAM), NULL, DYNAMIC_TYPE_OPENSSL);
if (param != NULL)
XMEMSET(param, 0, sizeof(WOLFSSL_X509_VERIFY_PARAM ));
return(param);
}
void wolfSSL_X509_VERIFY_PARAM_free(WOLFSSL_X509_VERIFY_PARAM *param)
{
if (param != NULL)
XFREE(param, NULL, DYNAMIC_TYPE_OPENSSL);
}
/* Sets flags by OR'ing with existing value. */
int wolfSSL_X509_VERIFY_PARAM_set_flags(WOLFSSL_X509_VERIFY_PARAM *param,
unsigned long flags)
{
int ret = WOLFSSL_FAILURE;
if (param != NULL) {
param->flags |= flags;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
int wolfSSL_X509_VERIFY_PARAM_get_flags(WOLFSSL_X509_VERIFY_PARAM *param)
{
int ret = 0;
if (param != NULL) {
ret = (int)param->flags;
}
return ret;
}
int wolfSSL_X509_VERIFY_PARAM_clear_flags(WOLFSSL_X509_VERIFY_PARAM *param,
unsigned long flags)
{
int ret = WOLFSSL_FAILURE;
if (param != NULL) {
param->flags &= ~flags;
ret = WOLFSSL_SUCCESS;
}
return ret;
}
/******************************************************************************
* wolfSSL_X509_VERIFY_PARAM_set1_host - sets the DNS hostname to name
* hostnames is cleared if name is NULL or empty.
*
* RETURNS:
*
*/
int wolfSSL_X509_VERIFY_PARAM_set1_host(WOLFSSL_X509_VERIFY_PARAM* pParam,
const char* name,
unsigned int nameSz)
{
unsigned int sz = 0;
if (pParam == NULL)
return WOLFSSL_FAILURE;
XMEMSET(pParam->hostName, 0, WOLFSSL_HOST_NAME_MAX);
if (name == NULL)
return WOLFSSL_SUCCESS;
sz = (unsigned int)XSTRLEN(name);
/* If name is NUL-terminated, namelen can be set to zero. */
if(nameSz == 0 || nameSz > sz)
nameSz = sz;
if (nameSz > 0 && name[nameSz - 1] == '\0')
nameSz--;
if (nameSz > WOLFSSL_HOST_NAME_MAX-1)
nameSz = WOLFSSL_HOST_NAME_MAX-1;
if (nameSz > 0)
XMEMCPY(pParam->hostName, name, nameSz);
pParam->hostName[nameSz] = '\0';
return WOLFSSL_SUCCESS;
}
/******************************************************************************
* wolfSSL_get0_param - return a pointer to the SSL verification parameters
*
* RETURNS:
* returns pointer to the SSL verification parameters on success,
* otherwise returns NULL
*/
WOLFSSL_X509_VERIFY_PARAM* wolfSSL_get0_param(WOLFSSL* ssl)
{
if (ssl == NULL) {
return NULL;
}
return ssl->param;
}
/* Set the host flag in the X509_VERIFY_PARAM structure */
void wolfSSL_X509_VERIFY_PARAM_set_hostflags(WOLFSSL_X509_VERIFY_PARAM* param,
unsigned int flags)
{
if (param != NULL) {
param->hostFlags = flags;
}
}
/* Sets the expected IP address to ipasc.
*
* param is a pointer to the X509_VERIFY_PARAM structure
* ipasc is a NULL-terminated string with N.N.N.N for IPv4 and
* HH:HH ... HH:HH for IPv6. There is no validation performed on the
* parameter, and it must be an exact match with the IP in the cert.
*
* return 1 for success and 0 for failure*/
int wolfSSL_X509_VERIFY_PARAM_set1_ip_asc(WOLFSSL_X509_VERIFY_PARAM *param,
const char *ipasc)
{
int ret = WOLFSSL_FAILURE;
if (param != NULL) {
if (ipasc == NULL) {
param->ipasc[0] = '\0';
}
else {
XSTRNCPY(param->ipasc, ipasc, WOLFSSL_MAX_IPSTR-1);
param->ipasc[WOLFSSL_MAX_IPSTR-1] = '\0';
}
ret = WOLFSSL_SUCCESS;
}
return ret;
}
#ifndef NO_WOLFSSL_STUB
void wolfSSL_X509_OBJECT_free_contents(WOLFSSL_X509_OBJECT* obj)
{
(void)obj;
WOLFSSL_STUB("X509_OBJECT_free_contents");
}
#endif
#ifndef NO_ASN_TIME
int wolfSSL_X509_cmp_current_time(const WOLFSSL_ASN1_TIME* asnTime)
{
return wolfSSL_X509_cmp_time(asnTime, NULL);
}
/* return -1 if asnTime is earlier than or equal to cmpTime, and 1 otherwise
* return 0 on error
*/
int wolfSSL_X509_cmp_time(const WOLFSSL_ASN1_TIME* asnTime, time_t* cmpTime)
{
int ret = WOLFSSL_FAILURE, i = 0;
time_t tmpTime, *pTime = &tmpTime;
byte data_ptr[MAX_TIME_STRING_SZ], inv = 0;
struct tm ts, *tmpTs, *ct;
#if defined(NEED_TMP_TIME)
/* for use with gmtime_r */
struct tm tmpTimeStorage;
tmpTs = &tmpTimeStorage;
#else
tmpTs = NULL;
#endif
(void)tmpTs;
if (asnTime == NULL) {
return WOLFSSL_FAILURE;
}
if (cmpTime == NULL) {
/* Use current time */
*pTime = XTIME(0);
}
else {
pTime = cmpTime;
}
/* Convert ASN1_time to time_t */
XMEMSET(&ts, 0, sizeof(struct tm));
/* Check type */
if (asnTime->type == ASN_UTC_TIME) {
/* 2-digit year */
XMEMCPY(data_ptr, &asnTime->data[i], ASN_UTC_TIME_SIZE);
ts.tm_year = (data_ptr[i] - '0') * 10; i++;
ts.tm_year += data_ptr[i] - '0'; i++;
if (ts.tm_year < 70) {
ts.tm_year += 100;
}
}
else if (asnTime->type == ASN_GENERALIZED_TIME) {
/* 4-digit year */
XMEMCPY(data_ptr, &asnTime->data[i], ASN_GENERALIZED_TIME_SIZE);
ts.tm_year = (data_ptr[i] - '0') * 1000; i++;
ts.tm_year += (data_ptr[i] - '0') * 100; i++;
ts.tm_year += (data_ptr[i] - '0') * 10; i++;
ts.tm_year += data_ptr[i] - '0'; i++;
ts.tm_year -= 1900;
}
else {
/* Invalid type */
inv = 1;
}
if (inv != 1) {
ts.tm_mon = (data_ptr[i] - '0') * 10; i++;
ts.tm_mon += (data_ptr[i] - '0') - 1; i++; /* January is 0 not 1 */
ts.tm_mday = (data_ptr[i] - '0') * 10; i++;
ts.tm_mday += (data_ptr[i] - '0'); i++;
ts.tm_hour = (data_ptr[i] - '0') * 10; i++;
ts.tm_hour += (data_ptr[i] - '0'); i++;
ts.tm_min = (data_ptr[i] - '0') * 10; i++;
ts.tm_min += (data_ptr[i] - '0'); i++;
ts.tm_sec = (data_ptr[i] - '0') * 10; i++;
ts.tm_sec += (data_ptr[i] - '0');
/* Convert to time struct*/
ct = XGMTIME(pTime, tmpTs);
if (ct == NULL)
return GETTIME_ERROR;
/* DateGreaterThan returns 1 for >; 0 for <= */
ret = DateGreaterThan(&ts, ct) ? 1 : -1;
}
return ret;
}
#endif /* !NO_ASN_TIME */
#if (defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)) && \
!defined(NO_ASN_TIME) && !defined(USER_TIME) && !defined(TIME_OVERRIDES)
WOLFSSL_ASN1_TIME *wolfSSL_X509_time_adj_ex(WOLFSSL_ASN1_TIME *asnTime,
int offset_day, long offset_sec, time_t *in_tm)
{
/* get current time if in_tm is null */
time_t t = in_tm ? *in_tm : XTIME(0);
return wolfSSL_ASN1_TIME_adj(asnTime, t, offset_day, offset_sec);
}
WOLFSSL_ASN1_TIME *wolfSSL_X509_time_adj(WOLFSSL_ASN1_TIME *asnTime,
long offset_sec, time_t *in_tm)
{
return wolfSSL_X509_time_adj_ex(asnTime, 0, offset_sec, in_tm);
}
#endif
#ifndef NO_WOLFSSL_STUB
int wolfSSL_sk_X509_REVOKED_num(WOLFSSL_X509_REVOKED* revoked)
{
(void)revoked;
WOLFSSL_STUB("sk_X509_REVOKED_num");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
WOLFSSL_X509_REVOKED* wolfSSL_X509_CRL_get_REVOKED(WOLFSSL_X509_CRL* crl)
{
(void)crl;
WOLFSSL_STUB("X509_CRL_get_REVOKED");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
WOLFSSL_X509_REVOKED* wolfSSL_sk_X509_REVOKED_value(
WOLFSSL_X509_REVOKED* revoked, int value)
{
(void)revoked;
(void)value;
WOLFSSL_STUB("sk_X509_REVOKED_value");
return 0;
}
#endif
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* Used to create a new WOLFSSL_ASN1_INTEGER structure.
* returns a pointer to new structure on success and NULL on failure
*/
WOLFSSL_ASN1_INTEGER* wolfSSL_ASN1_INTEGER_new(void)
{
WOLFSSL_ASN1_INTEGER* a;
a = (WOLFSSL_ASN1_INTEGER*)XMALLOC(sizeof(WOLFSSL_ASN1_INTEGER), NULL,
DYNAMIC_TYPE_OPENSSL);
if (a == NULL) {
return NULL;
}
XMEMSET(a, 0, sizeof(WOLFSSL_ASN1_INTEGER));
a->data = a->intData;
a->dataMax = WOLFSSL_ASN1_INTEGER_MAX;
a->length = 0;
return a;
}
/* free's internal elements of WOLFSSL_ASN1_INTEGER and free's "in" itself */
void wolfSSL_ASN1_INTEGER_free(WOLFSSL_ASN1_INTEGER* in)
{
if (in != NULL) {
if (in->isDynamic) {
XFREE(in->data, NULL, DYNAMIC_TYPE_OPENSSL);
}
XFREE(in, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
/* Duplicate all WOLFSSL_ASN1_INTEGER members from src to dup
* src : WOLFSSL_ASN1_INTEGER to duplicate
* Returns pointer to duplicate WOLFSSL_ASN1_INTEGER
*/
WOLFSSL_ASN1_INTEGER* wolfSSL_ASN1_INTEGER_dup(const WOLFSSL_ASN1_INTEGER* src)
{
WOLFSSL_ASN1_INTEGER* copy;
WOLFSSL_ENTER("wolfSSL_ASN1_INTEGER_dup");
if (!src)
return NULL;
copy = wolfSSL_ASN1_INTEGER_new();
if (copy == NULL)
return NULL;
copy->negative = src->negative;
copy->dataMax = src->dataMax;
copy->isDynamic = src->isDynamic;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
copy->length = src->length;
#endif
XSTRNCPY((char*)copy->intData,(const char*)src->intData,WOLFSSL_ASN1_INTEGER_MAX);
if (copy->isDynamic && src->data && copy->dataMax) {
copy->data = (unsigned char*)
XMALLOC(src->dataMax,NULL,DYNAMIC_TYPE_OPENSSL);
if (copy->data == NULL) {
wolfSSL_ASN1_INTEGER_free(copy);
return NULL;
}
XMEMCPY(copy->data, src->data, copy->dataMax);
}
return copy;
}
/* sets the value of WOLFSSL_ASN1_INTEGER a to the long value v. */
int wolfSSL_ASN1_INTEGER_set(WOLFSSL_ASN1_INTEGER *a, long v)
{
int ret = WOLFSSL_SUCCESS; /* return 1 for success and 0 for failure */
int j;
unsigned int i = 0;
unsigned char tmp[sizeof(long)+1] = {0};
if (a != NULL) {
/* dynamically create data buffer, +2 for type and length */
a->data = (unsigned char*)XMALLOC((sizeof(long)+1) + 2, NULL,
DYNAMIC_TYPE_OPENSSL);
if (a->data == NULL) {
wolfSSL_ASN1_INTEGER_free(a);
ret = WOLFSSL_FAILURE;
}
else {
a->dataMax = (int)(sizeof(long)+1) + 2;
a->isDynamic = 1;
}
}
else {
/* Invalid parameter */
ret = WOLFSSL_FAILURE;
}
if (ret != WOLFSSL_FAILURE) {
/* Set type */
a->data[i++] = ASN_INTEGER;
/* Check for negative */
if (v < 0) {
a->negative = 1;
v *= -1;
}
/* Create char buffer */
for (j = 0; j < (int)sizeof(long); j++) {
if (v == 0) {
break;
}
tmp[j] = (unsigned char)(v & 0xff);
v >>= 8;
}
/* Set length */
a->data[i++] = (unsigned char)((j == 0) ? ++j : j);
/* +2 for type and length */
a->length = j + 2;
/* Copy to data */
for (; j > 0; j--) {
a->data[i++] = tmp[j-1];
}
}
return ret;
}
WOLFSSL_ASN1_INTEGER* wolfSSL_X509_get_serialNumber(WOLFSSL_X509* x509)
{
WOLFSSL_ASN1_INTEGER* a;
int i = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_serialNumber");
a = wolfSSL_ASN1_INTEGER_new();
if (a == NULL)
return NULL;
/* Make sure there is space for the data, ASN.1 type and length. */
if (x509->serialSz > (WOLFSSL_ASN1_INTEGER_MAX - 2)) {
/* dynamically create data buffer, +2 for type and length */
a->data = (unsigned char*)XMALLOC(x509->serialSz + 2, NULL,
DYNAMIC_TYPE_OPENSSL);
if (a->data == NULL) {
wolfSSL_ASN1_INTEGER_free(a);
return NULL;
}
a->dataMax = x509->serialSz + 2;
a->isDynamic = 1;
} else {
/* Use array instead of dynamic memory */
a->data = a->intData;
a->dataMax = WOLFSSL_ASN1_INTEGER_MAX;
}
#ifdef WOLFSSL_QT
XMEMCPY(&a->data[i], x509->serial, x509->serialSz);
a->length = x509->serialSz;
#else
a->data[i++] = ASN_INTEGER;
i += SetLength(x509->serialSz, a->data + i);
XMEMCPY(&a->data[i], x509->serial, x509->serialSz);
a->length = x509->serialSz + 2;
#endif
x509->serialNumber = a;
return a;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#if defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_HAPROXY) || defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
#ifndef NO_ASN_TIME
#ifndef NO_BIO
int wolfSSL_ASN1_TIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_TIME* asnTime)
{
char buf[MAX_TIME_STRING_SZ];
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_print");
if (bio == NULL || asnTime == NULL) {
WOLFSSL_MSG("NULL function argument");
return WOLFSSL_FAILURE;
}
if (wolfSSL_ASN1_TIME_to_string((WOLFSSL_ASN1_TIME*)asnTime, buf,
sizeof(buf)) == NULL) {
XMEMSET(buf, 0, MAX_TIME_STRING_SZ);
XSTRNCPY(buf, "Bad time value", sizeof(buf)-1);
ret = WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bio, buf, (int)XSTRLEN(buf)) <= 0) {
WOLFSSL_MSG("Unable to write to bio");
return WOLFSSL_FAILURE;
}
return ret;
}
#endif /* !NO_BIO */
char* wolfSSL_ASN1_TIME_to_string(WOLFSSL_ASN1_TIME* t, char* buf, int len)
{
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_to_string");
if (t == NULL || buf == NULL || len < 5) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
if (t->length > len) {
WOLFSSL_MSG("Length of date is longer then buffer");
return NULL;
}
if (!GetTimeString(t->data, t->type, buf, len)) {
return NULL;
}
return buf;
}
#endif /* !NO_ASN_TIME */
#endif /* WOLFSSL_MYSQL_COMPATIBLE || WOLFSSL_NGINX || WOLFSSL_HAPROXY ||
OPENSSL_EXTRA*/
#ifdef OPENSSL_EXTRA
#ifndef NO_WOLFSSL_STUB
int wolfSSL_ASN1_INTEGER_cmp(const WOLFSSL_ASN1_INTEGER* a,
const WOLFSSL_ASN1_INTEGER* b)
{
(void)a;
(void)b;
WOLFSSL_STUB("ASN1_INTEGER_cmp");
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_ASN1_INTEGER_get(const WOLFSSL_ASN1_INTEGER* i)
{
(void)i;
WOLFSSL_STUB("ASN1_INTEGER_get");
return 0;
}
#endif
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* get X509_STORE_CTX ex_data, max idx is MAX_EX_DATA */
void* wolfSSL_X509_STORE_CTX_get_ex_data(WOLFSSL_X509_STORE_CTX* ctx, int idx)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get_ex_data");
#if defined(HAVE_EX_DATA) || defined(FORTRESS)
if (ctx != NULL) {
return wolfSSL_CRYPTO_get_ex_data(&ctx->ex_data, idx);
}
#else
(void)ctx;
(void)idx;
#endif
return NULL;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
/* set X509_STORE_CTX ex_data, max idx is MAX_EX_DATA. Return WOLFSSL_SUCCESS
* on success, WOLFSSL_FAILURE on error. */
int wolfSSL_X509_STORE_CTX_set_ex_data(WOLFSSL_X509_STORE_CTX* ctx, int idx,
void *data)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_set_ex_data");
#if defined(HAVE_EX_DATA) || defined(FORTRESS)
if (ctx != NULL)
{
return wolfSSL_CRYPTO_set_ex_data(&ctx->ex_data, idx, data);
}
#else
(void)ctx;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
#if defined(WOLFSSL_APACHE_HTTPD) || defined(OPENSSL_ALL)
void wolfSSL_X509_STORE_CTX_set_depth(WOLFSSL_X509_STORE_CTX* ctx, int depth)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_set_depth");
if (ctx)
ctx->depth = depth;
}
#endif
WOLFSSL_X509* wolfSSL_X509_STORE_CTX_get0_current_issuer(
WOLFSSL_X509_STORE_CTX* ctx)
{
int ret;
WOLFSSL_X509* issuer;
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_get0_current_issuer");
if (ctx == NULL) {
return NULL;
}
ret = wolfSSL_X509_STORE_CTX_get1_issuer(&issuer, ctx, ctx->current_cert);
if (ret == WOLFSSL_SUCCESS) {
return issuer;
}
return NULL;
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* Gets an index to store SSL structure at.
*
* Returns positive index on success and negative values on failure
*/
int wolfSSL_get_ex_data_X509_STORE_CTX_idx(void)
{
WOLFSSL_ENTER("wolfSSL_get_ex_data_X509_STORE_CTX_idx");
/* store SSL at index 0 */
return 0;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
/* Set an error stat in the X509 STORE CTX
*
*/
void wolfSSL_X509_STORE_CTX_set_error(WOLFSSL_X509_STORE_CTX* ctx, int er)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_set_error");
if (ctx != NULL) {
ctx->error = er;
}
}
/* Set the error depth in the X509 STORE CTX */
void wolfSSL_X509_STORE_CTX_set_error_depth(WOLFSSL_X509_STORE_CTX* ctx,
int depth)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_CTX_set_error_depth");
if (ctx != NULL) {
ctx->error_depth = depth;
}
}
/* Sets a function callback that will send information about the state of all
* WOLFSSL objects that have been created by the WOLFSSL_CTX structure passed
* in.
*
* ctx WOLFSSL_CTX structure to set callback function in
* f callback function to use
*/
void wolfSSL_CTX_set_info_callback(WOLFSSL_CTX* ctx,
void (*f)(const WOLFSSL* ssl, int type, int val))
{
WOLFSSL_ENTER("wolfSSL_CTX_set_info_callback");
if (ctx == NULL) {
WOLFSSL_MSG("Bad function argument");
}
else {
ctx->CBIS = f;
}
}
unsigned long wolfSSL_ERR_peek_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_error");
return wolfSSL_ERR_peek_error_line_data(NULL, NULL, NULL, NULL);
}
int wolfSSL_ERR_GET_LIB(unsigned long err)
{
unsigned long value;
value = (err & 0xFFFFFFL);
switch (value) {
case PEM_R_NO_START_LINE:
case PEM_R_PROBLEMS_GETTING_PASSWORD:
case PEM_R_BAD_PASSWORD_READ:
case PEM_R_BAD_DECRYPT:
return ERR_LIB_PEM;
case EVP_R_BAD_DECRYPT:
case EVP_R_BN_DECODE_ERROR:
case EVP_R_DECODE_ERROR:
case EVP_R_PRIVATE_KEY_DECODE_ERROR:
return ERR_LIB_EVP;
default:
return 0;
}
}
/* This function is to find global error values that are the same through out
* all library version. With wolfSSL having only one set of error codes the
* return value is pretty straight forward. The only thing needed is all wolfSSL
* error values are typically negative.
*
* Returns the error reason
*/
int wolfSSL_ERR_GET_REASON(unsigned long err)
{
int ret = (int)err;
WOLFSSL_ENTER("wolfSSL_ERR_GET_REASON");
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
/* Nginx looks for this error to know to stop parsing certificates. */
if (err == ((ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE))
return PEM_R_NO_START_LINE;
#endif
/* check if error value is in range of wolfSSL errors */
ret = 0 - ret; /* setting as negative value */
/* wolfCrypt range is less than MAX (-100)
wolfSSL range is MIN (-300) and lower */
if (ret < MAX_CODE_E && ret > MIN_CODE_E) {
return ret;
}
else {
WOLFSSL_MSG("Not in range of typical error values");
ret = (int)err;
}
return ret;
}
/* returns a string that describes the alert
*
* alertID the alert value to look up
*/
const char* wolfSSL_alert_type_string_long(int alertID)
{
WOLFSSL_ENTER("wolfSSL_alert_type_string_long");
switch (alertID) {
case close_notify:
{
static const char close_notify_str[] =
"close_notify";
return close_notify_str;
}
case unexpected_message:
{
static const char unexpected_message_str[] =
"unexpected_message";
return unexpected_message_str;
}
case bad_record_mac:
{
static const char bad_record_mac_str[] =
"bad_record_mac";
return bad_record_mac_str;
}
case record_overflow:
{
static const char record_overflow_str[] =
"record_overflow";
return record_overflow_str;
}
case decompression_failure:
{
static const char decompression_failure_str[] =
"decompression_failure";
return decompression_failure_str;
}
case handshake_failure:
{
static const char handshake_failure_str[] =
"handshake_failure";
return handshake_failure_str;
}
case no_certificate:
{
static const char no_certificate_str[] =
"no_certificate";
return no_certificate_str;
}
case bad_certificate:
{
static const char bad_certificate_str[] =
"bad_certificate";
return bad_certificate_str;
}
case unsupported_certificate:
{
static const char unsupported_certificate_str[] =
"unsupported_certificate";
return unsupported_certificate_str;
}
case certificate_revoked:
{
static const char certificate_revoked_str[] =
"certificate_revoked";
return certificate_revoked_str;
}
case certificate_expired:
{
static const char certificate_expired_str[] =
"certificate_expired";
return certificate_expired_str;
}
case certificate_unknown:
{
static const char certificate_unknown_str[] =
"certificate_unknown";
return certificate_unknown_str;
}
case illegal_parameter:
{
static const char illegal_parameter_str[] =
"illegal_parameter";
return illegal_parameter_str;
}
case unknown_ca:
{
static const char unknown_ca_str[] =
"unknown_ca";
return unknown_ca_str;
}
case decode_error:
{
static const char decode_error_str[] =
"decode_error";
return decode_error_str;
}
case decrypt_error:
{
static const char decrypt_error_str[] =
"decrypt_error";
return decrypt_error_str;
}
#ifdef WOLFSSL_MYSQL_COMPATIBLE
/* catch name conflict for enum protocol with MYSQL build */
case wc_protocol_version:
{
static const char wc_protocol_version_str[] =
"wc_protocol_version";
return wc_protocol_version_str;
}
#else
case protocol_version:
{
static const char protocol_version_str[] =
"protocol_version";
return protocol_version_str;
}
#endif
case no_renegotiation:
{
static const char no_renegotiation_str[] =
"no_renegotiation";
return no_renegotiation_str;
}
case unrecognized_name:
{
static const char unrecognized_name_str[] =
"unrecognized_name";
return unrecognized_name_str;
}
case bad_certificate_status_response:
{
static const char bad_certificate_status_response_str[] =
"bad_certificate_status_response";
return bad_certificate_status_response_str;
}
case no_application_protocol:
{
static const char no_application_protocol_str[] =
"no_application_protocol";
return no_application_protocol_str;
}
default:
WOLFSSL_MSG("Unknown Alert");
return NULL;
}
}
const char* wolfSSL_alert_desc_string_long(int alertID)
{
WOLFSSL_ENTER("wolfSSL_alert_desc_string_long");
return wolfSSL_alert_type_string_long(alertID);
}
/* Gets the current state of the WOLFSSL structure
*
* ssl WOLFSSL structure to get state of
*
* Returns a human readable string of the WOLFSSL structure state
*/
const char* wolfSSL_state_string_long(const WOLFSSL* ssl)
{
static const char* OUTPUT_STR[14][6][3] = {
{
{"SSLv3 Initialization","SSLv3 Initialization","SSLv3 Initialization"},
{"TLSv1 Initialization","TLSv2 Initialization","TLSv2 Initialization"},
{"TLSv1_1 Initialization","TLSv1_1 Initialization","TLSv1_1 Initialization"},
{"TLSv1_2 Initialization","TLSv1_2 Initialization","TLSv1_2 Initialization"},
{"DTLSv1 Initialization","DTLSv1 Initialization","DTLSv1 Initialization"},
{"DTLSv1_2 Initialization","DTLSv1_2 Initialization","DTLSv1_2 Initialization"},
},
{
{"SSLv3 read Server Hello Verify Request",
"SSLv3 write Server Hello Verify Request",
"SSLv3 Server Hello Verify Request"},
{"TLSv1 read Server Hello Verify Request",
"TLSv1 write Server Hello Verify Request",
"TLSv1 Server Hello Verify Request"},
{"TLSv1_1 read Server Hello Verify Request",
"TLSv1_1 write Server Hello Verify Request",
"TLSv1_1 Server Hello Verify Request"},
{"TLSv1_2 read Server Hello Verify Request",
"TLSv1_2 write Server Hello Verify Request",
"TLSv1_2 Server Hello Verify Request"},
{"DTLSv1 read Server Hello Verify Request",
"DTLSv1 write Server Hello Verify Request",
"DTLSv1 Server Hello Verify Request"},
{"DTLSv1_2 read Server Hello Verify Request",
"DTLSv1_2 write Server Hello Verify Request",
"DTLSv1_2 Server Hello Verify Request"},
},
{
{"SSLv3 read Server Hello",
"SSLv3 write Server Hello",
"SSLv3 Server Hello"},
{"TLSv1 read Server Hello",
"TLSv1 write Server Hello",
"TLSv1 Server Hello"},
{"TLSv1_1 read Server Hello",
"TLSv1_1 write Server Hello",
"TLSv1_1 Server Hello"},
{"TLSv1_2 read Server Hello",
"TLSv1_2 write Server Hello",
"TLSv1_2 Server Hello"},
{"DTLSv1 read Server Hello",
"DTLSv1 write Server Hello",
"DTLSv1 Server Hello"},
{"DTLSv1_2 read Server Hello"
"DTLSv1_2 write Server Hello",
"DTLSv1_2 Server Hello",
},
},
{
{"SSLv3 read Server Session Ticket",
"SSLv3 write Server Session Ticket",
"SSLv3 Server Session Ticket"},
{"TLSv1 read Server Session Ticket",
"TLSv1 write Server Session Ticket",
"TLSv1 Server Session Ticket"},
{"TLSv1_1 read Server Session Ticket",
"TLSv1_1 write Server Session Ticket",
"TLSv1_1 Server Session Ticket"},
{"TLSv1_2 read Server Session Ticket",
"TLSv1_2 write Server Session Ticket",
"TLSv1_2 Server Session Ticket"},
{"DTLSv1 read Server Session Ticket",
"DTLSv1 write Server Session Ticket",
"DTLSv1 Server Session Ticket"},
{"DTLSv1_2 read Server Session Ticket",
"DTLSv1_2 write Server Session Ticket",
"DTLSv1_2 Server Session Ticket"},
},
{
{"SSLv3 read Server Cert",
"SSLv3 write Server Cert",
"SSLv3 Server Cert"},
{"TLSv1 read Server Cert",
"TLSv1 write Server Cert",
"TLSv1 Server Cert"},
{"TLSv1_1 read Server Cert",
"TLSv1_1 write Server Cert",
"TLSv1_1 Server Cert"},
{"TLSv1_2 read Server Cert",
"TLSv1_2 write Server Cert",
"TLSv1_2 Server Cert"},
{"DTLSv1 read Server Cert",
"DTLSv1 write Server Cert",
"DTLSv1 Server Cert"},
{"DTLSv1_2 read Server Cert",
"DTLSv1_2 write Server Cert",
"DTLSv1_2 Server Cert"},
},
{
{"SSLv3 read Server Key Exchange",
"SSLv3 write Server Key Exchange",
"SSLv3 Server Key Exchange"},
{"TLSv1 read Server Key Exchange",
"TLSv1 write Server Key Exchange",
"TLSv1 Server Key Exchange"},
{"TLSv1_1 read Server Key Exchange",
"TLSv1_1 write Server Key Exchange",
"TLSv1_1 Server Key Exchange"},
{"TLSv1_2 read Server Key Exchange",
"TLSv1_2 write Server Key Exchange",
"TLSv1_2 Server Key Exchange"},
{"DTLSv1 read Server Key Exchange",
"DTLSv1 write Server Key Exchange",
"DTLSv1 Server Key Exchange"},
{"DTLSv1_2 read Server Key Exchange",
"DTLSv1_2 write Server Key Exchange",
"DTLSv1_2 Server Key Exchange"},
},
{
{"SSLv3 read Server Hello Done",
"SSLv3 write Server Hello Done",
"SSLv3 Server Hello Done"},
{"TLSv1 read Server Hello Done",
"TLSv1 write Server Hello Done",
"TLSv1 Server Hello Done"},
{"TLSv1_1 read Server Hello Done",
"TLSv1_1 write Server Hello Done",
"TLSv1_1 Server Hello Done"},
{"TLSv1_2 read Server Hello Done",
"TLSv1_2 write Server Hello Done",
"TLSv1_2 Server Hello Done"},
{"DTLSv1 read Server Hello Done",
"DTLSv1 write Server Hello Done",
"DTLSv1 Server Hello Done"},
{"DTLSv1_2 read Server Hello Done",
"DTLSv1_2 write Server Hello Done",
"DTLSv1_2 Server Hello Done"},
},
{
{"SSLv3 read Server Change CipherSpec",
"SSLv3 write Server Change CipherSpec",
"SSLv3 Server Change CipherSpec"},
{"TLSv1 read Server Change CipherSpec",
"TLSv1 write Server Change CipherSpec",
"TLSv1 Server Change CipherSpec"},
{"TLSv1_1 read Server Change CipherSpec",
"TLSv1_1 write Server Change CipherSpec",
"TLSv1_1 Server Change CipherSpec"},
{"TLSv1_2 read Server Change CipherSpec",
"TLSv1_2 write Server Change CipherSpec",
"TLSv1_2 Server Change CipherSpec"},
{"DTLSv1 read Server Change CipherSpec",
"DTLSv1 write Server Change CipherSpec",
"DTLSv1 Server Change CipherSpec"},
{"DTLSv1_2 read Server Change CipherSpec",
"DTLSv1_2 write Server Change CipherSpec",
"DTLSv1_2 Server Change CipherSpec"},
},
{
{"SSLv3 read Server Finished",
"SSLv3 write Server Finished",
"SSLv3 Server Finished"},
{"TLSv1 read Server Finished",
"TLSv1 write Server Finished",
"TLSv1 Server Finished"},
{"TLSv1_1 read Server Finished",
"TLSv1_1 write Server Finished",
"TLSv1_1 Server Finished"},
{"TLSv1_2 read Server Finished",
"TLSv1_2 write Server Finished",
"TLSv1_2 Server Finished"},
{"DTLSv1 read Server Finished",
"DTLSv1 write Server Finished",
"DTLSv1 Server Finished"},
{"DTLSv1_2 read Server Finished",
"DTLSv1_2 write Server Finished",
"DTLSv1_2 Server Finished"},
},
{
{"SSLv3 read Client Hello",
"SSLv3 write Client Hello",
"SSLv3 Client Hello"},
{"TLSv1 read Client Hello",
"TLSv1 write Client Hello",
"TLSv1 Client Hello"},
{"TLSv1_1 read Client Hello",
"TLSv1_1 write Client Hello",
"TLSv1_1 Client Hello"},
{"TLSv1_2 read Client Hello",
"TLSv1_2 write Client Hello",
"TLSv1_2 Client Hello"},
{"DTLSv1 read Client Hello",
"DTLSv1 write Client Hello",
"DTLSv1 Client Hello"},
{"DTLSv1_2 read Client Hello",
"DTLSv1_2 write Client Hello",
"DTLSv1_2 Client Hello"},
},
{
{"SSLv3 read Client Key Exchange",
"SSLv3 write Client Key Exchange",
"SSLv3 Client Key Exchange"},
{"TLSv1 read Client Key Exchange",
"TLSv1 write Client Key Exchange",
"TLSv1 Client Key Exchange"},
{"TLSv1_1 read Client Key Exchange",
"TLSv1_1 write Client Key Exchange",
"TLSv1_1 Client Key Exchange"},
{"TLSv1_2 read Client Key Exchange",
"TLSv1_2 write Client Key Exchange",
"TLSv1_2 Client Key Exchange"},
{"DTLSv1 read Client Key Exchange",
"DTLSv1 write Client Key Exchange",
"DTLSv1 Client Key Exchange"},
{"DTLSv1_2 read Client Key Exchange",
"DTLSv1_2 write Client Key Exchange",
"DTLSv1_2 Client Key Exchange"},
},
{
{"SSLv3 read Client Change CipherSpec",
"SSLv3 write Client Change CipherSpec",
"SSLv3 Client Change CipherSpec"},
{"TLSv1 read Client Change CipherSpec",
"TLSv1 write Client Change CipherSpec",
"TLSv1 Client Change CipherSpec"},
{"TLSv1_1 read Client Change CipherSpec",
"TLSv1_1 write Client Change CipherSpec",
"TLSv1_1 Client Change CipherSpec"},
{"TLSv1_2 read Client Change CipherSpec",
"TLSv1_2 write Client Change CipherSpec",
"TLSv1_2 Client Change CipherSpec"},
{"DTLSv1 read Client Change CipherSpec",
"DTLSv1 write Client Change CipherSpec",
"DTLSv1 Client Change CipherSpec"},
{"DTLSv1_2 read Client Change CipherSpec",
"DTLSv1_2 write Client Change CipherSpec",
"DTLSv1_2 Client Change CipherSpec"},
},
{
{"SSLv3 read Client Finished",
"SSLv3 write Client Finished",
"SSLv3 Client Finished"},
{"TLSv1 read Client Finished",
"TLSv1 write Client Finished",
"TLSv1 Client Finished"},
{"TLSv1_1 read Client Finished",
"TLSv1_1 write Client Finished",
"TLSv1_1 Client Finished"},
{"TLSv1_2 read Client Finished",
"TLSv1_2 write Client Finished",
"TLSv1_2 Client Finished"},
{"DTLSv1 read Client Finished",
"DTLSv1 write Client Finished",
"DTLSv1 Client Finished"},
{"DTLSv1_2 read Client Finished",
"DTLSv1_2 write Client Finished",
"DTLSv1_2 Client Finished"},
},
{
{"SSLv3 Handshake Done",
"SSLv3 Handshake Done",
"SSLv3 Handshake Done"},
{"TLSv1 Handshake Done",
"TLSv1 Handshake Done",
"TLSv1 Handshake Done"},
{"TLSv1_1 Handshake Done",
"TLSv1_1 Handshake Done",
"TLSv1_1 Handshake Done"},
{"TLSv1_2 Handshake Done",
"TLSv1_2 Handshake Done",
"TLSv1_2 Handshake Done"},
{"DTLSv1 Handshake Done",
"DTLSv1 Handshake Done",
"DTLSv1 Handshake Done"},
{"DTLSv1_2 Handshake Done"
"DTLSv1_2 Handshake Done"
"DTLSv1_2 Handshake Done"}
}
};
enum ProtocolVer {
SSL_V3 = 0,
TLS_V1,
TLS_V1_1,
TLS_V1_2,
DTLS_V1,
DTLS_V1_2,
UNKNOWN = 100
};
enum IOMode {
SS_READ = 0,
SS_WRITE,
SS_NEITHER
};
enum SslState {
ss_null_state = 0,
ss_server_helloverify,
ss_server_hello,
ss_sessionticket,
ss_server_cert,
ss_server_keyexchange,
ss_server_hellodone,
ss_server_changecipherspec,
ss_server_finished,
ss_client_hello,
ss_client_keyexchange,
ss_client_changecipherspec,
ss_client_finished,
ss_handshake_done
};
int protocol = 0;
int cbmode = 0;
int state = 0;
WOLFSSL_ENTER("wolfSSL_state_string_long");
if (ssl == NULL) {
WOLFSSL_MSG("Null argument passed in");
return NULL;
}
/* Get state of callback */
if (ssl->cbmode == SSL_CB_MODE_WRITE){
cbmode = SS_WRITE;
} else if (ssl->cbmode == SSL_CB_MODE_READ){
cbmode = SS_READ;
} else {
cbmode = SS_NEITHER;
}
/* Get protocol version */
switch (ssl->version.major){
case SSLv3_MAJOR:
switch (ssl->version.minor){
case TLSv1_MINOR:
protocol = TLS_V1;
break;
case TLSv1_1_MINOR:
protocol = TLS_V1_1;
break;
case TLSv1_2_MINOR:
protocol = TLS_V1_2;
break;
case SSLv3_MINOR:
protocol = SSL_V3;
break;
default:
protocol = UNKNOWN;
}
break;
case DTLS_MAJOR:
switch (ssl->version.minor){
case DTLS_MINOR:
protocol = DTLS_V1;
break;
case DTLSv1_2_MINOR:
protocol = DTLS_V1_2;
break;
default:
protocol = UNKNOWN;
}
break;
default:
protocol = UNKNOWN;
}
/* accept process */
if (ssl->cbmode == SSL_CB_MODE_READ){
state = ssl->cbtype;
switch (state) {
case hello_verify_request:
state = ss_server_helloverify;
break;
case session_ticket:
state = ss_sessionticket;
break;
case server_hello:
state = ss_server_hello;
break;
case server_hello_done:
state = ss_server_hellodone;
break;
case certificate:
state = ss_server_cert;
break;
case server_key_exchange:
state = ss_server_keyexchange;
break;
case client_hello:
state = ss_client_hello;
break;
case client_key_exchange:
state = ss_client_keyexchange;
break;
case finished:
if (ssl->options.side == WOLFSSL_SERVER_END)
state = ss_client_finished;
else if (ssl->options.side == WOLFSSL_CLIENT_END)
state = ss_server_finished;
else {
WOLFSSL_MSG("Unknown State");
state = ss_null_state;
}
break;
default:
WOLFSSL_MSG("Unknown State");
state = ss_null_state;
}
} else {
/* Send process */
if (ssl->options.side == WOLFSSL_SERVER_END)
state = ssl->options.serverState;
else
state = ssl->options.clientState;
switch(state){
case SERVER_HELLOVERIFYREQUEST_COMPLETE:
state = ss_server_helloverify;
break;
case SERVER_HELLO_COMPLETE:
state = ss_server_hello;
break;
case SERVER_CERT_COMPLETE:
state = ss_server_cert;
break;
case SERVER_KEYEXCHANGE_COMPLETE:
state = ss_server_keyexchange;
break;
case SERVER_HELLODONE_COMPLETE:
state = ss_server_hellodone;
break;
case SERVER_CHANGECIPHERSPEC_COMPLETE:
state = ss_server_changecipherspec;
break;
case SERVER_FINISHED_COMPLETE:
state = ss_server_finished;
break;
case CLIENT_HELLO_COMPLETE:
state = ss_client_hello;
break;
case CLIENT_KEYEXCHANGE_COMPLETE:
state = ss_client_keyexchange;
break;
case CLIENT_CHANGECIPHERSPEC_COMPLETE:
state = ss_client_changecipherspec;
break;
case CLIENT_FINISHED_COMPLETE:
state = ss_client_finished;
break;
case HANDSHAKE_DONE:
state = ss_handshake_done;
break;
default:
WOLFSSL_MSG("Unknown State");
state = ss_null_state;
}
}
if (protocol == UNKNOWN)
return NULL;
else
return OUTPUT_STR[state][protocol][cbmode];
}
/*
* Sets default PEM callback password if null is passed into
* the callback parameter of a PEM_read_bio_* function.
*
* Returns callback phrase size on success or WOLFSSL_FAILURE otherwise.
*/
int wolfSSL_PEM_def_callback(char* name, int num, int w, void* key)
{
int sz;
(void)w;
WOLFSSL_ENTER("wolfSSL_PEM_def_callback");
/* We assume that the user passes a default password as userdata */
if (key) {
sz = (int)XSTRLEN((const char*)key);
sz = (sz > num) ? num : sz;
XMEMCPY(name, key, sz);
return sz;
} else {
WOLFSSL_MSG("Error, default password cannot be created.");
return WOLFSSL_FAILURE;
}
}
#endif /* OPENSSL_EXTRA */
static long wolf_set_options(long old_op, long op)
{
/* if SSL_OP_ALL then turn all bug workarounds on */
if ((op & SSL_OP_ALL) == SSL_OP_ALL) {
WOLFSSL_MSG("\tSSL_OP_ALL");
}
/* by default cookie exchange is on with DTLS */
if ((op & SSL_OP_COOKIE_EXCHANGE) == SSL_OP_COOKIE_EXCHANGE) {
WOLFSSL_MSG("\tSSL_OP_COOKIE_EXCHANGE : on by default");
}
if ((op & WOLFSSL_OP_NO_SSLv2) == WOLFSSL_OP_NO_SSLv2) {
WOLFSSL_MSG("\tWOLFSSL_OP_NO_SSLv2 : wolfSSL does not support SSLv2");
}
#ifdef SSL_OP_NO_TLSv1_3
if ((op & SSL_OP_NO_TLSv1_3) == SSL_OP_NO_TLSv1_3) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_3");
}
#endif
if ((op & WOLFSSL_OP_NO_TLSv1_2) == WOLFSSL_OP_NO_TLSv1_2) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_2");
}
if ((op & WOLFSSL_OP_NO_TLSv1_1) == WOLFSSL_OP_NO_TLSv1_1) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1_1");
}
if ((op & WOLFSSL_OP_NO_TLSv1) == WOLFSSL_OP_NO_TLSv1) {
WOLFSSL_MSG("\tSSL_OP_NO_TLSv1");
}
if ((op & WOLFSSL_OP_NO_SSLv3) == WOLFSSL_OP_NO_SSLv3) {
WOLFSSL_MSG("\tSSL_OP_NO_SSLv3");
}
if ((op & SSL_OP_CIPHER_SERVER_PREFERENCE) == SSL_OP_CIPHER_SERVER_PREFERENCE) {
WOLFSSL_MSG("\tSSL_OP_CIPHER_SERVER_PREFERENCE");
}
if ((op & SSL_OP_NO_COMPRESSION) == SSL_OP_NO_COMPRESSION) {
#ifdef HAVE_LIBZ
WOLFSSL_MSG("SSL_OP_NO_COMPRESSION");
#else
WOLFSSL_MSG("SSL_OP_NO_COMPRESSION: compression not compiled in");
#endif
}
return old_op | op;
}
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
long wolfSSL_set_options(WOLFSSL* ssl, long op)
{
word16 haveRSA = 1;
word16 havePSK = 0;
int keySz = 0;
WOLFSSL_ENTER("wolfSSL_set_options");
if (ssl == NULL) {
return 0;
}
ssl->options.mask = wolf_set_options(ssl->options.mask, op);
#ifdef SSL_OP_NO_TLSv1_3
if ((ssl->options.mask & SSL_OP_NO_TLSv1_3) == SSL_OP_NO_TLSv1_3) {
if (ssl->version.minor == TLSv1_3_MINOR)
ssl->version.minor = TLSv1_2_MINOR;
}
#endif
if ((ssl->options.mask & SSL_OP_NO_TLSv1_2) == SSL_OP_NO_TLSv1_2) {
if (ssl->version.minor == TLSv1_2_MINOR)
ssl->version.minor = TLSv1_1_MINOR;
}
if ((ssl->options.mask & SSL_OP_NO_TLSv1_1) == SSL_OP_NO_TLSv1_1) {
if (ssl->version.minor == TLSv1_1_MINOR)
ssl->version.minor = TLSv1_MINOR;
}
if ((ssl->options.mask & SSL_OP_NO_TLSv1) == SSL_OP_NO_TLSv1) {
if (ssl->version.minor == TLSv1_MINOR)
ssl->version.minor = SSLv3_MINOR;
}
if ((ssl->options.mask & SSL_OP_NO_COMPRESSION) == SSL_OP_NO_COMPRESSION) {
#ifdef HAVE_LIBZ
ssl->options.usingCompression = 0;
#endif
}
/* in the case of a version change the cipher suites should be reset */
#ifndef NO_PSK
havePSK = ssl->options.havePSK;
#endif
#ifdef NO_RSA
haveRSA = 0;
#endif
#ifndef NO_CERTS
keySz = ssl->buffers.keySz;
#endif
if (ssl->suites != NULL && ssl->options.side != WOLFSSL_NEITHER_END)
InitSuites(ssl->suites, ssl->version, keySz, haveRSA, havePSK,
ssl->options.haveDH, ssl->options.haveNTRU,
ssl->options.haveECDSAsig, ssl->options.haveECC,
ssl->options.haveStaticECC, ssl->options.side);
return ssl->options.mask;
}
long wolfSSL_get_options(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_options");
if(ssl == NULL)
return WOLFSSL_FAILURE;
return ssl->options.mask;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#if defined(HAVE_SECURE_RENEGOTIATION) \
|| defined(HAVE_SERVER_RENEGOTIATION_INFO)
/* clears the counter for number of renegotiations done
* returns the current count before it is cleared */
long wolfSSL_clear_num_renegotiations(WOLFSSL *s)
{
long total;
WOLFSSL_ENTER("wolfSSL_clear_num_renegotiations");
if (s == NULL)
return 0;
total = s->secure_rene_count;
s->secure_rene_count = 0;
return total;
}
/* return the number of renegotiations since wolfSSL_new */
long wolfSSL_total_renegotiations(WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_total_renegotiations");
return wolfSSL_num_renegotiations(s);
}
/* return the number of renegotiations since wolfSSL_new */
long wolfSSL_num_renegotiations(WOLFSSL* s)
{
if (s == NULL) {
return 0;
}
return s->secure_rene_count;
}
/* Is there a renegotiation currently in progress? */
int wolfSSL_SSL_renegotiate_pending(WOLFSSL *s)
{
return s && s->options.handShakeDone &&
s->options.handShakeState != HANDSHAKE_DONE ? 1 : 0;
}
#endif /* HAVE_SECURE_RENEGOTIATION || HAVE_SERVER_RENEGOTIATION_INFO */
#ifdef OPENSSL_EXTRA
long wolfSSL_clear_options(WOLFSSL* ssl, long opt)
{
WOLFSSL_ENTER("SSL_clear_options");
if(ssl == NULL)
return WOLFSSL_FAILURE;
ssl->options.mask &= ~opt;
return ssl->options.mask;
}
#ifndef NO_DH
long wolfSSL_set_tmp_dh(WOLFSSL *ssl, WOLFSSL_DH *dh)
{
int pSz, gSz;
byte *p, *g;
int ret = 0;
WOLFSSL_ENTER("wolfSSL_set_tmp_dh");
if (!ssl || !dh)
return BAD_FUNC_ARG;
/* Get needed size for p and g */
pSz = wolfSSL_BN_bn2bin(dh->p, NULL);
gSz = wolfSSL_BN_bn2bin(dh->g, NULL);
if (pSz <= 0 || gSz <= 0)
return WOLFSSL_FATAL_ERROR;
p = (byte*)XMALLOC(pSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (!p)
return MEMORY_E;
g = (byte*)XMALLOC(gSz, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (!g) {
XFREE(p, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return MEMORY_E;
}
pSz = wolfSSL_BN_bn2bin(dh->p, p);
gSz = wolfSSL_BN_bn2bin(dh->g, g);
if (pSz >= 0 && gSz >= 0) /* Conversion successful */
ret = wolfSSL_SetTmpDH(ssl, p, pSz, g, gSz);
XFREE(p, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, ssl->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return pSz > 0 && gSz > 0 ? ret : WOLFSSL_FATAL_ERROR;
}
#endif /* !NO_DH */
#ifdef HAVE_PK_CALLBACKS
long wolfSSL_set_tlsext_debug_arg(WOLFSSL* ssl, void *arg)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
ssl->loggingCtx = arg;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_PK_CALLBACKS */
#if defined(OPENSSL_ALL) || defined(WOLFSSL_HAPROXY)
const unsigned char *SSL_SESSION_get0_id_context(const WOLFSSL_SESSION *sess, unsigned int *sid_ctx_length)
{
const byte *c = wolfSSL_SESSION_get_id((WOLFSSL_SESSION *)sess, sid_ctx_length);
return c;
}
#endif
/*** TBD ***/
#ifndef NO_WOLFSSL_STUB
WOLFSSL_API int wolfSSL_sk_SSL_COMP_zero(WOLFSSL_STACK* st)
{
(void)st;
WOLFSSL_STUB("wolfSSL_sk_SSL_COMP_zero");
/* wolfSSL_set_options(ssl, SSL_OP_NO_COMPRESSION); */
return WOLFSSL_FAILURE;
}
#endif
#ifdef HAVE_CERTIFICATE_STATUS_REQUEST
long wolfSSL_set_tlsext_status_type(WOLFSSL *s, int type)
{
WOLFSSL_ENTER("wolfSSL_set_tlsext_status_type");
if (s == NULL){
return BAD_FUNC_ARG;
}
if (type == TLSEXT_STATUSTYPE_ocsp){
int r = 0;
r = TLSX_UseCertificateStatusRequest(&s->extensions, type, 0, s,
s->heap, s->devId);
return (long)r;
} else {
WOLFSSL_MSG(
"SSL_set_tlsext_status_type only supports TLSEXT_STATUSTYPE_ocsp type.");
return SSL_FAILURE;
}
}
#endif /* HAVE_CERTIFICATE_STATUS_REQUEST */
#ifndef NO_WOLFSSL_STUB
WOLFSSL_API long wolfSSL_get_tlsext_status_exts(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_get_tlsext_status_exts");
return WOLFSSL_FAILURE;
}
#endif
/*** TBD ***/
#ifndef NO_WOLFSSL_STUB
WOLFSSL_API long wolfSSL_set_tlsext_status_exts(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_set_tlsext_status_exts");
return WOLFSSL_FAILURE;
}
#endif
/*** TBD ***/
#ifndef NO_WOLFSSL_STUB
WOLFSSL_API long wolfSSL_get_tlsext_status_ids(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_get_tlsext_status_ids");
return WOLFSSL_FAILURE;
}
#endif
/*** TBD ***/
#ifndef NO_WOLFSSL_STUB
WOLFSSL_API long wolfSSL_set_tlsext_status_ids(WOLFSSL *s, void *arg)
{
(void)s;
(void)arg;
WOLFSSL_STUB("wolfSSL_set_tlsext_status_ids");
return WOLFSSL_FAILURE;
}
#endif
/*** TBD ***/
#ifndef NO_WOLFSSL_STUB
WOLFSSL_API int SSL_SESSION_set1_id(WOLFSSL_SESSION *s, const unsigned char *sid, unsigned int sid_len)
{
(void)s;
(void)sid;
(void)sid_len;
WOLFSSL_STUB("SSL_SESSION_set1_id");
return WOLFSSL_FAILURE;
}
#endif
#ifndef NO_WOLFSSL_STUB
/*** TBD ***/
WOLFSSL_API int SSL_SESSION_set1_id_context(WOLFSSL_SESSION *s, const unsigned char *sid_ctx, unsigned int sid_ctx_len)
{
(void)s;
(void)sid_ctx;
(void)sid_ctx_len;
WOLFSSL_STUB("SSL_SESSION_set1_id_context");
return WOLFSSL_FAILURE;
}
#endif
#if defined(OPENSSL_ALL) || defined(WOLFSSL_APACHE_HTTPD) \
|| defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_WPAS)
WOLFSSL_X509_ALGOR* wolfSSL_X509_ALGOR_new(void)
{
WOLFSSL_X509_ALGOR* ret;
ret = (WOLFSSL_X509_ALGOR*)XMALLOC(sizeof(WOLFSSL_X509_ALGOR), NULL,
DYNAMIC_TYPE_OPENSSL);
if (ret) {
XMEMSET(ret, 0, sizeof(WOLFSSL_X509_ALGOR));
}
return ret;
}
void wolfSSL_X509_ALGOR_free(WOLFSSL_X509_ALGOR *alg)
{
if (alg) {
wolfSSL_ASN1_OBJECT_free(alg->algorithm);
wolfSSL_ASN1_TYPE_free(alg->parameter);
XFREE(alg, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
/* Returns X509_ALGOR struct with signature algorithm */
const WOLFSSL_X509_ALGOR* wolfSSL_X509_get0_tbs_sigalg(const WOLFSSL_X509 *x509)
{
WOLFSSL_ENTER("X509_get0_tbs_sigalg");
if (x509 == NULL) {
WOLFSSL_MSG("x509 struct NULL error");
return NULL;
}
return &x509->algor;
}
/* Sets paobj pointer to X509_ALGOR signature algorithm */
void wolfSSL_X509_ALGOR_get0(const WOLFSSL_ASN1_OBJECT **paobj, int *pptype,
const void **ppval, const WOLFSSL_X509_ALGOR *algor)
{
WOLFSSL_ENTER("X509_ALGOR_get0");
if (!algor) {
WOLFSSL_MSG("algor object is NULL");
return;
}
if (paobj)
*paobj = algor->algorithm;
if (ppval)
*ppval = algor->algorithm;
if (pptype) {
if (algor->parameter) {
*pptype = algor->parameter->type;
}
else {
/* Default to V_ASN1_OBJECT */
*pptype = V_ASN1_OBJECT;
}
}
}
/**
* Populate algor members.
*
* @param algor The object to be set
* @param aobj The value to be set in algor->algorithm
* @param ptype The type of algor->parameter
* @param pval The value of algor->parameter
* @return WOLFSSL_SUCCESS on success
* WOLFSSL_FAILURE on missing parameters or bad malloc
*/
int wolfSSL_X509_ALGOR_set0(WOLFSSL_X509_ALGOR *algor, WOLFSSL_ASN1_OBJECT *aobj,
int ptype, void *pval)
{
if (!algor) {
return WOLFSSL_FAILURE;
}
if (aobj) {
algor->algorithm = aobj;
}
if (pval) {
if (!algor->parameter) {
algor->parameter = wolfSSL_ASN1_TYPE_new();
if (!algor->parameter) {
return WOLFSSL_FAILURE;
}
}
wolfSSL_ASN1_TYPE_set(algor->parameter, ptype, pval);
}
return WOLFSSL_SUCCESS;
}
/**
* Set `a` in a smart way.
*
* @param a Object to set
* @param type The type of object in value
* @param value Object to set
*/
void wolfSSL_ASN1_TYPE_set(WOLFSSL_ASN1_TYPE *a, int type, void *value)
{
if (!a || !value) {
return;
}
switch (type) {
case V_ASN1_OBJECT:
a->value.object = (WOLFSSL_ASN1_OBJECT*)value;
break;
case V_ASN1_UTCTIME:
a->value.utctime = (WOLFSSL_ASN1_TIME*)value;
break;
case V_ASN1_GENERALIZEDTIME:
a->value.generalizedtime = (WOLFSSL_ASN1_TIME*)value;
break;
default:
WOLFSSL_MSG("Unknown or unsupported ASN1_TYPE");
return;
}
a->type = type;
}
/**
* Allocate a new WOLFSSL_ASN1_TYPE object.
*
* @return New zero'ed WOLFSSL_ASN1_TYPE object
*/
WOLFSSL_ASN1_TYPE* wolfSSL_ASN1_TYPE_new(void)
{
WOLFSSL_ASN1_TYPE* ret = (WOLFSSL_ASN1_TYPE*)XMALLOC(sizeof(WOLFSSL_ASN1_TYPE),
NULL, DYNAMIC_TYPE_OPENSSL);
if (!ret)
return NULL;
XMEMSET(ret, 0, sizeof(WOLFSSL_ASN1_TYPE));
return ret;
}
/**
* Free WOLFSSL_ASN1_TYPE and all its members.
*
* @param at Object to free
*/
void wolfSSL_ASN1_TYPE_free(WOLFSSL_ASN1_TYPE* at)
{
if (at) {
switch (at->type) {
case V_ASN1_OBJECT:
wolfSSL_ASN1_OBJECT_free(at->value.object);
break;
case V_ASN1_UTCTIME:
wolfSSL_ASN1_TIME_free(at->value.utctime);
break;
case V_ASN1_GENERALIZEDTIME:
wolfSSL_ASN1_TIME_free(at->value.generalizedtime);
break;
case V_ASN1_UTF8STRING:
case V_ASN1_PRINTABLESTRING:
case V_ASN1_T61STRING:
case V_ASN1_IA5STRING:
case V_ASN1_UNIVERSALSTRING:
wolfSSL_ASN1_STRING_free(at->value.asn1_string);
break;
default:
WOLFSSL_MSG("Unknown or unsupported ASN1_TYPE");
break;
}
XFREE(at, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
/**
* Allocate a new WOLFSSL_X509_PUBKEY object.
*
* @return New zero'ed WOLFSSL_X509_PUBKEY object
*/
WOLFSSL_X509_PUBKEY *wolfSSL_X509_PUBKEY_new(void)
{
WOLFSSL_X509_PUBKEY *ret;
ret = (WOLFSSL_X509_PUBKEY*)XMALLOC(sizeof(WOLFSSL_X509_PUBKEY), NULL,
DYNAMIC_TYPE_OPENSSL);
if (!ret) {
return NULL;
}
XMEMSET(ret, 0, sizeof(WOLFSSL_X509_PUBKEY));
ret->algor = wolfSSL_X509_ALGOR_new();
if (!ret->algor) {
wolfSSL_X509_PUBKEY_free(ret);
return NULL;
}
return ret;
}
/**
* Free WOLFSSL_X509_PUBKEY and all its members.
*
* @param at Object to free
*/
void wolfSSL_X509_PUBKEY_free(WOLFSSL_X509_PUBKEY *x)
{
if (x) {
if (x->algor) {
wolfSSL_X509_ALGOR_free(x->algor);
}
if (x->pkey) {
wolfSSL_EVP_PKEY_free(x->pkey);
}
XFREE(x, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
/* Returns X509_PUBKEY structure containing X509_ALGOR and EVP_PKEY */
WOLFSSL_X509_PUBKEY* wolfSSL_X509_get_X509_PUBKEY(const WOLFSSL_X509* x509)
{
WOLFSSL_ENTER("X509_get_X509_PUBKEY");
if (x509 == NULL) {
WOLFSSL_MSG("x509 struct NULL error");
return NULL;
}
return (WOLFSSL_X509_PUBKEY*)&x509->key;
}
/* Sets ppkalg pointer to X509_PUBKEY algorithm. Returns WOLFSSL_SUCCESS on
success or WOLFSSL_FAILURE on error. */
int wolfSSL_X509_PUBKEY_get0_param(WOLFSSL_ASN1_OBJECT **ppkalg,
const unsigned char **pk, int *ppklen, WOLFSSL_X509_ALGOR **pa,
WOLFSSL_X509_PUBKEY *pub)
{
WOLFSSL_ENTER("X509_PUBKEY_get0_param");
if (!pub || !pub->pubKeyOID) {
WOLFSSL_MSG("X509_PUBKEY struct not populated");
return WOLFSSL_FAILURE;
}
if (!pub->algor) {
if (!(pub->algor = wolfSSL_X509_ALGOR_new())) {
return WOLFSSL_FAILURE;
}
pub->algor->algorithm = wolfSSL_OBJ_nid2obj(pub->pubKeyOID);
if (pub->algor->algorithm == NULL) {
WOLFSSL_MSG("Failed to create object from NID");
return WOLFSSL_FAILURE;
}
}
if (pa)
*pa = pub->algor;
if (ppkalg)
*ppkalg = pub->algor->algorithm;
if (pk)
*pk = (unsigned char*)pub->pkey->pkey.ptr;
if (ppklen)
*ppklen = pub->pkey->pkey_sz;
return WOLFSSL_SUCCESS;
}
/* Returns a pointer to the pkey when passed a key */
WOLFSSL_EVP_PKEY* wolfSSL_X509_PUBKEY_get(WOLFSSL_X509_PUBKEY* key)
{
WOLFSSL_ENTER("wolfSSL_X509_PUBKEY_get");
if (key == NULL || key->pkey == NULL) {
WOLFSSL_LEAVE("wolfSSL_X509_PUBKEY_get", BAD_FUNC_ARG);
return NULL;
}
if (wolfSSL_EVP_PKEY_up_ref(key->pkey) != WOLFSSL_SUCCESS) {
WOLFSSL_LEAVE("wolfSSL_X509_PUBKEY_get", BAD_MUTEX_E);
return NULL;
}
WOLFSSL_LEAVE("wolfSSL_X509_PUBKEY_get", WOLFSSL_SUCCESS);
return key->pkey;
}
int wolfSSL_X509_PUBKEY_set(WOLFSSL_X509_PUBKEY **x, WOLFSSL_EVP_PKEY *key)
{
WOLFSSL_X509_PUBKEY *pk = NULL;
WOLFSSL_ENTER("wolfSSL_X509_PUBKEY_set");
if (!x || !key) {
return WOLFSSL_FAILURE;
}
if (!(pk = wolfSSL_X509_PUBKEY_new())) {
return WOLFSSL_FAILURE;
}
switch (key->type) {
#ifndef NO_RSA
case EVP_PKEY_RSA:
pk->algor->algorithm= wolfSSL_OBJ_nid2obj(RSAk);
break;
#endif
#ifndef NO_DSA
case EVP_PKEY_DSA:
pk->algor->algorithm = wolfSSL_OBJ_nid2obj(DSAk);
break;
#endif
#ifdef HAVE_ECC
case EVP_PKEY_EC:
pk->algor->algorithm = wolfSSL_OBJ_nid2obj(ECDSAk);
break;
#endif
default:
WOLFSSL_MSG("Unknown key type");
goto error;
}
if (!pk->algor->algorithm) {
WOLFSSL_MSG("Failed to create algorithm object");
goto error;
}
if (!wolfSSL_EVP_PKEY_up_ref(key)) {
WOLFSSL_MSG("Failed to up key reference");
goto error;
}
pk->pkey = key;
wolfSSL_X509_PUBKEY_free(*x);
*x = pk;
return WOLFSSL_SUCCESS;
error:
if (pk) {
wolfSSL_X509_PUBKEY_free(pk);
}
return WOLFSSL_FAILURE;
}
#endif /* OPENSSL_ALL || WOLFSSL_APACHE_HTTPD || WOLFSSL_HAPROXY*/
#ifndef NO_WOLFSSL_STUB
/*** TBD ***/
WOLFSSL_API WOLFSSL_EVP_PKEY *wolfSSL_get_privatekey(const WOLFSSL *ssl)
{
(void)ssl;
WOLFSSL_STUB("SSL_get_privatekey");
return NULL;
}
#endif
#ifndef NO_WOLFSSL_STUB
/*** TBD ***/
WOLFSSL_API int i2t_ASN1_OBJECT(char *buf, int buf_len, WOLFSSL_ASN1_OBJECT *a)
{
(void)buf;
(void)buf_len;
(void)a;
WOLFSSL_STUB("i2t_ASN1_OBJECT");
return -1;
}
#endif
WOLFSSL_ASN1_OBJECT *wolfSSL_d2i_ASN1_OBJECT(WOLFSSL_ASN1_OBJECT **a,
const unsigned char **der,
long length)
{
const unsigned char *d;
long len;
int tag, cls;
WOLFSSL_ASN1_OBJECT* ret = NULL;
WOLFSSL_ENTER("wolfSSL_d2i_ASN1_OBJECT");
if (!der || !*der || length <= 0) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
d = *der;
if (wolfSSL_ASN1_get_object(&d, &len, &tag, &cls, length) & 0x80) {
WOLFSSL_MSG("wolfSSL_ASN1_get_object error");
return NULL;
}
/* d now points to value */
if (tag != ASN_OBJECT_ID) {
WOLFSSL_MSG("Not an ASN object");
return NULL;
}
ret = wolfSSL_c2i_ASN1_OBJECT(a, &d, len);
if (ret)
*der = d;
return ret;
}
/**
* Parse an ASN1 encoded input and output information about the parsed object
* @param in ASN1 encoded data. *in is moved to the value of the ASN1 object
* @param len Length of parsed ASN1 object
* @param tag Tag value of parsed ASN1 object
* @param cls Class of parsed ASN1 object
* @param inLen Length of *in buffer
* @return int Depends on which bits are set in the returned int:
* 0x80 an error occurred during parsing
* 0x20 parsed object is constructed
* 0x01 the parsed object length is infinite
*/
int wolfSSL_ASN1_get_object(const unsigned char **in, long *len, int *tag,
int *cls, long inLen)
{
word32 inOutIdx = 0;
int l;
byte t;
int ret = 0x80;
WOLFSSL_ENTER("wolfSSL_ASN1_get_object");
if (!in || !*in || !len || !tag || !cls || inLen == 0) {
WOLFSSL_MSG("Bad parameter");
return ret;
}
if (GetASNTag(*in, &inOutIdx, &t, (word32)inLen) != 0) {
WOLFSSL_MSG("GetASNTag error");
return ret;
}
if (GetLength(*in, &inOutIdx, &l, (word32)inLen) < 0) {
WOLFSSL_MSG("GetLength error");
return ret;
}
*tag = t & 0x1F; /* Tag number is 5 lsb */
*cls = t & 0xC0; /* Class is 2 msb */
*len = l;
ret = t & ASN_CONSTRUCTED;
if (l > (int)(inLen - inOutIdx)) {
/* Still return other values but indicate error in msb */
ret |= 0x80;
}
*in += inOutIdx;
return ret;
}
WOLFSSL_ASN1_OBJECT *wolfSSL_c2i_ASN1_OBJECT(WOLFSSL_ASN1_OBJECT **a,
const unsigned char **pp, long len)
{
WOLFSSL_ASN1_OBJECT* ret = NULL;
WOLFSSL_ENTER("wolfSSL_c2i_ASN1_OBJECT");
if (!pp || !*pp || len <= 0) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
if (!(ret = wolfSSL_ASN1_OBJECT_new())) {
WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_new error");
return NULL;
}
ret->obj = (const unsigned char*)XMALLOC(len, NULL, DYNAMIC_TYPE_ASN1);
if (!ret->obj) {
WOLFSSL_MSG("error allocating asn data memory");
wolfSSL_ASN1_OBJECT_free(ret);
return NULL;
}
XMEMCPY((byte*)ret->obj, *pp, len);
ret->objSz = (unsigned int)len;
ret->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA;
*pp += len;
if (a)
*a = ret;
return ret;
}
#ifndef NO_BIO
/* Return number of bytes written to BIO on success. 0 on failure. */
WOLFSSL_API int wolfSSL_i2a_ASN1_OBJECT(WOLFSSL_BIO *bp,
WOLFSSL_ASN1_OBJECT *a)
{
int length = 0;
word32 idx = 0;
const char null_str[] = "NULL";
WOLFSSL_ENTER("wolfSSL_i2a_ASN1_OBJECT");
if (bp == NULL)
return WOLFSSL_FAILURE;
if (a == NULL) {
/* Write "NULL" */
if (wolfSSL_BIO_write(bp, null_str, (int)XSTRLEN(null_str)) ==
(int)XSTRLEN(null_str)) {
return (int)XSTRLEN(null_str);
}
else {
return WOLFSSL_FAILURE;
}
}
if ((a->obj == NULL) || (a->obj[idx++] != ASN_OBJECT_ID)) {
WOLFSSL_MSG("Bad ASN1 Object");
return WOLFSSL_FAILURE;
}
if (GetLength((const byte*)a->obj, &idx, &length,
a->objSz) < 0 || length < 0) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_write(bp, a->obj + idx, length) == (int)length) {
return length;
}
return WOLFSSL_FAILURE;
}
#endif /* !NO_BIO */
/* Returns object data for an ASN1_OBJECT */
/* If pp is NULL then only the size is returned */
/* If pp has pointer to pointer then its used directly */
/* If pp has pointer to pointer that is NULL then new variable is allocated */
/* Failure returns WOLFSSL_FAILURE (0) */
int wolfSSL_i2d_ASN1_OBJECT(WOLFSSL_ASN1_OBJECT *a, unsigned char **pp)
{
byte *p;
WOLFSSL_ENTER("wolfSSL_i2d_ASN1_OBJECT");
if (!a || !a->obj) {
WOLFSSL_MSG("Bad parameters");
return WOLFSSL_FAILURE;
}
if (!pp)
return a->objSz;
if (*pp)
p = *pp;
else {
p = (byte*)XMALLOC(a->objSz, NULL, DYNAMIC_TYPE_OPENSSL);
if (!p) {
WOLFSSL_MSG("Bad malloc");
return WOLFSSL_FAILURE;
}
}
XMEMCPY(p, a->obj, a->objSz);
*pp = p + a->objSz;
return a->objSz;
}
#if defined(OPENSSL_ALL) || defined(WOLFSSL_HAPROXY)
WOLFSSL_API size_t wolfSSL_get_finished(const WOLFSSL *ssl, void *buf, size_t count)
{
WOLFSSL_ENTER("SSL_get_finished");
if (!ssl || !buf || count < TLS_FINISHED_SZ) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (ssl->options.side == WOLFSSL_SERVER_END)
XMEMCPY(buf, ssl->serverFinished,
TLS_FINISHED_SZ);
else
XMEMCPY(buf, ssl->clientFinished,
TLS_FINISHED_SZ);
return TLS_FINISHED_SZ;
}
WOLFSSL_API size_t wolfSSL_get_peer_finished(const WOLFSSL *ssl, void *buf, size_t count)
{
WOLFSSL_ENTER("SSL_get_peer_finished");
if (!ssl || !buf || count < TLS_FINISHED_SZ) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (ssl->options.side == WOLFSSL_CLIENT_END)
XMEMCPY(buf, ssl->serverFinished,
TLS_FINISHED_SZ);
else
XMEMCPY(buf, ssl->clientFinished,
TLS_FINISHED_SZ);
return TLS_FINISHED_SZ;
}
#endif /* WOLFSSL_HAPROXY */
#ifndef NO_WOLFSSL_STUB
/*** TBD ***/
WOLFSSL_API void SSL_CTX_set_tmp_dh_callback(WOLFSSL_CTX *ctx, WOLFSSL_DH *(*dh) (WOLFSSL *ssl, int is_export, int keylength))
{
(void)ctx;
(void)dh;
WOLFSSL_STUB("SSL_CTX_set_tmp_dh_callback");
}
#endif
#ifndef NO_WOLFSSL_STUB
/*** TBD ***/
WOLFSSL_API WOLF_STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
WOLFSSL_STUB("SSL_COMP_get_compression_methods");
return NULL;
}
#endif
int wolfSSL_sk_SSL_CIPHER_num(const WOLF_STACK_OF(WOLFSSL_CIPHER)* p)
{
WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_num");
if (p == NULL) {
return WOLFSSL_FATAL_ERROR;
}
return (int)p->num;
}
#if !defined(NO_FILESYSTEM)
#ifndef NO_WOLFSSL_STUB
/*** TBD ***/
WOLFSSL_API WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_PrivateKey(XFILE fp, WOLFSSL_EVP_PKEY **x, pem_password_cb *cb, void *u)
{
(void)fp;
(void)x;
(void)cb;
(void)u;
WOLFSSL_STUB("PEM_read_PrivateKey");
return NULL;
}
#endif
#endif
#if !defined(NO_FILESYSTEM) && !defined(NO_WOLFSSL_DIR)
/* Loads certificate(s) files in pem format into X509_STORE struct from either
* a file or directory.
* Returns WOLFSSL_SUCCESS on success or WOLFSSL_FAILURE if an error occurs.
*/
WOLFSSL_API int wolfSSL_X509_STORE_load_locations(WOLFSSL_X509_STORE *str,
const char *file, const char *dir)
{
WOLFSSL_CTX* ctx;
char *name = NULL;
int ret = WOLFSSL_SUCCESS;
int successes = 0;
#ifdef WOLFSSL_SMALL_STACK
ReadDirCtx* readCtx = NULL;
#else
ReadDirCtx readCtx[1];
#endif
WOLFSSL_ENTER("X509_STORE_load_locations");
if (str == NULL || str->cm == NULL || (file == NULL && dir == NULL))
return WOLFSSL_FAILURE;
/* tmp ctx for setting our cert manager */
ctx = wolfSSL_CTX_new(cm_pick_method());
if (ctx == NULL)
return WOLFSSL_FAILURE;
wolfSSL_CertManagerFree(ctx->cm);
ctx->cm = str->cm;
#ifdef HAVE_CRL
if (str->cm->crl == NULL) {
if (wolfSSL_CertManagerEnableCRL(str->cm, 0) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Enable CRL failed");
wolfSSL_CTX_free(ctx);
return WOLFSSL_FAILURE;
}
}
#endif
/* Load individual file */
if (file) {
/* Try to process file with type DETECT_CERT_TYPE to parse the
correct certificate header and footer type */
ret = ProcessFile(ctx, file, WOLFSSL_FILETYPE_PEM, DETECT_CERT_TYPE,
NULL, 0, str->cm->crl, 0);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Failed to load file");
ret = WOLFSSL_FAILURE;
}
}
/* Load files in dir */
if (dir && ret == WOLFSSL_SUCCESS) {
#ifdef WOLFSSL_SMALL_STACK
readCtx = (ReadDirCtx*)XMALLOC(sizeof(ReadDirCtx), ctx->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (readCtx == NULL) {
WOLFSSL_MSG("Memory error");
wolfSSL_CTX_free(ctx);
return WOLFSSL_FAILURE;
}
#endif
/* try to load each regular file in dir */
ret = wc_ReadDirFirst(readCtx, dir, &name);
while (ret == 0 && name) {
WOLFSSL_MSG(name);
/* Try to process file with type DETECT_CERT_TYPE to parse the
correct certificate header and footer type */
ret = ProcessFile(ctx, name, WOLFSSL_FILETYPE_PEM, DETECT_CERT_TYPE,
NULL, 0, str->cm->crl, 0);
/* Not failing on load errors */
if (ret != WOLFSSL_SUCCESS)
WOLFSSL_MSG("Failed to load file in path, continuing");
else
successes++;
ret = wc_ReadDirNext(readCtx, dir, &name);
}
wc_ReadDirClose(readCtx);
/* Success if at least one file in dir was loaded */
if (successes > 0)
ret = WOLFSSL_SUCCESS;
else {
WOLFSSL_ERROR(ret);
ret = WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(readCtx, ctx->heap, DYNAMIC_TYPE_DIRCTX);
#endif
}
ctx->cm = NULL;
wolfSSL_CTX_free(ctx);
return ret;
}
#endif /* !NO_FILESYSTEM && !NO_WOLFSSL_DIR */
WOLFSSL_API WOLFSSL_CIPHER* wolfSSL_sk_SSL_CIPHER_value(WOLFSSL_STACK* sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_SSL_CIPHER_value");
return (WOLFSSL_CIPHER*)wolfSSL_sk_value(sk, i);
}
WOLFSSL_API void ERR_load_SSL_strings(void)
{
}
#ifdef HAVE_OCSP
WOLFSSL_API long wolfSSL_get_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char **resp)
{
if (s == NULL || resp == NULL)
return 0;
*resp = s->ocspResp;
return s->ocspRespSz;
}
WOLFSSL_API long wolfSSL_set_tlsext_status_ocsp_resp(WOLFSSL *s, unsigned char *resp, int len)
{
if (s == NULL)
return WOLFSSL_FAILURE;
s->ocspResp = resp;
s->ocspRespSz = len;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_OCSP */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
long wolfSSL_get_verify_result(const WOLFSSL *ssl)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
return ssl->peerVerifyRet;
}
#endif
#ifdef OPENSSL_EXTRA
#ifndef NO_WOLFSSL_STUB
/* shows the number of accepts attempted by CTX in it's lifetime */
long wolfSSL_CTX_sess_accept(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_accept");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of connects attempted CTX in it's lifetime */
long wolfSSL_CTX_sess_connect(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_connect");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of accepts completed by CTX in it's lifetime */
long wolfSSL_CTX_sess_accept_good(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_accept_good");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of connects completed by CTX in it's lifetime */
long wolfSSL_CTX_sess_connect_good(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_connect_good");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of renegotiation accepts attempted by CTX */
long wolfSSL_CTX_sess_accept_renegotiate(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_accept_renegotiate");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
/* shows the number of renegotiation accepts attempted by CTX */
long wolfSSL_CTX_sess_connect_renegotiate(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_connect_renegotiate");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_hits(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_hits");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_cb_hits(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_cb_hits");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_cache_full(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_cache_full");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_misses(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_misses");
(void)ctx;
return 0;
}
#endif
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_sess_timeouts(WOLFSSL_CTX* ctx)
{
WOLFSSL_STUB("wolfSSL_CTX_sess_timeouts");
(void)ctx;
return 0;
}
#endif
/* Return the total number of sessions */
long wolfSSL_CTX_sess_number(WOLFSSL_CTX* ctx)
{
word32 total = 0;
WOLFSSL_ENTER("wolfSSL_CTX_sess_number");
(void)ctx;
#ifdef WOLFSSL_SESSION_STATS
if (wolfSSL_get_session_stats(NULL, &total, NULL, NULL) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error getting session stats");
}
#else
WOLFSSL_MSG("Please use macro WOLFSSL_SESSION_STATS for session stats");
#endif
return (long)total;
}
#ifndef NO_CERTS
long wolfSSL_CTX_add_extra_chain_cert(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509)
{
byte* chain = NULL;
long chainSz = 0;
int derSz;
const byte* der;
int ret;
int idx = 0;
DerBuffer *derBuffer = NULL;
WOLFSSL_ENTER("wolfSSL_CTX_add_extra_chain_cert");
if (ctx == NULL || x509 == NULL) {
WOLFSSL_MSG("Bad Argument");
return WOLFSSL_FAILURE;
}
der = wolfSSL_X509_get_der(x509, &derSz);
if (der == NULL || derSz <= 0) {
WOLFSSL_MSG("Error getting X509 DER");
return WOLFSSL_FAILURE;
}
if (ctx->certificate == NULL) {
WOLFSSL_ENTER("wolfSSL_use_certificate_chain_buffer_format");
/* Process buffer makes first certificate the leaf. */
ret = ProcessBuffer(ctx, der, derSz, WOLFSSL_FILETYPE_ASN1, CERT_TYPE,
NULL, NULL, 1, GET_VERIFY_SETTING_CTX(ctx));
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_LEAVE("wolfSSL_CTX_add_extra_chain_cert", ret);
return WOLFSSL_FAILURE;
}
}
else {
/* TODO: Do this elsewhere. */
ret = AllocDer(&derBuffer, derSz, CERT_TYPE, ctx->heap);
if (ret != 0) {
WOLFSSL_MSG("Memory Error");
return WOLFSSL_FAILURE;
}
XMEMCPY(derBuffer->buffer, der, derSz);
ret = AddCA(ctx->cm, &derBuffer, WOLFSSL_USER_CA,
GET_VERIFY_SETTING_CTX(ctx));
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_LEAVE("wolfSSL_CTX_add_extra_chain_cert", ret);
return WOLFSSL_FAILURE;
}
/* adding cert to existing chain */
if (ctx->certChain != NULL && ctx->certChain->length > 0) {
chainSz += ctx->certChain->length;
}
chainSz += OPAQUE24_LEN + derSz;
chain = (byte*)XMALLOC(chainSz, ctx->heap, DYNAMIC_TYPE_DER);
if (chain == NULL) {
WOLFSSL_MSG("Memory Error");
return WOLFSSL_FAILURE;
}
if (ctx->certChain != NULL && ctx->certChain->length > 0) {
XMEMCPY(chain, ctx->certChain->buffer, ctx->certChain->length);
idx = ctx->certChain->length;
}
c32to24(derSz, chain + idx);
idx += OPAQUE24_LEN;
XMEMCPY(chain + idx, der, derSz);
idx += derSz;
#ifdef WOLFSSL_TLS13
ctx->certChainCnt++;
#endif
FreeDer(&ctx->certChain);
ret = AllocDer(&ctx->certChain, idx, CERT_TYPE, ctx->heap);
if (ret == 0) {
XMEMCPY(ctx->certChain->buffer, chain, idx);
}
}
/* on success WOLFSSL_X509 memory is responsibility of ctx */
wolfSSL_X509_free(x509);
if (chain != NULL)
XFREE(chain, ctx->heap, DYNAMIC_TYPE_DER);
return WOLFSSL_SUCCESS;
}
long wolfSSL_CTX_set_tlsext_status_arg(WOLFSSL_CTX* ctx, void* arg)
{
if (ctx == NULL || ctx->cm == NULL) {
return WOLFSSL_FAILURE;
}
ctx->cm->ocspIOCtx = arg;
return WOLFSSL_SUCCESS;
}
#endif /* NO_CERTS */
/* Get the session cache mode for CTX
*
* ctx WOLFSSL_CTX struct to get cache mode from
*
* Returns a bit mask that has the session cache mode */
WOLFSSL_API long wolfSSL_CTX_get_session_cache_mode(WOLFSSL_CTX* ctx)
{
long m = 0;
WOLFSSL_ENTER("SSL_CTX_set_session_cache_mode");
if (ctx == NULL) {
return m;
}
if (ctx->sessionCacheOff != 1) {
m |= SSL_SESS_CACHE_SERVER;
}
if (ctx->sessionCacheFlushOff == 1) {
m |= SSL_SESS_CACHE_NO_AUTO_CLEAR;
}
#ifdef HAVE_EXT_CACHE
if (ctx->internalCacheOff == 1) {
m |= SSL_SESS_CACHE_NO_INTERNAL_STORE;
}
#endif
return m;
}
int wolfSSL_CTX_get_read_ahead(WOLFSSL_CTX* ctx)
{
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
return ctx->readAhead;
}
int wolfSSL_CTX_set_read_ahead(WOLFSSL_CTX* ctx, int v)
{
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
ctx->readAhead = (byte)v;
return WOLFSSL_SUCCESS;
}
long wolfSSL_CTX_set_tlsext_opaque_prf_input_callback_arg(WOLFSSL_CTX* ctx,
void* arg)
{
if (ctx == NULL) {
return WOLFSSL_FAILURE;
}
ctx->userPRFArg = arg;
return WOLFSSL_SUCCESS;
}
#ifndef NO_DES3
/* 0 on success */
int wolfSSL_DES_set_key(WOLFSSL_const_DES_cblock* myDes,
WOLFSSL_DES_key_schedule* key)
{
#ifdef WOLFSSL_CHECK_DESKEY
return wolfSSL_DES_set_key_checked(myDes, key);
#else
wolfSSL_DES_set_key_unchecked(myDes, key);
return 0;
#endif
}
/* return true in fail case (1) */
static int DES_check(word32 mask, word32 mask2, unsigned char* key)
{
word32 value[2];
/* sanity check on length made in wolfSSL_DES_set_key_checked */
value[0] = mask;
value[1] = mask2;
return (XMEMCMP(value, key, sizeof(value)) == 0)? 1: 0;
}
/* check that the key is odd parity and is not a weak key
* returns -1 if parity is wrong, -2 if weak/null key and 0 on success */
int wolfSSL_DES_set_key_checked(WOLFSSL_const_DES_cblock* myDes,
WOLFSSL_DES_key_schedule* key)
{
if (myDes == NULL || key == NULL) {
WOLFSSL_MSG("Bad argument passed to wolfSSL_DES_set_key_checked");
return -2;
}
else {
word32 sz = sizeof(WOLFSSL_DES_key_schedule);
/* sanity check before call to DES_check */
if (sz != (sizeof(word32) * 2)) {
WOLFSSL_MSG("Unexpected WOLFSSL_DES_key_schedule size");
return -2;
}
/* check odd parity */
if (wolfSSL_DES_check_key_parity(myDes) != 1) {
WOLFSSL_MSG("Odd parity test fail");
return -1;
}
if (wolfSSL_DES_is_weak_key(myDes) == 1) {
WOLFSSL_MSG("Weak key found");
return -2;
}
/* passed tests, now copy over key */
XMEMCPY(key, myDes, sizeof(WOLFSSL_const_DES_cblock));
return 0;
}
}
/* check is not weak. Weak key list from Nist "Recommendation for the Triple
* Data Encryption Algorithm (TDEA) Block Cipher"
*
* returns 1 if is weak 0 if not
*/
int wolfSSL_DES_is_weak_key(WOLFSSL_const_DES_cblock* key)
{
word32 mask, mask2;
WOLFSSL_ENTER("wolfSSL_DES_is_weak_key");
if (key == NULL) {
WOLFSSL_MSG("NULL key passed in");
return 1;
}
mask = 0x01010101; mask2 = 0x01010101;
if (DES_check(mask, mask2, *key)) {
WOLFSSL_MSG("Weak key found");
return 1;
}
mask = 0xFEFEFEFE; mask2 = 0xFEFEFEFE;
if (DES_check(mask, mask2, *key)) {
WOLFSSL_MSG("Weak key found");
return 1;
}
mask = 0xE0E0E0E0; mask2 = 0xF1F1F1F1;
if (DES_check(mask, mask2, *key)) {
WOLFSSL_MSG("Weak key found");
return 1;
}
mask = 0x1F1F1F1F; mask2 = 0x0E0E0E0E;
if (DES_check(mask, mask2, *key)) {
WOLFSSL_MSG("Weak key found");
return 1;
}
/* semi-weak *key check (list from same Nist paper) */
mask = 0x011F011F; mask2 = 0x010E010E;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return 1;
}
mask = 0x01E001E0; mask2 = 0x01F101F1;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return 1;
}
mask = 0x01FE01FE; mask2 = 0x01FE01FE;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return 1;
}
mask = 0x1FE01FE0; mask2 = 0x0EF10EF1;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return 1;
}
mask = 0x1FFE1FFE; mask2 = 0x0EFE0EFE;
if (DES_check(mask, mask2, *key) ||
DES_check(ByteReverseWord32(mask), ByteReverseWord32(mask2), *key)) {
WOLFSSL_MSG("Weak key found");
return 1;
}
return 0;
}
void wolfSSL_DES_set_key_unchecked(WOLFSSL_const_DES_cblock* myDes,
WOLFSSL_DES_key_schedule* key)
{
if (myDes != NULL && key != NULL) {
XMEMCPY(key, myDes, sizeof(WOLFSSL_const_DES_cblock));
}
}
/* Sets the parity of the DES key for use */
void wolfSSL_DES_set_odd_parity(WOLFSSL_DES_cblock* myDes)
{
word32 i;
word32 sz = sizeof(WOLFSSL_DES_cblock);
WOLFSSL_ENTER("wolfSSL_DES_set_odd_parity");
for (i = 0; i < sz; i++) {
unsigned char c = (*myDes)[i];
if ((
((c >> 1) & 0x01) ^
((c >> 2) & 0x01) ^
((c >> 3) & 0x01) ^
((c >> 4) & 0x01) ^
((c >> 5) & 0x01) ^
((c >> 6) & 0x01) ^
((c >> 7) & 0x01)) == (c & 0x01)) {
WOLFSSL_MSG("Flipping parity bit");
(*myDes)[i] = c ^ 0x01;
}
}
}
int wolfSSL_DES_check_key_parity(WOLFSSL_DES_cblock *myDes)
{
word32 i;
word32 sz = sizeof(WOLFSSL_DES_cblock);
WOLFSSL_ENTER("wolfSSL_DES_check_key_parity");
for (i = 0; i < sz; i++) {
unsigned char c = (*myDes)[i];
if ((
((c >> 1) & 0x01) ^
((c >> 2) & 0x01) ^
((c >> 3) & 0x01) ^
((c >> 4) & 0x01) ^
((c >> 5) & 0x01) ^
((c >> 6) & 0x01) ^
((c >> 7) & 0x01)) == (c & 0x01)) {
return 0;
}
}
return 1;
}
#ifdef WOLFSSL_DES_ECB
/* Encrypt or decrypt input message desa with key and get output in desb.
* if enc is DES_ENCRYPT,input message is encrypted or
* if enc is DES_DECRYPT,input message is decrypted.
* */
void wolfSSL_DES_ecb_encrypt(WOLFSSL_DES_cblock* desa,
WOLFSSL_DES_cblock* desb, WOLFSSL_DES_key_schedule* key, int enc)
{
Des myDes;
WOLFSSL_ENTER("wolfSSL_DES_ecb_encrypt");
if (desa == NULL || key == NULL || desb == NULL ||
(enc != DES_ENCRYPT && enc != DES_DECRYPT)) {
WOLFSSL_MSG("Bad argument passed to wolfSSL_DES_ecb_encrypt");
} else {
if (wc_Des_SetKey(&myDes, (const byte*) key,
(const byte*) NULL, !enc) != 0) {
WOLFSSL_MSG("wc_Des_SetKey return error.");
return;
}
if (enc){
if (wc_Des_EcbEncrypt(&myDes, (byte*) desb, (const byte*) desa,
sizeof(WOLFSSL_DES_cblock)) != 0){
WOLFSSL_MSG("wc_Des_EcbEncrypt return error.");
}
} else {
if (wc_Des_EcbDecrypt(&myDes, (byte*) desb, (const byte*) desa,
sizeof(WOLFSSL_DES_cblock)) != 0){
WOLFSSL_MSG("wc_Des_EcbDecrpyt return error.");
}
}
}
}
#endif
#endif /* NO_DES3 */
#ifndef NO_RC4
/* Set the key state for Arc4 structure.
*
* key Arc4 structure to use
* len length of data buffer
* data initial state to set Arc4 structure
*/
void wolfSSL_RC4_set_key(WOLFSSL_RC4_KEY* key, int len,
const unsigned char* data)
{
typedef char rc4_test[sizeof(WOLFSSL_RC4_KEY) >= sizeof(Arc4) ? 1 : -1];
(void)sizeof(rc4_test);
WOLFSSL_ENTER("wolfSSL_RC4_set_key");
if (key == NULL || len < 0) {
WOLFSSL_MSG("bad argument passed in");
return;
}
XMEMSET(key, 0, sizeof(WOLFSSL_RC4_KEY));
wc_Arc4SetKey((Arc4*)key, data, (word32)len);
}
/* Encrypt/decrypt with Arc4 structure.
*
* len length of buffer to encrypt/decrypt (in/out)
* in buffer to encrypt/decrypt
* out results of encryption/decryption
*/
void wolfSSL_RC4(WOLFSSL_RC4_KEY* key, size_t len,
const unsigned char* in, unsigned char* out)
{
WOLFSSL_ENTER("wolfSSL_RC4");
if (key == NULL || in == NULL || out == NULL) {
WOLFSSL_MSG("Bad argument passed in");
return;
}
wc_Arc4Process((Arc4*)key, out, in, (word32)len);
}
#endif /* NO_RC4 */
#ifndef NO_AES
#ifdef WOLFSSL_AES_DIRECT
/* AES encrypt direct, it is expected to be blocks of AES_BLOCK_SIZE for input.
*
* input Data to encrypt
* output Encrypted data after done
* key AES key to use for encryption
*/
void wolfSSL_AES_encrypt(const unsigned char* input, unsigned char* output,
AES_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_AES_encrypt");
if (input == NULL || output == NULL || key == NULL) {
WOLFSSL_MSG("Null argument passed in");
return;
}
wc_AesEncryptDirect((Aes*)key, output, input);
}
/* AES decrypt direct, it is expected to be blocks of AES_BLOCK_SIZE for input.
*
* input Data to decrypt
* output Decrypted data after done
* key AES key to use for encryption
*/
void wolfSSL_AES_decrypt(const unsigned char* input, unsigned char* output,
AES_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_AES_decrypt");
if (input == NULL || output == NULL || key == NULL) {
WOLFSSL_MSG("Null argument passed in");
return;
}
wc_AesDecryptDirect((Aes*)key, output, input);
}
#endif /* WOLFSSL_AES_DIRECT */
/* Setup of an AES key to use for encryption.
*
* key key in bytes to use for encryption
* bits size of key in bits
* aes AES structure to initialize
*/
int wolfSSL_AES_set_encrypt_key(const unsigned char *key, const int bits,
AES_KEY *aes)
{
typedef char aes_test[sizeof(AES_KEY) >= sizeof(Aes) ? 1 : -1];
(void)sizeof(aes_test);
WOLFSSL_ENTER("wolfSSL_AES_set_encrypt_key");
if (key == NULL || aes == NULL) {
WOLFSSL_MSG("Null argument passed in");
return -1;
}
XMEMSET(aes, 0, sizeof(AES_KEY));
if (wc_AesSetKey((Aes*)aes, key, ((bits)/8), NULL, AES_ENCRYPTION) != 0) {
WOLFSSL_MSG("Error in setting AES key");
return -1;
}
return 0;
}
/* Setup of an AES key to use for decryption.
*
* key key in bytes to use for decryption
* bits size of key in bits
* aes AES structure to initialize
*/
int wolfSSL_AES_set_decrypt_key(const unsigned char *key, const int bits,
AES_KEY *aes)
{
typedef char aes_test[sizeof(AES_KEY) >= sizeof(Aes) ? 1 : -1];
(void)sizeof(aes_test);
WOLFSSL_ENTER("wolfSSL_AES_set_decrypt_key");
if (key == NULL || aes == NULL) {
WOLFSSL_MSG("Null argument passed in");
return -1;
}
XMEMSET(aes, 0, sizeof(AES_KEY));
if (wc_AesSetKey((Aes*)aes, key, ((bits)/8), NULL, AES_DECRYPTION) != 0) {
WOLFSSL_MSG("Error in setting AES key");
return -1;
}
return 0;
}
#ifdef HAVE_AES_ECB
/* Encrypt/decrypt a 16 byte block of data using the key passed in.
*
* in buffer to encrypt/decrypt
* out buffer to hold result of encryption/decryption
* key AES structure to use with encryption/decryption
* enc AES_ENCRPT for encryption and AES_DECRYPT for decryption
*/
void wolfSSL_AES_ecb_encrypt(const unsigned char *in, unsigned char* out,
AES_KEY *key, const int enc)
{
Aes* aes;
WOLFSSL_ENTER("wolfSSL_AES_ecb_encrypt");
if (key == NULL || in == NULL || out == NULL) {
WOLFSSL_MSG("Error, Null argument passed in");
return;
}
aes = (Aes*)key;
if (enc == AES_ENCRYPT) {
if (wc_AesEcbEncrypt(aes, out, in, AES_BLOCK_SIZE) != 0) {
WOLFSSL_MSG("Error with AES CBC encrypt");
}
}
else {
#ifdef HAVE_AES_DECRYPT
if (wc_AesEcbDecrypt(aes, out, in, AES_BLOCK_SIZE) != 0) {
WOLFSSL_MSG("Error with AES CBC decrypt");
}
#else
WOLFSSL_MSG("AES decryption not compiled in");
#endif
}
}
#endif /* HAVE_AES_ECB */
#ifdef HAVE_AES_CBC
/* Encrypt data using key and iv passed in. iv gets updated to most recent iv
* state after encryption/decryption.
*
* in buffer to encrypt/decrypt
* out buffer to hold result of encryption/decryption
* len length of input buffer
* key AES structure to use with encryption/decryption
* iv iv to use with operation
* enc AES_ENCRPT for encryption and AES_DECRYPT for decryption
*/
void wolfSSL_AES_cbc_encrypt(const unsigned char *in, unsigned char* out,
size_t len, AES_KEY *key, unsigned char* iv, const int enc)
{
Aes* aes;
WOLFSSL_ENTER("wolfSSL_AES_cbc_encrypt");
if (key == NULL || in == NULL || out == NULL || iv == NULL || len == 0) {
WOLFSSL_MSG("Error, Null argument passed in");
return;
}
aes = (Aes*)key;
if (wc_AesSetIV(aes, (const byte*)iv) != 0) {
WOLFSSL_MSG("Error with setting iv");
return;
}
if (enc == AES_ENCRYPT) {
if (wc_AesCbcEncrypt(aes, out, in, (word32)len) != 0) {
WOLFSSL_MSG("Error with AES CBC encrypt");
}
}
else {
if (wc_AesCbcDecrypt(aes, out, in, (word32)len) != 0) {
WOLFSSL_MSG("Error with AES CBC decrypt");
}
}
/* to be compatible copy iv to iv buffer after completing operation */
XMEMCPY(iv, (byte*)(aes->reg), AES_BLOCK_SIZE);
}
#endif /* HAVE_AES_CBC */
/* Encrypt data using CFB mode with key and iv passed in. iv gets updated to
* most recent iv state after encryption/decryption.
*
* in buffer to encrypt/decrypt
* out buffer to hold result of encryption/decryption
* len length of input buffer
* key AES structure to use with encryption/decryption
* iv iv to use with operation
* num contains the amount of block used
* enc AES_ENCRPT for encryption and AES_DECRYPT for decryption
*/
void wolfSSL_AES_cfb128_encrypt(const unsigned char *in, unsigned char* out,
size_t len, AES_KEY *key, unsigned char* iv, int* num,
const int enc)
{
#ifndef WOLFSSL_AES_CFB
WOLFSSL_MSG("CFB mode not enabled please use macro WOLFSSL_AES_CFB");
(void)in;
(void)out;
(void)len;
(void)key;
(void)iv;
(void)num;
(void)enc;
return;
#else
Aes* aes;
WOLFSSL_ENTER("wolfSSL_AES_cbc_encrypt");
if (key == NULL || in == NULL || out == NULL || iv == NULL) {
WOLFSSL_MSG("Error, Null argument passed in");
return;
}
aes = (Aes*)key;
if (wc_AesSetIV(aes, (const byte*)iv) != 0) {
WOLFSSL_MSG("Error with setting iv");
return;
}
if (enc == AES_ENCRYPT) {
if (wc_AesCfbEncrypt(aes, out, in, (word32)len) != 0) {
WOLFSSL_MSG("Error with AES CBC encrypt");
}
}
else {
if (wc_AesCfbDecrypt(aes, out, in, (word32)len) != 0) {
WOLFSSL_MSG("Error with AES CBC decrypt");
}
}
/* to be compatible copy iv to iv buffer after completing operation */
XMEMCPY(iv, (byte*)(aes->reg), AES_BLOCK_SIZE);
/* store number of left over bytes to num */
*num = (aes->left)? AES_BLOCK_SIZE - aes->left : 0;
#endif /* WOLFSSL_AES_CFB */
}
#endif /* NO_AES */
#ifndef NO_FILESYSTEM
#ifdef __clang__
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wformat-nonliteral"
#endif
#endif
#ifndef NO_BIO
#if !defined(NO_FILESYSTEM) && defined (OPENSSL_EXTRA)
/* returns amount printed on success, negative in fail case */
int wolfSSL_BIO_vprintf(WOLFSSL_BIO* bio, const char* format, va_list args)
{
int ret = -1;
if (bio == NULL)
return WOLFSSL_FATAL_ERROR;
switch (bio->type) {
case WOLFSSL_BIO_FILE:
if (bio->ptr == NULL) {
va_end(args);
return -1;
}
ret = XVFPRINTF((XFILE)bio->ptr, format, args);
break;
case WOLFSSL_BIO_MEMORY:
/* In Visual Studio versions prior to Visual Studio 2013, the va_* symbols
aren't defined. If using Visual Studio 2013 or later, define
HAVE_VA_COPY. */
#if defined(OPENSSL_EXTRA) && (!defined(_WIN32) || defined(HAVE_VA_COPY))
case WOLFSSL_BIO_SSL:
{
int count;
char* pt = NULL;
va_list copy;
#ifdef FUSION_RTOS
copy = args; /* hack, depends on internal implementation
* of va_list in VisualDSP++ */
#else
va_copy(copy, args);
#endif
count = XVSNPRINTF(NULL, 0, format, args);
if (count >= 0)
{
pt = (char*)XMALLOC(count + 1, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (pt != NULL)
{
count = XVSNPRINTF(pt, count + 1, format, copy);
if (count >= 0)
{
ret = wolfSSL_BIO_write(bio, pt, count);
}
XFREE(pt, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
}
va_end(copy);
}
break;
#endif
default:
WOLFSSL_MSG("Unsupported WOLFSSL_BIO type for wolfSSL_BIO_printf");
break;
}
return ret;
}
/* returns amount printed on success, negative in fail case */
int wolfSSL_BIO_printf(WOLFSSL_BIO* bio, const char* format, ...)
{
int ret;
va_list args;
va_start(args, format);
ret = wolfSSL_BIO_vprintf(bio, format, args);
va_end(args);
return ret;
}
#endif /* !NO_FILESYSTEM && OPENSSL_EXTRA */
#if !defined(NO_FILESYSTEM) && defined(__clang__)
#pragma clang diagnostic pop
#endif
#undef LINE_LEN
#define LINE_LEN 16
int wolfSSL_BIO_dump(WOLFSSL_BIO *bio, const char *buf, int length)
{
int ret = 0;
if (bio == NULL)
return 0;
#ifndef NO_FILESYSTEM
if (bio->type == WOLFSSL_BIO_FILE) {
int i;
char line[80];
if (!buf) {
return XFPUTS("\tNULL", (XFILE)bio->ptr);
}
XSPRINTF(line, "\t");
for (i = 0; i < LINE_LEN; i++) {
if (i < length)
XSPRINTF(line + 1 + i * 3,"%02x ", buf[i]);
else
XSPRINTF(line + 1 + i * 3, " ");
}
XSPRINTF(line + 1 + LINE_LEN * 3, "| ");
for (i = 0; i < LINE_LEN; i++) {
if (i < length) {
XSPRINTF(line + 3 + LINE_LEN * 3 + i,
"%c", 31 < buf[i] && buf[i] < 127 ? buf[i] : '.');
}
}
ret += XFPUTS(line, (XFILE)bio->ptr);
if (length > LINE_LEN)
ret += wolfSSL_BIO_dump(bio, buf + LINE_LEN, length - LINE_LEN);
}
#else
(void)buf;
(void)length;
#endif
return ret;
}
#ifndef NO_ASN_TIME
int wolfSSL_ASN1_UTCTIME_print(WOLFSSL_BIO* bio, const WOLFSSL_ASN1_UTCTIME* a)
{
WOLFSSL_ENTER("ASN1_UTCTIME_print");
if (bio == NULL || a == NULL) {
return WOLFSSL_FAILURE;
}
if (a->type != ASN_UTC_TIME) {
WOLFSSL_MSG("Error, not UTC_TIME");
return WOLFSSL_FAILURE;
}
return wolfSSL_ASN1_TIME_print(bio, a);
}
#endif /* !NO_BIO */
/* Checks the ASN1 syntax of "a"
* returns WOLFSSL_SUCCESS (1) if correct otherwise WOLFSSL_FAILURE (0) */
int wolfSSL_ASN1_TIME_check(const WOLFSSL_ASN1_TIME* a)
{
char buf[MAX_TIME_STRING_SZ];
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_check");
/* if can parse the WOLFSSL_ASN1_TIME passed in then consider syntax good */
if (wolfSSL_ASN1_TIME_to_string((WOLFSSL_ASN1_TIME*)a, buf,
MAX_TIME_STRING_SZ) == NULL) {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* !NO_ASN_TIME */
#ifndef NO_WOLFSSL_STUB
int wolfSSL_ASN1_TIME_diff(int *pday, int *psec,
const WOLFSSL_ASN1_TIME *from, const WOLFSSL_ASN1_TIME *to)
{
WOLFSSL_STUB("wolfSSL_ASN1_TIME_diff");
(void)pday;
(void)psec;
(void)from;
(void)to;
return 0;
}
WOLFSSL_ASN1_TIME *wolfSSL_ASN1_TIME_set(WOLFSSL_ASN1_TIME *s, time_t t)
{
WOLFSSL_STUB("wolfSSL_ASN1_TIME_set");
(void)s;
(void)t;
return s;
}
int wolfSSL_ASN1_TIME_set_string(WOLFSSL_ASN1_TIME *s, const char *str)
{
int slen;
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_set_string");
if (!str) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
slen = (int)XSTRLEN(str)+1;
if (slen > CTC_DATE_SIZE) {
WOLFSSL_MSG("Date string too long");
return WOLFSSL_FAILURE;
}
if (s) {
XMEMCPY(s->data, str, slen);
s->length = slen;
s->type = slen == ASN_UTC_TIME_SIZE ? ASN_UTC_TIME : ASN_GENERALIZED_TIME;
}
return WOLFSSL_SUCCESS;
}
#endif /* !NO_WOLFSSL_STUB */
#ifndef NO_BIO
/* Return the month as a string.
*
* n The number of the month as a two characters (1 based).
* returns the month as a string.
*/
static WC_INLINE const char* MonthStr(const char* n)
{
static const char monthStr[12][4] = {
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec" };
return monthStr[(n[0] - '0') * 10 + (n[1] - '0') - 1];
}
int wolfSSL_ASN1_GENERALIZEDTIME_print(WOLFSSL_BIO* bio,
const WOLFSSL_ASN1_GENERALIZEDTIME* asnTime)
{
const char* p;
WOLFSSL_ENTER("wolfSSL_ASN1_GENERALIZEDTIME_print");
if (bio == NULL || asnTime == NULL)
return BAD_FUNC_ARG;
if (asnTime->type != ASN_GENERALIZED_TIME) {
WOLFSSL_MSG("Error, not GENERALIZED_TIME");
return WOLFSSL_FAILURE;
}
p = (const char *)(asnTime->data);
/* GetTimeString not always available. */
wolfSSL_BIO_write(bio, MonthStr(p + 4), 3);
wolfSSL_BIO_write(bio, " ", 1);
/* Day */
wolfSSL_BIO_write(bio, p + 6, 2);
wolfSSL_BIO_write(bio, " ", 1);
/* Hour */
wolfSSL_BIO_write(bio, p + 8, 2);
wolfSSL_BIO_write(bio, ":", 1);
/* Min */
wolfSSL_BIO_write(bio, p + 10, 2);
wolfSSL_BIO_write(bio, ":", 1);
/* Secs */
wolfSSL_BIO_write(bio, p + 12, 2);
wolfSSL_BIO_write(bio, " ", 1);
wolfSSL_BIO_write(bio, p, 4);
return 0;
}
#endif /* !NO_BIO */
void wolfSSL_ASN1_GENERALIZEDTIME_free(WOLFSSL_ASN1_TIME* asn1Time)
{
WOLFSSL_ENTER("wolfSSL_ASN1_GENERALIZEDTIME_free");
if (asn1Time == NULL)
return;
XMEMSET(asn1Time->data, 0, sizeof(asn1Time->data));
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
int wolfSSL_sk_num(const WOLFSSL_STACK* sk)
{
WOLFSSL_ENTER("wolfSSL_sk_num");
if (sk == NULL)
return 0;
return (int)sk->num;
}
void* wolfSSL_sk_value(const WOLFSSL_STACK* sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_value");
for (; sk != NULL && i > 0; i--)
sk = sk->next;
if (sk == NULL)
return NULL;
switch (sk->type) {
case STACK_TYPE_X509:
return (void*)sk->data.x509;
case STACK_TYPE_CIPHER:
return (void*)&sk->data.cipher;
case STACK_TYPE_GEN_NAME:
return (void*)sk->data.gn;
case STACK_TYPE_ACCESS_DESCRIPTION:
return (void*)sk->data.access;
case STACK_TYPE_OBJ:
return (void*)sk->data.obj;
case STACK_TYPE_X509_EXT:
return (void*)sk->data.ext;
#ifdef OPENSSL_EXTRA
case STACK_TYPE_CONF_VALUE:
return (void*)sk->data.conf;
#endif
case STACK_TYPE_NULL:
default:
return (void*)sk->data.generic;
}
}
/* copies over data of "in" to "out" */
static void wolfSSL_CIPHER_copy(WOLFSSL_CIPHER* in, WOLFSSL_CIPHER* out)
{
if (in == NULL || out == NULL)
return;
*out = *in;
}
WOLFSSL_STACK* wolfSSL_sk_dup(WOLFSSL_STACK* sk)
{
WOLFSSL_STACK* ret = NULL;
WOLFSSL_STACK* last = NULL;
WOLFSSL_ENTER("wolfSSL_sk_dup");
while (sk) {
WOLFSSL_STACK* cur = wolfSSL_sk_new_node(sk->heap);
if (!cur) {
WOLFSSL_MSG("wolfSSL_sk_new_node error");
goto error;
}
if (!ret) {
/* Set first node */
ret = cur;
}
if (last) {
last->next = cur;
}
XMEMCPY(cur, sk, sizeof(WOLFSSL_STACK));
/* We will allocate new memory for this */
XMEMSET(&cur->data, 0, sizeof(cur->data));
cur->next = NULL;
switch (sk->type) {
case STACK_TYPE_X509:
cur->data.x509 = wolfSSL_X509_dup(sk->data.x509);
if (!cur->data.x509) {
WOLFSSL_MSG("wolfSSL_X509_dup error");
goto error;
}
break;
case STACK_TYPE_CIPHER:
wolfSSL_CIPHER_copy(&sk->data.cipher, &cur->data.cipher);
break;
case STACK_TYPE_GEN_NAME:
cur->data.gn = wolfSSL_GENERAL_NAME_dup(sk->data.gn);
if (!cur->data.gn) {
WOLFSSL_MSG("wolfSSL_GENERAL_NAME_new error");
goto error;
}
break;
case STACK_TYPE_OBJ:
cur->data.obj = wolfSSL_ASN1_OBJECT_dup(sk->data.obj);
if (!cur->data.obj) {
WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_dup error");
goto error;
}
break;
case STACK_TYPE_ACCESS_DESCRIPTION:
case STACK_TYPE_X509_EXT:
case STACK_TYPE_CONF_VALUE:
case STACK_TYPE_NULL:
default:
WOLFSSL_MSG("Unsupported stack type");
goto error;
}
sk = sk->next;
last = cur;
}
return ret;
error:
if (ret) {
wolfSSL_sk_GENERAL_NAME_free(ret);
}
return NULL;
}
/* Free the structure for ASN1_OBJECT stack */
void wolfSSL_sk_free(WOLFSSL_STACK* sk)
{
WOLFSSL_ENTER("wolfSSL_sk_free");
if (sk == NULL) {
WOLFSSL_MSG("Error, BAD_FUNC_ARG");
return;
}
switch (sk->type) {
case STACK_TYPE_X509:
wolfSSL_sk_X509_free(sk);
break;
#if defined(OPENSSL_ALL)
case STACK_TYPE_CIPHER:
wolfSSL_sk_CIPHER_free(sk);
break;
#endif
case STACK_TYPE_GEN_NAME:
wolfSSL_sk_GENERAL_NAME_free(sk);
break;
#if defined(OPENSSL_ALL) || defined (WOLFSSL_QT)
case STACK_TYPE_ACCESS_DESCRIPTION:
wolfSSL_sk_ACCESS_DESCRIPTION_free(sk);
break;
#endif
case STACK_TYPE_OBJ:
wolfSSL_sk_ASN1_OBJECT_free(sk);
break;
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \
defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
case STACK_TYPE_STRING:
wolfSSL_sk_WOLFSSL_STRING_free(sk);
break;
#endif
#ifdef OPENSSL_ALL
case STACK_TYPE_X509_INFO:
wolfSSL_sk_X509_INFO_free(sk);
break;
case STACK_TYPE_X509_NAME:
wolfSSL_sk_X509_NAME_free(sk);
break;
case STACK_TYPE_CONF_VALUE:
wolfSSL_sk_CONF_VALUE_free(sk);
break;
#endif
case STACK_TYPE_NULL:
default:
wolfSSL_sk_GENERIC_free(sk);
}
}
/* Frees each node in the stack and frees the stack.
* Does not free any internal members of the stack nodes.
*/
void wolfSSL_sk_GENERIC_pop_free(WOLFSSL_STACK* sk,
void (*f) (void*))
{
WOLFSSL_STACK* node;
WOLFSSL_STACK* tmp;
WOLFSSL_ENTER("wolfSSL_sk_GENERIC_pop_free");
if (sk == NULL)
return;
/* parse through stack freeing each node */
node = sk->next;
while (node) {
tmp = node;
node = node->next;
if (f)
f(tmp->data.generic);
tmp->data.generic = NULL;
XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL);
}
/* free head of stack */
XFREE(sk, NULL, DYNAMIC_TYPE_ASN1);
}
/* return 1 on success 0 on fail */
int wolfSSL_sk_GENERIC_push(WOLFSSL_STACK* sk, void* generic)
{
WOLFSSL_ENTER("wolfSSL_sk_GENERIC_push");
return wolfSSL_sk_push(sk, generic);
}
void wolfSSL_sk_GENERIC_free(WOLFSSL_STACK* sk)
{
wolfSSL_sk_GENERIC_pop_free(sk, NULL);
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
/* Free all nodes in a stack */
void wolfSSL_sk_pop_free(WOLF_STACK_OF(WOLFSSL_ASN1_OBJECT)* sk,
wolfSSL_sk_freefunc func)
{
WOLFSSL_ENTER("wolfSSL_sk_pop_free");
if (sk == NULL) {
WOLFSSL_MSG("Error, BAD_FUNC_ARG");
return;
}
switch(sk->type) {
#if defined(OPENSSL_ALL) || defined (WOLFSSL_QT)
case STACK_TYPE_ACCESS_DESCRIPTION:
wolfSSL_sk_ACCESS_DESCRIPTION_pop_free(sk,
wolfSSL_ACCESS_DESCRIPTION_free);
break;
#endif
case STACK_TYPE_X509:
wolfSSL_sk_X509_pop_free(sk,(void (*)(WOLFSSL_X509*))func);
break;
case STACK_TYPE_OBJ:
wolfSSL_sk_ASN1_OBJECT_pop_free(sk,
(void (*)(WOLFSSL_ASN1_OBJECT*))func);
break;
case STACK_TYPE_GEN_NAME:
wolfSSL_sk_GENERAL_NAME_pop_free(sk,
(void (*)(WOLFSSL_GENERAL_NAME*))func);
break;
#ifdef OPENSSL_ALL
case STACK_TYPE_X509_NAME:
wolfSSL_sk_X509_NAME_pop_free(sk,
(void (*)(WOLFSSL_X509_NAME*))func);
break;
case STACK_TYPE_X509_EXT:
wolfSSL_sk_X509_EXTENSION_pop_free(sk,
(void (*)(WOLFSSL_X509_EXTENSION*))func);
break;
#endif
#if defined(OPENSSL_ALL)
case STACK_TYPE_X509_INFO:
wolfSSL_sk_X509_INFO_pop_free(sk,
(void (*)(WOLFSSL_X509_INFO*))func);
break;
#endif
default:
wolfSSL_sk_GENERIC_pop_free(sk,
(void (*)(void*))func);
break;
}
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
/* Creates and returns a new null stack. */
WOLFSSL_STACK* wolfSSL_sk_new_null(void)
{
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_sk_new_null");
sk = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_OPENSSL);
if (sk == NULL) {
WOLFSSL_MSG("WOLFSSL_STACK memory error");
return NULL;
}
XMEMSET(sk, 0, sizeof(WOLFSSL_STACK));
sk->type = STACK_TYPE_NULL;
return sk;
}
WOLFSSL_BASIC_CONSTRAINTS* wolfSSL_BASIC_CONSTRAINTS_new(void)
{
WOLFSSL_BASIC_CONSTRAINTS* bc;
bc = (WOLFSSL_BASIC_CONSTRAINTS*)
XMALLOC(sizeof(WOLFSSL_BASIC_CONSTRAINTS), NULL,
DYNAMIC_TYPE_X509_EXT);
if (bc == NULL) {
WOLFSSL_MSG("Failed to malloc basic constraints");
return NULL;
}
XMEMSET(bc, 0, sizeof(WOLFSSL_BASIC_CONSTRAINTS));
return bc;
}
/* frees the wolfSSL_BASIC_CONSTRAINTS object */
void wolfSSL_BASIC_CONSTRAINTS_free(WOLFSSL_BASIC_CONSTRAINTS *bc)
{
WOLFSSL_ENTER("wolfSSL_BASIC_CONSTRAINTS_free");
if (bc == NULL) {
WOLFSSL_MSG("Argument is NULL");
return;
}
if (bc->pathlen) {
wolfSSL_ASN1_INTEGER_free(bc->pathlen);
}
XFREE(bc, NULL, DYNAMIC_TYPE_OPENSSL);
}
WOLFSSL_AUTHORITY_KEYID* wolfSSL_AUTHORITY_KEYID_new(void)
{
WOLFSSL_AUTHORITY_KEYID* akey = (WOLFSSL_AUTHORITY_KEYID*)XMALLOC(
sizeof(WOLFSSL_AUTHORITY_KEYID), NULL, DYNAMIC_TYPE_OPENSSL);
if (!akey) {
WOLFSSL_MSG("Issue creating WOLFSSL_AUTHORITY_KEYID struct");
return NULL;
}
XMEMSET(akey, 0, sizeof(WOLFSSL_AUTHORITY_KEYID));
return akey;
}
/* frees the wolfSSL_AUTHORITY_KEYID object */
void wolfSSL_AUTHORITY_KEYID_free(WOLFSSL_AUTHORITY_KEYID *id)
{
WOLFSSL_ENTER("wolfSSL_AUTHORITY_KEYID_free");
if(id == NULL) {
WOLFSSL_MSG("Argument is NULL");
return;
}
if (id->keyid) {
wolfSSL_ASN1_STRING_free(id->keyid);
}
if (id->issuer) {
wolfSSL_ASN1_OBJECT_free(id->issuer);
}
if (id->serial) {
wolfSSL_ASN1_INTEGER_free(id->serial);
}
XFREE(id, NULL, DYNAMIC_TYPE_OPENSSL);
}
int wolfSSL_sk_SSL_COMP_num(WOLF_STACK_OF(WOLFSSL_COMP)* sk)
{
if (sk == NULL)
return 0;
return (int)sk->num;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#if !defined(NO_SESSION_CACHE) && (defined(OPENSSL_EXTRA) || \
defined(HAVE_EXT_CACHE))
/* stunnel 4.28 needs
*
* Callback that is called if a session tries to resume but could not find
* the session to resume it.
*/
void wolfSSL_CTX_sess_set_get_cb(WOLFSSL_CTX* ctx,
WOLFSSL_SESSION*(*f)(WOLFSSL*, unsigned char*, int, int*))
{
if (ctx == NULL)
return;
#ifdef HAVE_EXT_CACHE
ctx->get_sess_cb = f;
#else
(void)f;
#endif
}
void wolfSSL_CTX_sess_set_new_cb(WOLFSSL_CTX* ctx,
int (*f)(WOLFSSL*, WOLFSSL_SESSION*))
{
if (ctx == NULL)
return;
#ifdef HAVE_EXT_CACHE
ctx->new_sess_cb = f;
#else
(void)f;
#endif
}
void wolfSSL_CTX_sess_set_remove_cb(WOLFSSL_CTX* ctx, void (*f)(WOLFSSL_CTX*,
WOLFSSL_SESSION*))
{
if (ctx == NULL)
return;
#ifdef HAVE_EXT_CACHE
ctx->rem_sess_cb = f;
#else
(void)f;
#endif
}
/*
*
* Note: It is expected that the importing and exporting function have been
* built with the same settings. For example if session tickets was
* enabled with the wolfSSL library exporting a session then it is
* expected to be turned on with the wolfSSL library importing the session.
*/
int wolfSSL_i2d_SSL_SESSION(WOLFSSL_SESSION* sess, unsigned char** p)
{
int size = 0;
#ifdef HAVE_EXT_CACHE
int idx = 0;
#ifdef SESSION_CERTS
int i;
#endif
unsigned char *data;
if (sess == NULL) {
return BAD_FUNC_ARG;
}
/* side | bornOn | timeout | sessionID len | sessionID | masterSecret |
* haveEMS */
size += OPAQUE8_LEN + OPAQUE32_LEN + OPAQUE32_LEN + OPAQUE8_LEN +
sess->sessionIDSz + SECRET_LEN + OPAQUE8_LEN;
#ifdef SESSION_CERTS
/* Peer chain */
size += OPAQUE8_LEN;
for (i = 0; i < sess->chain.count; i++)
size += OPAQUE16_LEN + sess->chain.certs[i].length;
#endif
#if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \
defined(HAVE_SESSION_TICKET))
/* Protocol version */
size += OPAQUE16_LEN;
#endif
#if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET))
/* cipher suite */
size += OPAQUE16_LEN;
#endif
#ifndef NO_CLIENT_CACHE
/* ServerID len | ServerID */
size += OPAQUE16_LEN + sess->idLen;
#endif
#ifdef OPENSSL_EXTRA
/* session context ID len | session context ID */
size += OPAQUE8_LEN + sess->sessionCtxSz;
#endif
#ifdef WOLFSSL_TLS13
/* namedGroup */
size += OPAQUE16_LEN;
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
#ifdef WOLFSSL_TLS13
/* ticketSeen | ticketAdd */
size += OPAQUE32_LEN + OPAQUE32_LEN;
/* ticketNonce */
size += OPAQUE8_LEN + sess->ticketNonce.len;
#endif
#ifdef WOLFSSL_EARLY_DATA
size += OPAQUE32_LEN;
#endif
#endif
#ifdef HAVE_SESSION_TICKET
/* ticket len | ticket */
size += OPAQUE16_LEN + sess->ticketLen;
#endif
if (p != NULL) {
if (*p == NULL)
*p = (unsigned char*)XMALLOC(size, NULL, DYNAMIC_TYPE_OPENSSL);
if (*p == NULL)
return 0;
data = *p;
data[idx++] = sess->side;
c32toa(sess->bornOn, data + idx); idx += OPAQUE32_LEN;
c32toa(sess->timeout, data + idx); idx += OPAQUE32_LEN;
data[idx++] = sess->sessionIDSz;
XMEMCPY(data + idx, sess->sessionID, sess->sessionIDSz);
idx += sess->sessionIDSz;
XMEMCPY(data + idx, sess->masterSecret, SECRET_LEN); idx += SECRET_LEN;
data[idx++] = (byte)sess->haveEMS;
#ifdef SESSION_CERTS
data[idx++] = (byte)sess->chain.count;
for (i = 0; i < sess->chain.count; i++) {
c16toa((word16)sess->chain.certs[i].length, data + idx);
idx += OPAQUE16_LEN;
XMEMCPY(data + idx, sess->chain.certs[i].buffer,
sess->chain.certs[i].length);
idx += sess->chain.certs[i].length;
}
#endif
#if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \
defined(HAVE_SESSION_TICKET))
data[idx++] = sess->version.major;
data[idx++] = sess->version.minor;
#endif
#if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET))
data[idx++] = sess->cipherSuite0;
data[idx++] = sess->cipherSuite;
#endif
#ifndef NO_CLIENT_CACHE
c16toa(sess->idLen, data + idx); idx += OPAQUE16_LEN;
XMEMCPY(data + idx, sess->serverID, sess->idLen);
idx += sess->idLen;
#endif
#ifdef OPENSSL_EXTRA
data[idx++] = sess->sessionCtxSz;
XMEMCPY(data + idx, sess->sessionCtx, sess->sessionCtxSz);
idx += sess->sessionCtxSz;
#endif
#ifdef WOLFSSL_TLS13
c16toa(sess->namedGroup, data + idx);
idx += OPAQUE16_LEN;
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
#ifdef WOLFSSL_TLS13
c32toa(sess->ticketSeen, data + idx);
idx += OPAQUE32_LEN;
c32toa(sess->ticketAdd, data + idx);
idx += OPAQUE32_LEN;
data[idx++] = sess->ticketNonce.len;
XMEMCPY(data + idx, sess->ticketNonce.data, sess->ticketNonce.len);
idx += sess->ticketNonce.len;
#endif
#ifdef WOLFSSL_EARLY_DATA
c32toa(sess->maxEarlyDataSz, data + idx);
idx += OPAQUE32_LEN;
#endif
#endif
#ifdef HAVE_SESSION_TICKET
c16toa(sess->ticketLen, data + idx); idx += OPAQUE16_LEN;
XMEMCPY(data + idx, sess->ticket, sess->ticketLen);
idx += sess->ticketLen;
#endif
}
#endif
(void)sess;
(void)p;
#ifdef HAVE_EXT_CACHE
(void)idx;
#endif
return size;
}
/* TODO: no function to free new session.
*
* Note: It is expected that the importing and exporting function have been
* built with the same settings. For example if session tickets was
* enabled with the wolfSSL library exporting a session then it is
* expected to be turned on with the wolfSSL library importing the session.
*/
WOLFSSL_SESSION* wolfSSL_d2i_SSL_SESSION(WOLFSSL_SESSION** sess,
const unsigned char** p, long i)
{
WOLFSSL_SESSION* s = NULL;
int ret = 0;
#if defined(HAVE_EXT_CACHE)
int idx;
byte* data;
#ifdef SESSION_CERTS
int j;
word16 length;
#endif
#endif
(void)p;
(void)i;
(void)ret;
if (sess != NULL)
s = *sess;
#ifdef HAVE_EXT_CACHE
if (p == NULL || *p == NULL)
return NULL;
if (s == NULL) {
s = wolfSSL_SESSION_new();
if (s == NULL)
return NULL;
#ifdef HAVE_SESSION_TICKET
s->isDynamic = 0;
#endif
}
idx = 0;
data = (byte*)*p;
/* side | bornOn | timeout | sessionID len */
if (i < OPAQUE8_LEN + OPAQUE32_LEN + OPAQUE32_LEN + OPAQUE8_LEN) {
ret = BUFFER_ERROR;
goto end;
}
s->side = data[idx++];
ato32(data + idx, &s->bornOn); idx += OPAQUE32_LEN;
ato32(data + idx, &s->timeout); idx += OPAQUE32_LEN;
s->sessionIDSz = data[idx++];
/* sessionID | secret | haveEMS */
if (i - idx < s->sessionIDSz + SECRET_LEN + OPAQUE8_LEN) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->sessionID, data + idx, s->sessionIDSz);
idx += s->sessionIDSz;
XMEMCPY(s->masterSecret, data + idx, SECRET_LEN); idx += SECRET_LEN;
s->haveEMS = data[idx++];
#ifdef SESSION_CERTS
/* Certificate chain */
if (i - idx == 0) {
ret = BUFFER_ERROR;
goto end;
}
s->chain.count = data[idx++];
for (j = 0; j < s->chain.count; j++) {
if (i - idx < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
ato16(data + idx, &length); idx += OPAQUE16_LEN;
s->chain.certs[j].length = length;
if (i - idx < length) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->chain.certs[j].buffer, data + idx, length);
idx += length;
}
#endif
#if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \
defined(HAVE_SESSION_TICKET))
/* Protocol Version */
if (i - idx < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
s->version.major = data[idx++];
s->version.minor = data[idx++];
#endif
#if defined(SESSION_CERTS) || !defined(NO_RESUME_SUITE_CHECK) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET))
/* Cipher suite */
if (i - idx < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
s->cipherSuite0 = data[idx++];
s->cipherSuite = data[idx++];
#endif
#ifndef NO_CLIENT_CACHE
/* ServerID len */
if (i - idx < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
ato16(data + idx, &s->idLen); idx += OPAQUE16_LEN;
/* ServerID */
if (i - idx < s->idLen) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->serverID, data + idx, s->idLen); idx += s->idLen;
#endif
#ifdef OPENSSL_EXTRA
/* byte for length of session context ID */
if (i - idx < OPAQUE8_LEN) {
ret = BUFFER_ERROR;
goto end;
}
s->sessionCtxSz = data[idx++];
/* app session context ID */
if (i - idx < s->sessionCtxSz) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->sessionCtx, data + idx, s->sessionCtxSz); idx += s->sessionCtxSz;
#endif
#ifdef WOLFSSL_TLS13
if (i - idx < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
ato16(data + idx, &s->namedGroup);
idx += OPAQUE16_LEN;
#endif
#if defined(HAVE_SESSION_TICKET) || !defined(NO_PSK)
#ifdef WOLFSSL_TLS13
if (i - idx < (OPAQUE32_LEN * 2)) {
ret = BUFFER_ERROR;
goto end;
}
ato32(data + idx, &s->ticketSeen);
idx += OPAQUE32_LEN;
ato32(data + idx, &s->ticketAdd);
idx += OPAQUE32_LEN;
if (i - idx < OPAQUE8_LEN) {
ret = BUFFER_ERROR;
goto end;
}
s->ticketNonce.len = data[idx++];
if (i - idx < s->ticketNonce.len) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->ticketNonce.data, data + idx, s->ticketNonce.len);
idx += s->ticketNonce.len;
#endif
#ifdef WOLFSSL_EARLY_DATA
if (i - idx < OPAQUE32_LEN) {
ret = BUFFER_ERROR;
goto end;
}
ato32(data + idx, &s->maxEarlyDataSz);
idx += OPAQUE32_LEN;
#endif
#endif
#ifdef HAVE_SESSION_TICKET
/* ticket len */
if (i - idx < OPAQUE16_LEN) {
ret = BUFFER_ERROR;
goto end;
}
ato16(data + idx, &s->ticketLen); idx += OPAQUE16_LEN;
/* Dispose of ol dynamic ticket and ensure space for new ticket. */
if (s->isDynamic)
XFREE(s->ticket, NULL, DYNAMIC_TYPE_SESSION_TICK);
if (s->ticketLen <= SESSION_TICKET_LEN)
s->ticket = s->staticTicket;
else {
s->ticket = (byte*)XMALLOC(s->ticketLen, NULL,
DYNAMIC_TYPE_SESSION_TICK);
if (s->ticket == NULL) {
ret = MEMORY_ERROR;
goto end;
}
s->isDynamic = 1;
}
/* ticket */
if (i - idx < s->ticketLen) {
ret = BUFFER_ERROR;
goto end;
}
XMEMCPY(s->ticket, data + idx, s->ticketLen); idx += s->ticketLen;
#endif
(void)idx;
if (sess != NULL)
*sess = s;
*p += idx;
end:
if (ret != 0 && (sess == NULL || *sess != s)) {
wolfSSL_SESSION_free(s);
s = NULL;
}
#endif
return s;
}
long wolfSSL_SESSION_get_timeout(const WOLFSSL_SESSION* sess)
{
long timeout = 0;
WOLFSSL_ENTER("wolfSSL_SESSION_get_timeout");
if (sess)
timeout = sess->timeout;
return timeout;
}
long wolfSSL_SESSION_get_time(const WOLFSSL_SESSION* sess)
{
long bornOn = 0;
WOLFSSL_ENTER("wolfSSL_SESSION_get_time");
if (sess)
bornOn = sess->bornOn;
return bornOn;
}
long wolfSSL_SSL_SESSION_set_timeout(WOLFSSL_SESSION* ses, long t)
{
word32 tmptime;
if (!ses || t < 0)
return BAD_FUNC_ARG;
tmptime = t & 0xFFFFFFFF;
ses->timeout = tmptime;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_SESSION_CACHE && OPENSSL_EXTRA || HAVE_EXT_CACHE */
#ifdef KEEP_PEER_CERT
char* wolfSSL_X509_get_subjectCN(WOLFSSL_X509* x509)
{
if (x509 == NULL)
return NULL;
return x509->subjectCN;
}
#endif /* KEEP_PEER_CERT */
#ifdef OPENSSL_EXTRA
#if defined(FORTRESS) && !defined(NO_FILESYSTEM)
int wolfSSL_cmp_peer_cert_to_file(WOLFSSL* ssl, const char *fname)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_cmp_peer_cert_to_file");
if (ssl != NULL && fname != NULL)
{
#ifdef WOLFSSL_SMALL_STACK
byte staticBuffer[1]; /* force heap usage */
#else
byte staticBuffer[FILE_BUFFER_SIZE];
#endif
byte* myBuffer = staticBuffer;
int dynamic = 0;
XFILE file;
long sz = 0;
WOLFSSL_CTX* ctx = ssl->ctx;
WOLFSSL_X509* peer_cert = &ssl->peerCert;
DerBuffer* fileDer = NULL;
file = XFOPEN(fname, "rb");
if (file == XBADFILE)
return WOLFSSL_BAD_FILE;
if (XFSEEK(file, 0, XSEEK_END) != 0) {
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
sz = XFTELL(file);
XREWIND(file);
if (sz > MAX_WOLFSSL_FILE_SIZE || sz < 0) {
WOLFSSL_MSG("cmp_peer_cert_to_file size error");
XFCLOSE(file);
return WOLFSSL_BAD_FILE;
}
if (sz > (long)sizeof(staticBuffer)) {
WOLFSSL_MSG("Getting dynamic buffer");
myBuffer = (byte*)XMALLOC(sz, ctx->heap, DYNAMIC_TYPE_FILE);
dynamic = 1;
}
if ((myBuffer != NULL) &&
(sz > 0) &&
(XFREAD(myBuffer, 1, sz, file) == (size_t)sz) &&
(PemToDer(myBuffer, (long)sz, CERT_TYPE,
&fileDer, ctx->heap, NULL, NULL) == 0) &&
(fileDer->length != 0) &&
(fileDer->length == peer_cert->derCert->length) &&
(XMEMCMP(peer_cert->derCert->buffer, fileDer->buffer,
fileDer->length) == 0))
{
ret = 0;
}
FreeDer(&fileDer);
if (dynamic)
XFREE(myBuffer, ctx->heap, DYNAMIC_TYPE_FILE);
XFCLOSE(file);
}
return ret;
}
#endif
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
const WOLFSSL_ObjectInfo wolfssl_object_info[] = {
#ifndef NO_CERTS
/* oidCertExtType */
{ NID_basic_constraints, BASIC_CA_OID, oidCertExtType, "basicConstraints",
"X509v3 Basic Constraints"},
{ NID_subject_alt_name, ALT_NAMES_OID, oidCertExtType, "subjectAltName",
"X509v3 Subject Alternative Name"},
{ CRL_DIST_OID, CRL_DIST_OID, oidCertExtType, "crlDistributionPoints",
"X509v3 CRL Distribution Points"},
{ NID_info_access, AUTH_INFO_OID, oidCertExtType, "authorityInfoAccess",
"Authority Information Access"},
{ NID_authority_key_identifier, AUTH_KEY_OID, oidCertExtType,
"authorityKeyIdentifier", "X509v3 Authority Key Identifier"},
{ NID_subject_key_identifier, SUBJ_KEY_OID, oidCertExtType,
"subjectKeyIdentifier", "X509v3 Subject Key Identifier"},
{ NID_key_usage, KEY_USAGE_OID, oidCertExtType, "keyUsage",
"X509v3 Key Usage"},
{ NID_inhibit_any_policy, INHIBIT_ANY_OID, oidCertExtType,
"inhibitAnyPolicy", "X509v3 Inhibit Any Policy"},
{ NID_ext_key_usage, KEY_USAGE_OID, oidCertExtType,
"extendedKeyUsage", "X509v3 Extended Key Usage"},
{ NID_name_constraints, NAME_CONS_OID, oidCertExtType,
"nameConstraints", "X509v3 Name Constraints"},
{ NID_certificate_policies, CERT_POLICY_OID, oidCertExtType,
"certificatePolicies", "X509v3 Certificate Policies"},
/* oidCertAuthInfoType */
{ AIA_OCSP_OID, AIA_OCSP_OID, oidCertAuthInfoType, "authorityInfoAccess",
"Authority Information Access"},
{ AIA_CA_ISSUER_OID, AIA_CA_ISSUER_OID, oidCertAuthInfoType,
"caIssuers", "CA Issuers"},
/* oidCertPolicyType */
{ NID_any_policy, CP_ANY_OID, oidCertPolicyType, "anyPolicy",
"X509v3 Any Policy"},
/* oidCertAltNameType */
{ NID_hw_name_oid, HW_NAME_OID, oidCertAltNameType, "Hardware name",""},
/* oidCertKeyUseType */
{ NID_anyExtendedKeyUsage, EKU_ANY_OID, oidCertKeyUseType,
"anyExtendedKeyUsage", "Any Extended Key Usage"},
{ EKU_SERVER_AUTH_OID, EKU_SERVER_AUTH_OID, oidCertKeyUseType,
"serverAuth", "TLS Web Server Authentication"},
{ EKU_CLIENT_AUTH_OID, EKU_CLIENT_AUTH_OID, oidCertKeyUseType,
"clientAuth", "TLS Web Client Authentication"},
{ EKU_OCSP_SIGN_OID, EKU_OCSP_SIGN_OID, oidCertKeyUseType,
"OCSPSigning", "OCSP Signing"},
/* oidCertNameType */
{ NID_commonName, NID_commonName, oidCertNameType, "CN", "commonName"},
{ NID_surname, NID_surname, oidCertNameType, "SN", "surname"},
{ NID_serialNumber, NID_serialNumber, oidCertNameType, "serialNumber",
"serialNumber"},
{ NID_countryName, NID_countryName, oidCertNameType, "C", "countryName"},
{ NID_localityName, NID_localityName, oidCertNameType, "L", "localityName"},
{ NID_stateOrProvinceName, NID_stateOrProvinceName, oidCertNameType, "ST",
"stateOrProvinceName"},
{ NID_organizationName, NID_organizationName, oidCertNameType, "O",
"organizationName"},
{ NID_organizationalUnitName, NID_organizationalUnitName, oidCertNameType,
"OU", "organizationalUnitName"},
{ NID_emailAddress, NID_emailAddress, oidCertNameType, "emailAddress",
"emailAddress"},
{ NID_domainComponent, NID_domainComponent, oidCertNameType, "DC",
"domainComponent"},
{ NID_businessCategory, NID_businessCategory, oidCertNameType, "businessCategory",
"businessCategory"},
{ NID_jurisdictionCountryName, NID_jurisdictionCountryName, oidCertNameType, "jurisdictionC",
"jurisdictionCountryName"},
{ NID_jurisdictionStateOrProvinceName, NID_jurisdictionStateOrProvinceName,
oidCertNameType, "jurisdictionST", "jurisdictionStateOrProvinceName"},
#ifdef WOLFSSL_CERT_REQ
{ NID_pkcs9_challengePassword, CHALLENGE_PASSWORD_OID,
oidCsrAttrType, "challengePassword", "challengePassword"},
#endif
#endif
#ifdef OPENSSL_EXTRA /* OPENSSL_EXTRA_X509_SMALL only needs the above */
/* oidHashType */
#ifdef WOLFSSL_MD2
{ NID_md2, MD2h, oidHashType, "MD2", "md2"},
#endif
#ifdef WOLFSSL_MD5
{ NID_md5, MD5h, oidHashType, "MD5", "md5"},
#endif
#ifndef NO_SHA
{ NID_sha1, SHAh, oidHashType, "SHA1", "sha1"},
#endif
#ifdef WOLFSSL_SHA224
{ NID_sha224, SHA224h, oidHashType, "SHA224", "sha224"},
#endif
#ifndef NO_SHA256
{ NID_sha256, SHA256h, oidHashType, "SHA256", "sha256"},
#endif
#ifdef WOLFSSL_SHA384
{ NID_sha384, SHA384h, oidHashType, "SHA384", "sha384"},
#endif
#ifdef WOLFSSL_SHA512
{ NID_sha512, SHA512h, oidHashType, "SHA512", "sha512"},
#endif
/* oidSigType */
#ifndef NO_DSA
#ifndef NO_SHA
{ CTC_SHAwDSA, CTC_SHAwDSA, oidSigType, "DSA-SHA1", "dsaWithSHA1"},
{ CTC_SHA256wDSA, CTC_SHA256wDSA, oidSigType, "dsa_with_SHA256",
"dsa_with_SHA256"},
#endif
#endif /* NO_DSA */
#ifndef NO_RSA
#ifdef WOLFSSL_MD2
{ CTC_MD2wRSA, CTC_MD2wRSA, oidSigType, "RSA-MD2",
"md2WithRSAEncryption"},
#endif
#ifndef NO_MD5
{ CTC_MD5wRSA, CTC_MD5wRSA, oidSigType, "RSA-MD5",
"md5WithRSAEncryption"},
#endif
#ifndef NO_SHA
{ CTC_SHAwRSA, CTC_SHAwRSA, oidSigType, "RSA-SHA1",
"sha1WithRSAEncryption"},
#endif
#ifdef WOLFSSL_SHA224
{ CTC_SHA224wRSA, CTC_SHA224wRSA, oidSigType, "RSA-SHA224",
"sha224WithRSAEncryption"},
#endif
#ifndef NO_SHA256
{ CTC_SHA256wRSA, CTC_SHA256wRSA, oidSigType, "RSA-SHA256",
"sha256WithRSAEncryption"},
#endif
#ifdef WOLFSSL_SHA384
{ CTC_SHA384wRSA, CTC_SHA384wRSA, oidSigType, "RSA-SHA384",
"sha384WithRSAEncryption"},
#endif
#ifdef WOLFSSL_SHA512
{ CTC_SHA512wRSA, CTC_SHA512wRSA, oidSigType, "RSA-SHA512",
"sha512WithRSAEncryption"},
#endif
#endif /* NO_RSA */
#ifdef HAVE_ECC
#ifndef NO_SHA
{ CTC_SHAwECDSA, CTC_SHAwECDSA, oidSigType, "ecdsa-with-SHA1", "shaWithECDSA"},
#endif
#ifdef WOLFSSL_SHA224
{ CTC_SHA224wECDSA, CTC_SHA224wECDSA, oidSigType, "ecdsa-with-SHA224","sha224WithECDSA"},
#endif
#ifndef NO_SHA256
{ CTC_SHA256wECDSA, CTC_SHA256wECDSA, oidSigType, "ecdsa-with-SHA256","sha256WithECDSA"},
#endif
#ifdef WOLFSSL_SHA384
{ CTC_SHA384wECDSA, CTC_SHA384wECDSA, oidSigType, "ecdsa-with-SHA384","sha384WithECDSA"},
#endif
#ifdef WOLFSSL_SHA512
{ CTC_SHA512wECDSA, CTC_SHA512wECDSA, oidSigType, "ecdsa-with-SHA512","sha512WithECDSA"},
#endif
#endif /* HAVE_ECC */
/* oidKeyType */
#ifndef NO_DSA
{ DSAk, DSAk, oidKeyType, "DSA", "dsaEncryption"},
{ NID_dsa, DSAk, oidKeyType, "DSA", "dsaEncryption"},
#endif /* NO_DSA */
#ifndef NO_RSA
{ RSAk, RSAk, oidKeyType, "RSA", "rsaEncryption"},
{ NID_rsaEncryption, RSAk, oidKeyType, "RSA", "rsaEncryption"},
#endif /* NO_RSA */
#ifdef HAVE_NTRU
{ NTRUk, NTRUk, oidKeyType, "NTRU", "ntruEncryption"},
#endif /* HAVE_NTRU */
#ifdef HAVE_ECC
{ ECDSAk, ECDSAk, oidKeyType, "ECDSA", "ecdsaEncryption"},
{ NID_X9_62_id_ecPublicKey, ECDSAk, oidKeyType, "id-ecPublicKey",
"id-ecPublicKey"},
#endif /* HAVE_ECC */
#ifndef NO_DH
{ NID_dhKeyAgreement, DHk, oidKeyType, "dhKeyAgreement", "dhKeyAgreement"},
#endif
#ifdef HAVE_ED448
{ NID_ED448, ED448k, oidKeyType, "ED448", "ED448"},
#endif
#ifdef HAVE_ED25519
{ NID_ED25519, ED25519k, oidKeyType, "ED25519", "ED25519"},
#endif
/* oidCurveType */
#ifdef HAVE_ECC
{ NID_X9_62_prime192v1, ECC_SECP192R1_OID, oidCurveType, "prime192v1", "prime192v1"},
{ NID_X9_62_prime192v2, ECC_PRIME192V2_OID, oidCurveType, "prime192v2", "prime192v2"},
{ NID_X9_62_prime192v3, ECC_PRIME192V3_OID, oidCurveType, "prime192v3", "prime192v3"},
{ NID_X9_62_prime239v1, ECC_PRIME239V1_OID, oidCurveType, "prime239v1", "prime239v1"},
{ NID_X9_62_prime239v2, ECC_PRIME239V2_OID, oidCurveType, "prime239v2", "prime239v2"},
{ NID_X9_62_prime239v3, ECC_PRIME239V3_OID, oidCurveType, "prime239v3", "prime239v3"},
{ NID_X9_62_prime256v1, ECC_SECP256R1_OID, oidCurveType, "prime256v1", "prime256v1"},
{ NID_secp112r1, ECC_SECP112R1_OID, oidCurveType, "secp112r1", "secp112r1"},
{ NID_secp112r2, ECC_SECP112R2_OID, oidCurveType, "secp112r2", "secp112r2"},
{ NID_secp128r1, ECC_SECP128R1_OID, oidCurveType, "secp128r1", "secp128r1"},
{ NID_secp128r2, ECC_SECP128R2_OID, oidCurveType, "secp128r2", "secp128r2"},
{ NID_secp160r1, ECC_SECP160R1_OID, oidCurveType, "secp160r1", "secp160r1"},
{ NID_secp160r2, ECC_SECP160R2_OID, oidCurveType, "secp160r2", "secp160r2"},
{ NID_secp224r1, ECC_SECP224R1_OID, oidCurveType, "secp224r1", "secp224r1"},
{ NID_secp384r1, ECC_SECP384R1_OID, oidCurveType, "secp384r1", "secp384r1"},
{ NID_secp521r1, ECC_SECP521R1_OID, oidCurveType, "secp521r1", "secp521r1"},
{ NID_secp160k1, ECC_SECP160K1_OID, oidCurveType, "secp160k1", "secp160k1"},
{ NID_secp192k1, ECC_SECP192K1_OID, oidCurveType, "secp192k1", "secp192k1"},
{ NID_secp224k1, ECC_SECP224K1_OID, oidCurveType, "secp224k1", "secp224k1"},
{ NID_secp256k1, ECC_SECP256K1_OID, oidCurveType, "secp256k1", "secp256k1"},
{ NID_brainpoolP160r1, ECC_BRAINPOOLP160R1_OID, oidCurveType, "brainpoolP160r1", "brainpoolP160r1"},
{ NID_brainpoolP192r1, ECC_BRAINPOOLP192R1_OID, oidCurveType, "brainpoolP192r1", "brainpoolP192r1"},
{ NID_brainpoolP224r1, ECC_BRAINPOOLP224R1_OID, oidCurveType, "brainpoolP224r1", "brainpoolP224r1"},
{ NID_brainpoolP256r1, ECC_BRAINPOOLP256R1_OID, oidCurveType, "brainpoolP256r1", "brainpoolP256r1"},
{ NID_brainpoolP320r1, ECC_BRAINPOOLP320R1_OID, oidCurveType, "brainpoolP320r1", "brainpoolP320r1"},
{ NID_brainpoolP384r1, ECC_BRAINPOOLP384R1_OID, oidCurveType, "brainpoolP384r1", "brainpoolP384r1"},
{ NID_brainpoolP512r1, ECC_BRAINPOOLP512R1_OID, oidCurveType, "brainpoolP512r1", "brainpoolP512r1"},
#endif /* HAVE_ECC */
/* oidBlkType */
#ifdef WOLFSSL_AES_128
{ AES128CBCb, AES128CBCb, oidBlkType, "AES-128-CBC", "aes-128-cbc"},
#endif
#ifdef WOLFSSL_AES_192
{ AES192CBCb, AES192CBCb, oidBlkType, "AES-192-CBC", "aes-192-cbc"},
#endif
#ifdef WOLFSSL_AES_256
{ AES256CBCb, AES256CBCb, oidBlkType, "AES-256-CBC", "aes-256-cbc"},
#endif
#ifndef NO_DES3
{ NID_des, DESb, oidBlkType, "DES-CBC", "des-cbc"},
{ NID_des3, DES3b, oidBlkType, "DES-EDE3-CBC", "des-ede3-cbc"},
#endif /* !NO_DES3 */
/* oidOcspType */
#ifdef HAVE_OCSP
{ NID_id_pkix_OCSP_basic, OCSP_BASIC_OID, oidOcspType, "basicOCSPResponse",
"Basic OCSP Response"},
{ OCSP_NONCE_OID, OCSP_NONCE_OID, oidOcspType, "Nonce",
"OCSP Nonce"},
#endif /* HAVE_OCSP */
#ifndef NO_PWDBASED
/* oidKdfType */
{ PBKDF2_OID, PBKDF2_OID, oidKdfType, "PBKDFv2", "PBKDF2"},
/* oidPBEType */
{ PBE_SHA1_RC4_128, PBE_SHA1_RC4_128, oidPBEType,
"PBE-SHA1-RC4-128", "pbeWithSHA1And128BitRC4"},
{ PBE_SHA1_DES, PBE_SHA1_DES, oidPBEType, "PBE-SHA1-DES",
"pbeWithSHA1AndDES-CBC"},
{ PBE_SHA1_DES3, PBE_SHA1_DES3, oidPBEType, "PBE-SHA1-3DES",
"pbeWithSHA1And3-KeyTripleDES-CBC"},
#endif
/* oidKeyWrapType */
#ifdef WOLFSSL_AES_128
{ AES128_WRAP, AES128_WRAP, oidKeyWrapType, "AES-128 wrap", "aes128-wrap"},
#endif
#ifdef WOLFSSL_AES_192
{ AES192_WRAP, AES192_WRAP, oidKeyWrapType, "AES-192 wrap", "aes192-wrap"},
#endif
#ifdef WOLFSSL_AES_256
{ AES256_WRAP, AES256_WRAP, oidKeyWrapType, "AES-256 wrap", "aes256-wrap"},
#endif
#ifndef NO_PKCS7
#ifndef NO_DH
/* oidCmsKeyAgreeType */
#ifndef NO_SHA
{ dhSinglePass_stdDH_sha1kdf_scheme, dhSinglePass_stdDH_sha1kdf_scheme,
oidCmsKeyAgreeType, "dhSinglePass-stdDH-sha1kdf-scheme", "dhSinglePass-stdDH-sha1kdf-scheme"},
#endif
#ifdef WOLFSSL_SHA224
{ dhSinglePass_stdDH_sha224kdf_scheme,
dhSinglePass_stdDH_sha224kdf_scheme, oidCmsKeyAgreeType,
"dhSinglePass-stdDH-sha224kdf-scheme", "dhSinglePass-stdDH-sha224kdf-scheme"},
#endif
#ifndef NO_SHA256
{ dhSinglePass_stdDH_sha256kdf_scheme,
dhSinglePass_stdDH_sha256kdf_scheme, oidCmsKeyAgreeType,
"dhSinglePass-stdDH-sha256kdf-scheme", "dhSinglePass-stdDH-sha256kdf-scheme"},
#endif
#ifdef WOLFSSL_SHA384
{ dhSinglePass_stdDH_sha384kdf_scheme,
dhSinglePass_stdDH_sha384kdf_scheme, oidCmsKeyAgreeType,
"dhSinglePass-stdDH-sha384kdf-scheme", "dhSinglePass-stdDH-sha384kdf-scheme"},
#endif
#ifdef WOLFSSL_SHA512
{ dhSinglePass_stdDH_sha512kdf_scheme,
dhSinglePass_stdDH_sha512kdf_scheme, oidCmsKeyAgreeType,
"dhSinglePass-stdDH-sha512kdf-scheme", "dhSinglePass-stdDH-sha512kdf-scheme"},
#endif
#endif
#endif
#if defined(WOLFSSL_APACHE_HTTPD)
/* "1.3.6.1.5.5.7.8.7" */
{ NID_id_on_dnsSRV, NID_id_on_dnsSRV, oidCertNameType,
WOLFSSL_SN_DNS_SRV, WOLFSSL_LN_DNS_SRV },
/* "1.3.6.1.4.1.311.20.2.3" */
{ NID_ms_upn, WOLFSSL_MS_UPN_SUM, oidCertExtType, WOLFSSL_SN_MS_UPN,
WOLFSSL_LN_MS_UPN },
/* "1.3.6.1.5.5.7.1.24" */
{ NID_tlsfeature, WOLFSSL_TLS_FEATURE_SUM, oidTlsExtType,
WOLFSSL_SN_TLS_FEATURE, WOLFSSL_LN_TLS_FEATURE },
#endif
#endif /* OPENSSL_EXTRA */
};
#define WOLFSSL_OBJECT_INFO_SZ \
(sizeof(wolfssl_object_info) / sizeof(*wolfssl_object_info))
const size_t wolfssl_object_info_sz = WOLFSSL_OBJECT_INFO_SZ;
#endif
#if defined(OPENSSL_EXTRA) && \
!defined(NO_RSA) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
WC_RNG* WOLFSSL_RSA_GetRNG(WOLFSSL_RSA *rsa, WC_RNG **tmpRNG, int *initTmpRng)
{
WC_RNG* rng = NULL;
if (!rsa || !initTmpRng) {
return NULL;
}
*initTmpRng = 0;
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING)
rng = ((RsaKey*)rsa->internal)->rng;
#endif
if (rng == NULL && tmpRNG) {
if (!*tmpRNG) {
#ifdef WOLFSSL_SMALL_STACK
*tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (*tmpRNG == NULL)
return NULL;
#else
WOLFSSL_MSG("*tmpRNG is null");
return NULL;
#endif
}
if (wc_InitRng(*tmpRNG) == 0) {
rng = *tmpRNG;
*initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
#ifdef WOLFSSL_SMALL_STACK
if (*tmpRNG)
XFREE(*tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER);
*tmpRNG = NULL;
#endif
}
}
return rng;
}
#endif
#ifdef OPENSSL_EXTRA
/* Checks if the global RNG has been created. If not then one is created.
*
* Returns WOLFSSL_SUCCESS when no error is encountered.
*/
static int wolfSSL_RAND_Init(void)
{
if (wc_LockMutex(&globalRNGMutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex rng");
return 0;
}
if (initGlobalRNG == 0) {
if (wc_InitRng(&globalRNG) < 0) {
WOLFSSL_MSG("wolfSSL Init Global RNG failed");
wc_UnLockMutex(&globalRNGMutex);
return 0;
}
initGlobalRNG = 1;
}
wc_UnLockMutex(&globalRNGMutex);
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_RAND_seed(const void* seed, int len)
{
WOLFSSL_MSG("wolfSSL_RAND_seed");
(void)seed;
(void)len;
return wolfSSL_RAND_Init();
}
/* Returns the path for reading seed data from.
* Uses the env variable $RANDFILE first if set, if not then used $HOME/.rnd
*
* Note uses stdlib by default unless XGETENV macro is overwritten
*
* fname buffer to hold path
* len length of fname buffer
*
* Returns a pointer to fname on success and NULL on failure
*/
const char* wolfSSL_RAND_file_name(char* fname, unsigned long len)
{
#ifndef NO_FILESYSTEM
char* rt;
char ap[] = "/.rnd";
WOLFSSL_ENTER("wolfSSL_RAND_file_name");
if (fname == NULL) {
return NULL;
}
XMEMSET(fname, 0, len);
/* if access to stdlib.h */
if ((rt = XGETENV("RANDFILE")) != NULL) {
if (len > XSTRLEN(rt)) {
XMEMCPY(fname, rt, XSTRLEN(rt));
}
else {
WOLFSSL_MSG("RANDFILE too large for buffer");
rt = NULL;
}
}
/* $RANDFILE was not set or is too large, check $HOME */
if (rt == NULL) {
WOLFSSL_MSG("Environment variable RANDFILE not set");
if ((rt = XGETENV("HOME")) == NULL) {
WOLFSSL_MSG("Environment variable HOME not set");
return NULL;
}
if (len > XSTRLEN(rt) + XSTRLEN(ap)) {
fname[0] = '\0';
XSTRNCAT(fname, rt, len);
XSTRNCAT(fname, ap, len - XSTRLEN(rt));
return fname;
}
else {
WOLFSSL_MSG("HOME too large for buffer");
return NULL;
}
}
return fname;
#else
/* no filesystem defined */
WOLFSSL_ENTER("wolfSSL_RAND_file_name");
WOLFSSL_MSG("No filesystem feature enabled, not compiled in");
(void)fname;
(void)len;
return NULL;
#endif
}
/* Writes 1024 bytes from the RNG to the given file name.
*
* fname name of file to write to
*
* Returns the number of bytes written
*/
int wolfSSL_RAND_write_file(const char* fname)
{
int bytes = 0;
WOLFSSL_ENTER("RAND_write_file");
if (fname == NULL) {
return SSL_FAILURE;
}
#ifndef NO_FILESYSTEM
{
#ifndef WOLFSSL_SMALL_STACK
unsigned char buf[1024];
#else
unsigned char* buf = (unsigned char *)XMALLOC(1024, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
WOLFSSL_MSG("malloc failed");
return SSL_FAILURE;
}
#endif
bytes = 1024; /* default size of buf */
if (initGlobalRNG == 0 && wolfSSL_RAND_Init() != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("No RNG to use");
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return 0;
}
if (wc_RNG_GenerateBlock(&globalRNG, buf, bytes) != 0) {
WOLFSSL_MSG("Error generating random buffer");
bytes = 0;
}
else {
XFILE f;
f = XFOPEN(fname, "wb");
if (f == XBADFILE) {
WOLFSSL_MSG("Error opening the file");
bytes = 0;
}
else {
XFWRITE(buf, 1, bytes, f);
XFCLOSE(f);
}
}
ForceZero(buf, bytes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
}
#endif
return bytes;
}
#ifndef FREERTOS_TCP
/* These constant values are protocol values made by egd */
#if defined(USE_WOLFSSL_IO) && !defined(USE_WINDOWS_API)
#define WOLFSSL_EGD_NBLOCK 0x01
#include <sys/un.h>
#endif
/* This collects entropy from the path nm and seeds the global PRNG with it.
*
* nm is the file path to the egd server
*
* Returns the number of bytes read.
*/
int wolfSSL_RAND_egd(const char* nm)
{
#if defined(USE_WOLFSSL_IO) && !defined(USE_WINDOWS_API) && !defined(HAVE_FIPS) && \
defined(HAVE_HASHDRBG)
struct sockaddr_un rem;
int fd;
int ret = WOLFSSL_SUCCESS;
word32 bytes = 0;
word32 idx = 0;
#ifndef WOLFSSL_SMALL_STACK
unsigned char buf[256];
#else
unsigned char* buf;
buf = (unsigned char*)XMALLOC(256, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (buf == NULL) {
WOLFSSL_MSG("Not enough memory");
return WOLFSSL_FATAL_ERROR;
}
#endif
if (nm == NULL) {
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return WOLFSSL_FATAL_ERROR;
}
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0) {
WOLFSSL_MSG("Error creating socket");
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return WOLFSSL_FATAL_ERROR;
}
if (ret == WOLFSSL_SUCCESS) {
rem.sun_family = AF_UNIX;
XSTRNCPY(rem.sun_path, nm, sizeof(rem.sun_path) - 1);
rem.sun_path[sizeof(rem.sun_path)-1] = '\0';
}
/* connect to egd server */
if (ret == WOLFSSL_SUCCESS) {
if (connect(fd, (struct sockaddr*)&rem, sizeof(struct sockaddr_un))
== -1) {
WOLFSSL_MSG("error connecting to egd server");
ret = WOLFSSL_FATAL_ERROR;
}
}
while (ret == WOLFSSL_SUCCESS && bytes < 255 && idx + 2 < 256) {
if (ret == WOLFSSL_SUCCESS) {
buf[idx] = WOLFSSL_EGD_NBLOCK;
buf[idx + 1] = 255 - bytes; /* request 255 bytes from server */
ret = (int)write(fd, buf + idx, 2);
if (ret <= 0 || ret != 2) {
if (errno == EAGAIN) {
ret = WOLFSSL_SUCCESS;
continue;
}
WOLFSSL_MSG("error requesting entropy from egd server");
ret = WOLFSSL_FATAL_ERROR;
break;
}
}
/* attempting to read */
buf[idx] = 0;
ret = (int)read(fd, buf + idx, 256 - bytes);
if (ret == 0) {
WOLFSSL_MSG("error reading entropy from egd server");
ret = WOLFSSL_FATAL_ERROR;
break;
}
if (ret > 0 && buf[idx] > 0) {
bytes += buf[idx]; /* egd stores amount sent in first byte */
if (bytes + idx > 255 || buf[idx] > ret) {
WOLFSSL_MSG("Buffer error");
ret = WOLFSSL_FATAL_ERROR;
break;
}
XMEMMOVE(buf + idx, buf + idx + 1, buf[idx]);
idx = bytes;
ret = WOLFSSL_SUCCESS;
if (bytes >= 255) {
break;
}
}
else {
if (errno == EAGAIN || errno == EINTR) {
WOLFSSL_MSG("EGD would read");
ret = WOLFSSL_SUCCESS; /* try again */
}
else if (buf[idx] == 0) {
/* if egd returned 0 then there is no more entropy to be had.
Do not try more reads. */
ret = WOLFSSL_SUCCESS;
break;
}
else {
WOLFSSL_MSG("Error with read");
ret = WOLFSSL_FATAL_ERROR;
}
}
}
if (bytes > 0 && ret == WOLFSSL_SUCCESS) {
/* call to check global RNG is created */
if (wolfSSL_RAND_Init() != SSL_SUCCESS) {
WOLFSSL_MSG("Error with initializing global RNG structure");
ret = WOLFSSL_FATAL_ERROR;
}
else if (wc_RNG_DRBG_Reseed(&globalRNG, (const byte*) buf, bytes)
!= 0) {
WOLFSSL_MSG("Error with reseeding DRBG structure");
ret = WOLFSSL_FATAL_ERROR;
}
#ifdef SHOW_SECRETS
else { /* print out entropy found only when no error occured */
word32 i;
printf("EGD Entropy = ");
for (i = 0; i < bytes; i++) {
printf("%02X", buf[i]);
}
printf("\n");
}
#endif
}
ForceZero(buf, bytes);
#ifdef WOLFSSL_SMALL_STACK
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
close(fd);
if (ret == WOLFSSL_SUCCESS) {
return bytes;
}
else {
return ret;
}
#else
WOLFSSL_MSG("Type of socket needed is not available");
WOLFSSL_MSG("\tor using mode where DRBG API is not available");
(void)nm;
return WOLFSSL_FATAL_ERROR;
#endif /* USE_WOLFSSL_IO && !USE_WINDOWS_API && !HAVE_FIPS && HAVE_HASHDRBG */
}
#endif /* !FREERTOS_TCP */
void wolfSSL_RAND_Cleanup(void)
{
WOLFSSL_ENTER("wolfSSL_RAND_Cleanup()");
if (wc_LockMutex(&globalRNGMutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex rng");
return;
}
if (initGlobalRNG != 0) {
wc_FreeRng(&globalRNG);
initGlobalRNG = 0;
}
wc_UnLockMutex(&globalRNGMutex);
}
int wolfSSL_RAND_pseudo_bytes(unsigned char* buf, int num)
{
return wolfSSL_RAND_bytes(buf, num);
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_RAND_bytes(unsigned char* buf, int num)
{
int ret = 0;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG;
#else
WC_RNG tmpRNG[1];
#endif
int used_global = 0;
int blockCount = 0;
WOLFSSL_ENTER("wolfSSL_RAND_bytes");
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return ret;
#endif
if (initGlobalRNG) {
if (wc_LockMutex(&globalRNGMutex) != 0) {
WOLFSSL_MSG("Bad Lock Mutex rng");
return ret;
}
rng = &globalRNG;
used_global = 1;
}
else if(wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
if (rng) {
/* handles size grater than RNG_MAX_BLOCK_LEN */
blockCount = num / RNG_MAX_BLOCK_LEN;
while(blockCount--) {
if((ret = wc_RNG_GenerateBlock(rng, buf, RNG_MAX_BLOCK_LEN) != 0)){
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
break;
}
num -= RNG_MAX_BLOCK_LEN;
buf += RNG_MAX_BLOCK_LEN;
}
if (ret == 0 && num)
ret = wc_RNG_GenerateBlock(rng, buf, num);
if (ret != 0)
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
else
ret = WOLFSSL_SUCCESS;
}
if (used_global == 1) {
wc_UnLockMutex(&globalRNGMutex);
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
int wolfSSL_RAND_poll(void)
{
byte entropy[16];
int ret = 0;
word32 entropy_sz = 16;
WOLFSSL_ENTER("wolfSSL_RAND_poll");
if (initGlobalRNG == 0){
WOLFSSL_MSG("Global RNG no Init");
return WOLFSSL_FAILURE;
}
ret = wc_GenerateSeed(&globalRNG.seed, entropy, entropy_sz);
if (ret != 0){
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
ret = WOLFSSL_FAILURE;
}else
ret = WOLFSSL_SUCCESS;
return ret;
}
#endif /* OPENSSL_EXTRA */
#ifdef OPENSSL_EXTRA
WOLFSSL_ASN1_INTEGER* wolfSSL_BN_to_ASN1_INTEGER(const WOLFSSL_BIGNUM *bn, WOLFSSL_ASN1_INTEGER *ai)
{
WOLFSSL_ASN1_INTEGER* a;
int len;
const int extraTagSz = MAX_LENGTH_SZ + 1;
byte intTag[MAX_LENGTH_SZ + 1];
int idx = 0;
WOLFSSL_ENTER("wolfSSL_BN_to_ASN1_INTEGER");
if (ai == NULL) {
a = wolfSSL_ASN1_INTEGER_new();
if (a == NULL)
return NULL;
a->type = V_ASN1_INTEGER;
}
else {
a = ai;
}
if (a) {
if (wolfSSL_BN_is_negative(bn) && !wolfSSL_BN_is_zero(bn)) {
a->type |= V_ASN1_NEG_INTEGER;
a->negative = 1;
}
len = wolfSSL_BN_num_bytes(bn);
if (len == 0)
len = 1;
/* allocate buffer */
if (len + extraTagSz > (int)sizeof(a->intData)) {
/* create new data buffer and copy over */
a->data = (byte*)XMALLOC(len + extraTagSz, NULL,
DYNAMIC_TYPE_OPENSSL);
if (a->data == NULL) {
if (a != ai)
wolfSSL_ASN1_INTEGER_free(a);
return NULL;
}
a->isDynamic = 1;
}
else {
XMEMSET(a->intData, 0, sizeof(a->intData));
a->data = a->intData;
}
/* populate data */
if (wolfSSL_BN_is_zero(bn)) {
a->data[0] = 0;
}
else {
len = wolfSSL_BN_bn2bin(bn, a->data);
}
a->length = len;
/* Write ASN tag */
idx = SetASNInt(a->length, a->data[0], intTag);
XMEMMOVE(a->data + idx, a->data, a->length);
XMEMCPY(a->data, intTag, idx);
a->dataMax = a->length += idx;
}
return a;
}
#ifdef OPENSSL_ALL
void *wolfSSL_ASN1_item_new(const WOLFSSL_ASN1_ITEM *tpl)
{
void *ret = NULL;
const WOLFSSL_ASN1_TEMPLATE *member = NULL;
size_t i;
WOLFSSL_ENTER("wolfSSL_ASN1_item_new");
if (!tpl) {
return NULL;
}
if (!(ret = (void *)XMALLOC(tpl->size, NULL, DYNAMIC_TYPE_OPENSSL))) {
return NULL;
}
XMEMSET(ret, 0, tpl->size);
for (member = tpl->members, i = 0; i < tpl->mcount;
member++, i++) {
switch (member->type) {
case WOLFSSL_X509_ALGOR_ASN1:
{
WOLFSSL_X509_ALGOR* algor = wolfSSL_X509_ALGOR_new();
if (!algor) {
goto error;
}
*(WOLFSSL_X509_ALGOR**)(((byte*)ret) + member->offset) = algor;
break;
}
case WOLFSSL_ASN1_BIT_STRING_ASN1:
{
WOLFSSL_ASN1_BIT_STRING* bit_str = wolfSSL_ASN1_BIT_STRING_new();
if (!bit_str) {
goto error;
}
*(WOLFSSL_ASN1_BIT_STRING**)(((byte*)ret) + member->offset) = bit_str;
break;
}
default:
WOLFSSL_MSG("Type not supported in wolfSSL_ASN1_item_new");
goto error;
}
}
return ret;
error:
wolfSSL_ASN1_item_free(ret, tpl);
return NULL;
}
void wolfSSL_ASN1_item_free(void *val, const WOLFSSL_ASN1_ITEM *tpl)
{
const WOLFSSL_ASN1_TEMPLATE *member = NULL;
size_t i;
WOLFSSL_ENTER("wolfSSL_ASN1_item_free");
if (val) {
for (member = tpl->members, i = 0; i < tpl->mcount;
member++, i++) {
switch (member->type) {
case WOLFSSL_X509_ALGOR_ASN1:
{
WOLFSSL_X509_ALGOR* algor = *(WOLFSSL_X509_ALGOR**)
(((byte*)val) + member->offset);
if (algor) {
wolfSSL_X509_ALGOR_free(algor);
}
break;
}
case WOLFSSL_ASN1_BIT_STRING_ASN1:
{
WOLFSSL_ASN1_BIT_STRING* bit_str = *(WOLFSSL_ASN1_BIT_STRING**)
(((byte*)val) + member->offset);
if (bit_str) {
wolfSSL_ASN1_BIT_STRING_free(bit_str);
}
break;
}
default:
WOLFSSL_MSG("Type not supported in wolfSSL_ASN1_item_free");
}
}
XFREE(val, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
#define bufLenOrNull(buf, len) (buf ? buf + len : NULL)
static int i2dProcessMembers(const void *src, byte *buf,
const WOLFSSL_ASN1_TEMPLATE *members, size_t mcount)
{
const WOLFSSL_ASN1_TEMPLATE *member = NULL;
int len = 0, ret;
size_t i;
WOLFSSL_ENTER("processMembers");
for (member = members, i = 0; i < mcount; member++, i++) {
switch (member->type) {
case WOLFSSL_X509_ALGOR_ASN1:
{
word32 oid = 0;
word32 idx = 0;
const WOLFSSL_X509_ALGOR* algor = *(const WOLFSSL_X509_ALGOR**)
(((byte*)src) + member->offset);
if (!algor->algorithm) {
WOLFSSL_LEAVE("processMembers", WOLFSSL_FAILURE);
return WOLFSSL_FAILURE;
}
if (GetObjectId(algor->algorithm->obj, &idx, &oid,
algor->algorithm->grp, algor->algorithm->objSz) < 0) {
WOLFSSL_MSG("Issue getting OID of object");
return -1;
}
ret = SetAlgoID(oid, bufLenOrNull(buf, len),
algor->algorithm->grp, 0);
if (!ret) {
return WOLFSSL_FAILURE;
}
len += ret;
break;
}
case WOLFSSL_ASN1_BIT_STRING_ASN1:
{
const WOLFSSL_ASN1_BIT_STRING* bit_str;
bit_str = *(const WOLFSSL_ASN1_BIT_STRING**)
(((byte*)src) + member->offset);
len += SetBitString(bit_str->length, 0, bufLenOrNull(buf, len));
if (buf && bit_str->data) {
XMEMCPY(buf + len, bit_str->data, bit_str->length);
}
len += bit_str->length;
break;
}
default:
WOLFSSL_MSG("Type not support in processMembers");
WOLFSSL_LEAVE("processMembers", WOLFSSL_FAILURE);
return WOLFSSL_FAILURE;
}
}
WOLFSSL_LEAVE("processMembers", len);
return len;
}
int wolfSSL_ASN1_item_i2d(const void *src, byte **dest,
const WOLFSSL_ASN1_ITEM *tpl)
{
int len = 0;
byte *buf = NULL;
WOLFSSL_ENTER("wolfSSL_ASN1_item_i2d");
if (!src || !tpl) {
WOLFSSL_LEAVE("wolfSSL_ASN1_item_i2d", WOLFSSL_FAILURE);
return WOLFSSL_FAILURE;
}
if (dest && !*dest) {
len = wolfSSL_ASN1_item_i2d(src, NULL, tpl);
if (!len) {
goto error;
}
buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_ASN1);
if (!buf) {
goto error;
}
len = 0;
}
switch (tpl->type) {
case ASN_SEQUENCE:
{
int seq_len = i2dProcessMembers(src, NULL, tpl->members,
tpl->mcount);
if (!seq_len) {
goto error;
}
len += SetSequence(seq_len, bufLenOrNull(buf, len));
if (buf &&
i2dProcessMembers(src, bufLenOrNull(buf, len), tpl->members,
tpl->mcount) != seq_len) {
WOLFSSL_MSG("Inconsistent sequence length");
goto error;
}
len += seq_len;
break;
}
default:
WOLFSSL_MSG("Type not supported in wolfSSL_ASN1_item_i2d");
goto error;
}
if (dest && !*dest) {
*dest = buf;
}
else if (dest && *dest && buf) {
/* *dest length is not checked because the user is responsible
* for providing a long enough buffer */
XMEMCPY(*dest, buf, len);
}
WOLFSSL_LEAVE("wolfSSL_ASN1_item_i2d", len);
return len;
error:
if (buf) {
XFREE(buf, NULL, DYNAMIC_TYPE_ASN1);
}
WOLFSSL_LEAVE("wolfSSL_ASN1_item_i2d", WOLFSSL_FAILURE);
return WOLFSSL_FAILURE;
}
#endif /* OPENSSL_ALL */
#ifndef NO_DH
static void InitwolfSSL_DH(WOLFSSL_DH* dh)
{
if (dh) {
XMEMSET(dh, 0, sizeof(WOLFSSL_DH));
}
}
WOLFSSL_DH* wolfSSL_DH_new(void)
{
WOLFSSL_DH* external;
DhKey* key;
WOLFSSL_ENTER("wolfSSL_DH_new");
key = (DhKey*) XMALLOC(sizeof(DhKey), NULL, DYNAMIC_TYPE_DH);
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_DH_new malloc DhKey failure");
return NULL;
}
external = (WOLFSSL_DH*) XMALLOC(sizeof(WOLFSSL_DH), NULL,
DYNAMIC_TYPE_DH);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_DH_new malloc WOLFSSL_DH failure");
XFREE(key, NULL, DYNAMIC_TYPE_DH);
return NULL;
}
InitwolfSSL_DH(external);
if (wc_InitDhKey(key) != 0) {
WOLFSSL_MSG("wolfSSL_DH_new InitDhKey failure");
XFREE(key, NULL, DYNAMIC_TYPE_DH);
XFREE(external, NULL, DYNAMIC_TYPE_DH);
return NULL;
}
external->internal = key;
external->priv_key = wolfSSL_BN_new();
external->pub_key = wolfSSL_BN_new();
return external;
}
void wolfSSL_DH_free(WOLFSSL_DH* dh)
{
WOLFSSL_ENTER("wolfSSL_DH_free");
if (dh) {
if (dh->internal) {
wc_FreeDhKey((DhKey*)dh->internal);
XFREE(dh->internal, NULL, DYNAMIC_TYPE_DH);
dh->internal = NULL;
}
wolfSSL_BN_free(dh->priv_key);
wolfSSL_BN_free(dh->pub_key);
wolfSSL_BN_free(dh->g);
wolfSSL_BN_free(dh->p);
wolfSSL_BN_free(dh->q);
InitwolfSSL_DH(dh); /* set back to NULLs for safety */
XFREE(dh, NULL, DYNAMIC_TYPE_DH);
}
}
int SetDhInternal(WOLFSSL_DH* dh)
{
int ret = WOLFSSL_FATAL_ERROR;
int pSz = 1024;
int gSz = 1024;
#ifdef WOLFSSL_DH_EXTRA
int privSz = 256; /* Up to 2048-bit */
int pubSz = 256;
#endif
#ifdef WOLFSSL_SMALL_STACK
unsigned char* p = NULL;
unsigned char* g = NULL;
#ifdef WOLFSSL_DH_EXTRA
unsigned char* priv_key = NULL;
unsigned char* pub_key = NULL;
#endif
#else
unsigned char p[1024];
unsigned char g[1024];
#ifdef WOLFSSL_DH_EXTRA
unsigned char priv_key[256];
unsigned char pub_key[256];
#endif
#endif
WOLFSSL_ENTER("SetDhInternal");
if (dh == NULL || dh->p == NULL || dh->g == NULL)
WOLFSSL_MSG("Bad function arguments");
else if (wolfSSL_BN_bn2bin(dh->p, NULL) > pSz)
WOLFSSL_MSG("Bad p internal size");
else if (wolfSSL_BN_bn2bin(dh->g, NULL) > gSz)
WOLFSSL_MSG("Bad g internal size");
#ifdef WOLFSSL_DH_EXTRA
else if (wolfSSL_BN_bn2bin(dh->priv_key, NULL) > privSz)
WOLFSSL_MSG("Bad private key internal size");
else if (wolfSSL_BN_bn2bin(dh->pub_key, NULL) > privSz)
WOLFSSL_MSG("Bad public key internal size");
#endif
else {
#ifdef WOLFSSL_SMALL_STACK
p = (unsigned char*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
g = (unsigned char*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
#ifdef WOLFSSL_DH_EXTRA
priv_key = (unsigned char*)XMALLOC(privSz, NULL,
DYNAMIC_TYPE_PRIVATE_KEY);
pub_key = (unsigned char*)XMALLOC(pubSz, NULL,
DYNAMIC_TYPE_PUBLIC_KEY);
#endif
if (p == NULL || g == NULL) {
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
return ret;
}
#endif /* WOLFSSL_SMALL_STACK */
#ifdef WOLFSSL_DH_EXTRA
privSz = wolfSSL_BN_bn2bin(dh->priv_key, priv_key);
pubSz = wolfSSL_BN_bn2bin(dh->pub_key, pub_key);
if (privSz <= 0) {
WOLFSSL_MSG("No private key size.");
}
if (pubSz <= 0) {
WOLFSSL_MSG("No public key size.");
}
if (privSz > 0 || pubSz > 0) {
ret = wc_DhImportKeyPair((DhKey*)dh->internal, priv_key, privSz,
pub_key, pubSz);
if (ret == 0) {
ret = WOLFSSL_SUCCESS;
}
else {
WOLFSSL_MSG("Failed setting private or public key.");
ret = WOLFSSL_FAILURE;
}
}
#endif /* WOLFSSL_DH_EXTRA */
pSz = wolfSSL_BN_bn2bin(dh->p, p);
gSz = wolfSSL_BN_bn2bin(dh->g, g);
if (pSz <= 0 || gSz <= 0)
WOLFSSL_MSG("Bad BN2bin set");
else if (wc_DhSetKey((DhKey*)dh->internal, p, pSz, g, gSz) < 0)
WOLFSSL_MSG("Bad DH SetKey");
else {
dh->inSet = 1;
ret = WOLFSSL_SUCCESS;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
#ifdef WOLFSSL_DH_EXTRA
XFREE(priv_key, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
XFREE(pub_key, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
#endif
#endif
}
return ret;
}
#if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL) \
|| defined(WOLFSSL_OPENSSH))
#ifdef WOLFSSL_DH_EXTRA
WOLFSSL_DH* wolfSSL_DH_dup(WOLFSSL_DH* dh)
{
WOLFSSL_DH* ret = NULL;
WOLFSSL_ENTER("wolfSSL_DH_dup");
if (!dh) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
if (dh->inSet == 0 && SetDhInternal(dh) != WOLFSSL_SUCCESS){
WOLFSSL_MSG("Bad DH set internal");
return NULL;
}
if (!(ret = wolfSSL_DH_new())) {
WOLFSSL_MSG("wolfSSL_DH_new error");
return NULL;
}
if (wc_DhKeyCopy((DhKey*)dh->internal, (DhKey*)ret->internal) != MP_OKAY) {
WOLFSSL_MSG("wc_DhKeyCopy error");
wolfSSL_DH_free(ret);
return NULL;
}
ret->inSet = 1;
if (SetDhExternal(ret) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDhExternal error");
wolfSSL_DH_free(ret);
return NULL;
}
return ret;
}
#endif /* WOLFSSL_DH_EXTRA */
/* Set the members of DhKey into WOLFSSL_DH
* DhKey was populated from wc_DhKeyDecode
*/
int SetDhExternal(WOLFSSL_DH *dh)
{
DhKey *key;
WOLFSSL_MSG("Entering SetDhExternal");
if (dh == NULL || dh->internal == NULL) {
WOLFSSL_MSG("dh key NULL error");
}
key = (DhKey*)dh->internal;
if (SetIndividualExternal(&dh->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dh param p error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dh->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dh param g error");
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_DH_EXTRA
if (SetIndividualExternal(&dh->priv_key, &key->priv) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("No DH Private Key");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dh->pub_key, &key->pub) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("No DH Public Key");
return WOLFSSL_FATAL_ERROR;
}
#endif /* WOLFSSL_DH_EXTRA */
dh->exSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_DH && (WOLFSSL_QT || OPENSSL_ALL) */
/* return code compliant with OpenSSL :
* DH prime size in bytes if success, 0 if error
*/
int wolfSSL_DH_size(WOLFSSL_DH* dh)
{
WOLFSSL_MSG("wolfSSL_DH_size");
if (dh == NULL)
return WOLFSSL_FATAL_ERROR;
return wolfSSL_BN_num_bytes(dh->p);
}
/* This sets a big number with the 768-bit prime from RFC 2409.
*
* bn if not NULL then the big number structure is used. If NULL then a new
* big number structure is created.
*
* Returns a WOLFSSL_BIGNUM structure on success and NULL with failure.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_768_prime(WOLFSSL_BIGNUM* bn)
{
const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A63A3620FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_768_prime");
if (wolfSSL_BN_hex2bn(&bn, prm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error converting DH 768 prime to big number");
return NULL;
}
return bn;
}
/* This sets a big number with the 1024-bit prime from RFC 2409.
*
* bn if not NULL then the big number structure is used. If NULL then a new
* big number structure is created.
*
* Returns a WOLFSSL_BIGNUM structure on success and NULL with failure.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_1024_prime(WOLFSSL_BIGNUM* bn)
{
const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE65381FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_1024_prime");
if (wolfSSL_BN_hex2bn(&bn, prm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error converting DH 1024 prime to big number");
return NULL;
}
return bn;
}
/* This sets a big number with the 1536-bit prime from RFC 3526.
*
* bn if not NULL then the big number structure is used. If NULL then a new
* big number structure is created.
*
* Returns a WOLFSSL_BIGNUM structure on success and NULL with failure.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_1536_prime(WOLFSSL_BIGNUM* bn)
{
const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA237327FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_1536_prime");
if (wolfSSL_BN_hex2bn(&bn, prm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error converting DH 1536 prime to big number");
return NULL;
}
return bn;
}
/* This sets a big number with the 2048-bit prime from RFC 3526.
*
* bn if not NULL then the big number structure is used. If NULL then a new
* big number structure is created.
*
* Returns a WOLFSSL_BIGNUM structure on success and NULL with failure.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_2048_prime(WOLFSSL_BIGNUM* bn)
{
const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AACAA68FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_2048_prime");
if (wolfSSL_BN_hex2bn(&bn, prm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error converting DH 2048 prime to big number");
return NULL;
}
return bn;
}
/* This sets a big number with the 3072-bit prime from RFC 3526.
*
* bn if not NULL then the big number structure is used. If NULL then a new
* big number structure is created.
*
* Returns a WOLFSSL_BIGNUM structure on success and NULL with failure.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_3072_prime(WOLFSSL_BIGNUM* bn)
{
const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33"
"A85521ABDF1CBA64ECFB850458DBEF0A"
"8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619D"
"CEE3D2261AD2EE6BF12FFA06D98A0864"
"D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E2"
"08E24FA074E5AB3143DB5BFCE0FD108E"
"4B82D120A93AD2CAFFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_3072_prime");
if (wolfSSL_BN_hex2bn(&bn, prm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error converting DH 3072 prime to big number");
return NULL;
}
return bn;
}
/* This sets a big number with the 4096-bit prime from RFC 3526.
*
* bn if not NULL then the big number structure is used. If NULL then a new
* big number structure is created.
*
* Returns a WOLFSSL_BIGNUM structure on success and NULL with failure.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_4096_prime(WOLFSSL_BIGNUM* bn)
{
const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33"
"A85521ABDF1CBA64ECFB850458DBEF0A"
"8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619D"
"CEE3D2261AD2EE6BF12FFA06D98A0864"
"D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E2"
"08E24FA074E5AB3143DB5BFCE0FD108E"
"4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C"
"1A946834B6150BDA2583E9CA2AD44CE8"
"DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2"
"233BA186515BE7ED1F612970CEE2D7AF"
"B81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F"
"4DF435C934063199FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_4096_prime");
if (wolfSSL_BN_hex2bn(&bn, prm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error converting DH 4096 prime to big number");
return NULL;
}
return bn;
}
/* This sets a big number with the 6144-bit prime from RFC 3526.
*
* bn if not NULL then the big number structure is used. If NULL then a new
* big number structure is created.
*
* Returns a WOLFSSL_BIGNUM structure on success and NULL with failure.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_6144_prime(WOLFSSL_BIGNUM* bn)
{
const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33"
"A85521ABDF1CBA64ECFB850458DBEF0A"
"8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619D"
"CEE3D2261AD2EE6BF12FFA06D98A0864"
"D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E2"
"08E24FA074E5AB3143DB5BFCE0FD108E"
"4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C"
"1A946834B6150BDA2583E9CA2AD44CE8"
"DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2"
"233BA186515BE7ED1F612970CEE2D7AF"
"B81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F"
"4DF435C93402849236C3FAB4D27C7026"
"C1D4DCB2602646DEC9751E763DBA37BD"
"F8FF9406AD9E530EE5DB382F413001AE"
"B06A53ED9027D831179727B0865A8918"
"DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
"DB7F1447E6CC254B332051512BD7AF42"
"6FB8F401378CD2BF5983CA01C64B92EC"
"F032EA15D1721D03F482D7CE6E74FEF6"
"D55E702F46980C82B5A84031900B1C9E"
"59E7C97FBEC7E8F323A97A7E36CC88BE"
"0F1D45B7FF585AC54BD407B22B4154AA"
"CC8F6D7EBF48E1D814CC5ED20F8037E0"
"A79715EEF29BE32806A1D58BB7C5DA76"
"F550AA3D8A1FBFF0EB19CCB1A313D55C"
"DA56C9EC2EF29632387FE8D76E3C0468"
"043E8F663F4860EE12BF2D5B0B7474D6"
"E694F91E6DCC4024FFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_6144_prime");
if (wolfSSL_BN_hex2bn(&bn, prm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error converting DH 6144 prime to big number");
return NULL;
}
return bn;
}
/* This sets a big number with the 8192-bit prime from RFC 3526.
*
* bn if not NULL then the big number structure is used. If NULL then a new
* big number structure is created.
*
* Returns a WOLFSSL_BIGNUM structure on success and NULL with failure.
*/
WOLFSSL_BIGNUM* wolfSSL_DH_8192_prime(WOLFSSL_BIGNUM* bn)
{
const char prm[] = {
"FFFFFFFFFFFFFFFFC90FDAA22168C234"
"C4C6628B80DC1CD129024E088A67CC74"
"020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F1437"
"4FE1356D6D51C245E485B576625E7EC6"
"F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF05"
"98DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB"
"9ED529077096966D670C354E4ABC9804"
"F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28F"
"B5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33"
"A85521ABDF1CBA64ECFB850458DBEF0A"
"8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619D"
"CEE3D2261AD2EE6BF12FFA06D98A0864"
"D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E2"
"08E24FA074E5AB3143DB5BFCE0FD108E"
"4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C"
"1A946834B6150BDA2583E9CA2AD44CE8"
"DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2"
"233BA186515BE7ED1F612970CEE2D7AF"
"B81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F"
"4DF435C93402849236C3FAB4D27C7026"
"C1D4DCB2602646DEC9751E763DBA37BD"
"F8FF9406AD9E530EE5DB382F413001AE"
"B06A53ED9027D831179727B0865A8918"
"DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
"DB7F1447E6CC254B332051512BD7AF42"
"6FB8F401378CD2BF5983CA01C64B92EC"
"F032EA15D1721D03F482D7CE6E74FEF6"
"D55E702F46980C82B5A84031900B1C9E"
"59E7C97FBEC7E8F323A97A7E36CC88BE"
"0F1D45B7FF585AC54BD407B22B4154AA"
"CC8F6D7EBF48E1D814CC5ED20F8037E0"
"A79715EEF29BE32806A1D58BB7C5DA76"
"F550AA3D8A1FBFF0EB19CCB1A313D55C"
"DA56C9EC2EF29632387FE8D76E3C0468"
"043E8F663F4860EE12BF2D5B0B7474D6"
"E694F91E6DBE115974A3926F12FEE5E4"
"38777CB6A932DF8CD8BEC4D073B931BA"
"3BC832B68D9DD300741FA7BF8AFC47ED"
"2576F6936BA424663AAB639C5AE4F568"
"3423B4742BF1C978238F16CBE39D652D"
"E3FDB8BEFC848AD922222E04A4037C07"
"13EB57A81A23F0C73473FC646CEA306B"
"4BCBC8862F8385DDFA9D4B7FA2C087E8"
"79683303ED5BDD3A062B3CF5B3A278A6"
"6D2A13F83F44F82DDF310EE074AB6A36"
"4597E899A0255DC164F31CC50846851D"
"F9AB48195DED7EA1B1D510BD7EE74D73"
"FAF36BC31ECFA268359046F4EB879F92"
"4009438B481C6CD7889A002ED5EE382B"
"C9190DA6FC026E479558E4475677E9AA"
"9E3050E2765694DFC81F56E880B96E71"
"60C980DD98EDD3DFFFFFFFFFFFFFFFFF"
};
WOLFSSL_ENTER("wolfSSL_DH_8192_prime");
if (wolfSSL_BN_hex2bn(&bn, prm) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error converting DH 8192 prime to big number");
return NULL;
}
return bn;
}
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_DH_generate_key(WOLFSSL_DH* dh)
{
int ret = WOLFSSL_FAILURE;
word32 pubSz = 0;
word32 privSz = 0;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG;
#else
WC_RNG tmpRNG[1];
#endif
unsigned char* pub = NULL;
unsigned char* priv = NULL;
WOLFSSL_MSG("wolfSSL_DH_generate_key");
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL) {
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
return ret;
}
#endif
if (dh == NULL || dh->p == NULL || dh->g == NULL)
WOLFSSL_MSG("Bad function arguments");
else if (dh->inSet == 0 && SetDhInternal(dh) != WOLFSSL_SUCCESS)
WOLFSSL_MSG("Bad DH set internal");
else if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
pubSz = wolfSSL_BN_num_bytes(dh->p);
if (dh->length) {
privSz = dh->length/8; /* to bytes */
} else {
privSz = pubSz;
}
if (pubSz > 0) {
pub = (unsigned char*)XMALLOC(pubSz,
NULL, DYNAMIC_TYPE_PUBLIC_KEY);
}
if (privSz > 0) {
priv = (unsigned char*)XMALLOC(privSz,
NULL, DYNAMIC_TYPE_PRIVATE_KEY);
}
if (pub == NULL || priv == NULL) {
WOLFSSL_MSG("Unable to malloc memory");
}
else if (wc_DhGenerateKeyPair((DhKey*)dh->internal, rng, priv, &privSz,
pub, &pubSz) < 0)
WOLFSSL_MSG("Bad wc_DhGenerateKeyPair");
else {
if (dh->pub_key)
wolfSSL_BN_free(dh->pub_key);
dh->pub_key = wolfSSL_BN_new();
if (dh->pub_key == NULL) {
WOLFSSL_MSG("Bad DH new pub");
}
if (dh->priv_key)
wolfSSL_BN_free(dh->priv_key);
dh->priv_key = wolfSSL_BN_new();
if (dh->priv_key == NULL) {
WOLFSSL_MSG("Bad DH new priv");
}
if (dh->pub_key && dh->priv_key) {
if (wolfSSL_BN_bin2bn(pub, pubSz, dh->pub_key) == NULL)
WOLFSSL_MSG("Bad DH bn2bin error pub");
else if (wolfSSL_BN_bin2bn(priv, privSz, dh->priv_key) == NULL)
WOLFSSL_MSG("Bad DH bn2bin error priv");
else
ret = WOLFSSL_SUCCESS;
}
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
return ret;
}
/* return code compliant with OpenSSL :
* size of shared secret if success, -1 if error
*/
int wolfSSL_DH_compute_key(unsigned char* key, WOLFSSL_BIGNUM* otherPub,
WOLFSSL_DH* dh)
{
int ret = WOLFSSL_FATAL_ERROR;
word32 keySz = 0;
int pubSz = 1024;
int privSz = 1024;
#ifdef WOLFSSL_SMALL_STACK
unsigned char* pub;
unsigned char* priv = NULL;
#else
unsigned char pub [1024];
unsigned char priv[1024];
#endif
WOLFSSL_MSG("wolfSSL_DH_compute_key");
#ifdef WOLFSSL_SMALL_STACK
pub = (unsigned char*)XMALLOC(pubSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (pub == NULL)
return ret;
priv = (unsigned char*)XMALLOC(privSz, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
if (priv == NULL) {
XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
return ret;
}
#endif
if (dh == NULL || dh->priv_key == NULL || otherPub == NULL)
WOLFSSL_MSG("Bad function arguments");
else if ((keySz = (word32)DH_size(dh)) == 0)
WOLFSSL_MSG("Bad DH_size");
else if (wolfSSL_BN_bn2bin(dh->priv_key, NULL) > (int)privSz)
WOLFSSL_MSG("Bad priv internal size");
else if (wolfSSL_BN_bn2bin(otherPub, NULL) > (int)pubSz)
WOLFSSL_MSG("Bad otherPub size");
else {
privSz = wolfSSL_BN_bn2bin(dh->priv_key, priv);
pubSz = wolfSSL_BN_bn2bin(otherPub, pub);
if (dh->inSet == 0 && SetDhInternal(dh) != WOLFSSL_SUCCESS){
WOLFSSL_MSG("Bad DH set internal");
}
if (privSz <= 0 || pubSz <= 0)
WOLFSSL_MSG("Bad BN2bin set");
else if (wc_DhAgree((DhKey*)dh->internal, key, &keySz,
priv, privSz, pub, pubSz) < 0)
WOLFSSL_MSG("wc_DhAgree failed");
else
ret = (int)keySz;
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(pub, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(priv, NULL, DYNAMIC_TYPE_PRIVATE_KEY);
#endif
WOLFSSL_LEAVE("wolfSSL_DH_compute_key", ret);
return ret;
}
#if defined(OPENSSL_VERSION_NUMBER) && OPENSSL_VERSION_NUMBER >= 0x10100000L
/* ownership of p,q,and g get taken over by "dh" on success and should be free'd
* with a call to wolfSSL_DH_free -- not individually.
*
* returns WOLFSSL_SUCCESS on success
*/
int wolfSSL_DH_set0_pqg(WOLFSSL_DH *dh, WOLFSSL_BIGNUM *p,
WOLFSSL_BIGNUM *q, WOLFSSL_BIGNUM *g)
{
int ret;
WOLFSSL_ENTER("wolfSSL_DH_set0_pqg");
/* q can be NULL */
if (dh == NULL || p == NULL || g == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
/* free existing internal DH structure and recreate with new p / g */
if (dh->inSet) {
ret = wc_FreeDhKey((DhKey*)dh->internal);
if (ret != 0) {
WOLFSSL_MSG("Unable to free internal DH key");
return WOLFSSL_FAILURE;
}
}
wolfSSL_BN_free(dh->p);
wolfSSL_BN_free(dh->q);
wolfSSL_BN_free(dh->g);
dh->p = p;
dh->q = q;
dh->g = g;
ret = SetDhInternal(dh);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Unable to set internal DH key");
dh->p = NULL;
dh->q = NULL;
dh->g = NULL;
dh->inSet = 0;
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* v1.1.0 or later */
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* NO_DH */
#endif /* OPENSSL_EXTRA */
#if !defined(NO_DSA) && \
(defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL))
static void InitwolfSSL_DSA(WOLFSSL_DSA* dsa)
{
if (dsa) {
dsa->p = NULL;
dsa->q = NULL;
dsa->g = NULL;
dsa->pub_key = NULL;
dsa->priv_key = NULL;
dsa->internal = NULL;
dsa->inSet = 0;
dsa->exSet = 0;
}
}
WOLFSSL_DSA* wolfSSL_DSA_new(void)
{
WOLFSSL_DSA* external;
DsaKey* key;
WOLFSSL_MSG("wolfSSL_DSA_new");
key = (DsaKey*) XMALLOC(sizeof(DsaKey), NULL, DYNAMIC_TYPE_DSA);
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_DSA_new malloc DsaKey failure");
return NULL;
}
external = (WOLFSSL_DSA*) XMALLOC(sizeof(WOLFSSL_DSA), NULL,
DYNAMIC_TYPE_DSA);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_DSA_new malloc WOLFSSL_DSA failure");
XFREE(key, NULL, DYNAMIC_TYPE_DSA);
return NULL;
}
InitwolfSSL_DSA(external);
if (wc_InitDsaKey(key) != 0) {
WOLFSSL_MSG("wolfSSL_DSA_new InitDsaKey failure");
XFREE(key, NULL, DYNAMIC_TYPE_DSA);
wolfSSL_DSA_free(external);
return NULL;
}
external->internal = key;
return external;
}
void wolfSSL_DSA_free(WOLFSSL_DSA* dsa)
{
WOLFSSL_MSG("wolfSSL_DSA_free");
if (dsa) {
if (dsa->internal) {
FreeDsaKey((DsaKey*)dsa->internal);
XFREE(dsa->internal, NULL, DYNAMIC_TYPE_DSA);
dsa->internal = NULL;
}
wolfSSL_BN_free(dsa->priv_key);
wolfSSL_BN_free(dsa->pub_key);
wolfSSL_BN_free(dsa->g);
wolfSSL_BN_free(dsa->q);
wolfSSL_BN_free(dsa->p);
InitwolfSSL_DSA(dsa); /* set back to NULLs for safety */
XFREE(dsa, NULL, DYNAMIC_TYPE_DSA);
/* dsa = NULL, don't try to access or double free it */
}
}
/* wolfSSL -> OpenSSL */
int SetDsaExternal(WOLFSSL_DSA* dsa)
{
DsaKey* key;
WOLFSSL_MSG("Entering SetDsaExternal");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("dsa key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (DsaKey*)dsa->internal;
if (SetIndividualExternal(&dsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa p key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa q key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa g key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->pub_key, &key->y) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa y key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&dsa->priv_key, &key->x) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa x key error");
return WOLFSSL_FATAL_ERROR;
}
dsa->exSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_DSA && (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) */
#if !defined(NO_DSA) && defined(OPENSSL_EXTRA)
/* Openssl -> WolfSSL */
int SetDsaInternal(WOLFSSL_DSA* dsa)
{
DsaKey* key;
WOLFSSL_MSG("Entering SetDsaInternal");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("dsa key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (DsaKey*)dsa->internal;
if (dsa->p != NULL &&
SetIndividualInternal(dsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa p key error");
return WOLFSSL_FATAL_ERROR;
}
if (dsa->q != NULL &&
SetIndividualInternal(dsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa q key error");
return WOLFSSL_FATAL_ERROR;
}
if (dsa->g != NULL &&
SetIndividualInternal(dsa->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa g key error");
return WOLFSSL_FATAL_ERROR;
}
if (dsa->pub_key != NULL) {
if (SetIndividualInternal(dsa->pub_key, &key->y) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa pub_key error");
return WOLFSSL_FATAL_ERROR;
}
/* public key */
key->type = DSA_PUBLIC;
}
if (dsa->priv_key != NULL) {
if (SetIndividualInternal(dsa->priv_key, &key->x) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa priv_key error");
return WOLFSSL_FATAL_ERROR;
}
/* private key */
key->type = DSA_PRIVATE;
}
dsa->inSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_DSA && OPENSSL_EXTRA */
#ifdef OPENSSL_EXTRA
#if !defined(NO_RSA)
/* return wolfSSL native error codes. */
static int wolfSSL_RSA_generate_key_native(WOLFSSL_RSA* rsa, int bits, WOLFSSL_BIGNUM* bn,
void* cb)
{
int ret;
(void)cb;
(void)bn;
(void)bits;
WOLFSSL_ENTER("wolfSSL_RSA_generate_key_native");
if (rsa == NULL || rsa->internal == NULL) {
/* bit size checked during make key call */
WOLFSSL_MSG("bad arguments");
return BAD_FUNC_ARG;
}
#ifdef WOLFSSL_KEY_GEN
{
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* rng;
#else
WC_RNG rng[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
rng = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (rng == NULL)
return MEMORY_E;
#endif
if ((ret = wc_InitRng(rng)) < 0)
WOLFSSL_MSG("RNG init failed");
else if ((ret = wc_MakeRsaKey((RsaKey*)rsa->internal, bits,
wolfSSL_BN_get_word(bn), rng)) != MP_OKAY)
WOLFSSL_MSG("wc_MakeRsaKey failed");
else if ((ret = SetRsaExternal(rsa)) != WOLFSSL_SUCCESS)
WOLFSSL_MSG("SetRsaExternal failed");
else {
rsa->inSet = 1;
ret = WOLFSSL_ERROR_NONE;
}
wc_FreeRng(rng);
#ifdef WOLFSSL_SMALL_STACK
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
#endif
}
#else
WOLFSSL_MSG("No Key Gen built in");
ret = NOT_COMPILED_IN;
#endif
return ret;
}
/* Generates a RSA key of length len
*
* len length of RSA key i.e. 2048
* e e to use when generating RSA key
* f callback function for generation details
* data user callback argument
*
* Note: Because of wc_MakeRsaKey an RSA key size generated can be slightly
* rounded down. For example generating a key of size 2999 with e =
* 65537 will make a key of size 374 instead of 375.
* Returns a new RSA key on success and NULL on failure
*/
WOLFSSL_RSA* wolfSSL_RSA_generate_key(int len, unsigned long e,
void(*f)(int, int, void*), void* data)
{
WOLFSSL_RSA* rsa = NULL;
WOLFSSL_BIGNUM* bn = NULL;
WOLFSSL_ENTER("wolfSSL_RSA_generate_key");
(void)f;
(void)data;
if (len < 0) {
WOLFSSL_MSG("Bad argument: length was less than 0");
return NULL;
}
bn = wolfSSL_BN_new();
if (bn == NULL) {
WOLFSSL_MSG("Error creating big number");
return NULL;
}
if (wolfSSL_BN_set_word(bn, e) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error using e value");
wolfSSL_BN_free(bn);
return NULL;
}
rsa = wolfSSL_RSA_new();
if (rsa == NULL) {
WOLFSSL_MSG("memory error");
}
else {
for (;;) {
int gen_ret = wolfSSL_RSA_generate_key_native(rsa, len, bn, NULL);
if (gen_ret == WOLFSSL_ERROR_NONE)
break;
#ifdef HAVE_FIPS
else if (gen_ret == PRIME_GEN_E)
continue;
#endif
else {
wolfSSL_RSA_free(rsa);
rsa = NULL;
break;
}
}
}
wolfSSL_BN_free(bn);
return rsa;
}
/* return compliant with OpenSSL
* 1 if success, 0 if error
*/
int wolfSSL_RSA_generate_key_ex(WOLFSSL_RSA* rsa, int bits, WOLFSSL_BIGNUM* bn,
void* cb)
{
for (;;) {
int gen_ret = wolfSSL_RSA_generate_key_native(rsa, bits, bn, cb);
if (gen_ret == WOLFSSL_ERROR_NONE)
return WOLFSSL_SUCCESS;
#ifdef HAVE_FIPS
else if (gen_ret == PRIME_GEN_E)
continue;
#endif
else
return WOLFSSL_FAILURE;
}
}
#endif /* NO_RSA */
#ifndef NO_DSA
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_DSA_generate_key(WOLFSSL_DSA* dsa)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_DSA_generate_key");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
if (dsa->inSet == 0) {
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaInternal failed");
return ret;
}
}
#ifdef WOLFSSL_KEY_GEN
{
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG;
#else
WC_RNG tmpRNG[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
if (wc_MakeDsaKey(rng, (DsaKey*)dsa->internal) != MP_OKAY)
WOLFSSL_MSG("wc_MakeDsaKey failed");
else if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS)
WOLFSSL_MSG("SetDsaExternal failed");
else
ret = WOLFSSL_SUCCESS;
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
}
#else /* WOLFSSL_KEY_GEN */
WOLFSSL_MSG("No Key Gen built in");
#endif
return ret;
}
/* Returns a pointer to a new WOLFSSL_DSA structure on success and NULL on fail
*/
WOLFSSL_DSA* wolfSSL_DSA_generate_parameters(int bits, unsigned char* seed,
int seedLen, int* counterRet, unsigned long* hRet,
WOLFSSL_BN_CB cb, void* CBArg)
{
WOLFSSL_DSA* dsa;
WOLFSSL_ENTER("wolfSSL_DSA_generate_parameters()");
(void)cb;
(void)CBArg;
dsa = wolfSSL_DSA_new();
if (dsa == NULL) {
return NULL;
}
if (wolfSSL_DSA_generate_parameters_ex(dsa, bits, seed, seedLen,
counterRet, hRet, NULL) != WOLFSSL_SUCCESS) {
wolfSSL_DSA_free(dsa);
return NULL;
}
return dsa;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_DSA_generate_parameters_ex(WOLFSSL_DSA* dsa, int bits,
unsigned char* seed, int seedLen,
int* counterRet,
unsigned long* hRet, void* cb)
{
int ret = WOLFSSL_FAILURE;
(void)bits;
(void)seed;
(void)seedLen;
(void)counterRet;
(void)hRet;
(void)cb;
WOLFSSL_ENTER("wolfSSL_DSA_generate_parameters_ex");
if (dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_KEY_GEN
{
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG;
#else
WC_RNG tmpRNG[1];
#endif
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
if (wc_MakeDsaParameters(rng, bits,
(DsaKey*)dsa->internal) != MP_OKAY)
WOLFSSL_MSG("wc_MakeDsaParameters failed");
else if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS)
WOLFSSL_MSG("SetDsaExternal failed");
else
ret = WOLFSSL_SUCCESS;
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
}
#else /* WOLFSSL_KEY_GEN */
WOLFSSL_MSG("No Key Gen built in");
#endif
return ret;
}
WOLFSSL_DSA_SIG* wolfSSL_DSA_SIG_new(void)
{
WOLFSSL_DSA_SIG* sig;
WOLFSSL_ENTER("wolfSSL_DSA_SIG_new");
sig = (WOLFSSL_DSA_SIG*)XMALLOC(sizeof(WOLFSSL_DSA_SIG), NULL, DYNAMIC_TYPE_OPENSSL);
if (sig)
XMEMSET(sig, 0, sizeof(WOLFSSL_DSA_SIG));
return sig;
}
void wolfSSL_DSA_SIG_free(WOLFSSL_DSA_SIG *sig)
{
WOLFSSL_ENTER("wolfSSL_DSA_SIG_free");
if (sig) {
if (sig->r) {
wolfSSL_BN_free(sig->r);
}
if (sig->s) {
wolfSSL_BN_free(sig->s);
}
XFREE(sig, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
/* return WOLFSSL_SUCCESS on success, < 0 otherwise */
int wolfSSL_DSA_do_sign(const unsigned char* d, unsigned char* sigRet,
WOLFSSL_DSA* dsa)
{
int ret = WOLFSSL_FATAL_ERROR;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_DSA_do_sign");
if (d == NULL || sigRet == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad function arguments");
return ret;
}
if (dsa->inSet == 0)
{
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaInternal failed");
return ret;
}
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
if (DsaSign(d, sigRet, (DsaKey*)dsa->internal, rng) < 0)
WOLFSSL_MSG("DsaSign failed");
else
ret = WOLFSSL_SUCCESS;
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
#if !defined(HAVE_SELFTEST) && !defined(HAVE_FIPS)
WOLFSSL_DSA_SIG* wolfSSL_DSA_do_sign_ex(const unsigned char* digest,
int outLen, WOLFSSL_DSA* dsa)
{
WOLFSSL_DSA_SIG* sig = NULL;
byte sigBin[DSA_SIG_SIZE];
WOLFSSL_ENTER("wolfSSL_DSA_do_sign_ex");
if (!digest || !dsa || outLen != WC_SHA_DIGEST_SIZE) {
WOLFSSL_MSG("Bad function arguments");
return NULL;
}
if (wolfSSL_DSA_do_sign(digest, sigBin, dsa) != WOLFSSL_SUCCESS) {
return NULL;
}
if (!(sig = wolfSSL_DSA_SIG_new())) {
goto error;
}
if (!(sig->r = wolfSSL_BN_bin2bn(sigBin, DSA_HALF_SIZE, NULL))) {
goto error;
}
if (!(sig->s = wolfSSL_BN_bin2bn(sigBin + DSA_HALF_SIZE, DSA_HALF_SIZE, NULL))) {
goto error;
}
return sig;
error:
if (sig) {
wolfSSL_DSA_SIG_free(sig);
}
return NULL;
}
#endif /* !HAVE_SELFTEST && !HAVE_FIPS */
int wolfSSL_DSA_do_verify(const unsigned char* d, unsigned char* sig,
WOLFSSL_DSA* dsa, int *dsacheck)
{
int ret = WOLFSSL_FATAL_ERROR;
WOLFSSL_ENTER("wolfSSL_DSA_do_verify");
if (d == NULL || sig == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
if (dsa->inSet == 0)
{
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaInternal failed");
return WOLFSSL_FATAL_ERROR;
}
}
ret = DsaVerify(d, sig, (DsaKey*)dsa->internal, dsacheck);
if (ret != 0 || *dsacheck != 1) {
WOLFSSL_MSG("DsaVerify failed");
return ret;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_DSA_bits(const WOLFSSL_DSA *d)
{
if (!d)
return WOLFSSL_FAILURE;
if (!d->exSet && SetDsaExternal((WOLFSSL_DSA*)d) != WOLFSSL_SUCCESS)
return WOLFSSL_FAILURE;
return wolfSSL_BN_num_bits(d->p);
}
#if !defined(HAVE_SELFTEST) && !defined(HAVE_FIPS)
int wolfSSL_DSA_do_verify_ex(const unsigned char* digest, int digest_len,
WOLFSSL_DSA_SIG* sig, WOLFSSL_DSA* dsa)
{
int dsacheck, sz;
byte sigBin[DSA_SIG_SIZE];
byte* sigBinPtr = sigBin;
WOLFSSL_ENTER("wolfSSL_DSA_do_verify_ex");
if (!digest || !sig || !dsa || digest_len != WC_SHA_DIGEST_SIZE) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
if (!sig->r || !sig->s) {
WOLFSSL_MSG("No signature found in DSA_SIG");
return WOLFSSL_FAILURE;
}
/* front pad with zeros */
if (!(sz = wolfSSL_BN_num_bytes(sig->r))) {
return WOLFSSL_FAILURE;
}
while (sz++ < DSA_HALF_SIZE) {
*sigBinPtr++ = 0;
}
if (wolfSSL_BN_bn2bin(sig->r, sigBinPtr) == WOLFSSL_FATAL_ERROR) {
return WOLFSSL_FAILURE;
}
/* Move to s */
sigBinPtr = sigBin + DSA_HALF_SIZE;
/* front pad with zeros */
if (!(sz = wolfSSL_BN_num_bytes(sig->s))) {
return WOLFSSL_FAILURE;
}
while (sz++ < DSA_HALF_SIZE) {
*sigBinPtr++ = 0;
}
if (wolfSSL_BN_bn2bin(sig->s, sigBinPtr) == WOLFSSL_FATAL_ERROR) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_DSA_do_verify(digest, sigBin, dsa, &dsacheck) != WOLFSSL_SUCCESS ||
dsacheck != 1) {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* !HAVE_SELFTEST && !HAVE_FIPS */
#endif /* NO_DSA */
#if !defined(NO_RSA) && !defined(HAVE_USER_RSA)
#ifdef DEBUG_SIGN
static void DEBUG_SIGN_msg(const char *title, const unsigned char *out, unsigned int outlen)
{
const unsigned char *pt;
printf("%s[%d] = \n", title, (int)outlen);
outlen = outlen>100?100:outlen;
for (pt = out; pt < out + outlen;
printf("%c", ((*pt)&0x6f)>='A'?((*pt)&0x6f):'.'), pt++);
printf("\n");
}
#else
#define DEBUG_SIGN_msg(a,b,c)
#endif
static int nid2HashSum(int type) {
switch (type) {
#ifdef WOLFSSL_MD2
case NID_md2: type = MD2h; break;
#endif
#ifndef NO_MD5
case NID_md5: type = MD5h; break;
#endif
#ifndef NO_SHA
case NID_sha1: type = SHAh; break;
#endif
#ifndef NO_SHA256
case NID_sha256: type = SHA256h; break;
#endif
#ifdef WOLFSSL_SHA384
case NID_sha384: type = SHA384h; break;
#endif
#ifdef WOLFSSL_SHA512
case NID_sha512: type = SHA512h; break;
#endif
#ifndef WOLFSSL_NOSHA3_224
case NID_sha3_224: type = SHA3_224h; break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case NID_sha3_256: type = SHA3_256h; break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case NID_sha3_384: type = SHA3_384h; break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case NID_sha3_512: type = SHA3_512h; break;
#endif
default:
WOLFSSL_MSG("This NID (md type) not configured or not implemented");
return 0;
}
return type;
}
/* return WOLFSSL_SUCCESS on ok, 0 otherwise */
int wolfSSL_RSA_sign(int type, const unsigned char* m,
unsigned int mLen, unsigned char* sigRet,
unsigned int* sigLen, WOLFSSL_RSA* rsa)
{
return wolfSSL_RSA_sign_ex(type, m, mLen, sigRet, sigLen, rsa, 1);
}
int wolfSSL_RSA_sign_ex(int type, const unsigned char* m,
unsigned int mLen, unsigned char* sigRet,
unsigned int* sigLen, WOLFSSL_RSA* rsa, int flag)
{
return wolfSSL_RSA_sign_generic_padding(type, m, mLen, sigRet, sigLen,
rsa, flag, RSA_PKCS1_PADDING);
}
/**
* Sign a message with the chosen message digest, padding, and RSA key.
* @param type Hash NID
* @param m Message to sign. Most likely this will be the digest of
* the message to sign
* @param mLen Length of message to sign
* @param sigRet Output buffer
* @param sigLen On Input: length of sigRet buffer
* On Output: length of data written to sigRet
* @param rsa RSA key used to sign the input
* @param flag 1: Output the signature
* 0: Output the value that the unpadded signature should be
* compared to. Note: for RSA_PKCS1_PSS_PADDING the
* wc_RsaPSS_CheckPadding_ex function should be used to check
* the output of a *Verify* function.
* @param padding Padding to use. Only RSA_PKCS1_PSS_PADDING and
* RSA_PKCS1_PADDING are currently supported for signing.
* @return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on error
*/
int wolfSSL_RSA_sign_generic_padding(int type, const unsigned char* m,
unsigned int mLen, unsigned char* sigRet,
unsigned int* sigLen, WOLFSSL_RSA* rsa, int flag,
int padding)
{
word32 outLen;
word32 signSz;
int initTmpRng = 0;
WC_RNG* rng = NULL;
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
byte* encodedSig = NULL;
#else
WC_RNG tmpRNG[1];
byte encodedSig[MAX_ENCODED_SIG_SZ];
#endif
WOLFSSL_ENTER("wolfSSL_RSA_sign_generic_padding");
if (m == NULL || sigRet == NULL || sigLen == NULL || rsa == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
DEBUG_SIGN_msg("Message to Sign", m, mLen);
if (rsa->inSet == 0) {
WOLFSSL_MSG("No RSA internal set, do it");
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return WOLFSSL_FAILURE;
}
}
type = nid2HashSum(type);
outLen = (word32)wolfSSL_BN_num_bytes(rsa->n);
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FAILURE;
encodedSig = (byte*)XMALLOC(MAX_ENCODED_SIG_SZ, NULL,
DYNAMIC_TYPE_SIGNATURE);
if (encodedSig == NULL) {
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
return WOLFSSL_FAILURE;
}
#endif
if (outLen == 0) {
WOLFSSL_MSG("Bad RSA size");
}
else if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
if (flag != 0) {
switch (padding) {
#ifdef WC_RSA_NO_PADDING
case RSA_NO_PADDING:
WOLFSSL_MSG("RSA_NO_PADDING not supported for signing");
ret = BAD_FUNC_ARG;
break;
#endif
#if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) && defined(WC_RSA_PSS)
case RSA_PKCS1_PSS_PADDING:
{
enum wc_HashType hType = wc_OidGetHash(type);
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
WOLFSSL_MSG("Using RSA-PSS with hash length salt. "
"OpenSSL uses max length by default.");
#endif
ret = wc_RsaPSS_Sign_ex(m, mLen, sigRet, outLen,
hType, wc_hash2mgf(hType),
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
RSA_PSS_SALT_LEN_DEFAULT,
#else
RSA_PSS_SALT_LEN_DISCOVER,
#endif
(RsaKey*)rsa->internal, rng);
break;
}
#endif
#ifndef WC_NO_RSA_OAEP
case RSA_PKCS1_OAEP_PADDING:
{
WOLFSSL_MSG("RSA_PKCS1_OAEP_PADDING not supported for signing");
ret = BAD_FUNC_ARG;
break;
}
#endif
case RSA_PKCS1_PADDING:
signSz = wc_EncodeSignature(encodedSig, m, mLen, type);
if (signSz == 0) {
WOLFSSL_MSG("Bad Encode Signature");
}
DEBUG_SIGN_msg("Encoded Message", encodedSig, signSz);
ret = wc_RsaSSL_Sign(encodedSig, signSz, sigRet, outLen,
(RsaKey*)rsa->internal, rng);
break;
default:
WOLFSSL_MSG("Unsupported padding");
ret = BAD_FUNC_ARG;
break;
}
if (ret <= 0) {
WOLFSSL_MSG("Bad Rsa Sign");
ret = 0;
}
else {
*sigLen = (unsigned int)ret;
ret = WOLFSSL_SUCCESS;
DEBUG_SIGN_msg("Signature", sigRet, *sigLen);
}
} else {
switch (padding) {
case RSA_NO_PADDING:
case RSA_PKCS1_PSS_PADDING:
case RSA_PKCS1_OAEP_PADDING:
ret = WOLFSSL_SUCCESS;
XMEMCPY(sigRet, m, mLen);
*sigLen = mLen;
break;
case RSA_PKCS1_PADDING:
default:
signSz = wc_EncodeSignature(encodedSig, m, mLen, type);
if (signSz == 0) {
WOLFSSL_MSG("Bad Encode Signature");
}
ret = WOLFSSL_SUCCESS;
XMEMCPY(sigRet, encodedSig, signSz);
*sigLen = signSz;
break;
}
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
XFREE(encodedSig, NULL, DYNAMIC_TYPE_SIGNATURE);
#endif
if (ret == WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_RSA_sign_generic_padding success");
}
else {
WOLFSSL_LEAVE("wolfSSL_RSA_sign_generic_padding", ret);
WOLFSSL_MSG("wolfSSL_RSA_sign_generic_padding failed. "
"Returning WOLFSSL_FAILURE.");
ret = WOLFSSL_FAILURE;
}
return ret;
}
/* returns WOLFSSL_SUCCESS on successful verify and WOLFSSL_FAILURE on fail */
int wolfSSL_RSA_verify(int type, const unsigned char* m,
unsigned int mLen, const unsigned char* sig,
unsigned int sigLen, WOLFSSL_RSA* rsa)
{
return wolfSSL_RSA_verify_ex(type, m, mLen, sig, sigLen, rsa, RSA_PKCS1_PADDING);
}
/* returns WOLFSSL_SUCCESS on successful verify and WOLFSSL_FAILURE on fail */
int wolfSSL_RSA_verify_ex(int type, const unsigned char* m,
unsigned int mLen, const unsigned char* sig,
unsigned int sigLen, WOLFSSL_RSA* rsa,
int padding) {
int ret = WOLFSSL_FAILURE;
unsigned char *sigRet = NULL;
unsigned char *sigDec = NULL;
unsigned int len = 0;
int verLen;
#if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)
int hSum = nid2HashSum(type);
enum wc_HashType hType;
#endif
WOLFSSL_ENTER("wolfSSL_RSA_verify");
if ((m == NULL) || (sig == NULL)) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
sigDec = (unsigned char *)XMALLOC(sigLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (sigDec == NULL) {
WOLFSSL_MSG("Memory failure");
goto cleanup;
}
if (padding != RSA_PKCS1_PSS_PADDING) {
sigRet = (unsigned char *)XMALLOC(sigLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (sigRet == NULL) {
WOLFSSL_MSG("Memory failure");
goto cleanup;
}
/* get non-encrypted signature to be compared with decrypted signature */
if (wolfSSL_RSA_sign_generic_padding(type, m, mLen, sigRet, &len, rsa,
0, padding) <= 0) {
WOLFSSL_MSG("Message Digest Error");
goto cleanup;
}
DEBUG_SIGN_msg("Encoded Message", sigRet, len);
}
else {
DEBUG_SIGN_msg("Encoded Message", m, mLen);
}
/* decrypt signature */
#if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)
hType = wc_OidGetHash(hSum);
if ((verLen = wc_RsaSSL_Verify_ex2(sig, sigLen, (unsigned char *)sigDec,
sigLen, (RsaKey*)rsa->internal, padding, hType)) <= 0) {
WOLFSSL_MSG("RSA Decrypt error");
goto cleanup;
}
#else
verLen = wc_RsaSSL_Verify(sig, sigLen, (unsigned char *)sigDec, sigLen,
(RsaKey*)rsa->internal);
#endif
DEBUG_SIGN_msg("Decrypted Signature", sigDec, ret);
#if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) && defined(WC_RSA_PSS)
if (padding == RSA_PKCS1_PSS_PADDING) {
if (wc_RsaPSS_CheckPadding_ex(m, mLen, sigDec, verLen,
hType,
#ifndef WOLFSSL_PSS_SALT_LEN_DISCOVER
RSA_PSS_SALT_LEN_DEFAULT,
#else
RSA_PSS_SALT_LEN_DISCOVER,
#endif
mp_count_bits(&((RsaKey*)rsa->internal)->n)) != 0) {
WOLFSSL_MSG("wc_RsaPSS_CheckPadding_ex error");
goto cleanup;
}
}
else
#endif /* !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) */
if ((int)len != verLen || XMEMCMP(sigRet, sigDec, verLen) != 0) {
WOLFSSL_MSG("wolfSSL_RSA_verify_ex failed");
goto cleanup;
}
WOLFSSL_MSG("wolfSSL_RSA_verify_ex success");
ret = WOLFSSL_SUCCESS;
cleanup:
if (sigRet)
XFREE(sigRet, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (sigDec)
XFREE(sigDec, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
void wolfSSL_RSA_get0_key(const WOLFSSL_RSA *r, const WOLFSSL_BIGNUM **n,
const WOLFSSL_BIGNUM **e, const WOLFSSL_BIGNUM **d)
{
WOLFSSL_ENTER("wolfSSL_RSA_get0_key");
if (r != NULL) {
if (n != NULL)
*n = r->n;
if (e != NULL)
*e = r->e;
if (d != NULL)
*d = r->d;
} else {
if (n != NULL)
*n = NULL;
if (e != NULL)
*e = NULL;
if (d != NULL)
*d = NULL;
}
}
/* generate p-1 and q-1, WOLFSSL_SUCCESS on ok */
int wolfSSL_RSA_GenAdd(WOLFSSL_RSA* rsa)
{
int err;
mp_int tmp;
WOLFSSL_MSG("wolfSSL_RsaGenAdd");
if (rsa == NULL || rsa->p == NULL || rsa->q == NULL || rsa->d == NULL ||
rsa->dmp1 == NULL || rsa->dmq1 == NULL) {
WOLFSSL_MSG("rsa no init error");
return WOLFSSL_FATAL_ERROR;
}
if (mp_init(&tmp) != MP_OKAY) {
WOLFSSL_MSG("mp_init error");
return WOLFSSL_FATAL_ERROR;
}
err = mp_sub_d((mp_int*)rsa->p->internal, 1, &tmp);
if (err != MP_OKAY) {
WOLFSSL_MSG("mp_sub_d error");
}
else
err = mp_mod((mp_int*)rsa->d->internal, &tmp,
(mp_int*)rsa->dmp1->internal);
if (err != MP_OKAY) {
WOLFSSL_MSG("mp_mod error");
}
else
err = mp_sub_d((mp_int*)rsa->q->internal, 1, &tmp);
if (err != MP_OKAY) {
WOLFSSL_MSG("mp_sub_d error");
}
else
err = mp_mod((mp_int*)rsa->d->internal, &tmp,
(mp_int*)rsa->dmq1->internal);
mp_clear(&tmp);
if (err == MP_OKAY)
return WOLFSSL_SUCCESS;
else
return WOLFSSL_FATAL_ERROR;
}
#endif /* !NO_RSA && !HAVE_USER_RSA */
WOLFSSL_HMAC_CTX* wolfSSL_HMAC_CTX_new(void)
{
WOLFSSL_HMAC_CTX* hmac_ctx = (WOLFSSL_HMAC_CTX*)XMALLOC(
sizeof(WOLFSSL_HMAC_CTX), NULL, DYNAMIC_TYPE_OPENSSL);
if (hmac_ctx != NULL) {
XMEMSET(hmac_ctx, 0, sizeof(WOLFSSL_HMAC_CTX));
}
return hmac_ctx;
}
int wolfSSL_HMAC_CTX_Init(WOLFSSL_HMAC_CTX* ctx)
{
WOLFSSL_MSG("wolfSSL_HMAC_CTX_Init");
if (ctx != NULL) {
/* wc_HmacSetKey sets up ctx->hmac */
XMEMSET(ctx, 0, sizeof(WOLFSSL_HMAC_CTX));
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_HMAC_Init_ex(WOLFSSL_HMAC_CTX* ctx, const void* key,
int keylen, const EVP_MD* type, WOLFSSL_ENGINE* e)
{
WOLFSSL_ENTER("wolfSSL_HMAC_Init_ex");
/* WOLFSSL_ENGINE not used, call wolfSSL_HMAC_Init */
(void)e;
return wolfSSL_HMAC_Init(ctx, key, keylen, type);
}
/* helper function for Deep copy of internal wolfSSL hmac structure
* returns WOLFSSL_SUCCESS on success */
int wolfSSL_HmacCopy(Hmac* des, Hmac* src)
{
void* heap;
int ret;
#ifndef HAVE_FIPS
heap = src->heap;
#else
heap = NULL;
#endif
if (wc_HmacInit(des, heap, 0) != 0) {
return WOLFSSL_FAILURE;
}
/* requires that hash structures have no dynamic parts to them */
switch (src->macType) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_Md5Copy(&src->hash.md5, &des->hash.md5);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_ShaCopy(&src->hash.sha, &des->hash.sha);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_Sha224Copy(&src->hash.sha224, &des->hash.sha224);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_Sha256Copy(&src->hash.sha256, &des->hash.sha256);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_Sha384Copy(&src->hash.sha384, &des->hash.sha384);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_Sha512Copy(&src->hash.sha512, &des->hash.sha512);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
ret = wc_Sha3_224_Copy(&src->hash.sha3, &des->hash.sha3);
break;
#endif /* WOLFSSL_NO_SHA3_224 */
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
ret = wc_Sha3_256_Copy(&src->hash.sha3, &des->hash.sha3);
break;
#endif /* WOLFSSL_NO_SHA3_256 */
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
ret = wc_Sha3_384_Copy(&src->hash.sha3, &des->hash.sha3);
break;
#endif /* WOLFSSL_NO_SHA3_384 */
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
ret = wc_Sha3_512_Copy(&src->hash.sha3, &des->hash.sha3);
break;
#endif /* WOLFSSL_NO_SHA3_512 */
#endif /* WOLFSSL_SHA3 */
default:
return WOLFSSL_FAILURE;
}
if (ret != 0)
return WOLFSSL_FAILURE;
XMEMCPY((byte*)des->ipad, (byte*)src->ipad, WC_HMAC_BLOCK_SIZE);
XMEMCPY((byte*)des->opad, (byte*)src->opad, WC_HMAC_BLOCK_SIZE);
XMEMCPY((byte*)des->innerHash, (byte*)src->innerHash, WC_MAX_DIGEST_SIZE);
#ifndef HAVE_FIPS
des->heap = heap;
#endif
des->macType = src->macType;
des->innerHashKeyed = src->innerHashKeyed;
#ifdef WOLFSSL_ASYNC_CRYPT
XMEMCPY(&des->asyncDev, &src->asyncDev, sizeof(WC_ASYNC_DEV));
des->keyLen = src->keyLen;
#ifdef HAVE_CAVIUM
des->data = (byte*)XMALLOC(src->dataLen, des->heap,
DYNAMIC_TYPE_HMAC);
if (des->data == NULL) {
return BUFFER_E;
}
XMEMCPY(des->data, src->data, src->dataLen);
des->dataLen = src->dataLen;
#endif /* HAVE_CAVIUM */
#endif /* WOLFSSL_ASYNC_CRYPT */
return WOLFSSL_SUCCESS;
}
/* Deep copy of information from src to des structure
*
* des destination to copy information to
* src structure to get information from
*
* Returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on error
*/
int wolfSSL_HMAC_CTX_copy(WOLFSSL_HMAC_CTX* des, WOLFSSL_HMAC_CTX* src)
{
WOLFSSL_ENTER("wolfSSL_HMAC_CTX_copy");
if (des == NULL || src == NULL) {
return WOLFSSL_FAILURE;
}
des->type = src->type;
XMEMCPY((byte *)&des->save_ipad, (byte *)&src->hmac.ipad,
WC_HMAC_BLOCK_SIZE);
XMEMCPY((byte *)&des->save_opad, (byte *)&src->hmac.opad,
WC_HMAC_BLOCK_SIZE);
return wolfSSL_HmacCopy(&des->hmac, &src->hmac);
}
#if defined(HAVE_FIPS) && \
(!defined(HAVE_FIPS_VERSION) || (HAVE_FIPS_VERSION < 2))
static int _HMAC_Init(Hmac* hmac, int type, void* heap)
{
int ret = 0;
switch (type) {
#ifndef NO_MD5
case WC_MD5:
ret = wc_InitMd5(&hmac->hash.md5);
break;
#endif /* !NO_MD5 */
#ifndef NO_SHA
case WC_SHA:
ret = wc_InitSha(&hmac->hash.sha);
break;
#endif /* !NO_SHA */
#ifdef WOLFSSL_SHA224
case WC_SHA224:
ret = wc_InitSha224(&hmac->hash.sha224);
break;
#endif /* WOLFSSL_SHA224 */
#ifndef NO_SHA256
case WC_SHA256:
ret = wc_InitSha256(&hmac->hash.sha256);
break;
#endif /* !NO_SHA256 */
#ifdef WOLFSSL_SHA384
case WC_SHA384:
ret = wc_InitSha384(&hmac->hash.sha384);
break;
#endif /* WOLFSSL_SHA384 */
#ifdef WOLFSSL_SHA512
case WC_SHA512:
ret = wc_InitSha512(&hmac->hash.sha512);
break;
#endif /* WOLFSSL_SHA512 */
#ifdef WOLFSSL_SHA3
case WC_SHA3_224:
ret = wc_InitSha3_224(&hmac->hash.sha3, heap, INVALID_DEVID);
break;
case WC_SHA3_256:
ret = wc_InitSha3_256(&hmac->hash.sha3, heap, INVALID_DEVID);
break;
case WC_SHA3_384:
ret = wc_InitSha3_384(&hmac->hash.sha3, heap, INVALID_DEVID);
break;
case WC_SHA3_512:
ret = wc_InitSha3_512(&hmac->hash.sha3, heap, INVALID_DEVID);
break;
#endif
default:
ret = BAD_FUNC_ARG;
break;
}
(void)heap;
return ret;
}
#else
#define _HMAC_Init _InitHmac
#endif
int wolfSSL_HMAC_Init(WOLFSSL_HMAC_CTX* ctx, const void* key, int keylen,
const EVP_MD* type)
{
int hmac_error = 0;
void* heap = NULL;
int inited;
WOLFSSL_MSG("wolfSSL_HMAC_Init");
if (ctx == NULL) {
WOLFSSL_MSG("no ctx on init");
return WOLFSSL_FAILURE;
}
#ifndef HAVE_FIPS
heap = ctx->hmac.heap;
#endif
if (type) {
WOLFSSL_MSG("init has type");
#ifndef NO_MD5
if (XSTRNCMP(type, "MD5", 3) == 0) {
WOLFSSL_MSG("md5 hmac");
ctx->type = WC_MD5;
}
else
#endif
#ifdef WOLFSSL_SHA224
if (XSTRNCMP(type, "SHA224", 6) == 0) {
WOLFSSL_MSG("sha224 hmac");
ctx->type = WC_SHA224;
}
else
#endif
#ifndef NO_SHA256
if (XSTRNCMP(type, "SHA256", 6) == 0) {
WOLFSSL_MSG("sha256 hmac");
ctx->type = WC_SHA256;
}
else
#endif
#ifdef WOLFSSL_SHA384
if (XSTRNCMP(type, "SHA384", 6) == 0) {
WOLFSSL_MSG("sha384 hmac");
ctx->type = WC_SHA384;
}
else
#endif
#ifdef WOLFSSL_SHA512
if (XSTRNCMP(type, "SHA512", 6) == 0) {
WOLFSSL_MSG("sha512 hmac");
ctx->type = WC_SHA512;
}
else
#endif
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
if (XSTRNCMP(type, "SHA3_224", 8) == 0) {
WOLFSSL_MSG("sha3_224 hmac");
ctx->type = WC_SHA3_224;
}
else
#endif
#ifndef WOLFSSL_NOSHA3_256
if (XSTRNCMP(type, "SHA3_256", 8) == 0) {
WOLFSSL_MSG("sha3_256 hmac");
ctx->type = WC_SHA3_256;
}
else
#endif
if (XSTRNCMP(type, "SHA3_384", 8) == 0) {
WOLFSSL_MSG("sha3_384 hmac");
ctx->type = WC_SHA3_384;
}
else
#ifndef WOLFSSL_NOSHA3_512
if (XSTRNCMP(type, "SHA3_512", 8) == 0) {
WOLFSSL_MSG("sha3_512 hmac");
ctx->type = WC_SHA3_512;
}
else
#endif
#endif
#ifndef NO_SHA
/* has to be last since would pick or 256, 384, or 512 too */
if (XSTRNCMP(type, "SHA", 3) == 0) {
WOLFSSL_MSG("sha hmac");
ctx->type = WC_SHA;
}
else
#endif
{
WOLFSSL_MSG("bad init type");
return WOLFSSL_FAILURE;
}
}
/* Check if init has been called before */
inited = (ctx->hmac.macType != WC_HASH_TYPE_NONE);
/* Free if needed */
if (inited) {
wc_HmacFree(&ctx->hmac);
}
if (key != NULL) {
WOLFSSL_MSG("keying hmac");
if (wc_HmacInit(&ctx->hmac, NULL, INVALID_DEVID) == 0) {
hmac_error = wc_HmacSetKey(&ctx->hmac, ctx->type, (const byte*)key,
(word32)keylen);
if (hmac_error < 0){
wc_HmacFree(&ctx->hmac);
return WOLFSSL_FAILURE;
}
XMEMCPY((byte *)&ctx->save_ipad, (byte *)&ctx->hmac.ipad,
WC_HMAC_BLOCK_SIZE);
XMEMCPY((byte *)&ctx->save_opad, (byte *)&ctx->hmac.opad,
WC_HMAC_BLOCK_SIZE);
}
/* OpenSSL compat, no error */
}
else if (!inited) {
return WOLFSSL_FAILURE;
}
else if (ctx->type >= 0) { /* MD5 == 0 */
WOLFSSL_MSG("recover hmac");
if (wc_HmacInit(&ctx->hmac, NULL, INVALID_DEVID) == 0) {
ctx->hmac.macType = (byte)ctx->type;
ctx->hmac.innerHashKeyed = 0;
XMEMCPY((byte *)&ctx->hmac.ipad, (byte *)&ctx->save_ipad,
WC_HMAC_BLOCK_SIZE);
XMEMCPY((byte *)&ctx->hmac.opad, (byte *)&ctx->save_opad,
WC_HMAC_BLOCK_SIZE);
if ((hmac_error = _HMAC_Init(&ctx->hmac, ctx->hmac.macType, heap))
!=0) {
return hmac_error;
}
}
}
(void)hmac_error;
return WOLFSSL_SUCCESS;
}
int wolfSSL_HMAC_Update(WOLFSSL_HMAC_CTX* ctx, const unsigned char* data,
int len)
{
int hmac_error = 0;
WOLFSSL_MSG("wolfSSL_HMAC_Update");
if (ctx == NULL) {
WOLFSSL_MSG("no ctx");
return WOLFSSL_FAILURE;
}
if (data) {
WOLFSSL_MSG("updating hmac");
hmac_error = wc_HmacUpdate(&ctx->hmac, data, (word32)len);
if (hmac_error < 0){
WOLFSSL_MSG("hmac update error");
return WOLFSSL_FAILURE;
}
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_HMAC_Final(WOLFSSL_HMAC_CTX* ctx, unsigned char* hash,
unsigned int* len)
{
int hmac_error;
WOLFSSL_MSG("wolfSSL_HMAC_Final");
/* "len" parameter is optional. */
if (ctx == NULL || hash == NULL) {
WOLFSSL_MSG("invalid parameter");
return WOLFSSL_FAILURE;
}
WOLFSSL_MSG("final hmac");
hmac_error = wc_HmacFinal(&ctx->hmac, hash);
if (hmac_error < 0){
WOLFSSL_MSG("final hmac error");
return WOLFSSL_FAILURE;
}
if (len) {
WOLFSSL_MSG("setting output len");
switch (ctx->type) {
#ifndef NO_MD5
case WC_MD5:
*len = WC_MD5_DIGEST_SIZE;
break;
#endif
#ifndef NO_SHA
case WC_SHA:
*len = WC_SHA_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SHA224
case WC_SHA224:
*len = WC_SHA224_DIGEST_SIZE;
break;
#endif
#ifndef NO_SHA256
case WC_SHA256:
*len = WC_SHA256_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SHA384
case WC_SHA384:
*len = WC_SHA384_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SHA512
case WC_SHA512:
*len = WC_SHA512_DIGEST_SIZE;
break;
#endif
#ifdef WOLFSSL_SHA3
#ifndef WOLFSSL_NOSHA3_224
case WC_SHA3_224:
*len = WC_SHA3_224_DIGEST_SIZE;
break;
#endif
#ifndef WOLFSSL_NOSHA3_256
case WC_SHA3_256:
*len = WC_SHA3_256_DIGEST_SIZE;
break;
#endif
#ifndef WOLFSSL_NOSHA3_384
case WC_SHA3_384:
*len = WC_SHA3_384_DIGEST_SIZE;
break;
#endif
#ifndef WOLFSSL_NOSHA3_512
case WC_SHA3_512:
*len = WC_SHA3_512_DIGEST_SIZE;
break;
#endif
#endif
default:
WOLFSSL_MSG("bad hmac type");
return WOLFSSL_FAILURE;
}
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_HMAC_cleanup(WOLFSSL_HMAC_CTX* ctx)
{
WOLFSSL_MSG("wolfSSL_HMAC_cleanup");
if (ctx) {
wc_HmacFree(&ctx->hmac);
}
return WOLFSSL_SUCCESS;
}
void wolfSSL_HMAC_CTX_cleanup(WOLFSSL_HMAC_CTX* ctx)
{
if (ctx) {
wolfSSL_HMAC_cleanup(ctx);
}
}
void wolfSSL_HMAC_CTX_free(WOLFSSL_HMAC_CTX* ctx)
{
if (ctx) {
wolfSSL_HMAC_CTX_cleanup(ctx);
XFREE(ctx, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
size_t wolfSSL_HMAC_size(const WOLFSSL_HMAC_CTX *ctx)
{
if (!ctx) {
return 0;
}
return (size_t)wc_HashGetDigestSize((enum wc_HashType)ctx->hmac.macType);
}
#ifndef NO_DES3
void wolfSSL_3des_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset,
unsigned char* iv, int len)
{
(void)len;
WOLFSSL_MSG("wolfSSL_3des_iv");
if (ctx == NULL || iv == NULL) {
WOLFSSL_MSG("Bad function argument");
return;
}
if (doset)
wc_Des3_SetIV(&ctx->cipher.des3, iv); /* OpenSSL compat, no ret */
else
XMEMCPY(iv, &ctx->cipher.des3.reg, DES_BLOCK_SIZE);
}
#endif /* NO_DES3 */
#ifndef NO_AES
void wolfSSL_aes_ctr_iv(WOLFSSL_EVP_CIPHER_CTX* ctx, int doset,
unsigned char* iv, int len)
{
(void)len;
WOLFSSL_MSG("wolfSSL_aes_ctr_iv");
if (ctx == NULL || iv == NULL) {
WOLFSSL_MSG("Bad function argument");
return;
}
if (doset)
(void)wc_AesSetIV(&ctx->cipher.aes, iv); /* OpenSSL compat, no ret */
else
XMEMCPY(iv, &ctx->cipher.aes.reg, AES_BLOCK_SIZE);
}
#endif /* NO_AES */
/* Free the dynamically allocated data.
*
* p Pointer to dynamically allocated memory.
*/
void wolfSSL_OPENSSL_free(void* p)
{
WOLFSSL_MSG("wolfSSL_OPENSSL_free");
XFREE(p, NULL, DYNAMIC_TYPE_OPENSSL);
}
void *wolfSSL_OPENSSL_malloc(size_t a)
{
return (void *)XMALLOC(a, NULL, DYNAMIC_TYPE_OPENSSL);
}
int wolfSSL_OPENSSL_init_ssl(word64 opts, const OPENSSL_INIT_SETTINGS *settings)
{
(void)opts;
(void)settings;
return wolfSSL_library_init();
}
int wolfSSL_OPENSSL_init_crypto(word64 opts, const OPENSSL_INIT_SETTINGS* settings)
{
(void)opts;
(void)settings;
return wolfSSL_library_init();
}
#if defined(WOLFSSL_KEY_GEN) && defined(WOLFSSL_PEM_TO_DER)
static int EncryptDerKey(byte *der, int *derSz, const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz, byte **cipherInfo,
int maxDerSz)
{
int ret, paddingSz;
word32 idx, cipherInfoSz;
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif
WOLFSSL_ENTER("EncryptDerKey");
if (der == NULL || derSz == NULL || cipher == NULL ||
passwd == NULL || cipherInfo == NULL)
return BAD_FUNC_ARG;
#ifdef WOLFSSL_SMALL_STACK
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_ENCRYPTEDINFO);
if (info == NULL) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
#endif
XMEMSET(info, 0, sizeof(EncryptedInfo));
/* set the cipher name on info */
XSTRNCPY(info->name, cipher, NAME_SZ-1);
info->name[NAME_SZ-1] = '\0'; /* null term */
ret = wc_EncryptedInfoGet(info, info->name);
if (ret != 0) {
WOLFSSL_MSG("unsupported cipher");
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return WOLFSSL_FAILURE;
}
/* Generate a random salt */
if (wolfSSL_RAND_bytes(info->iv, info->ivSz) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("generate iv failed");
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return WOLFSSL_FAILURE;
}
/* add the padding before encryption */
paddingSz = ((*derSz)/info->ivSz + 1) * info->ivSz - (*derSz);
if (paddingSz == 0)
paddingSz = info->ivSz;
if (maxDerSz < *derSz + paddingSz) {
WOLFSSL_MSG("not enough DER buffer allocated");
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return WOLFSSL_FAILURE;
}
XMEMSET(der+(*derSz), (byte)paddingSz, paddingSz);
(*derSz) += paddingSz;
/* encrypt buffer */
if (wc_BufferKeyEncrypt(info, der, *derSz, passwd, passwdSz, WC_MD5) != 0) {
WOLFSSL_MSG("encrypt key failed");
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return WOLFSSL_FAILURE;
}
/* create cipher info : 'cipher_name,Salt(hex)' */
cipherInfoSz = (word32)(2*info->ivSz + XSTRLEN(info->name) + 2);
*cipherInfo = (byte*)XMALLOC(cipherInfoSz, NULL,
DYNAMIC_TYPE_STRING);
if (*cipherInfo == NULL) {
WOLFSSL_MSG("malloc failed");
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
return WOLFSSL_FAILURE;
}
XSTRNCPY((char*)*cipherInfo, info->name, cipherInfoSz);
XSTRNCAT((char*)*cipherInfo, ",", 2);
idx = (word32)XSTRLEN((char*)*cipherInfo);
cipherInfoSz -= idx;
ret = Base16_Encode(info->iv, info->ivSz, *cipherInfo+idx, &cipherInfoSz);
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_ENCRYPTEDINFO);
#endif
if (ret != 0) {
WOLFSSL_MSG("Base16_Encode failed");
XFREE(*cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_KEY_GEN || WOLFSSL_PEM_TO_DER */
#if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) && !defined(HAVE_USER_RSA)
static int wolfSSL_RSA_To_Der(WOLFSSL_RSA* rsa, byte** outBuf, int publicKey)
{
int derSz = 0;
int ret;
byte* derBuf;
WOLFSSL_ENTER("wolfSSL_RSA_To_Der");
if (!rsa || (publicKey != 0 && publicKey != 1)) {
WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", BAD_FUNC_ARG);
return BAD_FUNC_ARG;
}
if (rsa->inSet == 0) {
if ((ret = SetRsaInternal(rsa)) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal() Failed");
WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", ret);
return ret;
}
}
if (publicKey) {
if ((derSz = wc_RsaPublicKeyDerSize((RsaKey *)rsa->internal, 1)) < 0) {
WOLFSSL_MSG("wc_RsaPublicKeyDerSize failed");
WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", derSz);
return derSz;
}
}
else {
if ((derSz = wc_RsaKeyToDer((RsaKey*)rsa->internal, NULL, 0)) < 0) {
WOLFSSL_MSG("wc_RsaKeyToDer failed");
WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", derSz);
return derSz;
}
}
if (outBuf) {
if (!(derBuf = (byte*)XMALLOC(derSz, NULL, DYNAMIC_TYPE_TMP_BUFFER))) {
WOLFSSL_MSG("malloc failed");
WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", MEMORY_ERROR);
return MEMORY_ERROR;
}
/* Key to DER */
if (publicKey) {
derSz = wc_RsaKeyToPublicDer((RsaKey*)rsa->internal, derBuf, derSz);
}
else {
derSz = wc_RsaKeyToDer((RsaKey*)rsa->internal, derBuf, derSz);
}
if (derSz < 0) {
WOLFSSL_MSG("wc_RsaKeyToPublicDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
else {
if (*outBuf) {
XMEMCPY(*outBuf, derBuf, derSz);
XFREE(derBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
else {
*outBuf = derBuf;
}
}
}
WOLFSSL_LEAVE("wolfSSL_RSA_To_Der", derSz);
return derSz;
}
#endif
#ifndef NO_BIO
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)) && !defined(NO_RSA)
/* Takes a WOLFSSL_RSA key and writes it out to a WOLFSSL_BIO
*
* bio the WOLFSSL_BIO to write to
* key the WOLFSSL_RSA key to write out
* cipher cipher used
* passwd password string if used
* len length of password string
* cb password callback to use
* arg null terminated string for passphrase
*/
int wolfSSL_PEM_write_bio_RSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_RSA* key,
const WOLFSSL_EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb* cb, void* arg)
{
int ret;
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_RSAPrivateKey");
if (bio == NULL || key == NULL) {
WOLFSSL_MSG("Bad Function Arguments");
return WOLFSSL_FAILURE;
}
pkey = wolfSSL_EVP_PKEY_new_ex(bio->heap);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_EVP_PKEY_new_ex failed");
return WOLFSSL_FAILURE;
}
pkey->type = EVP_PKEY_RSA;
pkey->rsa = key;
pkey->ownRsa = 0;
#if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) && !defined(HAVE_USER_RSA)
/* similar to how wolfSSL_PEM_write_mem_RSAPrivateKey finds DER of key */
{
int derSz;
byte* derBuf = NULL;
if ((derSz = wolfSSL_RSA_To_Der(key, &derBuf, 0)) < 0) {
WOLFSSL_MSG("wolfSSL_RSA_To_Der failed");
return WOLFSSL_FAILURE;
}
if (derBuf == NULL) {
WOLFSSL_MSG("wolfSSL_RSA_To_Der failed to get buffer");
return WOLFSSL_FAILURE;
}
pkey->pkey.ptr = (char*)XMALLOC(derSz, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (pkey->pkey.ptr == NULL) {
WOLFSSL_MSG("key malloc failed");
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
pkey->pkey_sz = derSz;
XMEMCPY(pkey->pkey.ptr, derBuf, derSz);
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
ret = wolfSSL_PEM_write_bio_PrivateKey(bio, pkey, cipher, passwd, len,
cb, arg);
wolfSSL_EVP_PKEY_free(pkey);
return ret;
}
#if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) && !defined(HAVE_USER_RSA)
/* Takes an RSA public key and writes it out to a WOLFSSL_BIO
* Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE
*/
int wolfSSL_PEM_write_bio_RSA_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_RSA* rsa)
{
int ret = 0, derSz = 0;
byte *derBuf = NULL;
WOLFSSL_EVP_PKEY* pkey = NULL;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_RSA_PUBKEY");
if (bio == NULL || rsa == NULL) {
WOLFSSL_MSG("Bad Function Arguments");
return WOLFSSL_FAILURE;
}
/* Initialize pkey structure */
pkey = wolfSSL_EVP_PKEY_new_ex(bio->heap);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_EVP_PKEY_new_ex failed");
return WOLFSSL_FAILURE;
}
pkey->type = EVP_PKEY_RSA;
pkey->rsa = rsa;
pkey->ownRsa = 0;
if ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 1)) < 0) {
WOLFSSL_MSG("wolfSSL_RSA_To_Der failed");
return WOLFSSL_FAILURE;
}
if (derBuf == NULL) {
WOLFSSL_MSG("wolfSSL_RSA_To_Der failed to get buffer");
return WOLFSSL_FAILURE;
}
pkey->pkey.ptr = (char*)XMALLOC(derSz, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
if (pkey->pkey.ptr == NULL) {
WOLFSSL_MSG("key malloc failed");
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
pkey->pkey_sz = derSz;
XMEMCPY(pkey->pkey.ptr, derBuf, derSz);
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
ret = wolfSSL_PEM_write_bio_PUBKEY(bio, pkey);
wolfSSL_EVP_PKEY_free(pkey);
return ret;
}
#endif
/* Reads an RSA public key from a WOLFSSL_BIO into a WOLFSSL_RSA
* Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE
*/
WOLFSSL_RSA *wolfSSL_PEM_read_bio_RSA_PUBKEY(WOLFSSL_BIO* bio,WOLFSSL_RSA** rsa,
pem_password_cb* cb, void *pass)
{
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_RSA* local;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_RSA_PUBKEY");
pkey = wolfSSL_PEM_read_bio_PUBKEY(bio, NULL, cb, pass);
if (pkey == NULL) {
return NULL;
}
/* Since the WOLFSSL_RSA structure is being taken from WOLFSSL_EVP_PKEY the
* flag indicating that the WOLFSSL_RSA structure is owned should be FALSE
* to avoid having it free'd */
pkey->ownRsa = 0;
local = pkey->rsa;
if (rsa != NULL){
*rsa = local;
}
wolfSSL_EVP_PKEY_free(pkey);
return local;
}
#endif /* defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL) && !defined(NO_RSA) */
/* Takes a public key and writes it out to a WOLFSSL_BIO
* Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE
*/
int wolfSSL_PEM_write_bio_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key)
{
byte* keyDer;
int pemSz;
int ret;
byte* tmp;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_PUBKEY");
if (bio == NULL || key == NULL) {
return WOLFSSL_FAILURE;
}
keyDer = (byte*)key->pkey.ptr;
pemSz = wc_DerToPem(keyDer, key->pkey_sz, NULL, 0, PUBLICKEY_TYPE);
if (pemSz < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PUBKEY", pemSz);
return WOLFSSL_FAILURE;
}
tmp = (byte*)XMALLOC(pemSz, bio->heap, DYNAMIC_TYPE_OPENSSL);
if (tmp == NULL) {
return MEMORY_E;
}
ret = wc_DerToPemEx(keyDer, key->pkey_sz, tmp, pemSz,
NULL, PUBLICKEY_TYPE);
if (ret < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PUBKEY", ret);
XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL);
return WOLFSSL_FAILURE;
}
ret = wolfSSL_BIO_write(bio, tmp, pemSz);
XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL);
if (ret != pemSz) {
WOLFSSL_MSG("Unable to write full PEM to BIO");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* Takes a private key and writes it out to a WOLFSSL_BIO
* Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE
*/
int wolfSSL_PEM_write_bio_PrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EVP_PKEY* key,
const WOLFSSL_EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb* cb, void* arg)
{
byte* keyDer;
int pemSz;
int type;
int ret;
byte* tmp;
(void)cipher;
(void)passwd;
(void)len;
(void)cb;
(void)arg;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_PrivateKey");
if (bio == NULL || key == NULL) {
WOLFSSL_MSG("Bad Function Arguments");
return WOLFSSL_FAILURE;
}
keyDer = (byte*)key->pkey.ptr;
switch (key->type) {
#ifndef NO_RSA
case EVP_PKEY_RSA:
type = PRIVATEKEY_TYPE;
break;
#endif
#ifndef NO_DSA
case EVP_PKEY_DSA:
type = DSA_PRIVATEKEY_TYPE;
break;
#endif
#ifdef HAVE_ECC
case EVP_PKEY_EC:
type = ECC_PRIVATEKEY_TYPE;
break;
#endif
#if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL))
case EVP_PKEY_DH:
type = DH_PRIVATEKEY_TYPE;
break;
#endif
default:
WOLFSSL_MSG("Unknown Key type!");
type = PRIVATEKEY_TYPE;
}
pemSz = wc_DerToPem(keyDer, key->pkey_sz, NULL, 0, type);
if (pemSz < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PrivateKey", pemSz);
return WOLFSSL_FAILURE;
}
tmp = (byte*)XMALLOC(pemSz, bio->heap, DYNAMIC_TYPE_OPENSSL);
if (tmp == NULL) {
return MEMORY_E;
}
ret = wc_DerToPemEx(keyDer, key->pkey_sz, tmp, pemSz,
NULL, type);
if (ret < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_bio_PrivateKey", ret);
XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL);
return WOLFSSL_FAILURE;
}
ret = wolfSSL_BIO_write(bio, tmp, pemSz);
XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL);
if (ret != pemSz) {
WOLFSSL_MSG("Unable to write full PEM to BIO");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* !NO_BIO */
#if (defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) && !defined(HAVE_USER_RSA)) && \
(defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM))
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_mem_RSAPrivateKey(RSA* rsa, const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz,
unsigned char **pem, int *plen)
{
byte *derBuf = NULL, *tmp, *cipherInfo = NULL;
int derSz = 0;
const int type = PRIVATEKEY_TYPE;
const char* header = NULL;
const char* footer = NULL;
WOLFSSL_ENTER("wolfSSL_PEM_write_mem_RSAPrivateKey");
if (pem == NULL || plen == NULL || rsa == NULL || rsa->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
if (wc_PemGetHeaderFooter(type, &header, &footer) != 0)
return WOLFSSL_FAILURE;
if (rsa->inSet == 0) {
WOLFSSL_MSG("No RSA internal set, do it");
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return WOLFSSL_FAILURE;
}
}
if ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 0)) < 0) {
WOLFSSL_MSG("wolfSSL_RSA_To_Der failed");
return WOLFSSL_FAILURE;
}
/* encrypt DER buffer if required */
if (passwd != NULL && passwdSz > 0 && cipher != NULL) {
int ret;
int blockSz = wolfSSL_EVP_CIPHER_block_size(cipher);
byte *tmpBuf;
/* Add space for padding */
if (!(tmpBuf = (byte*)XREALLOC(derBuf, derSz + blockSz, NULL,
DYNAMIC_TYPE_TMP_BUFFER))) {
WOLFSSL_MSG("Extending DER buffer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return WOLFSSL_FAILURE;
}
derBuf = tmpBuf;
ret = EncryptDerKey(derBuf, &derSz, cipher,
passwd, passwdSz, &cipherInfo, derSz + blockSz);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("EncryptDerKey failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return ret;
}
/* tmp buffer with a max size */
*plen = (derSz * 2) + (int)XSTRLEN(header) + 1 +
(int)XSTRLEN(footer) + 1 + HEADER_ENCRYPTED_KEY_SIZE;
}
else {
/* tmp buffer with a max size */
*plen = (derSz * 2) + (int)XSTRLEN(header) + 1 +
(int)XSTRLEN(footer) + 1;
}
tmp = (byte*)XMALLOC(*plen, NULL, DYNAMIC_TYPE_PEM);
if (tmp == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
/* DER to PEM */
*plen = wc_DerToPemEx(derBuf, derSz, tmp, *plen, cipherInfo, type);
if (*plen <= 0) {
WOLFSSL_MSG("wc_DerToPemEx failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
*pem = (byte*)XMALLOC((*plen)+1, NULL, DYNAMIC_TYPE_KEY);
if (*pem == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XMEMSET(*pem, 0, (*plen)+1);
if (XMEMCPY(*pem, tmp, *plen) == NULL) {
WOLFSSL_MSG("XMEMCPY failed");
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_SUCCESS;
}
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_RSAPrivateKey(XFILE fp, WOLFSSL_RSA *rsa,
const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u)
{
byte *pem;
int plen, ret;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_write_RSAPrivateKey");
if (fp == XBADFILE || rsa == NULL || rsa->internal == NULL)
{
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_PEM_write_mem_RSAPrivateKey(rsa, enc, kstr, klen, &pem, &plen);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_PEM_write_mem_RSAPrivateKey failed");
return WOLFSSL_FAILURE;
}
ret = (int)XFWRITE(pem, plen, 1, fp);
if (ret != 1) {
WOLFSSL_MSG("RSA private key file write failed");
return WOLFSSL_FAILURE;
}
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return WOLFSSL_SUCCESS;
}
#endif /* NO_FILESYSTEM */
#endif /* WOLFSSL_KEY_GEN && !NO_RSA && !HAVE_USER_RSA && WOLFSSL_PEM_TO_DER */
#ifdef HAVE_ECC
#ifdef ALT_ECC_SIZE
static int SetIndividualInternalEcc(WOLFSSL_BIGNUM* bn, mp_int* mpi)
{
WOLFSSL_MSG("Entering SetIndividualInternal");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FATAL_ERROR;
}
if (mpi == NULL) {
WOLFSSL_MSG("mpi NULL error");
return WOLFSSL_FATAL_ERROR;
}
if (mp_copy((mp_int*)bn->internal, mpi) != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
return WOLFSSL_FATAL_ERROR;
}
return WOLFSSL_SUCCESS;
}
#endif /* ALT_ECC_SIZE */
/* EC_POINT Openssl -> WolfSSL */
static int SetECPointInternal(WOLFSSL_EC_POINT *p)
{
ecc_point* point;
WOLFSSL_ENTER("SetECPointInternal");
if (p == NULL || p->internal == NULL) {
WOLFSSL_MSG("ECPoint NULL error");
return WOLFSSL_FATAL_ERROR;
}
point = (ecc_point*)p->internal;
#ifndef ALT_ECC_SIZE
if (p->X != NULL && SetIndividualInternal(p->X, point->x) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point X error");
return WOLFSSL_FATAL_ERROR;
}
if (p->Y != NULL && SetIndividualInternal(p->Y, point->y) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Y error");
return WOLFSSL_FATAL_ERROR;
}
if (p->Z != NULL && SetIndividualInternal(p->Z, point->z) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Z error");
return WOLFSSL_FATAL_ERROR;
}
#else
if (p->X != NULL && SetIndividualInternalEcc(p->X, point->x) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point X error");
return WOLFSSL_FATAL_ERROR;
}
if (p->Y != NULL && SetIndividualInternalEcc(p->Y, point->y) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Y error");
return WOLFSSL_FATAL_ERROR;
}
if (p->Z != NULL && SetIndividualInternalEcc(p->Z, point->z) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Z error");
return WOLFSSL_FATAL_ERROR;
}
#endif
p->inSet = 1;
return WOLFSSL_SUCCESS;
}
/* EC_POINT WolfSSL -> OpenSSL */
static int SetECPointExternal(WOLFSSL_EC_POINT *p)
{
ecc_point* point;
WOLFSSL_ENTER("SetECPointExternal");
if (p == NULL || p->internal == NULL) {
WOLFSSL_MSG("ECPoint NULL error");
return WOLFSSL_FATAL_ERROR;
}
point = (ecc_point*)p->internal;
if (SetIndividualExternal(&p->X, point->x) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point X error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&p->Y, point->y) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Y error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&p->Z, point->z) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ecc point Z error");
return WOLFSSL_FATAL_ERROR;
}
p->exSet = 1;
return WOLFSSL_SUCCESS;
}
/* EC_KEY wolfSSL -> OpenSSL */
int SetECKeyExternal(WOLFSSL_EC_KEY* eckey)
{
ecc_key* key;
WOLFSSL_ENTER("SetECKeyExternal");
if (eckey == NULL || eckey->internal == NULL) {
WOLFSSL_MSG("ec key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (ecc_key*)eckey->internal;
/* set group (OID, nid and idx) */
eckey->group->curve_oid = ecc_sets[key->idx].oidSum;
eckey->group->curve_nid = EccEnumToNID(ecc_sets[key->idx].id);
eckey->group->curve_idx = key->idx;
if (eckey->pub_key->internal != NULL) {
/* set the internal public key */
if (wc_ecc_copy_point(&key->pubkey,
(ecc_point*)eckey->pub_key->internal) != MP_OKAY) {
WOLFSSL_MSG("SetECKeyExternal ecc_copy_point failed");
return WOLFSSL_FATAL_ERROR;
}
/* set the external pubkey (point) */
if (SetECPointExternal(eckey->pub_key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyExternal SetECPointExternal failed");
return WOLFSSL_FATAL_ERROR;
}
}
/* set the external privkey */
if (key->type == ECC_PRIVATEKEY) {
if (SetIndividualExternal(&eckey->priv_key, &key->k) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ec priv key error");
return WOLFSSL_FATAL_ERROR;
}
}
eckey->exSet = 1;
return WOLFSSL_SUCCESS;
}
/* EC_KEY Openssl -> WolfSSL */
int SetECKeyInternal(WOLFSSL_EC_KEY* eckey)
{
ecc_key* key;
WOLFSSL_ENTER("SetECKeyInternal");
if (eckey == NULL || eckey->internal == NULL || eckey->group == NULL) {
WOLFSSL_MSG("ec key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (ecc_key*)eckey->internal;
/* validate group */
if ((eckey->group->curve_idx < 0) ||
(wc_ecc_is_valid_idx(eckey->group->curve_idx) == 0)) {
WOLFSSL_MSG("invalid curve idx");
return WOLFSSL_FATAL_ERROR;
}
/* set group (idx of curve and corresponding domain parameters) */
key->idx = eckey->group->curve_idx;
key->dp = &ecc_sets[key->idx];
/* set pubkey (point) */
if (eckey->pub_key != NULL) {
if (SetECPointInternal(eckey->pub_key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ec key pub error");
return WOLFSSL_FATAL_ERROR;
}
/* copy over the public point to key */
if (wc_ecc_copy_point((ecc_point*)eckey->pub_key->internal, &key->pubkey) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_copy_point error");
return WOLFSSL_FATAL_ERROR;
}
/* public key */
key->type = ECC_PUBLICKEY;
}
/* set privkey */
if (eckey->priv_key != NULL) {
if (SetIndividualInternal(eckey->priv_key, &key->k) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("ec key priv error");
return WOLFSSL_FATAL_ERROR;
}
/* private key */
key->type = ECC_PRIVATEKEY;
}
eckey->inSet = 1;
return WOLFSSL_SUCCESS;
}
WOLFSSL_EC_POINT *wolfSSL_EC_KEY_get0_public_key(const WOLFSSL_EC_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_public_key");
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_get0_public_key Bad arguments");
return NULL;
}
return key->pub_key;
}
const WOLFSSL_EC_GROUP *wolfSSL_EC_KEY_get0_group(const WOLFSSL_EC_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_group");
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_get0_group Bad arguments");
return NULL;
}
return key->group;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_KEY_set_private_key(WOLFSSL_EC_KEY *key,
const WOLFSSL_BIGNUM *priv_key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_private_key");
if (key == NULL || priv_key == NULL) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* free key if previously set */
if (key->priv_key != NULL)
wolfSSL_BN_free(key->priv_key);
key->priv_key = wolfSSL_BN_dup(priv_key);
if (key->priv_key == NULL) {
WOLFSSL_MSG("key ecc priv key NULL");
return WOLFSSL_FAILURE;
}
if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
wolfSSL_BN_free(key->priv_key);
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
WOLFSSL_BIGNUM *wolfSSL_EC_KEY_get0_private_key(const WOLFSSL_EC_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_get0_private_key");
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_get0_private_key Bad arguments");
return NULL;
}
if (wolfSSL_BN_is_zero(key->priv_key)) {
/* return NULL if not set */
return NULL;
}
return key->priv_key;
}
WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new_by_curve_name(int nid)
{
WOLFSSL_EC_KEY *key;
int x;
int eccEnum = NIDToEccEnum(nid);
WOLFSSL_ENTER("wolfSSL_EC_KEY_new_by_curve_name");
key = wolfSSL_EC_KEY_new();
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new failure");
return NULL;
}
/* set the nid of the curve */
key->group->curve_nid = nid;
if (eccEnum != -1) {
/* search and set the corresponding internal curve idx */
for (x = 0; ecc_sets[x].size != 0; x++)
if (ecc_sets[x].id == eccEnum) {
key->group->curve_idx = x;
key->group->curve_oid = ecc_sets[x].oidSum;
break;
}
}
return key;
}
const char* wolfSSL_EC_curve_nid2nist(int nid)
{
const WOLF_EC_NIST_NAME* nist_name;
for (nist_name = kNistCurves; nist_name->name != NULL; nist_name++) {
if (nist_name->nid == nid) {
return kNistCurves->name;
}
}
return NULL;
}
#if defined(WOLFSSL_TLS13) && defined(HAVE_SUPPORTED_CURVES)
static int populate_groups(int* groups, int max_count, char *list)
{
char *end;
int len;
int count = 0;
const WOLF_EC_NIST_NAME* nist_name;
if (!groups || !list) {
return -1;
}
for (end = list; ; list = ++end) {
if (count > max_count) {
WOLFSSL_MSG("Too many curves in list");
return -1;
}
while (*end != ':' && *end != '\0') end++;
len = (int)(end - list); /* end points to char after end
* of curve name so no need for -1 */
if ((len < kNistCurves_MIN_NAME_LEN) ||
(len > kNistCurves_MAX_NAME_LEN)) {
WOLFSSL_MSG("Unrecognized curve name in list");
return -1;
}
for (nist_name = kNistCurves; nist_name->name != NULL; nist_name++) {
if (len == nist_name->name_len &&
XSTRNCMP(list, nist_name->name, nist_name->name_len) == 0) {
break;
}
}
if (!nist_name->name) {
WOLFSSL_MSG("Unrecognized curve name in list");
return -1;
}
groups[count++] = nist_name->nid;
if (*end == '\0') break;
}
return count;
}
int wolfSSL_CTX_set1_groups_list(WOLFSSL_CTX *ctx, char *list)
{
int groups[WOLFSSL_MAX_GROUP_COUNT];
int count;
if (!ctx || !list) {
return WOLFSSL_FAILURE;
}
if ((count = populate_groups(groups,
WOLFSSL_MAX_GROUP_COUNT, list)) == -1) {
return WOLFSSL_FAILURE;
}
return wolfSSL_CTX_set1_groups(ctx, groups, count);
}
int wolfSSL_set1_groups_list(WOLFSSL *ssl, char *list)
{
int groups[WOLFSSL_MAX_GROUP_COUNT];
int count;
if (!ssl || !list) {
return WOLFSSL_FAILURE;
}
if ((count = populate_groups(groups,
WOLFSSL_MAX_GROUP_COUNT, list)) == -1) {
return WOLFSSL_FAILURE;
}
return wolfSSL_set1_groups(ssl, groups, count);
}
#endif /* WOLFSSL_TLS13 */
static void InitwolfSSL_ECKey(WOLFSSL_EC_KEY* key)
{
if (key) {
key->group = NULL;
key->pub_key = NULL;
key->priv_key = NULL;
key->internal = NULL;
key->inSet = 0;
key->exSet = 0;
}
}
WOLFSSL_EC_KEY *wolfSSL_EC_KEY_new(void)
{
WOLFSSL_EC_KEY *external;
WOLFSSL_ENTER("wolfSSL_EC_KEY_new");
external = (WOLFSSL_EC_KEY*)XMALLOC(sizeof(WOLFSSL_EC_KEY), NULL,
DYNAMIC_TYPE_ECC);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_KEY failure");
return NULL;
}
XMEMSET(external, 0, sizeof(WOLFSSL_EC_KEY));
InitwolfSSL_ECKey(external);
external->internal = (ecc_key*)XMALLOC(sizeof(ecc_key), NULL,
DYNAMIC_TYPE_ECC);
if (external->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc ecc key failure");
goto error;
}
XMEMSET(external->internal, 0, sizeof(ecc_key));
if (wc_ecc_init((ecc_key*)external->internal) != 0) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new init ecc key failure");
goto error;
}
/* curve group */
external->group = wolfSSL_EC_GROUP_new_by_curve_name(ECC_CURVE_DEF);
if (external->group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new malloc WOLFSSL_EC_GROUP failure");
goto error;
}
/* public key */
external->pub_key = wolfSSL_EC_POINT_new(external->group);
if (external->pub_key == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new failure");
goto error;
}
/* private key */
external->priv_key = wolfSSL_BN_new();
if (external->priv_key == NULL) {
WOLFSSL_MSG("wolfSSL_BN_new failure");
goto error;
}
return external;
error:
wolfSSL_EC_KEY_free(external);
return NULL;
}
void wolfSSL_EC_KEY_free(WOLFSSL_EC_KEY *key)
{
WOLFSSL_ENTER("wolfSSL_EC_KEY_free");
if (key != NULL) {
if (key->internal != NULL) {
wc_ecc_free((ecc_key*)key->internal);
XFREE(key->internal, NULL, DYNAMIC_TYPE_ECC);
}
wolfSSL_BN_free(key->priv_key);
wolfSSL_EC_POINT_free(key->pub_key);
wolfSSL_EC_GROUP_free(key->group);
InitwolfSSL_ECKey(key); /* set back to NULLs for safety */
XFREE(key, NULL, DYNAMIC_TYPE_ECC);
/* key = NULL, don't try to access or double free it */
}
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_EC_KEY_set_group(WOLFSSL_EC_KEY *key, WOLFSSL_EC_GROUP *group)
{
(void)key;
(void)group;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_group");
WOLFSSL_STUB("EC_KEY_set_group");
return -1;
}
#endif
int wolfSSL_EC_KEY_generate_key(WOLFSSL_EC_KEY *key)
{
int initTmpRng = 0;
int eccEnum;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_EC_KEY_generate_key");
if (key == NULL || key->internal == NULL ||
key->group == NULL || key->group->curve_idx < 0) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key Bad arguments");
return 0;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return 0;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng == NULL) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key failed to set RNG");
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return 0;
}
/* NIDToEccEnum returns -1 for invalid NID so if key->group->curve_nid
* is 0 then pass ECC_CURVE_DEF as arg */
eccEnum = key->group->curve_nid ?
NIDToEccEnum(key->group->curve_nid) : ECC_CURVE_DEF;
if (wc_ecc_make_key_ex(rng, 0, (ecc_key*)key->internal, eccEnum) != MP_OKAY) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key wc_ecc_make_key failed");
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return 0;
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
if (SetECKeyExternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_EC_KEY_generate_key SetECKeyExternal failed");
return 0;
}
return 1;
}
#ifndef NO_WOLFSSL_STUB
void wolfSSL_EC_KEY_set_asn1_flag(WOLFSSL_EC_KEY *key, int asn1_flag)
{
(void)key;
(void)asn1_flag;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_asn1_flag");
WOLFSSL_STUB("EC_KEY_set_asn1_flag");
}
#endif
static int setupPoint(const WOLFSSL_EC_POINT *p) {
if (!p) {
return WOLFSSL_FAILURE;
}
if (p->inSet == 0) {
WOLFSSL_MSG("No ECPoint internal set, do it");
if (SetECPointInternal((WOLFSSL_EC_POINT *)p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointInternal SetECPointInternal failed");
return WOLFSSL_FAILURE;
}
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_KEY_set_public_key(WOLFSSL_EC_KEY *key,
const WOLFSSL_EC_POINT *pub)
{
ecc_point *pub_p, *key_p;
WOLFSSL_ENTER("wolfSSL_EC_KEY_set_public_key");
if (key == NULL || key->internal == NULL ||
pub == NULL || pub->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order Bad arguments");
return WOLFSSL_FAILURE;
}
if (key->inSet == 0) {
if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FAILURE;
}
}
if (setupPoint(pub) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
pub_p = (ecc_point*)pub->internal;
key_p = (ecc_point*)key->pub_key->internal;
/* create new point if required */
if (key_p == NULL)
key_p = wc_ecc_new_point();
if (key_p == NULL) {
WOLFSSL_MSG("key ecc point NULL");
return WOLFSSL_FAILURE;
}
if (wc_ecc_copy_point(pub_p, key_p) != MP_OKAY) {
WOLFSSL_MSG("ecc_copy_point failure");
return WOLFSSL_FAILURE;
}
if (SetECPointExternal(key->pub_key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FAILURE;
}
if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FAILURE;
}
wolfSSL_EC_POINT_dump("pub", pub);
wolfSSL_EC_POINT_dump("key->pub_key", key->pub_key);
return WOLFSSL_SUCCESS;
}
/* End EC_KEY */
int wolfSSL_ECDSA_size(const WOLFSSL_EC_KEY *key)
{
const EC_GROUP *group;
int bits, bytes;
word32 headerSz = 4; /* 2*ASN_TAG + 2*LEN(ENUM) */
if (!key) {
return WOLFSSL_FAILURE;
}
if (!(group = wolfSSL_EC_KEY_get0_group(key))) {
return WOLFSSL_FAILURE;
}
if ((bits = wolfSSL_EC_GROUP_order_bits(group)) == 0) {
return WOLFSSL_FAILURE;
}
bytes = (bits + 7) / 8; /* bytes needed to hold bits */
return headerSz +
2 + /* possible leading zeroes in r and s */
bytes + bytes + /* r and s */
2;
}
int wolfSSL_ECDSA_sign(int type, const unsigned char *digest,
int digestSz, unsigned char *sig,
unsigned int *sigSz, WOLFSSL_EC_KEY *key)
{
int ret = WOLFSSL_SUCCESS;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
int initTmpRng = 0;
WOLFSSL_ENTER("wolfSSL_ECDSA_sign");
if (!key) {
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FAILURE;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0) {
WOLFSSL_MSG("Global RNG no Init");
}
else {
rng = &globalRNG;
}
}
if (rng) {
if (wc_ecc_sign_hash(digest, digestSz, sig, sigSz, rng, (ecc_key*)key->internal) != MP_OKAY) {
ret = WOLFSSL_FAILURE;
}
if (initTmpRng) {
wc_FreeRng(tmpRNG);
}
} else {
ret = WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
if (tmpRNG)
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
(void)type;
return ret;
}
#ifndef HAVE_SELFTEST
/* ECC point compression types were not included in selftest ecc.h */
char* wolfSSL_EC_POINT_point2hex(const WOLFSSL_EC_GROUP* group,
const WOLFSSL_EC_POINT* point, int form,
WOLFSSL_BN_CTX* ctx)
{
static const char* hexDigit = "0123456789ABCDEF";
char* hex = NULL;
int id;
int i, sz, len;
(void)ctx;
if (group == NULL || point == NULL)
return NULL;
id = wc_ecc_get_curve_id(group->curve_idx);
if ((sz = wc_ecc_get_curve_size_from_id(id)) < 0)
return NULL;
len = sz + 1;
if (form == POINT_CONVERSION_UNCOMPRESSED)
len += sz;
hex = (char*)XMALLOC(2 * len + 1, NULL, DYNAMIC_TYPE_ECC);
if (hex == NULL)
return NULL;
XMEMSET(hex, 0, 2 * len + 1);
/* Put in x-ordinate after format byte. */
i = sz - mp_unsigned_bin_size((mp_int*)point->X->internal) + 1;
if (mp_to_unsigned_bin((mp_int*)point->X->internal, (byte*)(hex + i)) < 0) {
XFREE(hex, NULL, DYNAMIC_TYPE_ECC);
return NULL;
}
if (form == POINT_CONVERSION_COMPRESSED) {
hex[0] = mp_isodd((mp_int*)point->Y->internal) ? ECC_POINT_COMP_ODD :
ECC_POINT_COMP_EVEN;
}
else {
hex[0] = ECC_POINT_UNCOMP;
/* Put in y-ordinate after x-ordinate */
i = 1 + 2 * sz - mp_unsigned_bin_size((mp_int*)point->Y->internal);
if (mp_to_unsigned_bin((mp_int*)point->Y->internal,
(byte*)(hex + i)) < 0) {
XFREE(hex, NULL, DYNAMIC_TYPE_ECC);
return NULL;
}
}
for (i = len-1; i >= 0; i--) {
byte b = hex[i];
hex[i * 2 + 1] = hexDigit[b & 0xf];
hex[i * 2 ] = hexDigit[b >> 4];
}
return hex;
}
#endif /* HAVE_SELFTEST */
void wolfSSL_EC_POINT_dump(const char *msg, const WOLFSSL_EC_POINT *p)
{
#if defined(DEBUG_WOLFSSL)
char *num;
WOLFSSL_ENTER("wolfSSL_EC_POINT_dump");
if (!WOLFSSL_IS_DEBUG_ON() || wolfSSL_GetLoggingCb()) {
return;
}
if (p == NULL) {
printf("%s = NULL", msg);
return;
}
printf("%s:\n\tinSet=%d, exSet=%d\n", msg, p->inSet, p->exSet);
num = wolfSSL_BN_bn2hex(p->X);
printf("\tX = %s\n", num);
XFREE(num, NULL, DYNAMIC_TYPE_ECC);
num = wolfSSL_BN_bn2hex(p->Y);
printf("\tY = %s\n", num);
XFREE(num, NULL, DYNAMIC_TYPE_ECC);
num = wolfSSL_BN_bn2hex(p->Z);
printf("\tZ = %s\n", num);
XFREE(num, NULL, DYNAMIC_TYPE_ECC);
#else
(void)msg;
(void)p;
#endif
}
/* Start EC_GROUP */
/* return code compliant with OpenSSL :
* 0 if equal, 1 if not and -1 in case of error
*/
int wolfSSL_EC_GROUP_cmp(const WOLFSSL_EC_GROUP *a, const WOLFSSL_EC_GROUP *b,
WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_cmp");
if (a == NULL || b == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_cmp Bad arguments");
return WOLFSSL_FATAL_ERROR;
}
/* ok */
if ((a->curve_idx == b->curve_idx) && (a->curve_nid == b->curve_nid))
return 0;
/* ko */
return 1;
}
WOLFSSL_EC_GROUP *wolfSSL_EC_GROUP_dup(const WOLFSSL_EC_GROUP *src)
{
if (!src)
return NULL;
return wolfSSL_EC_GROUP_new_by_curve_name(src->curve_nid);
}
#endif /* HAVE_ECC */
#endif /* OPENSSL_EXTRA */
#if defined(HAVE_ECC) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL))
const WOLFSSL_EC_METHOD* wolfSSL_EC_GROUP_method_of(
const WOLFSSL_EC_GROUP *group)
{
return group;
}
int wolfSSL_EC_METHOD_get_field_type(const WOLFSSL_EC_METHOD *meth)
{
if (meth) {
return NID_X9_62_prime_field;
}
return WOLFSSL_FAILURE;
}
void wolfSSL_EC_GROUP_free(WOLFSSL_EC_GROUP *group)
{
WOLFSSL_ENTER("wolfSSL_EC_GROUP_free");
XFREE(group, NULL, DYNAMIC_TYPE_ECC);
/* group = NULL, don't try to access or double free it */
}
#endif
#ifdef OPENSSL_EXTRA
#ifdef HAVE_ECC
#ifndef NO_WOLFSSL_STUB
void wolfSSL_EC_GROUP_set_asn1_flag(WOLFSSL_EC_GROUP *group, int flag)
{
(void)group;
(void)flag;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_set_asn1_flag");
WOLFSSL_STUB("EC_GROUP_set_asn1_flag");
}
#endif
WOLFSSL_EC_GROUP *wolfSSL_EC_GROUP_new_by_curve_name(int nid)
{
WOLFSSL_EC_GROUP *g;
int x;
int eccEnum;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_new_by_curve_name");
/* If NID passed in is OpenSSL type, convert it to ecc_curve_id enum */
eccEnum = NIDToEccEnum(nid);
/* curve group */
g = (WOLFSSL_EC_GROUP*) XMALLOC(sizeof(WOLFSSL_EC_GROUP), NULL,
DYNAMIC_TYPE_ECC);
if (g == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_new_by_curve_name malloc failure");
return NULL;
}
XMEMSET(g, 0, sizeof(WOLFSSL_EC_GROUP));
/* set the nid of the curve */
g->curve_nid = nid;
if (eccEnum != -1) {
/* search and set the corresponding internal curve idx */
for (x = 0; ecc_sets[x].size != 0; x++)
if (ecc_sets[x].id == eccEnum) {
g->curve_idx = x;
g->curve_oid = ecc_sets[x].oidSum;
break;
}
}
return g;
}
/* return code compliant with OpenSSL :
* the curve nid if success, 0 if error
*/
int wolfSSL_EC_GROUP_get_curve_name(const WOLFSSL_EC_GROUP *group)
{
int nid;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_curve_name");
if (group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_curve_name Bad arguments");
return WOLFSSL_FAILURE;
}
/* If curve_nid is ECC Enum type, return corresponding OpenSSL nid */
if ((nid = EccEnumToNID(group->curve_nid)) != -1)
return nid;
return group->curve_nid;
}
/* return code compliant with OpenSSL :
* the degree of the curve if success, 0 if error
*/
int wolfSSL_EC_GROUP_get_degree(const WOLFSSL_EC_GROUP *group)
{
int nid;
int tmp;
WOLFSSL_ENTER("wolfSSL_EC_GROUP_get_degree");
if (group == NULL || group->curve_idx < 0) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_degree Bad arguments");
return WOLFSSL_FAILURE;
}
/* If curve_nid passed in is an ecc_curve_id enum, convert it to the
corresponding OpenSSL NID */
tmp = EccEnumToNID(group->curve_nid);
if (tmp != -1){
nid = tmp;
}
else{
nid = group->curve_nid;
}
switch(nid) {
case NID_secp112r1:
case NID_secp112r2:
return 112;
case NID_secp128r1:
case NID_secp128r2:
return 128;
case NID_secp160k1:
case NID_secp160r1:
case NID_secp160r2:
case NID_brainpoolP160r1:
return 160;
case NID_secp192k1:
case NID_brainpoolP192r1:
case NID_X9_62_prime192v1:
return 192;
case NID_secp224k1:
case NID_secp224r1:
case NID_brainpoolP224r1:
return 224;
case NID_secp256k1:
case NID_brainpoolP256r1:
case NID_X9_62_prime256v1:
return 256;
case NID_brainpoolP320r1:
return 320;
case NID_secp384r1:
case NID_brainpoolP384r1:
return 384;
case NID_secp521r1:
return 521;
case NID_brainpoolP512r1:
return 512;
default:
return WOLFSSL_FAILURE;
}
}
/* Converts OpenSSL NID value of ECC curves to the associated enum values in
ecc_curve_id, used by ecc_sets[].*/
int NIDToEccEnum(int n)
{
WOLFSSL_ENTER("NIDToEccEnum()");
switch(n) {
case NID_X9_62_prime192v1:
return ECC_SECP192R1;
case NID_X9_62_prime192v2:
return ECC_PRIME192V2;
case NID_X9_62_prime192v3:
return ECC_PRIME192V3;
case NID_X9_62_prime239v1:
return ECC_PRIME239V1;
case NID_X9_62_prime239v2:
return ECC_PRIME239V2;
case NID_X9_62_prime239v3:
return ECC_PRIME239V3;
case NID_X9_62_prime256v1:
return ECC_SECP256R1;
case NID_secp112r1:
return ECC_SECP112R1;
case NID_secp112r2:
return ECC_SECP112R2;
case NID_secp128r1:
return ECC_SECP128R1;
case NID_secp128r2:
return ECC_SECP128R2;
case NID_secp160r1:
return ECC_SECP160R1;
case NID_secp160r2:
return ECC_SECP160R2;
case NID_secp224r1:
return ECC_SECP224R1;
case NID_secp384r1:
return ECC_SECP384R1;
case NID_secp521r1:
return ECC_SECP521R1;
case NID_secp160k1:
return ECC_SECP160K1;
case NID_secp192k1:
return ECC_SECP192K1;
case NID_secp224k1:
return ECC_SECP224K1;
case NID_secp256k1:
return ECC_SECP256K1;
case NID_brainpoolP160r1:
return ECC_BRAINPOOLP160R1;
case NID_brainpoolP192r1:
return ECC_BRAINPOOLP192R1;
case NID_brainpoolP224r1:
return ECC_BRAINPOOLP224R1;
case NID_brainpoolP256r1:
return ECC_BRAINPOOLP256R1;
case NID_brainpoolP320r1:
return ECC_BRAINPOOLP320R1;
case NID_brainpoolP384r1:
return ECC_BRAINPOOLP384R1;
case NID_brainpoolP512r1:
return ECC_BRAINPOOLP512R1;
default:
WOLFSSL_MSG("NID not found");
return -1;
}
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_GROUP_get_order(const WOLFSSL_EC_GROUP *group,
WOLFSSL_BIGNUM *order, WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
if (group == NULL || order == NULL || order->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order NULL error");
return WOLFSSL_FAILURE;
}
if (mp_init((mp_int*)order->internal) != MP_OKAY) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_init failure");
return WOLFSSL_FAILURE;
}
if (mp_read_radix((mp_int*)order->internal,
ecc_sets[group->curve_idx].order, MP_RADIX_HEX) != MP_OKAY) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_get_order mp_read order failure");
mp_clear((mp_int*)order->internal);
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_EC_GROUP_order_bits(const WOLFSSL_EC_GROUP *group)
{
int ret;
mp_int order;
if (group == NULL || group->curve_idx < 0) {
WOLFSSL_MSG("wolfSSL_EC_GROUP_order_bits NULL error");
return 0;
}
ret = mp_init(&order);
if (ret == 0) {
ret = mp_read_radix(&order, ecc_sets[group->curve_idx].order,
MP_RADIX_HEX);
if (ret == 0)
ret = mp_count_bits(&order);
mp_clear(&order);
}
return ret;
}
/* End EC_GROUP */
/* Start EC_POINT */
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_ECPoint_i2d(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *p,
unsigned char *out, unsigned int *len)
{
int err;
WOLFSSL_ENTER("wolfSSL_ECPoint_i2d");
if (group == NULL || p == NULL || len == NULL) {
WOLFSSL_MSG("wolfSSL_ECPoint_i2d NULL error");
return WOLFSSL_FAILURE;
}
if (setupPoint(p) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
if (out != NULL) {
wolfSSL_EC_POINT_dump("i2d p", p);
}
err = wc_ecc_export_point_der(group->curve_idx, (ecc_point*)p->internal,
out, len);
if (err != MP_OKAY && !(out == NULL && err == LENGTH_ONLY_E)) {
WOLFSSL_MSG("wolfSSL_ECPoint_i2d wc_ecc_export_point_der failed");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_ECPoint_d2i(unsigned char *in, unsigned int len,
const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *p)
{
WOLFSSL_ENTER("wolfSSL_ECPoint_d2i");
if (group == NULL || p == NULL || p->internal == NULL || in == NULL) {
WOLFSSL_MSG("wolfSSL_ECPoint_d2i NULL error");
return WOLFSSL_FAILURE;
}
#ifndef HAVE_SELFTEST
if (wc_ecc_import_point_der_ex(in, len, group->curve_idx,
(ecc_point*)p->internal, 0) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_import_point_der_ex failed");
return WOLFSSL_FAILURE;
}
#else
/* ECC_POINT_UNCOMP is not defined CAVP self test so use magic number */
if (in[0] == 0x04) {
if (wc_ecc_import_point_der(in, len, group->curve_idx,
(ecc_point*)p->internal) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_import_point_der failed");
return WOLFSSL_FAILURE;
}
}
else {
WOLFSSL_MSG("Only uncompressed points supported with HAVE_SELFTEST");
return WOLFSSL_FAILURE;
}
#endif
/* Set new external point */
if (SetECPointExternal(p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointExternal failed");
return WOLFSSL_FAILURE;
}
wolfSSL_EC_POINT_dump("d2i p", p);
return WOLFSSL_SUCCESS;
}
size_t wolfSSL_EC_POINT_point2oct(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *p,
char form,
byte *buf, size_t len, WOLFSSL_BN_CTX *ctx)
{
word32 min_len = (word32)len;
#ifndef HAVE_SELFTEST
int compressed = form == POINT_CONVERSION_COMPRESSED ? 1 : 0;
#endif /* !HAVE_SELFTEST */
WOLFSSL_ENTER("EC_POINT_point2oct");
if (!group || !p) {
return WOLFSSL_FAILURE;
}
if (setupPoint(p) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_EC_POINT_is_at_infinity(group, p)) {
/* encodes to a single 0 octet */
if (buf != NULL) {
if (len < 1) {
ECerr(EC_F_EC_GFP_SIMPLE_POINT2OCT, EC_R_BUFFER_TOO_SMALL);
return WOLFSSL_FAILURE;
}
buf[0] = 0;
}
return 1;
}
if (form != POINT_CONVERSION_UNCOMPRESSED
#ifndef HAVE_SELFTEST
&& form != POINT_CONVERSION_COMPRESSED
#endif /* !HAVE_SELFTEST */
) {
WOLFSSL_MSG("Unsupported curve form");
return WOLFSSL_FAILURE;
}
#ifndef HAVE_SELFTEST
if (wc_ecc_export_point_der_ex(group->curve_idx, (ecc_point*)p->internal,
buf, &min_len, compressed) != (buf ? MP_OKAY : LENGTH_ONLY_E)) {
return WOLFSSL_FAILURE;
}
#else
if (wc_ecc_export_point_der(group->curve_idx, (ecc_point*)p->internal,
buf, &min_len) != (buf ? MP_OKAY : LENGTH_ONLY_E)) {
return WOLFSSL_FAILURE;
}
#endif /* !HAVE_SELFTEST */
(void)ctx;
return (size_t)min_len;
}
int wolfSSL_EC_POINT_oct2point(const WOLFSSL_EC_GROUP *group,
WOLFSSL_EC_POINT *p, const unsigned char *buf,
size_t len, WOLFSSL_BN_CTX *ctx)
{
WOLFSSL_ENTER("wolfSSL_EC_POINT_oct2point");
if (!group || !p) {
return WOLFSSL_FAILURE;
}
(void)ctx;
return wolfSSL_ECPoint_d2i((unsigned char*)buf, (unsigned int)len, group, p);
}
int wolfSSL_i2o_ECPublicKey(const WOLFSSL_EC_KEY *in, unsigned char **out)
{
size_t len;
unsigned char *tmp = NULL;
char form;
WOLFSSL_ENTER("wolfSSL_i2o_ECPublicKey");
if (!in) {
WOLFSSL_MSG("wolfSSL_i2o_ECPublicKey Bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef HAVE_COMP_KEY
/* Default to compressed form if not set */
form = in->form == POINT_CONVERSION_UNCOMPRESSED ?
POINT_CONVERSION_UNCOMPRESSED:
POINT_CONVERSION_COMPRESSED;
#else
form = POINT_CONVERSION_UNCOMPRESSED;
#endif
len = wolfSSL_EC_POINT_point2oct(in->group, in->pub_key, form,
NULL, 0, NULL);
if (len != WOLFSSL_FAILURE && out) {
if (!*out) {
if (!(tmp = (unsigned char*)XMALLOC(len, NULL,
DYNAMIC_TYPE_OPENSSL))) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
*out = tmp;
}
if (wolfSSL_EC_POINT_point2oct(in->group, in->pub_key, form, *out,
len, NULL) == WOLFSSL_FAILURE) {
if (tmp) {
XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL);
*out = NULL;
}
return WOLFSSL_FAILURE;
}
if (!tmp) {
/* Move buffer forward if it was not alloced in this function */
*out += len;
}
}
return (int)len;
}
#ifdef HAVE_ECC_KEY_IMPORT
WOLFSSL_EC_KEY *wolfSSL_d2i_ECPrivateKey(WOLFSSL_EC_KEY **key, const unsigned char **in,
long len)
{
WOLFSSL_EC_KEY *eckey = NULL;
WOLFSSL_ENTER("wolfSSL_d2i_ECPrivateKey");
if (!in || !*in || len <= 0) {
WOLFSSL_MSG("wolfSSL_d2i_ECPrivateKey Bad arguments");
return NULL;
}
if (!(eckey = wolfSSL_EC_KEY_new())) {
WOLFSSL_MSG("wolfSSL_EC_KEY_new error");
return NULL;
}
if (wc_ecc_import_private_key(*in, (word32)len, NULL, 0,
(ecc_key*)eckey->internal) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_import_private_key error");
goto error;
}
eckey->inSet = 1;
if (SetECKeyExternal(eckey) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyExternal error");
goto error;
}
if (key) {
*key = eckey;
}
return eckey;
error:
wolfSSL_EC_KEY_free(eckey);
return NULL;
}
#endif /* HAVE_ECC_KEY_IMPORT */
int wolfSSL_i2d_ECPrivateKey(const WOLFSSL_EC_KEY *in, unsigned char **out)
{
int len;
byte* buf = NULL;
WOLFSSL_ENTER("wolfSSL_i2d_ECPrivateKey");
if (!in) {
WOLFSSL_MSG("wolfSSL_i2d_ECPrivateKey Bad arguments");
return WOLFSSL_FAILURE;
}
if (!in->inSet && SetECKeyInternal((WOLFSSL_EC_KEY*)in) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal error");
return WOLFSSL_FAILURE;
}
if ((len = wc_ecc_size((ecc_key*)in->internal)) <= 0) {
WOLFSSL_MSG("wc_ecc_size error");
return WOLFSSL_FAILURE;
}
if (out) {
if (!(buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER))) {
WOLFSSL_MSG("tmp buffer malloc error");
return WOLFSSL_FAILURE;
}
if (wc_ecc_export_private_only((ecc_key*)in->internal, buf,
(word32*)&len) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_export_private_only error");
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
if (*out) {
XMEMCPY(*out, buf, len);
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
else {
*out = buf;
}
}
return len;
}
void wolfSSL_EC_KEY_set_conv_form(WOLFSSL_EC_KEY *eckey, char form)
{
if (eckey && (form == POINT_CONVERSION_UNCOMPRESSED
#ifdef HAVE_COMP_KEY
|| form == POINT_CONVERSION_COMPRESSED
#endif
)) {
eckey->form = form;
} else {
WOLFSSL_MSG("Incorrect form or HAVE_COMP_KEY not compiled in");
}
}
/* wolfSSL_EC_POINT_point2bn should return "in" if not null */
WOLFSSL_BIGNUM *wolfSSL_EC_POINT_point2bn(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *p,
char form,
WOLFSSL_BIGNUM *in, WOLFSSL_BN_CTX *ctx)
{
size_t len;
byte *buf;
WOLFSSL_BIGNUM *ret = NULL;
WOLFSSL_ENTER("wolfSSL_EC_POINT_oct2point");
if (!group || !p) {
return NULL;
}
if ((len = wolfSSL_EC_POINT_point2oct(group, p, form,
NULL, 0, ctx)) == WOLFSSL_FAILURE) {
return NULL;
}
if (!(buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER))) {
WOLFSSL_MSG("malloc failed");
return NULL;
}
if (wolfSSL_EC_POINT_point2oct(group, p, form,
buf, len, ctx) == len) {
ret = wolfSSL_BN_bin2bn(buf, (int)len, in);
}
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#ifdef USE_ECC_B_PARAM
int wolfSSL_EC_POINT_is_on_curve(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *point,
WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_is_on_curve");
if (!group || !point) {
WOLFSSL_MSG("Invalid arguments");
return WOLFSSL_FAILURE;
}
if (!point->inSet && SetECPointInternal((WOLFSSL_EC_POINT*)point)) {
WOLFSSL_MSG("SetECPointInternal error");
return WOLFSSL_FAILURE;
}
return wc_ecc_point_is_on_curve((ecc_point*)point->internal, group->curve_idx)
== MP_OKAY ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
#endif /* USE_ECC_B_PARAM */
WOLFSSL_EC_POINT *wolfSSL_EC_POINT_new(const WOLFSSL_EC_GROUP *group)
{
WOLFSSL_EC_POINT *p;
WOLFSSL_ENTER("wolfSSL_EC_POINT_new");
if (group == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new NULL error");
return NULL;
}
p = (WOLFSSL_EC_POINT *)XMALLOC(sizeof(WOLFSSL_EC_POINT), NULL,
DYNAMIC_TYPE_ECC);
if (p == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new malloc ecc point failure");
return NULL;
}
XMEMSET(p, 0, sizeof(WOLFSSL_EC_POINT));
p->internal = wc_ecc_new_point();
if (p->internal == NULL) {
WOLFSSL_MSG("ecc_new_point failure");
XFREE(p, NULL, DYNAMIC_TYPE_ECC);
return NULL;
}
return p;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_POINT_get_affine_coordinates_GFp(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *point,
WOLFSSL_BIGNUM *x,
WOLFSSL_BIGNUM *y,
WOLFSSL_BN_CTX *ctx)
{
mp_digit mp;
mp_int modulus;
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_get_affine_coordinates_GFp");
if (group == NULL || point == NULL || point->internal == NULL ||
x == NULL || y == NULL || wolfSSL_EC_POINT_is_at_infinity(group, point)) {
WOLFSSL_MSG("wolfSSL_EC_POINT_get_affine_coordinates_GFp NULL error");
return WOLFSSL_FAILURE;
}
if (setupPoint(point) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
if (!wolfSSL_BN_is_one(point->Z)) {
if (mp_init(&modulus) != MP_OKAY) {
WOLFSSL_MSG("mp_init failed");
return WOLFSSL_FAILURE;
}
/* Map the Jacobian point back to affine space */
if (mp_read_radix(&modulus, ecc_sets[group->curve_idx].prime, MP_RADIX_HEX) != MP_OKAY) {
WOLFSSL_MSG("mp_read_radix failed");
mp_clear(&modulus);
return WOLFSSL_FAILURE;
}
if (mp_montgomery_setup(&modulus, &mp) != MP_OKAY) {
WOLFSSL_MSG("mp_montgomery_setup failed");
mp_clear(&modulus);
return WOLFSSL_FAILURE;
}
if (ecc_map((ecc_point*)point->internal, &modulus, mp) != MP_OKAY) {
WOLFSSL_MSG("ecc_map failed");
mp_clear(&modulus);
return WOLFSSL_FAILURE;
}
if (SetECPointExternal((WOLFSSL_EC_POINT *)point) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointExternal failed");
mp_clear(&modulus);
return WOLFSSL_FAILURE;
}
}
BN_copy(x, point->X);
BN_copy(y, point->Y);
mp_clear(&modulus);
return WOLFSSL_SUCCESS;
}
int wolfSSL_EC_POINT_set_affine_coordinates_GFp(const WOLFSSL_EC_GROUP *group,
WOLFSSL_EC_POINT *point,
const WOLFSSL_BIGNUM *x,
const WOLFSSL_BIGNUM *y,
WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_set_affine_coordinates_GFp");
if (group == NULL || point == NULL || point->internal == NULL ||
x == NULL || y == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_set_affine_coordinates_GFp NULL error");
return WOLFSSL_FAILURE;
}
if (!point->X) {
point->X = wolfSSL_BN_new();
}
if (!point->Y) {
point->Y = wolfSSL_BN_new();
}
if (!point->Z) {
point->Z = wolfSSL_BN_new();
}
if (!point->X || !point->Y || !point->Z) {
WOLFSSL_MSG("wolfSSL_BN_new failed");
return WOLFSSL_FAILURE;
}
BN_copy(point->X, x);
BN_copy(point->Y, y);
BN_copy(point->Z, wolfSSL_BN_value_one());
if (SetECPointInternal((WOLFSSL_EC_POINT *)point) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointInternal failed");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#if !defined(WOLFSSL_ATECC508A) && !defined(WOLFSSL_ATECC608A) && \
!defined(HAVE_SELFTEST)
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
int wolfSSL_EC_POINT_add(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *r,
const WOLFSSL_EC_POINT *p1,
const WOLFSSL_EC_POINT *p2, WOLFSSL_BN_CTX *ctx)
{
mp_int a, prime, mu;
mp_digit mp = 0;
ecc_point* montP1 = NULL;
ecc_point* montP2 = NULL;
ecc_point* eccP1;
ecc_point* eccP2;
int ret = WOLFSSL_FAILURE;
(void)ctx;
if (!group || !r || !p1 || !p2) {
WOLFSSL_MSG("wolfSSL_EC_POINT_add error");
return WOLFSSL_FAILURE;
}
if (setupPoint(r) != WOLFSSL_SUCCESS ||
setupPoint(p1) != WOLFSSL_SUCCESS ||
setupPoint(p2) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("setupPoint error");
return WOLFSSL_FAILURE;
}
/* read the curve prime and a */
if (mp_init_multi(&prime, &a, &mu, NULL, NULL, NULL) != MP_OKAY) {
WOLFSSL_MSG("mp_init_multi error");
goto cleanup;
}
if (mp_read_radix(&a, ecc_sets[group->curve_idx].Af, MP_RADIX_HEX)
!= MP_OKAY) {
WOLFSSL_MSG("mp_read_radix a error");
goto cleanup;
}
if (mp_read_radix(&prime, ecc_sets[group->curve_idx].prime, MP_RADIX_HEX)
!= MP_OKAY) {
WOLFSSL_MSG("mp_read_radix prime error");
goto cleanup;
}
if (mp_montgomery_setup(&prime, &mp) != MP_OKAY) {
WOLFSSL_MSG("mp_montgomery_setup nqm error");
goto cleanup;
}
eccP1 = (ecc_point*)p1->internal;
eccP2 = (ecc_point*)p2->internal;
if (!(montP1 = wc_ecc_new_point_h(NULL)) ||
!(montP2 = wc_ecc_new_point_h(NULL))) {
WOLFSSL_MSG("wc_ecc_new_point_h nqm error");
goto cleanup;
}
if ((mp_montgomery_calc_normalization(&mu, &prime)) != MP_OKAY) {
WOLFSSL_MSG("mp_montgomery_calc_normalization error");
goto cleanup;
}
/* Convert to Montgomery form */
if (mp_cmp_d(&mu, 1) == MP_EQ) {
if (wc_ecc_copy_point(eccP1, montP1) != MP_OKAY ||
wc_ecc_copy_point(eccP2, montP2) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_copy_point error");
goto cleanup;
}
} else {
if (mp_mulmod(eccP1->x, &mu, &prime, montP1->x) != MP_OKAY ||
mp_mulmod(eccP1->y, &mu, &prime, montP1->y) != MP_OKAY ||
mp_mulmod(eccP1->z, &mu, &prime, montP1->z) != MP_OKAY) {
WOLFSSL_MSG("mp_mulmod error");
goto cleanup;
}
if (mp_mulmod(eccP2->x, &mu, &prime, montP2->x) != MP_OKAY ||
mp_mulmod(eccP2->y, &mu, &prime, montP2->y) != MP_OKAY ||
mp_mulmod(eccP2->z, &mu, &prime, montP2->z) != MP_OKAY) {
WOLFSSL_MSG("mp_mulmod error");
goto cleanup;
}
}
if (ecc_projective_add_point(montP1, montP2, (ecc_point*)r->internal,
&a, &prime, mp) != MP_OKAY) {
WOLFSSL_MSG("ecc_projective_add_point error");
goto cleanup;
}
if (ecc_map((ecc_point*)r->internal, &prime, mp) != MP_OKAY) {
WOLFSSL_MSG("ecc_map error");
goto cleanup;
}
ret = WOLFSSL_SUCCESS;
cleanup:
mp_clear(&a);
mp_clear(&prime);
mp_clear(&mu);
wc_ecc_del_point_h(montP1, NULL);
wc_ecc_del_point_h(montP2, NULL);
return ret;
}
/* Calculate the value: generator * n + q * m
* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_EC_POINT_mul(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *r,
const WOLFSSL_BIGNUM *n, const WOLFSSL_EC_POINT *q,
const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx)
{
mp_int a, prime;
int ret = WOLFSSL_FAILURE;
ecc_point* result = NULL;
ecc_point* tmp = NULL;
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_mul");
if (!group || !r) {
WOLFSSL_MSG("wolfSSL_EC_POINT_mul NULL error");
return WOLFSSL_FAILURE;
}
if (!(result = wc_ecc_new_point())) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new error");
return WOLFSSL_FAILURE;
}
/* read the curve prime and a */
if (mp_init_multi(&prime, &a, NULL, NULL, NULL, NULL) != MP_OKAY) {
WOLFSSL_MSG("mp_init_multi error");
goto cleanup;
}
if (q && setupPoint(q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("setupPoint error");
goto cleanup;
}
if (mp_read_radix(&prime, ecc_sets[group->curve_idx].prime, MP_RADIX_HEX)
!= MP_OKAY) {
WOLFSSL_MSG("mp_read_radix prime error");
goto cleanup;
}
if (mp_read_radix(&a, ecc_sets[group->curve_idx].Af, MP_RADIX_HEX)
!= MP_OKAY) {
WOLFSSL_MSG("mp_read_radix a error");
goto cleanup;
}
if (n) {
/* load generator */
if (wc_ecc_get_generator(result, group->curve_idx)
!= MP_OKAY) {
WOLFSSL_MSG("wc_ecc_get_generator error");
goto cleanup;
}
}
if (n && q && m) {
/* r = generator * n + q * m */
#ifdef ECC_SHAMIR
if (ecc_mul2add(result, (mp_int*)n->internal,
(ecc_point*)q->internal, (mp_int*)m->internal,
result, &a, &prime, NULL)
!= MP_OKAY) {
WOLFSSL_MSG("ecc_mul2add error");
goto cleanup;
}
#else
mp_digit mp = 0;
if (mp_montgomery_setup(&prime, &mp) != MP_OKAY) {
WOLFSSL_MSG("mp_montgomery_setup nqm error");
goto cleanup;
}
if (!(tmp = wc_ecc_new_point())) {
WOLFSSL_MSG("wolfSSL_EC_POINT_new nqm error");
goto cleanup;
}
/* r = generator * n */
if (wc_ecc_mulmod((mp_int*)n->internal, result, result, &a, &prime, 0)
!= MP_OKAY) {
WOLFSSL_MSG("wc_ecc_mulmod nqm error");
goto cleanup;
}
/* tmp = q * m */
if (wc_ecc_mulmod((mp_int*)m->internal, (ecc_point*)q->internal,
tmp, &a, &prime, 0) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_mulmod nqm error");
goto cleanup;
}
/* result = result + tmp */
if (ecc_projective_add_point(tmp, result, result, &a, &prime, mp)
!= MP_OKAY) {
WOLFSSL_MSG("wc_ecc_mulmod nqm error");
goto cleanup;
}
if (ecc_map(result, &prime, mp) != MP_OKAY) {
WOLFSSL_MSG("ecc_map nqm error");
goto cleanup;
}
#endif
}
else if (n) {
/* r = generator * n */
if (wc_ecc_mulmod((mp_int*)n->internal, result, result, &a, &prime, 1)
!= MP_OKAY) {
WOLFSSL_MSG("wc_ecc_mulmod gn error");
goto cleanup;
}
}
else if (q && m) {
/* r = q * m */
if (wc_ecc_mulmod((mp_int*)m->internal, (ecc_point*)q->internal,
result, &a, &prime, 1) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_mulmod qm error");
goto cleanup;
}
}
/* copy to destination */
if (wc_ecc_copy_point(result, (ecc_point*)r->internal)) {
WOLFSSL_MSG("wc_ecc_copy_point error");
goto cleanup;
}
r->inSet = 1;
if (SetECPointExternal(r) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointExternal error");
goto cleanup;
}
ret = WOLFSSL_SUCCESS;
cleanup:
mp_clear(&a);
mp_clear(&prime);
wc_ecc_del_point(result);
wc_ecc_del_point(tmp);
return ret;
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* !defined(WOLFSSL_ATECC508A) && defined(ECC_SHAMIR) &&
* !defined(HAVE_SELFTEST) */
/* (x, y) -> (x, -y) */
int wolfSSL_EC_POINT_invert(const WOLFSSL_EC_GROUP *group, WOLFSSL_EC_POINT *a,
WOLFSSL_BN_CTX *ctx)
{
ecc_point* p;
mp_int prime;
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_invert");
if (!group || !a || !a->internal || setupPoint(a) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
p = (ecc_point*)a->internal;
/* read the curve prime and a */
if (mp_init_multi(&prime, NULL, NULL, NULL, NULL, NULL) != MP_OKAY) {
WOLFSSL_MSG("mp_init_multi error");
return WOLFSSL_FAILURE;
}
if (mp_sub(&prime, p->y, p->y) != MP_OKAY) {
WOLFSSL_MSG("mp_sub error");
return WOLFSSL_FAILURE;
}
if (SetECPointExternal(a) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECPointExternal error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
void wolfSSL_EC_POINT_clear_free(WOLFSSL_EC_POINT *p)
{
WOLFSSL_ENTER("wolfSSL_EC_POINT_clear_free");
wolfSSL_EC_POINT_free(p);
}
/* return code compliant with OpenSSL :
* 0 if equal, 1 if not and -1 in case of error
*/
int wolfSSL_EC_POINT_cmp(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *a, const WOLFSSL_EC_POINT *b,
WOLFSSL_BN_CTX *ctx)
{
int ret;
(void)ctx;
WOLFSSL_ENTER("wolfSSL_EC_POINT_cmp");
if (group == NULL || a == NULL || a->internal == NULL || b == NULL ||
b->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_cmp Bad arguments");
return WOLFSSL_FATAL_ERROR;
}
ret = wc_ecc_cmp_point((ecc_point*)a->internal, (ecc_point*)b->internal);
if (ret == MP_EQ)
return 0;
else if (ret == MP_LT || ret == MP_GT)
return 1;
return WOLFSSL_FATAL_ERROR;
}
int wolfSSL_EC_POINT_copy(WOLFSSL_EC_POINT *dest, const WOLFSSL_EC_POINT *src)
{
WOLFSSL_ENTER("wolfSSL_EC_POINT_copy");
if (!dest || !src) {
return WOLFSSL_FAILURE;
}
if (setupPoint(src) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
if (wc_ecc_copy_point((ecc_point*) dest->internal,
(ecc_point*) src->internal) != MP_OKAY) {
return WOLFSSL_FAILURE;
}
dest->inSet = 1;
if (SetECPointExternal(dest) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ECC */
#endif /* OPENSSL_EXTRA */
#if defined(HAVE_ECC) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL))
void wolfSSL_EC_POINT_free(WOLFSSL_EC_POINT *p)
{
WOLFSSL_ENTER("wolfSSL_EC_POINT_free");
if (p != NULL) {
if (p->internal != NULL) {
wc_ecc_del_point((ecc_point*)p->internal);
p->internal = NULL;
}
wolfSSL_BN_free(p->X);
wolfSSL_BN_free(p->Y);
wolfSSL_BN_free(p->Z);
p->X = NULL;
p->Y = NULL;
p->Z = NULL;
p->inSet = p->exSet = 0;
XFREE(p, NULL, DYNAMIC_TYPE_ECC);
/* p = NULL, don't try to access or double free it */
}
}
#endif
#ifdef OPENSSL_EXTRA
#ifdef HAVE_ECC
/* return code compliant with OpenSSL :
* 1 if point at infinity, 0 else
*/
int wolfSSL_EC_POINT_is_at_infinity(const WOLFSSL_EC_GROUP *group,
const WOLFSSL_EC_POINT *point)
{
int ret;
WOLFSSL_ENTER("wolfSSL_EC_POINT_is_at_infinity");
if (group == NULL || point == NULL || point->internal == NULL) {
WOLFSSL_MSG("wolfSSL_EC_POINT_is_at_infinity NULL error");
return WOLFSSL_FAILURE;
}
if (setupPoint(point) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
ret = wc_ecc_point_is_at_infinity((ecc_point*)point->internal);
if (ret < 0) {
WOLFSSL_MSG("ecc_point_is_at_infinity failure");
return WOLFSSL_FAILURE;
}
return ret;
}
/* End EC_POINT */
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
size_t wolfSSL_EC_get_builtin_curves(WOLFSSL_EC_BUILTIN_CURVE *r, size_t nitems)
{
size_t i, min_nitems;
#ifdef HAVE_SELFTEST
size_t ecc_sets_count;
for (i = 0; ecc_sets[i].size != 0 && ecc_sets[i].name != NULL; i++);
ecc_sets_count = i;
#endif
if (r == NULL || nitems == 0)
return ecc_sets_count;
min_nitems = nitems < ecc_sets_count ? nitems : ecc_sets_count;
for (i = 0; i < min_nitems; i++) {
r[i].nid = EccEnumToNID(ecc_sets[i].id);
r[i].comment = wolfSSL_OBJ_nid2sn(r[i].nid);
}
return min_nitems;
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
/* Start ECDSA_SIG */
void wolfSSL_ECDSA_SIG_free(WOLFSSL_ECDSA_SIG *sig)
{
WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_free");
if (sig) {
wolfSSL_BN_free(sig->r);
wolfSSL_BN_free(sig->s);
XFREE(sig, NULL, DYNAMIC_TYPE_ECC);
}
}
WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_SIG_new(void)
{
WOLFSSL_ECDSA_SIG *sig;
WOLFSSL_ENTER("wolfSSL_ECDSA_SIG_new");
sig = (WOLFSSL_ECDSA_SIG*) XMALLOC(sizeof(WOLFSSL_ECDSA_SIG), NULL,
DYNAMIC_TYPE_ECC);
if (sig == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA signature failure");
return NULL;
}
sig->s = NULL;
sig->r = wolfSSL_BN_new();
if (sig->r == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA r failure");
wolfSSL_ECDSA_SIG_free(sig);
return NULL;
}
sig->s = wolfSSL_BN_new();
if (sig->s == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new malloc ECDSA s failure");
wolfSSL_ECDSA_SIG_free(sig);
return NULL;
}
return sig;
}
/* return signature structure on success, NULL otherwise */
WOLFSSL_ECDSA_SIG *wolfSSL_ECDSA_do_sign(const unsigned char *d, int dlen,
WOLFSSL_EC_KEY *key)
{
WOLFSSL_ECDSA_SIG *sig = NULL;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_ECDSA_do_sign");
if (d == NULL || key == NULL || key->internal == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Bad arguments");
return NULL;
}
/* set internal key if not done */
if (key->inSet == 0)
{
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign No EC key internal set, do it");
if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign SetECKeyInternal failed");
return NULL;
}
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return NULL;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("wolfSSL_ECDSA_do_sign Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
mp_int sig_r, sig_s;
if (mp_init_multi(&sig_r, &sig_s, NULL, NULL, NULL, NULL) == MP_OKAY) {
if (wc_ecc_sign_hash_ex(d, dlen, rng, (ecc_key*)key->internal,
&sig_r, &sig_s) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_sign_hash_ex failed");
}
else {
/* put signature blob in ECDSA structure */
sig = wolfSSL_ECDSA_SIG_new();
if (sig == NULL)
WOLFSSL_MSG("wolfSSL_ECDSA_SIG_new failed");
else if (SetIndividualExternal(&(sig->r), &sig_r)!=WOLFSSL_SUCCESS){
WOLFSSL_MSG("ecdsa r key error");
wolfSSL_ECDSA_SIG_free(sig);
sig = NULL;
}
else if (SetIndividualExternal(&(sig->s), &sig_s)!=WOLFSSL_SUCCESS){
WOLFSSL_MSG("ecdsa s key error");
wolfSSL_ECDSA_SIG_free(sig);
sig = NULL;
}
}
mp_free(&sig_r);
mp_free(&sig_s);
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return sig;
}
/* return code compliant with OpenSSL :
* 1 for a valid signature, 0 for an invalid signature and -1 on error
*/
int wolfSSL_ECDSA_do_verify(const unsigned char *d, int dlen,
const WOLFSSL_ECDSA_SIG *sig, WOLFSSL_EC_KEY *key)
{
int check_sign = 0;
WOLFSSL_ENTER("wolfSSL_ECDSA_do_verify");
if (d == NULL || sig == NULL || key == NULL || key->internal == NULL) {
WOLFSSL_MSG("wolfSSL_ECDSA_do_verify Bad arguments");
return WOLFSSL_FATAL_ERROR;
}
/* set internal key if not done */
if (key->inSet == 0)
{
WOLFSSL_MSG("No EC key internal set, do it");
if (SetECKeyInternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FATAL_ERROR;
}
}
if (wc_ecc_verify_hash_ex((mp_int*)sig->r->internal,
(mp_int*)sig->s->internal, d, dlen, &check_sign,
(ecc_key *)key->internal) != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_verify_hash failed");
return WOLFSSL_FATAL_ERROR;
}
else if (check_sign == 0) {
WOLFSSL_MSG("wc_ecc_verify_hash incorrect signature detected");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
WOLFSSL_ECDSA_SIG *wolfSSL_d2i_ECDSA_SIG(WOLFSSL_ECDSA_SIG **sig,
const unsigned char **pp, long len)
{
WOLFSSL_ECDSA_SIG *s = NULL;
if (pp == NULL)
return NULL;
if (sig != NULL)
s = *sig;
if (s == NULL) {
s = wolfSSL_ECDSA_SIG_new();
if (s == NULL)
return NULL;
}
/* DecodeECC_DSA_Sig calls mp_init, so free these */
mp_free((mp_int*)s->r->internal);
mp_free((mp_int*)s->s->internal);
if (DecodeECC_DSA_Sig(*pp, (word32)len, (mp_int*)s->r->internal,
(mp_int*)s->s->internal) != MP_OKAY) {
if (sig == NULL || *sig == NULL)
wolfSSL_ECDSA_SIG_free(s);
return NULL;
}
*pp += len;
if (sig != NULL)
*sig = s;
return s;
}
int wolfSSL_i2d_ECDSA_SIG(const WOLFSSL_ECDSA_SIG *sig, unsigned char **pp)
{
word32 len;
if (sig == NULL)
return 0;
/* ASN.1: SEQ + INT + INT
* ASN.1 Integer must be a positive value - prepend zero if number has
* top bit set.
*/
len = 2 + mp_leading_bit((mp_int*)sig->r->internal) +
mp_unsigned_bin_size((mp_int*)sig->r->internal) +
2 + mp_leading_bit((mp_int*)sig->s->internal) +
mp_unsigned_bin_size((mp_int*)sig->s->internal);
/* Two bytes required for length if ASN.1 SEQ data greater than 127 bytes
* and less than 256 bytes.
*/
len = 1 + ((len > 127) ? 2 : 1) + len;
if (pp != NULL && *pp != NULL) {
if (StoreECC_DSA_Sig(*pp, &len, (mp_int*)sig->r->internal,
(mp_int*)sig->s->internal) != MP_OKAY) {
len = 0;
}
else
*pp += len;
}
return (int)len;
}
/* End ECDSA_SIG */
/* Start ECDH */
/* return code compliant with OpenSSL :
* length of computed key if success, -1 if error
*/
int wolfSSL_ECDH_compute_key(void *out, size_t outlen,
const WOLFSSL_EC_POINT *pub_key,
WOLFSSL_EC_KEY *ecdh,
void *(*KDF) (const void *in, size_t inlen,
void *out, size_t *outlen))
{
word32 len;
ecc_key* key;
int ret;
#if defined(ECC_TIMING_RESISTANT) && !defined(HAVE_SELFTEST) \
&& !defined(HAVE_FIPS)
int setGlobalRNG = 0;
#endif
(void)KDF;
WOLFSSL_ENTER("wolfSSL_ECDH_compute_key");
if (out == NULL || pub_key == NULL || pub_key->internal == NULL ||
ecdh == NULL || ecdh->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
/* set internal key if not done */
if (ecdh->inSet == 0)
{
WOLFSSL_MSG("No EC key internal set, do it");
if (SetECKeyInternal(ecdh) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FATAL_ERROR;
}
}
len = (word32)outlen;
key = (ecc_key*)ecdh->internal;
#if defined(ECC_TIMING_RESISTANT) && !defined(HAVE_SELFTEST) \
&& !defined(HAVE_FIPS)
if (key->rng == NULL) {
if (initGlobalRNG == 0 && wolfSSL_RAND_Init() != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("No RNG to use");
return WOLFSSL_FATAL_ERROR;
}
key->rng = &globalRNG;
setGlobalRNG = 1;
}
#endif
ret = wc_ecc_shared_secret_ssh(key, (ecc_point*)pub_key->internal,
(byte *)out, &len);
#if defined(ECC_TIMING_RESISTANT) && !defined(HAVE_SELFTEST) \
&& !defined(HAVE_FIPS)
if (setGlobalRNG)
key->rng = NULL;
#endif
if (ret != MP_OKAY) {
WOLFSSL_MSG("wc_ecc_shared_secret failed");
return WOLFSSL_FATAL_ERROR;
}
return len;
}
/* End ECDH */
#if !defined(NO_FILESYSTEM)
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
#ifndef NO_WOLFSSL_STUB
int wolfSSL_PEM_write_EC_PUBKEY(XFILE fp, WOLFSSL_EC_KEY *x)
{
(void)fp;
(void)x;
WOLFSSL_STUB("PEM_write_EC_PUBKEY");
WOLFSSL_MSG("wolfSSL_PEM_write_EC_PUBKEY not implemented");
return WOLFSSL_FAILURE;
}
#endif
#ifndef NO_BIO
/* Uses the same format of input as wolfSSL_PEM_read_bio_PrivateKey but expects
* the results to be an EC key.
*
* bio structure to read EC private key from
* ec if not null is then set to the result
* cb password callback for reading PEM
* pass password string
*
* returns a pointer to a new WOLFSSL_EC_KEY struct on success and NULL on fail
*/
WOLFSSL_EC_KEY* wolfSSL_PEM_read_bio_EC_PUBKEY(WOLFSSL_BIO* bio,
WOLFSSL_EC_KEY** ec,
pem_password_cb* cb, void *pass)
{
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_EC_KEY* local;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_EC_PUBKEY");
pkey = wolfSSL_PEM_read_bio_PUBKEY(bio, NULL, cb, pass);
if (pkey == NULL) {
return NULL;
}
/* Since the WOLFSSL_EC_KEY structure is being taken from WOLFSSL_EVP_PKEY the
* flag indicating that the WOLFSSL_EC_KEY structure is owned should be FALSE
* to avoid having it free'd */
pkey->ownEcc = 0;
local = pkey->ecc;
if (ec != NULL) {
*ec = local;
}
wolfSSL_EVP_PKEY_free(pkey);
return local;
}
/* Reads a private EC key from a WOLFSSL_BIO into a WOLFSSL_EC_KEY.
* Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE
*/
WOLFSSL_EC_KEY* wolfSSL_PEM_read_bio_ECPrivateKey(WOLFSSL_BIO* bio,
WOLFSSL_EC_KEY** ec,
pem_password_cb* cb,
void *pass)
{
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_EC_KEY* local;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_ECPrivateKey");
pkey = wolfSSL_PEM_read_bio_PrivateKey(bio, NULL, cb, pass);
if (pkey == NULL) {
return NULL;
}
/* Since the WOLFSSL_EC_KEY structure is being taken from WOLFSSL_EVP_PKEY the
* flag indicating that the WOLFSSL_EC_KEY structure is owned should be FALSE
* to avoid having it free'd */
pkey->ownEcc = 0;
local = pkey->ecc;
if (ec != NULL) {
*ec = local;
}
wolfSSL_EVP_PKEY_free(pkey);
return local;
}
#endif /* !NO_BIO */
#endif /* NO_FILESYSTEM */
#if defined(WOLFSSL_KEY_GEN)
#ifndef NO_BIO
/* Takes a public WOLFSSL_EC_KEY and writes it out to WOLFSSL_BIO
* Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE
*/
int wolfSSL_PEM_write_bio_EC_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY* ec)
{
int ret = 0, der_max_len = 0, derSz = 0;
byte *derBuf;
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_EC_PUBKEY");
if (bio == NULL || ec == NULL) {
WOLFSSL_MSG("Bad Function Arguments");
return WOLFSSL_FAILURE;
}
/* Initialize pkey structure */
pkey = wolfSSL_EVP_PKEY_new_ex(bio->heap);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_EVP_PKEY_new_ex failed");
return WOLFSSL_FAILURE;
}
/* Set pkey info */
pkey->ecc = ec;
pkey->ownEcc = 0; /* pkey does not own ECC */
pkey->type = EVP_PKEY_EC;
/* 4 > size of pub, priv + ASN.1 additional information */
der_max_len = 4 * wc_ecc_size((ecc_key*)ec->internal) + AES_BLOCK_SIZE;
derBuf = (byte*)XMALLOC(der_max_len, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (derBuf == NULL) {
WOLFSSL_MSG("Malloc failed");
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
/* convert key to der format */
derSz = wc_EccPublicKeyToDer((ecc_key*)ec->internal, derBuf, der_max_len, 1);
if (derSz < 0) {
WOLFSSL_MSG("wc_EccPublicKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
pkey->pkey.ptr = (char*)XMALLOC(derSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (pkey->pkey.ptr == NULL) {
WOLFSSL_MSG("key malloc failed");
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
/* add der info to the evp key */
pkey->pkey_sz = derSz;
XMEMCPY(pkey->pkey.ptr, derBuf, derSz);
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if((ret = wolfSSL_PEM_write_bio_PUBKEY(bio, pkey)) != WOLFSSL_SUCCESS){
WOLFSSL_MSG("wolfSSL_PEM_write_bio_PUBKEY failed");
}
wolfSSL_EVP_PKEY_free(pkey);
return ret;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_bio_ECPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_EC_KEY* ec,
const EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb* cb, void* arg)
{
int ret = 0, der_max_len = 0, derSz = 0;
byte *derBuf;
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_ENTER("WOLFSSL_PEM_write_bio_ECPrivateKey");
if (bio == NULL || ec == NULL) {
WOLFSSL_MSG("Bad Function Arguments");
return WOLFSSL_FAILURE;
}
/* Initialize pkey structure */
pkey = wolfSSL_EVP_PKEY_new_ex(bio->heap);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_EVP_PKEY_new_ex failed");
return WOLFSSL_FAILURE;
}
/* Set pkey info */
pkey->ecc = ec;
pkey->ownEcc = 0; /* pkey does not own ECC */
pkey->type = EVP_PKEY_EC;
/* 4 > size of pub, priv + ASN.1 additional informations
*/
der_max_len = 4 * wc_ecc_size((ecc_key*)ec->internal) + AES_BLOCK_SIZE;
derBuf = (byte*)XMALLOC(der_max_len, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (derBuf == NULL) {
WOLFSSL_MSG("Malloc failed");
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
/* convert key to der format */
derSz = wc_EccKeyToDer((ecc_key*)ec->internal, derBuf, der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_EccKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
pkey->pkey.ptr = (char*)XMALLOC(derSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (pkey->pkey.ptr == NULL) {
WOLFSSL_MSG("key malloc failed");
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
/* add der info to the evp key */
pkey->pkey_sz = derSz;
XMEMCPY(pkey->pkey.ptr, derBuf, derSz);
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
ret = wolfSSL_PEM_write_bio_PrivateKey(bio, pkey, cipher, passwd, len,
cb, arg);
wolfSSL_EVP_PKEY_free(pkey);
return ret;
}
#endif /* !NO_BIO */
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_mem_ECPrivateKey(WOLFSSL_EC_KEY* ecc,
const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz,
unsigned char **pem, int *plen)
{
#if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)
byte *derBuf, *tmp, *cipherInfo = NULL;
int der_max_len = 0, derSz = 0;
const int type = ECC_PRIVATEKEY_TYPE;
const char* header = NULL;
const char* footer = NULL;
WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey");
if (pem == NULL || plen == NULL || ecc == NULL || ecc->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
if (wc_PemGetHeaderFooter(type, &header, &footer) != 0)
return WOLFSSL_FAILURE;
if (ecc->inSet == 0) {
WOLFSSL_MSG("No ECC internal set, do it");
if (SetECKeyInternal(ecc) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyInternal failed");
return WOLFSSL_FAILURE;
}
}
/* 4 > size of pub, priv + ASN.1 additional information */
der_max_len = 4 * wc_ecc_size((ecc_key*)ecc->internal) + AES_BLOCK_SIZE;
derBuf = (byte*)XMALLOC(der_max_len, NULL, DYNAMIC_TYPE_DER);
if (derBuf == NULL) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
/* Key to DER */
derSz = wc_EccKeyToDer((ecc_key*)ecc->internal, derBuf, der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_EccKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return WOLFSSL_FAILURE;
}
/* encrypt DER buffer if required */
if (passwd != NULL && passwdSz > 0 && cipher != NULL) {
int ret;
ret = EncryptDerKey(derBuf, &derSz, cipher,
passwd, passwdSz, &cipherInfo, der_max_len);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("EncryptDerKey failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return ret;
}
/* tmp buffer with a max size */
*plen = (derSz * 2) + (int)XSTRLEN(header) + 1 +
(int)XSTRLEN(footer) + 1 + HEADER_ENCRYPTED_KEY_SIZE;
}
else { /* tmp buffer with a max size */
*plen = (derSz * 2) + (int)XSTRLEN(header) + 1 +
(int)XSTRLEN(footer) + 1;
}
tmp = (byte*)XMALLOC(*plen, NULL, DYNAMIC_TYPE_PEM);
if (tmp == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
/* DER to PEM */
*plen = wc_DerToPemEx(derBuf, derSz, tmp, *plen, cipherInfo, type);
if (*plen <= 0) {
WOLFSSL_MSG("wc_DerToPemEx failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
*pem = (byte*)XMALLOC((*plen)+1, NULL, DYNAMIC_TYPE_KEY);
if (*pem == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XMEMSET(*pem, 0, (*plen)+1);
if (XMEMCPY(*pem, tmp, *plen) == NULL) {
WOLFSSL_MSG("XMEMCPY failed");
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_SUCCESS;
#else
(void)ecc;
(void)cipher;
(void)passwd;
(void)passwdSz;
(void)pem;
(void)plen;
return WOLFSSL_FAILURE;
#endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */
}
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_ECPrivateKey(XFILE fp, WOLFSSL_EC_KEY *ecc,
const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u)
{
byte *pem;
int plen, ret;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_write_ECPrivateKey");
if (fp == XBADFILE || ecc == NULL || ecc->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_PEM_write_mem_ECPrivateKey(ecc, enc, kstr, klen, &pem, &plen);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_PEM_write_mem_ECPrivateKey failed");
return WOLFSSL_FAILURE;
}
ret = (int)XFWRITE(pem, plen, 1, fp);
if (ret != 1) {
WOLFSSL_MSG("ECC private key file write failed");
return WOLFSSL_FAILURE;
}
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return WOLFSSL_SUCCESS;
}
#endif /* NO_FILESYSTEM */
#endif /* defined(WOLFSSL_KEY_GEN) */
#endif /* HAVE_ECC */
#ifndef NO_DSA
#if defined(WOLFSSL_KEY_GEN)
#ifndef NO_BIO
/* Takes a DSA Privatekey and writes it out to a WOLFSSL_BIO
* Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE
*/
int wolfSSL_PEM_write_bio_DSAPrivateKey(WOLFSSL_BIO* bio, WOLFSSL_DSA* dsa,
const EVP_CIPHER* cipher,
unsigned char* passwd, int len,
pem_password_cb* cb, void* arg)
{
int ret = 0, der_max_len = 0, derSz = 0;
byte *derBuf;
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_DSAPrivateKey");
if (bio == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad Function Arguments");
return WOLFSSL_FAILURE;
}
pkey = wolfSSL_EVP_PKEY_new_ex(bio->heap);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_EVP_PKEY_new_ex failed");
return WOLFSSL_FAILURE;
}
pkey->type = EVP_PKEY_DSA;
pkey->dsa = dsa;
pkey->ownDsa = 0;
/* 4 > size of pub, priv, p, q, g + ASN.1 additional information */
der_max_len = 4 * wolfSSL_BN_num_bytes(dsa->g) + AES_BLOCK_SIZE;
derBuf = (byte*)XMALLOC(der_max_len, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (derBuf == NULL) {
WOLFSSL_MSG("Malloc failed");
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
/* convert key to der format */
derSz = wc_DsaKeyToDer((DsaKey*)dsa->internal, derBuf, der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_DsaKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
pkey->pkey.ptr = (char*)XMALLOC(derSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (pkey->pkey.ptr == NULL) {
WOLFSSL_MSG("key malloc failed");
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
/* add der info to the evp key */
pkey->pkey_sz = derSz;
XMEMCPY(pkey->pkey.ptr, derBuf, derSz);
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
ret = wolfSSL_PEM_write_bio_PrivateKey(bio, pkey, cipher, passwd, len,
cb, arg);
wolfSSL_EVP_PKEY_free(pkey);
return ret;
}
#ifndef HAVE_SELFTEST
/* Takes a DSA public key and writes it out to a WOLFSSL_BIO
* Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE
*/
int wolfSSL_PEM_write_bio_DSA_PUBKEY(WOLFSSL_BIO* bio, WOLFSSL_DSA* dsa)
{
int ret = 0, derMax = 0, derSz = 0;
byte *derBuf;
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_DSA_PUBKEY");
if (bio == NULL || dsa == NULL) {
WOLFSSL_MSG("Bad function arguements");
return WOLFSSL_FAILURE;
}
pkey = wolfSSL_EVP_PKEY_new_ex(bio->heap);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_EVP_PKEY_new_ex failed");
return WOLFSSL_FAILURE;
}
pkey->type = EVP_PKEY_DSA;
pkey->dsa = dsa;
pkey->ownDsa = 0;
/* 4 > size of pub, priv, p, q, g + ASN.1 additional information */
derMax = 4 * wolfSSL_BN_num_bytes(dsa->g) + AES_BLOCK_SIZE;
derBuf = (byte*)XMALLOC(derMax, bio->heap, DYNAMIC_TYPE_DER);
if (derBuf == NULL) {
WOLFSSL_MSG("malloc failed");
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
/* Key to DER */
derSz = wc_DsaKeyToPublicDer((DsaKey*)dsa->internal, derBuf, derMax);
if (derSz < 0) {
WOLFSSL_MSG("wc_DsaKeyToDer failed");
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_DER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
pkey->pkey.ptr = (char*)XMALLOC(derSz, bio->heap, DYNAMIC_TYPE_DER);
if (pkey->pkey.ptr == NULL) {
WOLFSSL_MSG("key malloc failed");
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_DER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
pkey->pkey_sz = derSz;
XMEMSET(pkey->pkey.ptr, 0, derSz);
if (XMEMCPY(pkey->pkey.ptr, derBuf, derSz) == NULL) {
WOLFSSL_MSG("XMEMCPY failed");
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_DER);
XFREE(pkey->pkey.ptr, bio->heap, DYNAMIC_TYPE_DER);
wolfSSL_EVP_PKEY_free(pkey);
return WOLFSSL_FAILURE;
}
XFREE(derBuf, bio->heap, DYNAMIC_TYPE_DER);
ret = wolfSSL_PEM_write_bio_PUBKEY(bio, pkey);
wolfSSL_EVP_PKEY_free(pkey);
return ret;
}
#endif /* HAVE_SELFTEST */
#endif /* !NO_BIO */
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_mem_DSAPrivateKey(WOLFSSL_DSA* dsa,
const EVP_CIPHER* cipher,
unsigned char* passwd, int passwdSz,
unsigned char **pem, int *plen)
{
#if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)
byte *derBuf, *tmp, *cipherInfo = NULL;
int der_max_len = 0, derSz = 0;
const int type = DSA_PRIVATEKEY_TYPE;
const char* header = NULL;
const char* footer = NULL;
WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey");
if (pem == NULL || plen == NULL || dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
if (wc_PemGetHeaderFooter(type, &header, &footer) != 0)
return WOLFSSL_FAILURE;
if (dsa->inSet == 0) {
WOLFSSL_MSG("No DSA internal set, do it");
if (SetDsaInternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaInternal failed");
return WOLFSSL_FAILURE;
}
}
/* 4 > size of pub, priv, p, q, g + ASN.1 additional information */
der_max_len = 4 * wolfSSL_BN_num_bytes(dsa->g) + AES_BLOCK_SIZE;
derBuf = (byte*)XMALLOC(der_max_len, NULL, DYNAMIC_TYPE_DER);
if (derBuf == NULL) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
/* Key to DER */
derSz = wc_DsaKeyToDer((DsaKey*)dsa->internal, derBuf, der_max_len);
if (derSz < 0) {
WOLFSSL_MSG("wc_DsaKeyToDer failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return WOLFSSL_FAILURE;
}
/* encrypt DER buffer if required */
if (passwd != NULL && passwdSz > 0 && cipher != NULL) {
int ret;
ret = EncryptDerKey(derBuf, &derSz, cipher,
passwd, passwdSz, &cipherInfo, der_max_len);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("EncryptDerKey failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
return ret;
}
/* tmp buffer with a max size */
*plen = (derSz * 2) + (int)XSTRLEN(header) + 1 +
(int)XSTRLEN(footer) + 1 + HEADER_ENCRYPTED_KEY_SIZE;
}
else { /* tmp buffer with a max size */
*plen = (derSz * 2) + (int)XSTRLEN(header) + 1 +
(int)XSTRLEN(footer) + 1;
}
tmp = (byte*)XMALLOC(*plen, NULL, DYNAMIC_TYPE_PEM);
if (tmp == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
/* DER to PEM */
*plen = wc_DerToPemEx(derBuf, derSz, tmp, *plen, cipherInfo, type);
if (*plen <= 0) {
WOLFSSL_MSG("wc_DerToPemEx failed");
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
return WOLFSSL_FAILURE;
}
XFREE(derBuf, NULL, DYNAMIC_TYPE_DER);
if (cipherInfo != NULL)
XFREE(cipherInfo, NULL, DYNAMIC_TYPE_STRING);
*pem = (byte*)XMALLOC((*plen)+1, NULL, DYNAMIC_TYPE_KEY);
if (*pem == NULL) {
WOLFSSL_MSG("malloc failed");
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XMEMSET(*pem, 0, (*plen)+1);
if (XMEMCPY(*pem, tmp, *plen) == NULL) {
WOLFSSL_MSG("XMEMCPY failed");
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_FAILURE;
}
XFREE(tmp, NULL, DYNAMIC_TYPE_PEM);
return WOLFSSL_SUCCESS;
#else
(void)dsa;
(void)cipher;
(void)passwd;
(void)passwdSz;
(void)pem;
(void)plen;
return WOLFSSL_FAILURE;
#endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */
}
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_PEM_write_DSAPrivateKey(XFILE fp, WOLFSSL_DSA *dsa,
const EVP_CIPHER *enc,
unsigned char *kstr, int klen,
pem_password_cb *cb, void *u)
{
byte *pem;
int plen, ret;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_write_DSAPrivateKey");
if (fp == XBADFILE || dsa == NULL || dsa->internal == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_PEM_write_mem_DSAPrivateKey(dsa, enc, kstr, klen, &pem, &plen);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_PEM_write_mem_DSAPrivateKey failed");
return WOLFSSL_FAILURE;
}
ret = (int)XFWRITE(pem, plen, 1, fp);
if (ret != 1) {
WOLFSSL_MSG("DSA private key file write failed");
return WOLFSSL_FAILURE;
}
XFREE(pem, NULL, DYNAMIC_TYPE_KEY);
return WOLFSSL_SUCCESS;
}
#endif /* NO_FILESYSTEM */
#endif /* defined(WOLFSSL_KEY_GEN) */
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
#ifndef NO_WOLFSSL_STUB
int wolfSSL_PEM_write_DSA_PUBKEY(XFILE fp, WOLFSSL_DSA *x)
{
(void)fp;
(void)x;
WOLFSSL_STUB("PEM_write_DSA_PUBKEY");
WOLFSSL_MSG("wolfSSL_PEM_write_DSA_PUBKEY not implemented");
return WOLFSSL_FAILURE;
}
#endif
#endif /* NO_FILESYSTEM */
#endif /* #ifndef NO_DSA */
#ifndef NO_BIO
static int pem_read_bio_key(WOLFSSL_BIO* bio, pem_password_cb* cb, void* pass,
int keyType, int* eccFlag, DerBuffer** der)
{
#ifdef WOLFSSL_SMALL_STACK
EncryptedInfo* info = NULL;
#else
EncryptedInfo info[1];
#endif /* WOLFSSL_SMALL_STACK */
pem_password_cb* localCb = NULL;
char* mem = NULL;
int memSz = 0;
int ret;
if(cb) {
localCb = cb;
} else {
if(pass) {
localCb = wolfSSL_PEM_def_callback;
}
}
if ((ret = wolfSSL_BIO_pending(bio)) > 0) {
memSz = ret;
mem = (char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_OPENSSL);
if (mem == NULL) {
WOLFSSL_MSG("Memory error");
ret = MEMORY_E;
}
if (ret >= 0) {
if ((ret = wolfSSL_BIO_read(bio, mem, memSz)) <= 0) {
XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
mem = NULL;
ret = MEMORY_E;
}
}
}
else if (bio->type == WOLFSSL_BIO_FILE) {
int sz = 100; /* read from file by 100 byte chunks */
int idx = 0;
char* tmp = (char*)XMALLOC(sz, bio->heap, DYNAMIC_TYPE_OPENSSL);
memSz = 0;
if (tmp == NULL) {
WOLFSSL_MSG("Memory error");
ret = MEMORY_E;
}
while (ret >= 0 && (sz = wolfSSL_BIO_read(bio, tmp, sz)) > 0) {
char* newMem;
if (memSz + sz < 0) {
/* sanity check */
break;
}
newMem = (char*)XREALLOC(mem, memSz + sz, bio->heap,
DYNAMIC_TYPE_OPENSSL);
if (newMem == NULL) {
WOLFSSL_MSG("Memory error");
XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
mem = NULL;
XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL);
tmp = NULL;
ret = MEMORY_E;
break;
}
mem = newMem;
XMEMCPY(mem + idx, tmp, sz);
memSz += sz;
idx += sz;
sz = 100; /* read another 100 byte chunk from file */
}
XFREE(tmp, bio->heap, DYNAMIC_TYPE_OPENSSL);
tmp = NULL;
if (memSz <= 0) {
WOLFSSL_MSG("No data to read from bio");
if (mem != NULL) {
XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
mem = NULL;
}
ret = BUFFER_E;
}
}
else {
WOLFSSL_MSG("No data to read from bio");
ret = NOT_COMPILED_IN;
}
#ifdef WOLFSSL_SMALL_STACK
if (ret >= 0) {
info = (EncryptedInfo*)XMALLOC(sizeof(EncryptedInfo), NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (info == NULL) {
WOLFSSL_MSG("Error getting memory for EncryptedInfo structure");
XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
mem = NULL;
ret = MEMORY_E;
}
}
#endif
if (ret >= 0) {
XMEMSET(info, 0, sizeof(EncryptedInfo));
info->passwd_cb = localCb;
info->passwd_userdata = pass;
ret = PemToDer((const unsigned char*)mem, memSz, keyType, der,
NULL, info, eccFlag);
if (ret < 0) {
WOLFSSL_MSG("Bad Pem To Der");
}
else {
/* write left over data back to bio */
if ((memSz - (int)info->consumed) > 0 &&
bio->type != WOLFSSL_BIO_FILE) {
if (wolfSSL_BIO_write(bio, mem + (int)info->consumed,
memSz - (int)info->consumed) <= 0) {
WOLFSSL_MSG("Unable to advance bio read pointer");
}
}
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(info, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
return ret;
}
WOLFSSL_EVP_PKEY* wolfSSL_PEM_read_bio_PrivateKey(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY** key,
pem_password_cb* cb,
void* pass)
{
WOLFSSL_EVP_PKEY* pkey = NULL;
DerBuffer* der = NULL;
int keyFormat = 0;
int type = -1;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_PrivateKey");
if (bio == NULL)
return pkey;
if (pem_read_bio_key(bio, cb, pass, PRIVATEKEY_TYPE, &keyFormat,
&der) >= 0) {
const unsigned char* ptr = der->buffer;
if (keyFormat) {
/* keyFormat is Key_Sum enum */
if (keyFormat == RSAk)
type = EVP_PKEY_RSA;
else if (keyFormat == ECDSAk)
type = EVP_PKEY_EC;
else if (keyFormat == DSAk)
type = EVP_PKEY_DSA;
else if (keyFormat == DHk)
type = EVP_PKEY_DH;
}
else {
/* Default to RSA if format is not set */
type = EVP_PKEY_RSA;
}
/* handle case where reuse is attempted */
if (key != NULL && *key != NULL)
pkey = *key;
wolfSSL_d2i_PrivateKey(type, &pkey, &ptr, der->length);
if (pkey == NULL) {
WOLFSSL_MSG("Error loading DER buffer into WOLFSSL_EVP_PKEY");
}
}
FreeDer(&der);
if (key != NULL && pkey != NULL)
*key = pkey;
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_PrivateKey", 0);
return pkey;
}
WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_bio_PUBKEY(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY **key,
pem_password_cb *cb, void *pass)
{
WOLFSSL_EVP_PKEY* pkey = NULL;
DerBuffer* der = NULL;
int keyFormat = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_PUBKEY");
if (bio == NULL)
return pkey;
if (pem_read_bio_key(bio, cb, pass, PUBLICKEY_TYPE, &keyFormat, &der) >= 0) {
const unsigned char* ptr = der->buffer;
/* handle case where reuse is attempted */
if (key != NULL && *key != NULL)
pkey = *key;
wolfSSL_d2i_PUBKEY(&pkey, &ptr, der->length);
if (pkey == NULL) {
WOLFSSL_MSG("Error loading DER buffer into WOLFSSL_EVP_PKEY");
}
}
FreeDer(&der);
if (key != NULL && pkey != NULL)
*key = pkey;
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_PUBKEY", 0);
return pkey;
}
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)) && !defined(NO_RSA)
/* Uses the same format of input as wolfSSL_PEM_read_bio_PrivateKey but expects
* the results to be an RSA key.
*
* bio structure to read RSA private key from
* rsa if not null is then set to the result
* cb password callback for reading PEM
* pass password string
*
* returns a pointer to a new WOLFSSL_RSA structure on success and NULL on fail
*/
WOLFSSL_RSA* wolfSSL_PEM_read_bio_RSAPrivateKey(WOLFSSL_BIO* bio,
WOLFSSL_RSA** rsa, pem_password_cb* cb, void* pass)
{
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_RSA* local;
WOLFSSL_ENTER("PEM_read_bio_RSAPrivateKey");
pkey = wolfSSL_PEM_read_bio_PrivateKey(bio, NULL, cb, pass);
if (pkey == NULL) {
return NULL;
}
/* Since the WOLFSSL_RSA structure is being taken from WOLFSSL_EVP_PEKY the
* flag indicating that the WOLFSSL_RSA structure is owned should be FALSE
* to avoid having it free'd */
pkey->ownRsa = 0;
local = pkey->rsa;
if (rsa != NULL) {
*rsa = local;
}
wolfSSL_EVP_PKEY_free(pkey);
return local;
}
#endif /* OPENSSL_EXTRA || OPENSSL_ALL || !NO_RSA */
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)) && (!defined(NO_CERTS) && \
!defined(NO_FILESYSTEM) && !defined(NO_DSA) && defined(WOLFSSL_KEY_GEN))
/* Uses the same format of input as wolfSSL_PEM_read_bio_PrivateKey but expects
* the results to be an DSA key.
*
* bio structure to read DSA private key from
* dsa if not null is then set to the result
* cb password callback for reading PEM
* pass password string
*
* returns a pointer to a new WOLFSSL_DSA structure on success and NULL on fail
*/
WOLFSSL_DSA* wolfSSL_PEM_read_bio_DSAPrivateKey(WOLFSSL_BIO* bio,
WOLFSSL_DSA** dsa,
pem_password_cb* cb,void *pass)
{
WOLFSSL_EVP_PKEY* pkey = NULL;
WOLFSSL_DSA* local;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSAPrivateKey");
pkey = wolfSSL_PEM_read_bio_PrivateKey(bio, NULL, cb, pass);
if (pkey == NULL) {
WOLFSSL_MSG("Error in PEM_read_bio_PrivateKey");
return NULL;
}
/* Since the WOLFSSL_DSA structure is being taken from WOLFSSL_EVP_PKEY the
* flag indicating that the WOLFSSL_DSA structure is owned should be FALSE
* to avoid having it free'd */
pkey->ownDsa = 0;
local = pkey->dsa;
if (dsa != NULL) {
*dsa = local;
}
wolfSSL_EVP_PKEY_free(pkey);
return local;
}
/* Reads an DSA public key from a WOLFSSL_BIO into a WOLFSSL_DSA.
* Returns WOLFSSL_SUCCESS or WOLFSSL_FAILURE
*/
WOLFSSL_DSA *wolfSSL_PEM_read_bio_DSA_PUBKEY(WOLFSSL_BIO* bio,WOLFSSL_DSA** dsa,
pem_password_cb* cb, void *pass)
{
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_DSA* local;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSA_PUBKEY");
pkey = wolfSSL_PEM_read_bio_PUBKEY(bio, NULL, cb, pass);
if (pkey == NULL) {
WOLFSSL_MSG("wolfSSL_PEM_read_bio_PUBKEY failed");
return NULL;
}
/* Since the WOLFSSL_DSA structure is being taken from WOLFSSL_EVP_PKEY the
* flag indicating that the WOLFSSL_DSA structure is owned should be FALSE
* to avoid having it free'd */
pkey->ownDsa = 0;
local = pkey->dsa;
if (dsa != NULL) {
*dsa = local;
}
wolfSSL_EVP_PKEY_free(pkey);
return local;
}
#endif
#ifdef HAVE_ECC
/* returns a new WOLFSSL_EC_GROUP structure on success and NULL on fail */
WOLFSSL_EC_GROUP* wolfSSL_PEM_read_bio_ECPKParameters(WOLFSSL_BIO* bio,
WOLFSSL_EC_GROUP** group, pem_password_cb* cb, void* pass)
{
WOLFSSL_EVP_PKEY* pkey;
WOLFSSL_EC_GROUP* ret = NULL;
/* check on if bio is null is done in wolfSSL_PEM_read_bio_PrivateKey */
pkey = wolfSSL_PEM_read_bio_PrivateKey(bio, NULL, cb, pass);
if (pkey != NULL) {
if (pkey->type != EVP_PKEY_EC) {
WOLFSSL_MSG("Unexpected key type");
}
else {
ret = (WOLFSSL_EC_GROUP*)wolfSSL_EC_KEY_get0_group(pkey->ecc);
/* set ecc group to null so it is not free'd when pkey is free'd */
pkey->ecc->group = NULL;
}
}
(void)group;
wolfSSL_EVP_PKEY_free(pkey);
return ret;
}
#endif /* HAVE_ECC */
#endif /* !NO_BIO */
#if !defined(NO_FILESYSTEM)
WOLFSSL_EVP_PKEY *wolfSSL_PEM_read_PUBKEY(XFILE fp, EVP_PKEY **x,
pem_password_cb *cb, void *u)
{
(void)fp;
(void)x;
(void)cb;
(void)u;
WOLFSSL_MSG("wolfSSL_PEM_read_PUBKEY not implemented");
return NULL;
}
#endif /* NO_FILESYSTEM */
#ifndef NO_RSA
#ifndef NO_BIO
#if defined(XSNPRINTF) && !defined(HAVE_FAST_RSA)
/* snprintf() must be available */
/******************************************************************************
* wolfSSL_RSA_print - writes the human readable form of RSA to bio
*
* RETURNS:
* returns WOLFSSL_SUCCESS on success, otherwise returns WOLFSSL_FAILURE
*/
int wolfSSL_RSA_print(WOLFSSL_BIO* bio, WOLFSSL_RSA* rsa, int offset)
{
char tmp[100] = {0};
word32 idx = 0;
int sz = 0;
byte lbit = 0;
int rawLen = 0;
byte* rawKey = NULL;
RsaKey* iRsa = NULL;
int i = 0;
mp_int *rsaElem = NULL;
const char *rsaStr[] = {
"Modulus:",
"PublicExponent:",
"PrivateExponent:",
"Prime1:",
"Prime2:",
"Exponent1:",
"Exponent2:",
"Coefficient:"
};
WOLFSSL_ENTER("wolfSSL_RSA_print");
(void)offset;
if (bio == NULL || rsa == NULL) {
return WOLFSSL_FATAL_ERROR;
}
if ((sz = wolfSSL_RSA_size(rsa)) < 0) {
WOLFSSL_MSG("Error getting RSA key size");
return WOLFSSL_FAILURE;
}
iRsa = (RsaKey*)rsa->internal;
XSNPRINTF(tmp, sizeof(tmp) - 1, "\n%s: (%d bit)",
"RSA Private-Key", 8 * sz);
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
for (i=0; i<RSA_INTS; i++) {
switch(i) {
case 0:
/* Print out modulus */
rsaElem = &iRsa->n;
break;
case 1:
rsaElem = &iRsa->e;
break;
case 2:
rsaElem = &iRsa->d;
break;
case 3:
rsaElem = &iRsa->p;
break;
case 4:
rsaElem = &iRsa->q;
break;
case 5:
rsaElem = &iRsa->dP;
break;
case 6:
rsaElem = &iRsa->dQ;
break;
case 7:
rsaElem = &iRsa->u;
break;
default:
WOLFSSL_MSG("Bad index value");
}
if (i == 1) {
/* Print out exponent values */
rawLen = mp_unsigned_bin_size(rsaElem);
if (rawLen < 0) {
WOLFSSL_MSG("Error getting exponent size");
return WOLFSSL_FAILURE;
}
if ((word32)rawLen < sizeof(word32)) {
rawLen = sizeof(word32);
}
rawKey = (byte*)XMALLOC(rawLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (rawKey == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
XMEMSET(rawKey, 0, rawLen);
mp_to_unsigned_bin(rsaElem, rawKey);
if ((word32)rawLen <= sizeof(word32)) {
idx = *(word32*)rawKey;
#ifdef BIG_ENDIAN_ORDER
idx = ByteReverseWord32(idx);
#endif
}
XSNPRINTF(tmp, sizeof(tmp) - 1, "\nExponent: %d (0x%x)", idx, idx);
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
else {
XSNPRINTF(tmp, sizeof(tmp) - 1, "\n%s\n ", rsaStr[i]);
tmp[sizeof(tmp) - 1] = '\0';
if (mp_leading_bit(rsaElem)) {
lbit = 1;
XSTRNCAT(tmp, "00", 3);
}
rawLen = mp_unsigned_bin_size(rsaElem);
rawKey = (byte*)XMALLOC(rawLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (rawKey == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
mp_to_unsigned_bin(rsaElem, rawKey);
for (idx = 0; idx < (word32)rawLen; idx++) {
char val[5];
int valSz = 5;
if ((idx == 0) && !lbit) {
XSNPRINTF(val, valSz - 1, "%02x", rawKey[idx]);
}
else if ((idx != 0) && (((idx + lbit) % 15) == 0)) {
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
XSNPRINTF(tmp, sizeof(tmp) - 1,
":\n ");
XSNPRINTF(val, valSz - 1, "%02x", rawKey[idx]);
}
else {
XSNPRINTF(val, valSz - 1, ":%02x", rawKey[idx]);
}
XSTRNCAT(tmp, val, valSz);
}
XFREE(rawKey, NULL, DYNAMIC_TYPE_TMP_BUFFER);
/* print out remaining values */
if ((idx > 0) && (((idx - 1 + lbit) % 15) != 0)) {
tmp[sizeof(tmp) - 1] = '\0';
if (wolfSSL_BIO_write(bio, tmp, (int)XSTRLEN(tmp)) <= 0) {
return WOLFSSL_FAILURE;
}
}
lbit = 0;
}
}
/* done with print out */
if (wolfSSL_BIO_write(bio, "\n\0", (int)XSTRLEN("\n\0")) <= 0) {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* XSNPRINTF */
#endif /* !NO_BIO */
#if !defined(NO_FILESYSTEM)
#ifndef NO_WOLFSSL_STUB
WOLFSSL_RSA *wolfSSL_PEM_read_RSAPublicKey(XFILE fp, WOLFSSL_RSA **x,
pem_password_cb *cb, void *u)
{
(void)fp;
(void)x;
(void)cb;
(void)u;
WOLFSSL_STUB("PEM_read_RSAPublicKey");
WOLFSSL_MSG("wolfSSL_PEM_read_RSAPublicKey not implemented");
return NULL;
}
#endif
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
#ifndef NO_WOLFSSL_STUB
int wolfSSL_PEM_write_RSAPublicKey(XFILE fp, WOLFSSL_RSA *x)
{
(void)fp;
(void)x;
WOLFSSL_STUB("PEM_write_RSAPublicKey");
WOLFSSL_MSG("wolfSSL_PEM_write_RSAPublicKey not implemented");
return WOLFSSL_FAILURE;
}
#endif
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
#ifndef NO_WOLFSSL_STUB
int wolfSSL_PEM_write_RSA_PUBKEY(XFILE fp, WOLFSSL_RSA *x)
{
(void)fp;
(void)x;
WOLFSSL_STUB("PEM_write_RSA_PUBKEY");
WOLFSSL_MSG("wolfSSL_PEM_write_RSA_PUBKEY not implemented");
return WOLFSSL_FAILURE;
}
#endif
#endif /* NO_FILESYSTEM */
WOLFSSL_RSA *wolfSSL_d2i_RSAPublicKey(WOLFSSL_RSA **r, const unsigned char **pp,
long len)
{
WOLFSSL_RSA *rsa = NULL;
WOLFSSL_ENTER("d2i_RSAPublicKey");
if (pp == NULL) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
if ((rsa = wolfSSL_RSA_new()) == NULL) {
WOLFSSL_MSG("RSA_new failed");
return NULL;
}
if (wolfSSL_RSA_LoadDer_ex(rsa, *pp, (int)len, WOLFSSL_RSA_LOAD_PUBLIC)
!= WOLFSSL_SUCCESS) {
WOLFSSL_MSG("RSA_LoadDer failed");
wolfSSL_RSA_free(rsa);
rsa = NULL;
}
if (r != NULL)
*r = rsa;
return rsa;
}
/* Converts an RSA private key from DER format to an RSA structure.
Returns pointer to the RSA structure on success and NULL if error. */
WOLFSSL_RSA *wolfSSL_d2i_RSAPrivateKey(WOLFSSL_RSA **r,
const unsigned char **derBuf, long derSz)
{
WOLFSSL_RSA *rsa = NULL;
WOLFSSL_ENTER("wolfSSL_d2i_RSAPrivateKey");
/* check for bad functions arguments */
if (derBuf == NULL) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
if ((rsa = wolfSSL_RSA_new()) == NULL) {
WOLFSSL_MSG("RSA_new failed");
return NULL;
}
if (wolfSSL_RSA_LoadDer_ex(rsa, *derBuf, (int)derSz,
WOLFSSL_RSA_LOAD_PRIVATE) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("RSA_LoadDer failed");
wolfSSL_RSA_free(rsa);
rsa = NULL;
}
if (r != NULL)
*r = rsa;
return rsa;
}
#if !defined(HAVE_FAST_RSA) && defined(WOLFSSL_KEY_GEN) && \
!defined(NO_RSA) && !defined(HAVE_USER_RSA)
/* Converts an internal RSA structure to DER format.
* If "pp" is null then buffer size only is returned.
* If "*pp" is null then a created buffer is set in *pp and the caller is
* responsible for free'ing it.
* Returns size of DER on success and WOLFSSL_FAILURE if error
*/
int wolfSSL_i2d_RSAPrivateKey(WOLFSSL_RSA *rsa, unsigned char **pp)
{
int ret;
WOLFSSL_ENTER("wolfSSL_i2d_RSAPrivateKey");
/* check for bad functions arguments */
if (rsa == NULL) {
WOLFSSL_MSG("Bad Function Arguments");
return BAD_FUNC_ARG;
}
if ((ret = wolfSSL_RSA_To_Der(rsa, pp, 0)) < 0) {
WOLFSSL_MSG("wolfSSL_RSA_To_Der failed");
return WOLFSSL_FAILURE;
}
return ret; /* returns size of DER if successful */
}
int wolfSSL_i2d_RSAPublicKey(WOLFSSL_RSA *rsa, const unsigned char **pp)
{
int ret;
/* check for bad functions arguments */
if (rsa == NULL) {
WOLFSSL_MSG("Bad Function Arguments");
return BAD_FUNC_ARG;
}
if ((ret = wolfSSL_RSA_To_Der(rsa, (byte**)pp, 1)) < 0) {
WOLFSSL_MSG("wolfSSL_RSA_To_Der failed");
return WOLFSSL_FAILURE;
}
return ret;
}
#endif /* !defined(HAVE_FAST_RSA) && defined(WOLFSSL_KEY_GEN) && \
* !defined(NO_RSA) && !defined(HAVE_USER_RSA) */
#endif /* !NO_RSA */
#endif /* OPENSSL_EXTRA */
#if !defined(NO_RSA) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL))
/* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */
int wolfSSL_RSA_LoadDer(WOLFSSL_RSA* rsa, const unsigned char* derBuf, int derSz)
{
return wolfSSL_RSA_LoadDer_ex(rsa, derBuf, derSz, WOLFSSL_RSA_LOAD_PRIVATE);
}
int wolfSSL_RSA_LoadDer_ex(WOLFSSL_RSA* rsa, const unsigned char* derBuf,
int derSz, int opt)
{
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_RSA_LoadDer");
if (rsa == NULL || rsa->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
if (opt == WOLFSSL_RSA_LOAD_PRIVATE) {
ret = wc_RsaPrivateKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal, derSz);
}
else {
ret = wc_RsaPublicKeyDecode(derBuf, &idx, (RsaKey*)rsa->internal, derSz);
}
if (ret < 0) {
if (opt == WOLFSSL_RSA_LOAD_PRIVATE) {
WOLFSSL_MSG("RsaPrivateKeyDecode failed");
}
else {
WOLFSSL_MSG("RsaPublicKeyDecode failed");
}
return SSL_FATAL_ERROR;
}
if (SetRsaExternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaExternal failed");
return WOLFSSL_FATAL_ERROR;
}
rsa->inSet = 1;
return WOLFSSL_SUCCESS;
}
#if defined(WC_RSA_PSS) && (defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || \
defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_NGINX))
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
/*
* +-----------+
* | M |
* +-----------+
* |
* V
* Hash
* |
* V
* +--------+----------+----------+
* M' = |Padding1| mHash | salt |
* +--------+----------+----------+
* |
* +--------+----------+ V
* DB = |Padding2|maskedseed| Hash
* +--------+----------+ |
* | |
* V | +--+
* xor <--- MGF <---| |bc|
* | | +--+
* | | |
* V V V
* +-------------------+----------+--+
* EM = | maskedDB |maskedseed|bc|
* +-------------------+----------+--+
* Diagram taken from https://tools.ietf.org/html/rfc3447#section-9.1
*/
int wolfSSL_RSA_padding_add_PKCS1_PSS(WOLFSSL_RSA *rsa, unsigned char *EM,
const unsigned char *mHash,
const WOLFSSL_EVP_MD *hashAlg, int saltLen)
{
int hashLen, emLen, mgf;
int ret = WOLFSSL_FAILURE;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG _tmpRNG[1];
WC_RNG* tmpRNG = _tmpRNG;
#endif
enum wc_HashType hashType;
WOLFSSL_ENTER("wolfSSL_RSA_padding_add_PKCS1_PSS");
if (!rsa || !EM || !mHash || !hashAlg) {
return WOLFSSL_FAILURE;
}
if (!(rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRNG, &initTmpRng))) {
WOLFSSL_MSG("WOLFSSL_RSA_GetRNG error");
goto cleanup;
}
if (!rsa->exSet && SetRsaExternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaExternal error");
goto cleanup;
}
hashType = wolfSSL_EVP_md2macType(hashAlg);
if (hashType < WC_HASH_TYPE_NONE || hashType > WC_HASH_TYPE_MAX) {
WOLFSSL_MSG("wolfSSL_EVP_md2macType error");
goto cleanup;
}
if ((mgf = wc_hash2mgf(hashType)) == WC_MGF1NONE) {
WOLFSSL_MSG("wc_hash2mgf error");
goto cleanup;
}
if ((hashLen = wolfSSL_EVP_MD_size(hashAlg)) < 0) {
WOLFSSL_MSG("wolfSSL_EVP_MD_size error");
goto cleanup;
}
if ((emLen = wolfSSL_RSA_size(rsa)) <= 0) {
WOLFSSL_MSG("wolfSSL_RSA_size error");
goto cleanup;
}
switch (saltLen) {
/* Negative saltLen values are treated differently */
case RSA_PSS_SALTLEN_DIGEST:
saltLen = hashLen;
break;
case RSA_PSS_SALTLEN_MAX_SIGN:
case RSA_PSS_SALTLEN_MAX:
saltLen = emLen - hashLen - 2;
break;
default:
if (saltLen < 0) {
/* Not any currently implemented negative value */
WOLFSSL_MSG("invalid saltLen");
goto cleanup;
}
}
if (wc_RsaPad_ex(mHash, hashLen, EM, emLen,
RSA_BLOCK_TYPE_1, rng, WC_RSA_PSS_PAD,
hashType, mgf, NULL, 0, saltLen,
wolfSSL_BN_num_bits(rsa->n), NULL) != MP_OKAY) {
WOLFSSL_MSG("wc_RsaPad_ex error");
goto cleanup;
}
ret = WOLFSSL_SUCCESS;
cleanup:
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
if (tmpRNG)
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/*
* Refer to wolfSSL_RSA_padding_add_PKCS1_PSS
* for an explanation of the parameters.
*/
int wolfSSL_RSA_verify_PKCS1_PSS(WOLFSSL_RSA *rsa, const unsigned char *mHash,
const WOLFSSL_EVP_MD *hashAlg,
const unsigned char *EM, int saltLen)
{
int hashLen, mgf, emLen, mPrimeLen;
enum wc_HashType hashType;
byte *mPrime = NULL;
byte *buf = NULL;
WOLFSSL_ENTER("wolfSSL_RSA_verify_PKCS1_PSS");
if (!rsa || !mHash || !hashAlg || !EM) {
return WOLFSSL_FAILURE;
}
if ((hashLen = wolfSSL_EVP_MD_size(hashAlg)) < 0) {
return WOLFSSL_FAILURE;
}
if ((emLen = wolfSSL_RSA_size(rsa)) <= 0) {
WOLFSSL_MSG("wolfSSL_RSA_size error");
return WOLFSSL_FAILURE;
}
switch (saltLen) {
/* Negative saltLen values are treated differently */
case RSA_PSS_SALTLEN_DIGEST:
saltLen = hashLen;
break;
case RSA_PSS_SALTLEN_MAX_SIGN:
case RSA_PSS_SALTLEN_MAX:
saltLen = emLen - hashLen - 2;
break;
default:
if (saltLen < 0) {
/* Not any currently implemented negative value */
WOLFSSL_MSG("invalid saltLen");
return WOLFSSL_FAILURE;
}
}
if (!rsa->exSet && SetRsaExternal(rsa) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
hashType = wolfSSL_EVP_md2macType(hashAlg);
if (hashType < WC_HASH_TYPE_NONE || hashType > WC_HASH_TYPE_MAX) {
WOLFSSL_MSG("wolfSSL_EVP_md2macType error");
return WOLFSSL_FAILURE;
}
if ((mgf = wc_hash2mgf(hashType)) == WC_MGF1NONE) {
WOLFSSL_MSG("wc_hash2mgf error");
return WOLFSSL_FAILURE;
}
if ((hashLen = wolfSSL_EVP_MD_size(hashAlg)) < 0) {
WOLFSSL_MSG("wolfSSL_EVP_MD_size error");
return WOLFSSL_FAILURE;
}
if (!(buf = (byte*)XMALLOC(emLen, NULL, DYNAMIC_TYPE_TMP_BUFFER))) {
WOLFSSL_MSG("malloc error");
return WOLFSSL_FAILURE;
}
XMEMCPY(buf, EM, emLen);
/* Remove and verify the PSS padding */
if ((mPrimeLen = wc_RsaUnPad_ex(buf, emLen, &mPrime,
RSA_BLOCK_TYPE_1, WC_RSA_PSS_PAD, hashType,
mgf, NULL, 0, saltLen,
wolfSSL_BN_num_bits(rsa->n), NULL)) < 0) {
WOLFSSL_MSG("wc_RsaPad_ex error");
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
/* Verify the hash is correct */
if (wc_RsaPSS_CheckPadding_ex(mHash, hashLen, mPrime, mPrimeLen, hashType,
saltLen, wolfSSL_BN_num_bits(rsa->n))
!= MP_OKAY) {
WOLFSSL_MSG("wc_RsaPSS_CheckPadding_ex error");
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_SUCCESS;
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* WC_RSA_PSS && (OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY
* || WOLFSSL_NGINX)
*/
#if defined(OPENSSL_EXTRA)
WOLFSSL_RSA_METHOD *wolfSSL_RSA_meth_new(const char *name, int flags)
{
int name_len;
WOLFSSL_RSA_METHOD* meth;
if (name == NULL) {
return NULL;
}
meth = (WOLFSSL_RSA_METHOD*)XMALLOC(sizeof(WOLFSSL_RSA_METHOD), NULL,
DYNAMIC_TYPE_OPENSSL);
name_len = (int)XSTRLEN(name);
if (!meth) {
return NULL;
}
meth->flags = flags;
meth->name = (char*)XMALLOC(name_len+1, NULL, DYNAMIC_TYPE_OPENSSL);
if (!meth->name) {
XFREE(meth, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
XMEMCPY(meth->name, name, name_len+1);
return meth;
}
void wolfSSL_RSA_meth_free(WOLFSSL_RSA_METHOD *meth)
{
if (meth) {
XFREE(meth->name, NULL, DYNAMIC_TYPE_OPENSSL);
XFREE(meth, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_RSA_meth_set(WOLFSSL_RSA_METHOD *rsa, void* p)
{
(void)rsa;
(void)p;
WOLFSSL_STUB("RSA_METHOD is not implemented.");
return 1;
}
#endif
int wolfSSL_RSA_set_method(WOLFSSL_RSA *rsa, WOLFSSL_RSA_METHOD *meth)
{
if (rsa)
rsa->meth = meth;
return 1;
}
const WOLFSSL_RSA_METHOD* wolfSSL_RSA_get_method(const WOLFSSL_RSA *rsa)
{
if (!rsa) {
return NULL;
}
return rsa->meth;
}
const WOLFSSL_RSA_METHOD* wolfSSL_RSA_get_default_method(void)
{
return wolfSSL_RSA_meth_new("wolfSSL RSA", 0);
}
int wolfSSL_RSA_flags(const WOLFSSL_RSA *r)
{
if (r && r->meth) {
return r->meth->flags;
} else {
return 0;
}
}
void wolfSSL_RSA_set_flags(WOLFSSL_RSA *r, int flags)
{
if (r && r->meth) {
r->meth->flags = flags;
}
}
#if defined(WOLFSSL_KEY_GEN) && !defined(NO_RSA) && !defined(HAVE_USER_RSA)
WOLFSSL_RSA* wolfSSL_RSAPublicKey_dup(WOLFSSL_RSA *rsa)
{
int derSz = 0;
byte *derBuf = NULL;
WOLFSSL_RSA* local;
WOLFSSL_ENTER("wolfSSL_RSAPublicKey_dup");
if (!rsa) {
return NULL;
}
local = wolfSSL_RSA_new();
if (local == NULL) {
WOLFSSL_MSG("Error creating a new WOLFSSL_RSA structure");
return NULL;
}
if ((derSz = wolfSSL_RSA_To_Der(rsa, &derBuf, 1)) < 0) {
WOLFSSL_MSG("wolfSSL_RSA_To_Der failed");
return NULL;
}
if (wolfSSL_RSA_LoadDer_ex(local,
derBuf, derSz,
WOLFSSL_RSA_LOAD_PUBLIC) != WOLFSSL_SUCCESS) {
wolfSSL_RSA_free(local);
local = NULL;
}
XFREE(derBuf, NULL, DYNAMIC_TYPE_ASN1);
return local;
}
#endif
void* wolfSSL_RSA_get_ex_data(const WOLFSSL_RSA *rsa, int idx)
{
WOLFSSL_ENTER("wolfSSL_RSA_get_ex_data");
#ifdef HAVE_EX_DATA
if (rsa) {
return wolfSSL_CRYPTO_get_ex_data(&rsa->ex_data, idx);
}
#else
(void)rsa;
(void)idx;
#endif
return NULL;
}
int wolfSSL_RSA_set_ex_data(WOLFSSL_RSA *rsa, int idx, void *data)
{
WOLFSSL_ENTER("wolfSSL_RSA_set_ex_data");
#ifdef HAVE_EX_DATA
if (rsa) {
return wolfSSL_CRYPTO_set_ex_data(&rsa->ex_data, idx, data);
}
#else
(void)rsa;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
int wolfSSL_RSA_set0_key(WOLFSSL_RSA *r, WOLFSSL_BIGNUM *n, WOLFSSL_BIGNUM *e,
WOLFSSL_BIGNUM *d)
{
/* If the fields n and e in r are NULL, the corresponding input
* parameters MUST be non-NULL for n and e. d may be
* left NULL (in case only the public key is used).
*/
if ((!r->n && !n) || (!r->e && !e))
return 0;
if (n) {
wolfSSL_BN_free(r->n);
r->n = n;
}
if (e) {
wolfSSL_BN_free(r->e);
r->e = e;
}
if (d) {
wolfSSL_BN_clear_free(r->d);
r->d = d;
}
return 1;
}
#endif /* OPENSSL_EXTRA */
#endif /* NO_RSA */
#if !defined(NO_DSA) && \
(defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL))
/* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */
int wolfSSL_DSA_LoadDer(WOLFSSL_DSA* dsa, const unsigned char* derBuf, int derSz)
{
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_DSA_LoadDer");
if (dsa == NULL || dsa->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
ret = DsaPrivateKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal, derSz);
if (ret < 0) {
WOLFSSL_MSG("DsaPrivateKeyDecode failed");
return WOLFSSL_FATAL_ERROR;
}
if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaExternal failed");
return WOLFSSL_FATAL_ERROR;
}
dsa->inSet = 1;
return WOLFSSL_SUCCESS;
}
/* Loads DSA key from DER buffer. opt = DSA_LOAD_PRIVATE or DSA_LOAD_PUBLIC.
returns 1 on success, or 0 on failure. */
int wolfSSL_DSA_LoadDer_ex(WOLFSSL_DSA* dsa, const unsigned char* derBuf,
int derSz, int opt)
{
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_DSA_LoadDer");
if (dsa == NULL || dsa->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
if (opt == WOLFSSL_DSA_LOAD_PRIVATE) {
ret = DsaPrivateKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal, derSz);
}
else {
ret = DsaPublicKeyDecode(derBuf, &idx, (DsaKey*)dsa->internal, derSz);
}
if (ret < 0 && opt == WOLFSSL_DSA_LOAD_PRIVATE) {
WOLFSSL_MSG("DsaPrivateKeyDecode failed");
return WOLFSSL_FATAL_ERROR;
}
else if (ret < 0 && opt == WOLFSSL_DSA_LOAD_PUBLIC) {
WOLFSSL_MSG("DsaPublicKeyDecode failed");
return WOLFSSL_FATAL_ERROR;
}
if (SetDsaExternal(dsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDsaExternal failed");
return WOLFSSL_FATAL_ERROR;
}
dsa->inSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_DSA && (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) */
#ifdef OPENSSL_EXTRA
#ifdef HAVE_ECC
/* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */
int wolfSSL_EC_KEY_LoadDer(WOLFSSL_EC_KEY* key, const unsigned char* derBuf,
int derSz)
{
return wolfSSL_EC_KEY_LoadDer_ex(key, derBuf, derSz,
WOLFSSL_EC_KEY_LOAD_PRIVATE);
}
int wolfSSL_EC_KEY_LoadDer_ex(WOLFSSL_EC_KEY* key, const unsigned char* derBuf,
int derSz, int opt)
{
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_EC_KEY_LoadDer");
if (key == NULL || key->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
if (opt == WOLFSSL_EC_KEY_LOAD_PRIVATE) {
ret = wc_EccPrivateKeyDecode(derBuf, &idx, (ecc_key*)key->internal,
derSz);
}
else {
ret = wc_EccPublicKeyDecode(derBuf, &idx, (ecc_key*)key->internal,
derSz);
}
if (ret < 0) {
if (opt == WOLFSSL_EC_KEY_LOAD_PRIVATE) {
WOLFSSL_MSG("wc_EccPrivateKeyDecode failed");
}
else {
WOLFSSL_MSG("wc_EccPublicKeyDecode failed");
}
return WOLFSSL_FATAL_ERROR;
}
if (SetECKeyExternal(key) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetECKeyExternal failed");
return WOLFSSL_FATAL_ERROR;
}
key->inSet = 1;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_ECC */
#if !defined(NO_DH) && (defined(WOLFSSL_QT) || defined(OPENSSL_ALL) || defined(WOLFSSL_OPENSSH))
/* return WOLFSSL_SUCCESS if success, WOLFSSL_FATAL_ERROR if error */
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
int wolfSSL_DH_LoadDer(WOLFSSL_DH* dh, const unsigned char* derBuf, int derSz)
{
word32 idx = 0;
int ret;
if (dh == NULL || dh->internal == NULL || derBuf == NULL || derSz <= 0) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FATAL_ERROR;
}
ret = wc_DhKeyDecode(derBuf, &idx, (DhKey*)dh->internal, (word32)derSz);
if (ret < 0) {
WOLFSSL_MSG("wc_DhKeyDecode failed");
return WOLFSSL_FATAL_ERROR;
}
dh->inSet = 1;
if (SetDhExternal(dh) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetDhExternal failed");
return WOLFSSL_FATAL_ERROR;
}
return WOLFSSL_SUCCESS;
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* ! NO_DH && WOLFSSL_QT || OPENSSL_ALL */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
/* increments ref count of WOLFSSL_RSA. Return 1 on success, 0 on error */
int wolfSSL_RSA_up_ref(WOLFSSL_RSA* rsa)
{
if (rsa) {
if (wc_LockMutex(&rsa->refMutex) != 0) {
WOLFSSL_MSG("Failed to lock x509 mutex");
}
rsa->refCount++;
wc_UnLockMutex(&rsa->refMutex);
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
/* increments ref count of WOLFSSL_X509. Return 1 on success, 0 on error */
int wolfSSL_X509_up_ref(WOLFSSL_X509* x509)
{
if (x509) {
if (wc_LockMutex(&x509->refMutex) != 0) {
WOLFSSL_MSG("Failed to lock x509 mutex");
}
x509->refCount++;
wc_UnLockMutex(&x509->refMutex);
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* OPENSSL_EXTRA || OPENSSL_ALL */
#ifdef WOLFSSL_ALT_CERT_CHAINS
int wolfSSL_is_peer_alt_cert_chain(const WOLFSSL* ssl)
{
int isUsing = 0;
if (ssl)
isUsing = ssl->options.usingAltCertChain;
return isUsing;
}
#endif /* WOLFSSL_ALT_CERT_CHAINS */
#ifdef SESSION_CERTS
#ifdef WOLFSSL_ALT_CERT_CHAINS
/* Get peer's alternate certificate chain */
WOLFSSL_X509_CHAIN* wolfSSL_get_peer_alt_chain(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_peer_alt_chain");
if (ssl)
return &ssl->session.altChain;
return 0;
}
#endif /* WOLFSSL_ALT_CERT_CHAINS */
/* Get peer's certificate chain */
WOLFSSL_X509_CHAIN* wolfSSL_get_peer_chain(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_peer_chain");
if (ssl)
return &ssl->session.chain;
return 0;
}
/* Get peer's certificate chain total count */
int wolfSSL_get_chain_count(WOLFSSL_X509_CHAIN* chain)
{
WOLFSSL_ENTER("wolfSSL_get_chain_count");
if (chain)
return chain->count;
return 0;
}
/* Get peer's ASN.1 DER certificate at index (idx) length in bytes */
int wolfSSL_get_chain_length(WOLFSSL_X509_CHAIN* chain, int idx)
{
WOLFSSL_ENTER("wolfSSL_get_chain_length");
if (chain)
return chain->certs[idx].length;
return 0;
}
/* Get peer's ASN.1 DER certificate at index (idx) */
byte* wolfSSL_get_chain_cert(WOLFSSL_X509_CHAIN* chain, int idx)
{
WOLFSSL_ENTER("wolfSSL_get_chain_cert");
if (chain)
return chain->certs[idx].buffer;
return 0;
}
/* Get peer's wolfSSL X509 certificate at index (idx) */
WOLFSSL_X509* wolfSSL_get_chain_X509(WOLFSSL_X509_CHAIN* chain, int idx)
{
int ret;
WOLFSSL_X509* x509 = NULL;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
WOLFSSL_ENTER("wolfSSL_get_chain_X509");
if (chain != NULL) {
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL,
DYNAMIC_TYPE_DCERT);
if (cert != NULL)
#endif
{
InitDecodedCert(cert, chain->certs[idx].buffer,
chain->certs[idx].length, NULL);
if ((ret = ParseCertRelative(cert, CERT_TYPE, 0, NULL)) != 0) {
WOLFSSL_MSG("Failed to parse cert");
}
else {
x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL,
DYNAMIC_TYPE_X509);
if (x509 == NULL) {
WOLFSSL_MSG("Failed alloc X509");
}
else {
InitX509(x509, 1, NULL);
if ((ret = CopyDecodedToX509(x509, cert)) != 0) {
WOLFSSL_MSG("Failed to copy decoded");
wolfSSL_X509_free(x509);
x509 = NULL;
}
}
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
}
}
(void)ret;
return x509;
}
/* Get peer's PEM certificate at index (idx), output to buffer if inLen big
enough else return error (-1). If buffer is NULL only calculate
outLen. Output length is in *outLen WOLFSSL_SUCCESS on ok */
int wolfSSL_get_chain_cert_pem(WOLFSSL_X509_CHAIN* chain, int idx,
unsigned char* buf, int inLen, int* outLen)
{
#if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)
const char* header = NULL;
const char* footer = NULL;
int headerLen;
int footerLen;
int i;
int err;
word32 szNeeded = 0;
WOLFSSL_ENTER("wolfSSL_get_chain_cert_pem");
if (!chain || !outLen || idx < 0 || idx >= wolfSSL_get_chain_count(chain))
return BAD_FUNC_ARG;
err = wc_PemGetHeaderFooter(CERT_TYPE, &header, &footer);
if (err != 0)
return err;
headerLen = (int)XSTRLEN(header);
footerLen = (int)XSTRLEN(footer);
/* Null output buffer return size needed in outLen */
if(!buf) {
if(Base64_Encode(chain->certs[idx].buffer, chain->certs[idx].length,
NULL, &szNeeded) != LENGTH_ONLY_E)
return WOLFSSL_FAILURE;
*outLen = szNeeded + headerLen + footerLen;
return LENGTH_ONLY_E;
}
/* don't even try if inLen too short */
if (inLen < headerLen + footerLen + chain->certs[idx].length)
return BAD_FUNC_ARG;
/* header */
if (XMEMCPY(buf, header, headerLen) == NULL)
return WOLFSSL_FATAL_ERROR;
i = headerLen;
/* body */
*outLen = inLen; /* input to Base64_Encode */
if ( (err = Base64_Encode(chain->certs[idx].buffer,
chain->certs[idx].length, buf + i, (word32*)outLen)) < 0)
return err;
i += *outLen;
/* footer */
if ( (i + footerLen) > inLen)
return BAD_FUNC_ARG;
if (XMEMCPY(buf + i, footer, footerLen) == NULL)
return WOLFSSL_FATAL_ERROR;
*outLen += headerLen + footerLen;
return WOLFSSL_SUCCESS;
#else
(void)chain;
(void)idx;
(void)buf;
(void)inLen;
(void)outLen;
return WOLFSSL_FAILURE;
#endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */
}
/* get session ID */
WOLFSSL_ABI
const byte* wolfSSL_get_sessionID(const WOLFSSL_SESSION* session)
{
WOLFSSL_ENTER("wolfSSL_get_sessionID");
if (session)
return session->sessionID;
return NULL;
}
#endif /* SESSION_CERTS */
#ifdef HAVE_FUZZER
void wolfSSL_SetFuzzerCb(WOLFSSL* ssl, CallbackFuzzer cbf, void* fCtx)
{
if (ssl) {
ssl->fuzzerCb = cbf;
ssl->fuzzerCtx = fCtx;
}
}
#endif
#ifndef NO_CERTS
#ifdef HAVE_PK_CALLBACKS
#ifdef HAVE_ECC
void wolfSSL_CTX_SetEccKeyGenCb(WOLFSSL_CTX* ctx, CallbackEccKeyGen cb)
{
if (ctx)
ctx->EccKeyGenCb = cb;
}
void wolfSSL_SetEccKeyGenCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccKeyGenCtx = ctx;
}
void* wolfSSL_GetEccKeyGenCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccKeyGenCtx;
return NULL;
}
WOLFSSL_ABI
void wolfSSL_CTX_SetEccSignCb(WOLFSSL_CTX* ctx, CallbackEccSign cb)
{
if (ctx)
ctx->EccSignCb = cb;
}
void wolfSSL_SetEccSignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccSignCtx = ctx;
}
void* wolfSSL_GetEccSignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccSignCtx;
return NULL;
}
void wolfSSL_CTX_SetEccVerifyCb(WOLFSSL_CTX* ctx, CallbackEccVerify cb)
{
if (ctx)
ctx->EccVerifyCb = cb;
}
void wolfSSL_SetEccVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccVerifyCtx = ctx;
}
void* wolfSSL_GetEccVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccVerifyCtx;
return NULL;
}
void wolfSSL_CTX_SetEccSharedSecretCb(WOLFSSL_CTX* ctx, CallbackEccSharedSecret cb)
{
if (ctx)
ctx->EccSharedSecretCb = cb;
}
void wolfSSL_SetEccSharedSecretCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->EccSharedSecretCtx = ctx;
}
void* wolfSSL_GetEccSharedSecretCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->EccSharedSecretCtx;
return NULL;
}
#endif /* HAVE_ECC */
#ifdef HAVE_ED25519
void wolfSSL_CTX_SetEd25519SignCb(WOLFSSL_CTX* ctx, CallbackEd25519Sign cb)
{
if (ctx)
ctx->Ed25519SignCb = cb;
}
void wolfSSL_SetEd25519SignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed25519SignCtx = ctx;
}
void* wolfSSL_GetEd25519SignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed25519SignCtx;
return NULL;
}
void wolfSSL_CTX_SetEd25519VerifyCb(WOLFSSL_CTX* ctx, CallbackEd25519Verify cb)
{
if (ctx)
ctx->Ed25519VerifyCb = cb;
}
void wolfSSL_SetEd25519VerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed25519VerifyCtx = ctx;
}
void* wolfSSL_GetEd25519VerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed25519VerifyCtx;
return NULL;
}
#endif /* HAVE_ED25519 */
#ifdef HAVE_CURVE25519
void wolfSSL_CTX_SetX25519KeyGenCb(WOLFSSL_CTX* ctx,
CallbackX25519KeyGen cb)
{
if (ctx)
ctx->X25519KeyGenCb = cb;
}
void wolfSSL_SetX25519KeyGenCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->X25519KeyGenCtx = ctx;
}
void* wolfSSL_GetX25519KeyGenCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->X25519KeyGenCtx;
return NULL;
}
void wolfSSL_CTX_SetX25519SharedSecretCb(WOLFSSL_CTX* ctx,
CallbackX25519SharedSecret cb)
{
if (ctx)
ctx->X25519SharedSecretCb = cb;
}
void wolfSSL_SetX25519SharedSecretCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->X25519SharedSecretCtx = ctx;
}
void* wolfSSL_GetX25519SharedSecretCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->X25519SharedSecretCtx;
return NULL;
}
#endif /* HAVE_CURVE25519 */
#ifdef HAVE_ED448
void wolfSSL_CTX_SetEd448SignCb(WOLFSSL_CTX* ctx, CallbackEd448Sign cb)
{
if (ctx)
ctx->Ed448SignCb = cb;
}
void wolfSSL_SetEd448SignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed448SignCtx = ctx;
}
void* wolfSSL_GetEd448SignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed448SignCtx;
return NULL;
}
void wolfSSL_CTX_SetEd448VerifyCb(WOLFSSL_CTX* ctx, CallbackEd448Verify cb)
{
if (ctx)
ctx->Ed448VerifyCb = cb;
}
void wolfSSL_SetEd448VerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->Ed448VerifyCtx = ctx;
}
void* wolfSSL_GetEd448VerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->Ed448VerifyCtx;
return NULL;
}
#endif /* HAVE_ED448 */
#ifdef HAVE_CURVE448
void wolfSSL_CTX_SetX448KeyGenCb(WOLFSSL_CTX* ctx,
CallbackX448KeyGen cb)
{
if (ctx)
ctx->X448KeyGenCb = cb;
}
void wolfSSL_SetX448KeyGenCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->X448KeyGenCtx = ctx;
}
void* wolfSSL_GetX448KeyGenCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->X448KeyGenCtx;
return NULL;
}
void wolfSSL_CTX_SetX448SharedSecretCb(WOLFSSL_CTX* ctx,
CallbackX448SharedSecret cb)
{
if (ctx)
ctx->X448SharedSecretCb = cb;
}
void wolfSSL_SetX448SharedSecretCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->X448SharedSecretCtx = ctx;
}
void* wolfSSL_GetX448SharedSecretCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->X448SharedSecretCtx;
return NULL;
}
#endif /* HAVE_CURVE448 */
#ifndef NO_RSA
void wolfSSL_CTX_SetRsaSignCb(WOLFSSL_CTX* ctx, CallbackRsaSign cb)
{
if (ctx)
ctx->RsaSignCb = cb;
}
void wolfSSL_CTX_SetRsaSignCheckCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb)
{
if (ctx)
ctx->RsaSignCheckCb = cb;
}
void wolfSSL_SetRsaSignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaSignCtx = ctx;
}
void* wolfSSL_GetRsaSignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaSignCtx;
return NULL;
}
void wolfSSL_CTX_SetRsaVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaVerify cb)
{
if (ctx)
ctx->RsaVerifyCb = cb;
}
void wolfSSL_SetRsaVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaVerifyCtx = ctx;
}
void* wolfSSL_GetRsaVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaVerifyCtx;
return NULL;
}
#ifdef WC_RSA_PSS
void wolfSSL_CTX_SetRsaPssSignCb(WOLFSSL_CTX* ctx, CallbackRsaPssSign cb)
{
if (ctx)
ctx->RsaPssSignCb = cb;
}
void wolfSSL_CTX_SetRsaPssSignCheckCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb)
{
if (ctx)
ctx->RsaPssSignCheckCb = cb;
}
void wolfSSL_SetRsaPssSignCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaPssSignCtx = ctx;
}
void* wolfSSL_GetRsaPssSignCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaPssSignCtx;
return NULL;
}
void wolfSSL_CTX_SetRsaPssVerifyCb(WOLFSSL_CTX* ctx, CallbackRsaPssVerify cb)
{
if (ctx)
ctx->RsaPssVerifyCb = cb;
}
void wolfSSL_SetRsaPssVerifyCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaPssVerifyCtx = ctx;
}
void* wolfSSL_GetRsaPssVerifyCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaPssVerifyCtx;
return NULL;
}
#endif /* WC_RSA_PSS */
void wolfSSL_CTX_SetRsaEncCb(WOLFSSL_CTX* ctx, CallbackRsaEnc cb)
{
if (ctx)
ctx->RsaEncCb = cb;
}
void wolfSSL_SetRsaEncCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaEncCtx = ctx;
}
void* wolfSSL_GetRsaEncCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaEncCtx;
return NULL;
}
void wolfSSL_CTX_SetRsaDecCb(WOLFSSL_CTX* ctx, CallbackRsaDec cb)
{
if (ctx)
ctx->RsaDecCb = cb;
}
void wolfSSL_SetRsaDecCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->RsaDecCtx = ctx;
}
void* wolfSSL_GetRsaDecCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->RsaDecCtx;
return NULL;
}
#endif /* NO_RSA */
#endif /* HAVE_PK_CALLBACKS */
#endif /* NO_CERTS */
#if defined(HAVE_PK_CALLBACKS) && !defined(NO_DH)
void wolfSSL_CTX_SetDhAgreeCb(WOLFSSL_CTX* ctx, CallbackDhAgree cb)
{
if (ctx)
ctx->DhAgreeCb = cb;
}
void wolfSSL_SetDhAgreeCtx(WOLFSSL* ssl, void *ctx)
{
if (ssl)
ssl->DhAgreeCtx = ctx;
}
void* wolfSSL_GetDhAgreeCtx(WOLFSSL* ssl)
{
if (ssl)
return ssl->DhAgreeCtx;
return NULL;
}
#endif /* HAVE_PK_CALLBACKS && !NO_DH */
#ifdef WOLFSSL_HAVE_WOLFSCEP
/* Used by autoconf to see if wolfSCEP is available */
void wolfSSL_wolfSCEP(void) {}
#endif
#ifdef WOLFSSL_HAVE_CERT_SERVICE
/* Used by autoconf to see if cert service is available */
void wolfSSL_cert_service(void) {}
#endif
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \
!defined(WOLFCRYPT_ONLY)
#ifndef NO_CERTS
void wolfSSL_X509_NAME_free(WOLFSSL_X509_NAME *name)
{
WOLFSSL_ENTER("wolfSSL_X509_NAME_free");
FreeX509Name(name);
XFREE(name, NULL, DYNAMIC_TYPE_X509);
}
/* Malloc's a new WOLFSSL_X509_NAME structure
*
* returns NULL on failure, otherwise returns a new structure.
*/
WOLFSSL_X509_NAME* wolfSSL_X509_NAME_new(void)
{
WOLFSSL_X509_NAME* name;
WOLFSSL_ENTER("wolfSSL_X509_NAME_new");
name = (WOLFSSL_X509_NAME*)XMALLOC(sizeof(WOLFSSL_X509_NAME), NULL,
DYNAMIC_TYPE_X509);
if (name != NULL) {
InitX509Name(name, 1, NULL);
}
return name;
}
/* Creates a duplicate of a WOLFSSL_X509_NAME structure.
Returns a new WOLFSSL_X509_NAME structure or NULL on failure */
WOLFSSL_X509_NAME* wolfSSL_X509_NAME_dup(WOLFSSL_X509_NAME *name)
{
WOLFSSL_X509_NAME* copy = NULL;
WOLFSSL_ENTER("wolfSSL_X509_NAME_dup");
if (name == NULL) {
WOLFSSL_MSG("NULL parameter");
return NULL;
}
if (!(copy = wolfSSL_X509_NAME_new())) {
return NULL;
}
/* copy contents */
InitX509Name(copy, 1, name->heap);
if (wolfSSL_X509_NAME_copy(name, copy) != WOLFSSL_SUCCESS) {
wolfSSL_X509_NAME_free(copy);
return NULL;
}
return copy;
}
#ifdef WOLFSSL_CERT_GEN
#if defined(WOLFSSL_CERT_REQ) || defined(WOLFSSL_CERT_EXT) || defined(OPENSSL_EXTRA)
/* Helper function to copy cert name from a WOLFSSL_X509_NAME structure to
* a Cert structure.
*
* returns length of DER on success and a negative error value on failure
*/
static int CopyX509NameToCert(WOLFSSL_X509_NAME* n, byte* out)
{
unsigned char* der = NULL;
int length = BAD_FUNC_ARG, ret;
word32 idx = 0;
ret = wolfSSL_i2d_X509_NAME(n, &der);
if (ret > (int)sizeof(CertName) || ret < 0) {
WOLFSSL_MSG("Name conversion error");
ret = MEMORY_E;
}
if (ret > 0) {
/* strip off sequence, this gets added on certificate creation */
ret = GetSequence(der, &idx, &length, ret);
}
if (ret > 0) {
XMEMCPY(out, der + idx, length);
}
if (der != NULL)
XFREE(der, NULL, DYNAMIC_TYPE_OPENSSL);
return length;
}
#endif
#ifdef WOLFSSL_CERT_REQ
static int ReqCertFromX509(Cert* cert, WOLFSSL_X509* req)
{
int ret;
if (wc_InitCert(cert) != 0)
return WOLFSSL_FAILURE;
ret = CopyX509NameToCert(&req->subject, cert->sbjRaw);
if (ret < 0) {
WOLFSSL_MSG("REQ subject conversion error");
ret = MEMORY_E;
}
else {
ret = WOLFSSL_SUCCESS;
}
if (ret == WOLFSSL_SUCCESS) {
cert->version = req->version;
cert->isCA = req->isCa;
#ifdef WOLFSSL_CERT_EXT
if (req->subjKeyIdSz != 0) {
XMEMCPY(cert->skid, req->subjKeyId, req->subjKeyIdSz);
cert->skidSz = req->subjKeyIdSz;
}
if (req->keyUsageSet)
cert->keyUsage = req->keyUsage;
/* Extended Key Usage not supported. */
#endif
#ifdef WOLFSSL_CERT_REQ
XMEMCPY(cert->challengePw, req->challengePw, CTC_NAME_SIZE);
cert->challengePwPrintableString = req->challengePw[0] != 0;
#endif
#ifdef WOLFSSL_ALT_NAMES
cert->altNamesSz = FlattenAltNames(cert->altNames,
sizeof(cert->altNames), req->altNames);
#endif /* WOLFSSL_ALT_NAMES */
}
return ret;
}
#endif /* WOLFSSL_CERT_REQ */
#ifdef WOLFSSL_ALT_NAMES
/* converts WOLFSSL_AN1_TIME to Cert form, returns positive size on
* success */
static int CertDateFromX509(byte* out, int outSz, WOLFSSL_ASN1_TIME* t)
{
int sz, i;
if (t->length + 1 >= outSz) {
return BUFFER_E;
}
out[0] = t->type;
sz = SetLength(t->length, out + 1) + 1; /* gen tag */
for (i = 0; i < t->length; i++) {
out[sz + i] = t->data[i];
}
return t->length + sz;
}
#endif /* WOLFSSL_ALT_NAMES */
/* convert a WOLFSSL_X509 to a Cert structure for writing out */
static int CertFromX509(Cert* cert, WOLFSSL_X509* x509)
{
int ret;
#ifdef WOLFSSL_CERT_EXT
int i;
#endif
WOLFSSL_ENTER("wolfSSL_X509_to_Cert()");
if (x509 == NULL || cert == NULL) {
return BAD_FUNC_ARG;
}
wc_InitCert(cert);
cert->version = (int)wolfSSL_X509_get_version(x509);
#ifdef WOLFSSL_ALT_NAMES
if (x509->notBefore.length > 0) {
cert->beforeDateSz = CertDateFromX509(cert->beforeDate,
CTC_DATE_SIZE, &x509->notBefore);
if (cert->beforeDateSz <= 0){
WOLFSSL_MSG("Not before date error");
return WOLFSSL_FAILURE;
}
}
else {
cert->beforeDateSz = 0;
}
if (x509->notAfter.length > 0) {
cert->afterDateSz = CertDateFromX509(cert->afterDate,
CTC_DATE_SIZE, &x509->notAfter);
if (cert->afterDateSz <= 0){
WOLFSSL_MSG("Not after date error");
return WOLFSSL_FAILURE;
}
}
else {
cert->afterDateSz = 0;
}
cert->altNamesSz = FlattenAltNames(cert->altNames,
sizeof(cert->altNames), x509->altNames);
#endif /* WOLFSSL_ALT_NAMES */
cert->sigType = wolfSSL_X509_get_signature_type(x509);
cert->keyType = x509->pubKeyOID;
cert->isCA = wolfSSL_X509_get_isCA(x509);
#ifdef WOLFSSL_CERT_EXT
if (x509->subjKeyIdSz < CTC_MAX_SKID_SIZE) {
XMEMCPY(cert->skid, x509->subjKeyId, x509->subjKeyIdSz);
cert->skidSz = (int)x509->subjKeyIdSz;
}
else {
WOLFSSL_MSG("Subject Key ID too large");
return WOLFSSL_FAILURE;
}
if (x509->authKeyIdSz < CTC_MAX_AKID_SIZE) {
XMEMCPY(cert->akid, x509->authKeyId, x509->authKeyIdSz);
cert->akidSz = (int)x509->authKeyIdSz;
}
else {
WOLFSSL_MSG("Auth Key ID too large");
return WOLFSSL_FAILURE;
}
for (i = 0; i < x509->certPoliciesNb; i++) {
/* copy the smaller of MAX macros, by default they are currently equal*/
if ((int)CTC_MAX_CERTPOL_SZ <= (int)MAX_CERTPOL_SZ) {
XMEMCPY(cert->certPolicies[i], x509->certPolicies[i],
CTC_MAX_CERTPOL_SZ);
}
else {
XMEMCPY(cert->certPolicies[i], x509->certPolicies[i],
MAX_CERTPOL_SZ);
}
}
cert->certPoliciesNb = (word16)x509->certPoliciesNb;
cert->keyUsage = x509->keyUsage;
#endif /* WOLFSSL_CERT_EXT */
#ifdef WOLFSSL_CERT_REQ
/* copy over challenge password for REQ certs */
XMEMCPY(cert->challengePw, x509->challengePw, CTC_NAME_SIZE);
#endif
/* set serial number */
if (x509->serialSz > 0) {
#if defined(OPENSSL_EXTRA)
byte serial[EXTERNAL_SERIAL_SIZE];
int serialSz = EXTERNAL_SERIAL_SIZE;
ret = wolfSSL_X509_get_serial_number(x509, serial, &serialSz);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Serial size error");
return WOLFSSL_FAILURE;
}
XMEMCPY(cert->serial, serial, serialSz);
cert->serialSz = serialSz;
#else
WOLFSSL_MSG("Getting X509 serial number not supported");
return WOLFSSL_FAILURE;
#endif
}
/* copy over Name structures */
if (x509->issuerSet)
cert->selfSigned = 0;
#if defined(WOLFSSL_CERT_EXT) || defined(OPENSSL_EXTRA)
ret = CopyX509NameToCert(&x509->subject, cert->sbjRaw);
if (ret < 0) {
WOLFSSL_MSG("Subject conversion error");
return MEMORY_E;
}
if (cert->selfSigned) {
XMEMCPY(cert->issRaw, cert->sbjRaw, sizeof(CertName));
}
else {
ret = CopyX509NameToCert(&x509->issuer, cert->issRaw);
if (ret < 0) {
WOLFSSL_MSG("Issuer conversion error");
return MEMORY_E;
}
}
#endif
cert->heap = x509->heap;
(void)ret;
return WOLFSSL_SUCCESS;
}
/* returns the sig type to use on success i.e CTC_SHAwRSA and WOLFSSL_FALURE
* on fail case */
static int wolfSSL_sigTypeFromPKEY(WOLFSSL_EVP_MD* md,
WOLFSSL_EVP_PKEY* pkey)
{
int hashType;
int sigType = WOLFSSL_FAILURE;
#if !defined(NO_PWDBASED) && defined(OPENSSL_EXTRA)
/* Convert key type and hash algorithm to a signature algorithm */
if (wolfSSL_EVP_get_hashinfo(md, &hashType, NULL) == WOLFSSL_FAILURE) {
return WOLFSSL_FAILURE;
}
#else
(void)md;
WOLFSSL_MSG("Cannot get hashinfo when NO_PWDBASED is defined");
return WOLFSSL_FAILURE;
#endif /* !defined(NO_PWDBASED) */
if (pkey->type == EVP_PKEY_RSA) {
switch (hashType) {
case WC_HASH_TYPE_SHA:
sigType = CTC_SHAwRSA;
break;
case WC_HASH_TYPE_SHA224:
sigType = CTC_SHA224wRSA;
break;
case WC_HASH_TYPE_SHA256:
sigType = CTC_SHA256wRSA;
break;
case WC_HASH_TYPE_SHA384:
sigType = CTC_SHA384wRSA;
break;
case WC_HASH_TYPE_SHA512:
sigType = CTC_SHA512wRSA;
break;
default:
return WOLFSSL_FAILURE;
}
}
else if (pkey->type == EVP_PKEY_EC) {
switch (hashType) {
case WC_HASH_TYPE_SHA:
sigType = CTC_SHAwECDSA;
break;
case WC_HASH_TYPE_SHA224:
sigType = CTC_SHA224wECDSA;
break;
case WC_HASH_TYPE_SHA256:
sigType = CTC_SHA256wECDSA;
break;
case WC_HASH_TYPE_SHA384:
sigType = CTC_SHA384wECDSA;
break;
case WC_HASH_TYPE_SHA512:
sigType = CTC_SHA512wECDSA;
break;
default:
return WOLFSSL_FAILURE;
}
}
else
return WOLFSSL_FAILURE;
return sigType;
}
/* generates DER buffer from WOLFSSL_X509
* If req == 1 then creates a request DER buffer
*
* updates derSz with certificate body size on success
* return WOLFSSL_SUCCESS on success
*/
static int wolfssl_x509_make_der(WOLFSSL_X509* x509, int req,
unsigned char* der, int* derSz, int includeSig)
{
int ret = WOLFSSL_FAILURE;
int totalLen;
Cert cert;
void* key = NULL;
int type = -1;
#ifndef NO_RSA
RsaKey rsa;
#endif
#ifdef HAVE_ECC
ecc_key ecc;
#endif
#ifndef NO_DSA
DsaKey dsa;
#endif
WC_RNG rng;
word32 idx = 0;
if (x509 == NULL || der == NULL || derSz == NULL)
return BAD_FUNC_ARG;
#ifndef WOLFSSL_CERT_REQ
if (req) {
WOLFSSL_MSG("WOLFSSL_CERT_REQ needed for certificate request");
return WOLFSSL_FAILURE;
}
#endif
#ifdef WOLFSSL_CERT_REQ
if (req) {
if (ReqCertFromX509(&cert, x509) != WOLFSSL_SUCCESS)
return WOLFSSL_FAILURE;
}
else
#endif
{
/* Create a Cert that has the certificate fields. */
if (CertFromX509(&cert, x509) != WOLFSSL_SUCCESS)
return WOLFSSL_FAILURE;
}
/* Create a public key object from requests public key. */
#ifndef NO_RSA
if (x509->pubKeyOID == RSAk) {
type = RSA_TYPE;
ret = wc_InitRsaKey(&rsa, x509->heap);
if (ret != 0)
return ret;
ret = wc_RsaPublicKeyDecode(x509->pubKey.buffer, &idx, &rsa,
x509->pubKey.length);
if (ret != 0) {
wc_FreeRsaKey(&rsa);
return ret;
}
key = (void*)&rsa;
}
#endif
#ifdef HAVE_ECC
if (x509->pubKeyOID == ECDSAk) {
type = ECC_TYPE;
ret = wc_ecc_init(&ecc);
if (ret != 0)
return ret;
ret = wc_EccPublicKeyDecode(x509->pubKey.buffer, &idx, &ecc,
x509->pubKey.length);
if (ret != 0) {
wc_ecc_free(&ecc);
return ret;
}
key = (void*)&ecc;
}
#endif
#ifndef NO_DSA
if (x509->pubKeyOID == DSAk) {
type = DSA_TYPE;
ret = wc_InitDsaKey(&dsa);
if (ret != 0)
return ret;
ret = wc_DsaPublicKeyDecode(x509->pubKey.buffer, &idx, &dsa,
x509->pubKey.length);
if (ret != 0) {
wc_FreeDsaKey(&dsa);
return ret;
}
key = (void*)&dsa;
}
#endif
if (key == NULL) {
WOLFSSL_MSG("No public key found for certificate");
return WOLFSSL_FAILURE;
}
/* Make the body of the certificate request. */
#ifdef WOLFSSL_CERT_REQ
if (req) {
ret = wc_MakeCertReq_ex(&cert, der, *derSz, type, key);
}
else
#endif
{
ret = wc_InitRng(&rng);
if (ret != 0)
return WOLFSSL_FAILURE;
ret = wc_MakeCert_ex(&cert, der, *derSz, type, key, &rng);
wc_FreeRng(&rng);
}
if (ret <= 0) {
ret = WOLFSSL_FAILURE;
goto cleanup;
}
if ((x509->serialSz == 0) &&
(cert.serialSz <= EXTERNAL_SERIAL_SIZE) &&
(cert.serialSz > 0)) {
#if defined(OPENSSL_EXTRA)
WOLFSSL_ASN1_INTEGER *i = wolfSSL_ASN1_INTEGER_new();
if (i == NULL) {
WOLFSSL_MSG("wolfSSL_ASN1_INTEGER_new error");
ret = WOLFSSL_FAILURE;
goto cleanup;
}
else {
i->length = cert.serialSz + 2;
i->data[0] = ASN_INTEGER;
i->data[1] = cert.serialSz;
XMEMCPY(i->data + 2, cert.serial, cert.serialSz);
if (wolfSSL_X509_set_serialNumber(x509, i) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Issue setting generated serial number");
wolfSSL_ASN1_INTEGER_free(i);
ret = WOLFSSL_FAILURE;
goto cleanup;
}
wolfSSL_ASN1_INTEGER_free(i);
}
#else
WOLFSSL_MSG("ASN1_INTEGER API not in build");
ret = WOLFSSL_FAILURE;
goto cleanup;
#endif /* OPENSSL_EXTRA */
}
if (includeSig) {
if (!x509->sig.buffer) {
WOLFSSL_MSG("No signature buffer");
ret = WOLFSSL_FAILURE;
goto cleanup;
}
totalLen = AddSignature(NULL, ret, NULL, x509->sig.length,
x509->sigOID);
if (totalLen > *derSz) {
WOLFSSL_MSG("Output der buffer too short");
ret = WOLFSSL_FAILURE;
goto cleanup;
}
ret = AddSignature(der, ret, x509->sig.buffer,
x509->sig.length, x509->sigOID);
}
*derSz = ret;
ret = WOLFSSL_SUCCESS;
cleanup:
/* Dispose of the public key object. */
#ifndef NO_RSA
if (x509->pubKeyOID == RSAk)
wc_FreeRsaKey(&rsa);
#endif
#ifdef HAVE_ECC
if (x509->pubKeyOID == ECDSAk)
wc_ecc_free(&ecc);
#endif
return ret;
}
/* signs a der buffer for the WOLFSSL_X509 structure using the PKEY and MD
* hash passed in
*
* WARNING: this free's and replaces the existing DER buffer in the
* WOLFSSL_X509 with the newly signed buffer.
* returns size of signed buffer on success and negative values on fail
*/
static int wolfSSL_X509_resign_cert(WOLFSSL_X509* x509, int req,
unsigned char* der, int derSz, int certBodySz, WOLFSSL_EVP_MD* md,
WOLFSSL_EVP_PKEY* pkey)
{
int ret;
void* key = NULL;
int type = -1;
int sigType;
WC_RNG rng;
(void)req;
sigType = wolfSSL_sigTypeFromPKEY(md, pkey);
if (sigType == WOLFSSL_FAILURE)
return WOLFSSL_FATAL_ERROR;
/* Get the private key object and type from pkey. */
#ifndef NO_RSA
if (pkey->type == EVP_PKEY_RSA) {
type = RSA_TYPE;
key = pkey->rsa->internal;
}
#endif
#ifdef HAVE_ECC
if (pkey->type == EVP_PKEY_EC) {
type = ECC_TYPE;
key = pkey->ecc->internal;
}
#endif
/* Sign the certificate (request) body. */
ret = wc_InitRng(&rng);
if (ret != 0)
return ret;
ret = wc_SignCert_ex(certBodySz, sigType, der, derSz, type, key, &rng);
wc_FreeRng(&rng);
if (ret < 0)
return ret;
derSz = ret;
/* Extract signature from buffer */
{
word32 idx = 0;
int len = 0;
/* Read top level sequence */
if (GetSequence(der, &idx, &len, derSz) < 0) {
WOLFSSL_MSG("GetSequence error");
return WOLFSSL_FATAL_ERROR;
}
/* Move idx to signature */
idx += certBodySz;
/* Read signature algo sequence */
if (GetSequence(der, &idx, &len, derSz) < 0) {
WOLFSSL_MSG("GetSequence error");
return WOLFSSL_FATAL_ERROR;
}
idx += len;
/* Read signature bit string */
if (CheckBitString(der, &idx, &len, derSz, 0, NULL) != 0) {
WOLFSSL_MSG("CheckBitString error");
return WOLFSSL_FATAL_ERROR;
}
/* Sanity check */
if (idx + len != (word32)derSz) {
WOLFSSL_MSG("unexpected asn1 structure");
return WOLFSSL_FATAL_ERROR;
}
x509->sig.length = 0;
if (x509->sig.buffer)
XFREE(x509->sig.buffer, x509->heap, DYNAMIC_TYPE_SIGNATURE);
x509->sig.buffer = (byte*)XMALLOC(len, x509->heap,
DYNAMIC_TYPE_SIGNATURE);
if (!x509->sig.buffer) {
WOLFSSL_MSG("malloc error");
return WOLFSSL_FATAL_ERROR;
}
XMEMCPY(x509->sig.buffer, der + idx, len);
x509->sig.length = len;
}
/* Put in the new certificate encoding into the x509 object. */
FreeDer(&x509->derCert);
type = CERT_TYPE;
#ifdef WOLFSSL_CERT_REQ
if (req) {
type = CERTREQ_TYPE;
}
#endif
if (AllocDer(&x509->derCert, derSz, type, NULL) != 0)
return WOLFSSL_FATAL_ERROR;
XMEMCPY(x509->derCert->buffer, der, derSz);
x509->derCert->length = derSz;
return ret;
}
#ifndef WC_MAX_X509_GEN
/* able to override max size until dynamic buffer created */
#define WC_MAX_X509_GEN 4096
#endif
/* returns the size of signature on success */
int wolfSSL_X509_sign(WOLFSSL_X509* x509, WOLFSSL_EVP_PKEY* pkey,
const WOLFSSL_EVP_MD* md)
{
int ret;
/* @TODO dynamic set based on expected cert size */
byte *der = (byte *)XMALLOC(WC_MAX_X509_GEN, NULL, DYNAMIC_TYPE_TMP_BUFFER);
int derSz = WC_MAX_X509_GEN;
WOLFSSL_ENTER("wolfSSL_X509_sign");
if (x509 == NULL || pkey == NULL || md == NULL) {
ret = WOLFSSL_FAILURE;
goto out;
}
x509->sigOID = wolfSSL_sigTypeFromPKEY((WOLFSSL_EVP_MD*)md, pkey);
if ((ret = wolfssl_x509_make_der(x509, 0, der, &derSz, 0)) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Unable to make DER for X509");
WOLFSSL_LEAVE("wolfSSL_X509_sign", ret);
(void)ret;
ret = WOLFSSL_FAILURE;
goto out;
}
ret = wolfSSL_X509_resign_cert(x509, 0, der, WC_MAX_X509_GEN, derSz,
(WOLFSSL_EVP_MD*)md, pkey);
if (ret <= 0) {
WOLFSSL_LEAVE("wolfSSL_X509_sign", ret);
ret = WOLFSSL_FAILURE;
goto out;
}
out:
if (der)
XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#if defined(OPENSSL_EXTRA)
int wolfSSL_X509_sign_ctx(WOLFSSL_X509 *x509, WOLFSSL_EVP_MD_CTX *ctx)
{
WOLFSSL_ENTER("wolfSSL_X509_sign_ctx");
if (!x509 || !ctx || !ctx->pctx || !ctx->pctx->pkey) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
return wolfSSL_X509_sign(x509, ctx->pctx->pkey, wolfSSL_EVP_MD_CTX_md(ctx));
}
#endif /* OPENSSL_EXTRA */
#endif /* WOLFSSL_CERT_GEN */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
WOLFSSL_X509_NAME *wolfSSL_d2i_X509_NAME(WOLFSSL_X509_NAME **name,
unsigned char **in, long length)
{
WOLFSSL_X509_NAME* tmp = NULL;
DecodedCert cert;
WOLFSSL_ENTER("wolfSSL_d2i_X509_NAME");
if (!in || !*in || length <= 0) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
/* Set the X509_NAME buffer as the input data for cert.
* in is NOT a full certificate. Just the name. */
InitDecodedCert(&cert, *in, (word32)length, NULL);
/* Parse the X509 subject name */
if (GetName(&cert, SUBJECT, (int)length) != 0) {
WOLFSSL_MSG("WOLFSSL_X509_NAME parse error");
goto cleanup;
}
if (!(tmp = wolfSSL_X509_NAME_new())) {
WOLFSSL_MSG("wolfSSL_X509_NAME_new error");
goto cleanup;
}
if (wolfSSL_X509_NAME_copy((WOLFSSL_X509_NAME*)cert.subjectName,
tmp) != WOLFSSL_SUCCESS) {
wolfSSL_X509_NAME_free(tmp);
tmp = NULL;
goto cleanup;
}
if (name)
*name = tmp;
cleanup:
FreeDecodedCert(&cert);
return tmp;
}
/* Compares the two X509 names. If the size of x is larger then y then a
* positive value is returned if x is smaller a negative value is returned.
* In the case that the sizes are equal a the value of strcmp between the
* two names is returned.
*
* x First name for comparison
* y Second name to compare with x
*/
int wolfSSL_X509_NAME_cmp(const WOLFSSL_X509_NAME* x,
const WOLFSSL_X509_NAME* y)
{
const char* _x;
const char* _y;
WOLFSSL_ENTER("wolfSSL_X509_NAME_cmp");
if (x == NULL || y == NULL) {
WOLFSSL_MSG("Bad argument passed in");
return -2;
}
if (x == y) {
return 0; /* match */
}
if (x->sz != y->sz) {
return x->sz - y->sz;
}
/*
* If the name member is not set or is immediately null terminated then
* compare the staticName member
*/
_x = (x->name && *x->name) ? x->name : x->staticName;
_y = (y->name && *y->name) ? y->name : y->staticName;
return XSTRNCMP(_x, _y, x->sz); /* y sz is the same */
}
#ifndef NO_BIO
static WOLFSSL_X509 *loadX509orX509REQFromPemBio(WOLFSSL_BIO *bp,
WOLFSSL_X509 **x, pem_password_cb *cb, void *u, int type)
{
WOLFSSL_X509* x509 = NULL;
#if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)
unsigned char* pem = NULL;
int pemSz;
long i = 0, l, footerSz;
const char* footer = NULL;
WOLFSSL_ENTER("loadX509orX509REQFromPemBio");
if (bp == NULL || (type != CERT_TYPE && type != CERTREQ_TYPE)) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_X509", BAD_FUNC_ARG);
return NULL;
}
if ((l = wolfSSL_BIO_get_len(bp)) <= 0) {
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX)
/* No certificate in buffer */
WOLFSSL_ERROR(ASN_NO_PEM_HEADER);
#endif
return NULL;
}
pem = (unsigned char*)XMALLOC(l, 0, DYNAMIC_TYPE_PEM);
if (pem == NULL)
return NULL;
i = 0;
if (wc_PemGetHeaderFooter(type, NULL, &footer) != 0) {
XFREE(pem, 0, DYNAMIC_TYPE_PEM);
return NULL;
}
footerSz = (long)XSTRLEN(footer);
/* TODO: Inefficient
* reading in one byte at a time until see the footer
*/
while ((l = wolfSSL_BIO_read(bp, (char *)&pem[i], 1)) == 1) {
i++;
if (i > footerSz && XMEMCMP((char *)&pem[i-footerSz], footer,
footerSz) == 0) {
if (wolfSSL_BIO_read(bp, (char *)&pem[i], 1) == 1) {
/* attempt to read newline following footer */
i++;
if (pem[i-1] == '\r') {
/* found \r , Windows line ending is \r\n so try to read one
* more byte for \n, ignoring return value */
(void)wolfSSL_BIO_read(bp, (char *)&pem[i++], 1);
}
}
break;
}
}
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX)
if (l == 0)
WOLFSSL_ERROR(ASN_NO_PEM_HEADER);
#endif
pemSz = (int)i;
#ifdef WOLFSSL_CERT_REQ
if (type == CERTREQ_TYPE)
x509 = wolfSSL_X509_REQ_load_certificate_buffer(pem, pemSz,
WOLFSSL_FILETYPE_PEM);
else
#endif
x509 = wolfSSL_X509_load_certificate_buffer(pem, pemSz,
WOLFSSL_FILETYPE_PEM);
if (x != NULL) {
*x = x509;
}
XFREE(pem, NULL, DYNAMIC_TYPE_PEM);
#endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */
(void)bp;
(void)x;
(void)cb;
(void)u;
return x509;
}
WOLFSSL_X509 *wolfSSL_PEM_read_bio_X509(WOLFSSL_BIO *bp, WOLFSSL_X509 **x,
pem_password_cb *cb, void *u)
{
return loadX509orX509REQFromPemBio(bp, x, cb, u, CERT_TYPE);
}
#ifdef WOLFSSL_CERT_REQ
WOLFSSL_X509 *wolfSSL_PEM_read_bio_X509_REQ(WOLFSSL_BIO *bp, WOLFSSL_X509 **x,
pem_password_cb *cb, void *u)
{
return loadX509orX509REQFromPemBio(bp, x, cb, u, CERTREQ_TYPE);
}
#endif
WOLFSSL_X509_CRL *wolfSSL_PEM_read_bio_X509_CRL(WOLFSSL_BIO *bp,
WOLFSSL_X509_CRL **x, pem_password_cb *cb, void *u)
{
#if defined(WOLFSSL_PEM_TO_DER) && defined(HAVE_CRL)
unsigned char* pem = NULL;
int pemSz;
int derSz;
DerBuffer* der = NULL;
WOLFSSL_X509_CRL* crl = NULL;
if ((pemSz = wolfSSL_BIO_get_len(bp)) <= 0) {
goto err;
}
pem = (unsigned char*)XMALLOC(pemSz, 0, DYNAMIC_TYPE_PEM);
if (pem == NULL) {
goto err;
}
if (wolfSSL_BIO_read(bp, pem, pemSz) != pemSz) {
goto err;
}
if((PemToDer(pem, pemSz, CRL_TYPE, &der, NULL, NULL, NULL)) < 0) {
goto err;
}
derSz = der->length;
if((crl = wolfSSL_d2i_X509_CRL(x, der->buffer, derSz)) == NULL) {
goto err;
}
err:
if(pem != NULL) {
XFREE(pem, 0, DYNAMIC_TYPE_PEM);
}
if(der != NULL) {
FreeDer(&der);
}
(void)cb;
(void)u;
return crl;
#else
(void)bp;
(void)x;
(void)cb;
(void)u;
return NULL;
#endif
}
#endif /* !NO_BIO */
#if !defined(NO_FILESYSTEM)
static void* wolfSSL_PEM_read_X509_ex(XFILE fp, void **x,
pem_password_cb *cb, void *u, int type)
{
unsigned char* pem = NULL;
int pemSz;
long i = 0, l;
void *newx509;
int derSz;
DerBuffer* der = NULL;
WOLFSSL_ENTER("wolfSSL_PEM_read_X509");
if (fp == XBADFILE) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_X509", BAD_FUNC_ARG);
return NULL;
}
/* Read cert from file */
i = XFTELL(fp);
if (i < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_X509", BAD_FUNC_ARG);
return NULL;
}
if (XFSEEK(fp, 0, XSEEK_END) != 0)
return NULL;
l = XFTELL(fp);
if (l < 0)
return NULL;
if (XFSEEK(fp, i, SEEK_SET) != 0)
return NULL;
pemSz = (int)(l - i);
/* check calculated length */
if (pemSz > MAX_WOLFSSL_FILE_SIZE || pemSz < 0) {
WOLFSSL_MSG("PEM_read_X509_ex file size error");
return NULL;
}
/* allocate pem buffer */
pem = (unsigned char*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_PEM);
if (pem == NULL)
return NULL;
if ((int)XFREAD((char *)pem, 1, pemSz, fp) != pemSz)
goto err_exit;
switch (type) {
case CERT_TYPE:
newx509 = (void *)wolfSSL_X509_load_certificate_buffer(pem,
pemSz, WOLFSSL_FILETYPE_PEM);
break;
#ifdef HAVE_CRL
case CRL_TYPE:
if ((PemToDer(pem, pemSz, CRL_TYPE, &der, NULL, NULL, NULL)) < 0)
goto err_exit;
derSz = der->length;
newx509 = (void*)wolfSSL_d2i_X509_CRL((WOLFSSL_X509_CRL **)x,
(const unsigned char *)der->buffer, derSz);
if (newx509 == NULL)
goto err_exit;
FreeDer(&der);
break;
#endif
default:
goto err_exit;
}
if (x != NULL) {
*x = newx509;
}
XFREE(pem, NULL, DYNAMIC_TYPE_PEM);
return newx509;
err_exit:
if (pem != NULL)
XFREE(pem, NULL, DYNAMIC_TYPE_PEM);
if (der != NULL)
FreeDer(&der);
/* unused */
(void)cb;
(void)u;
(void)derSz;
return NULL;
}
WOLFSSL_API WOLFSSL_X509* wolfSSL_PEM_read_X509(XFILE fp, WOLFSSL_X509 **x,
pem_password_cb *cb, void *u)
{
return (WOLFSSL_X509* )wolfSSL_PEM_read_X509_ex(fp, (void **)x, cb, u, CERT_TYPE);
}
#if defined(HAVE_CRL)
WOLFSSL_API WOLFSSL_X509_CRL* wolfSSL_PEM_read_X509_CRL(XFILE fp, WOLFSSL_X509_CRL **crl,
pem_password_cb *cb, void *u)
{
return (WOLFSSL_X509_CRL* )wolfSSL_PEM_read_X509_ex(fp, (void **)crl, cb, u, CRL_TYPE);
}
#endif
#ifdef WOLFSSL_CERT_GEN
#ifndef NO_BIO
int wolfSSL_PEM_write_X509(XFILE fp, WOLFSSL_X509* x)
{
int ret;
WOLFSSL_BIO* bio;
if (x == NULL)
return 0;
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file());
if (bio == NULL)
return 0;
if (wolfSSL_BIO_set_fp(bio, fp, BIO_NOCLOSE) != WOLFSSL_SUCCESS) {
wolfSSL_BIO_free(bio);
bio = NULL;
}
ret = wolfSSL_PEM_write_bio_X509(bio, x);
if (bio != NULL)
wolfSSL_BIO_free(bio);
return ret;
}
#endif /* !NO_BIO */
#endif /* WOLFSSL_CERT_GEN */
#endif /* !NO_FILESYSTEM */
#define PEM_BEGIN "-----BEGIN "
#define PEM_BEGIN_SZ 11
#define PEM_END "-----END "
#define PEM_END_SZ 9
#define PEM_HDR_FIN "-----"
#define PEM_HDR_FIN_SZ 5
#define PEM_HDR_FIN_EOL_NEWLINE "-----\n"
#define PEM_HDR_FIN_EOL_NULL_TERM "-----\0"
#define PEM_HDR_FIN_EOL_SZ 6
#ifndef NO_BIO
int wolfSSL_PEM_read_bio(WOLFSSL_BIO* bio, char **name, char **header,
unsigned char **data, long *len)
{
int ret = WOLFSSL_SUCCESS;
char pem[256];
int pemLen;
char* p;
char* nameStr = NULL;
int nameLen = 0;
char* headerStr = NULL;
int headerLen;
int headerFound = 0;
unsigned char* der = NULL;
word32 derLen = 0;
if (bio == NULL || name == NULL || header == NULL || data == NULL ||
len == NULL) {
return WOLFSSL_FAILURE;
}
/* Find header line. */
pem[sizeof(pem) - 1] = '\0';
while ((pemLen = wolfSSL_BIO_gets(bio, pem, sizeof(pem) - 1)) > 0) {
if (XSTRNCMP(pem, PEM_BEGIN, PEM_BEGIN_SZ) == 0)
break;
}
if (pemLen <= 0)
ret = WOLFSSL_FAILURE;
/* Have a header line. */
if (ret == WOLFSSL_SUCCESS) {
while (pem[pemLen - 1] == '\r' || pem[pemLen - 1] == '\n')
pemLen--;
pem[pemLen] = '\0';
if (XSTRNCMP(pem + pemLen - PEM_HDR_FIN_SZ, PEM_HDR_FIN,
PEM_HDR_FIN_SZ) != 0) {
ret = WOLFSSL_FAILURE;
}
}
/* Get out name. */
if (ret == WOLFSSL_SUCCESS) {
nameLen = pemLen - PEM_BEGIN_SZ - PEM_HDR_FIN_SZ;
nameStr = (char*)XMALLOC(nameLen + 1, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (nameStr == NULL)
ret = WOLFSSL_FAILURE;
}
if (ret == WOLFSSL_SUCCESS) {
XSTRNCPY(nameStr, pem + PEM_BEGIN_SZ, nameLen);
nameStr[nameLen] = '\0';
/* Get header of PEM - encryption header. */
headerLen = 0;
while ((pemLen = wolfSSL_BIO_gets(bio, pem, sizeof(pem) - 1)) > 0) {
while (pemLen > 0 && (pem[pemLen - 1] == '\r' ||
pem[pemLen - 1] == '\n')) {
pemLen--;
}
pem[pemLen++] = '\n';
pem[pemLen] = '\0';
/* Header separator is a blank line. */
if (pem[0] == '\n') {
headerFound = 1;
break;
}
/* Didn't find a blank line - no header. */
if (XSTRNCMP(pem, PEM_END, PEM_END_SZ) == 0) {
der = (unsigned char*)headerStr;
derLen = headerLen;
/* Empty header - empty string. */
headerStr = (char*)XMALLOC(1, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (headerStr == NULL)
ret = WOLFSSL_FAILURE;
else
headerStr[0] = '\0';
break;
}
p = (char*)XREALLOC(headerStr, headerLen + pemLen + 1, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (p == NULL) {
ret = WOLFSSL_FAILURE;
break;
}
headerStr = p;
XMEMCPY(headerStr + headerLen, pem, pemLen + 1);
headerLen += pemLen;
}
if (pemLen <= 0)
ret = WOLFSSL_FAILURE;
}
/* Get body of PEM - if there was a header */
if (ret == WOLFSSL_SUCCESS && headerFound) {
derLen = 0;
while ((pemLen = wolfSSL_BIO_gets(bio, pem, sizeof(pem) - 1)) > 0) {
while (pemLen > 0 && (pem[pemLen - 1] == '\r' ||
pem[pemLen - 1] == '\n')) {
pemLen--;
}
pem[pemLen++] = '\n';
pem[pemLen] = '\0';
if (XSTRNCMP(pem, PEM_END, PEM_END_SZ) == 0)
break;
p = (char*)XREALLOC(der, derLen + pemLen + 1, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (p == NULL) {
ret = WOLFSSL_FAILURE;
break;
}
der = (unsigned char*)p;
XMEMCPY(der + derLen, pem, pemLen + 1);
derLen += pemLen;
}
if (pemLen <= 0)
ret = WOLFSSL_FAILURE;
}
/* Check trailer. */
if (ret == WOLFSSL_SUCCESS) {
if (XSTRNCMP(pem + PEM_END_SZ, nameStr, nameLen) != 0)
ret = WOLFSSL_FAILURE;
}
if (ret == WOLFSSL_SUCCESS) {
if (XSTRNCMP(pem + PEM_END_SZ + nameLen,
PEM_HDR_FIN_EOL_NEWLINE,
PEM_HDR_FIN_EOL_SZ) != 0 &&
XSTRNCMP(pem + PEM_END_SZ + nameLen,
PEM_HDR_FIN_EOL_NULL_TERM,
PEM_HDR_FIN_EOL_SZ) != 0) {
ret = WOLFSSL_FAILURE;
}
}
/* Base64 decode body. */
if (ret == WOLFSSL_SUCCESS) {
if (Base64_Decode(der, derLen, der, &derLen) != 0)
ret = WOLFSSL_FAILURE;
}
if (ret == WOLFSSL_SUCCESS) {
*name = nameStr;
*header = headerStr;
*data = der;
*len = derLen;
nameStr = NULL;
headerStr = NULL;
der = NULL;
}
if (nameStr != NULL)
XFREE(nameStr, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (headerStr != NULL)
XFREE(headerStr, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (der != NULL)
XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
int wolfSSL_PEM_write_bio(WOLFSSL_BIO* bio, const char *name,
const char *header, const unsigned char *data,
long len)
{
int err = 0;
int outSz = 0;
int nameLen;
int headerLen;
byte* pem = NULL;
word32 pemLen;
word32 derLen = (word32)len;
if (bio == NULL || name == NULL || header == NULL || data == NULL)
return 0;
nameLen = (int)XSTRLEN(name);
headerLen = (int)XSTRLEN(header);
pemLen = (derLen + 2) / 3 * 4;
pemLen += (pemLen + 63) / 64;
pem = (byte*)XMALLOC(pemLen, NULL, DYNAMIC_TYPE_TMP_BUFFER);
err = pem == NULL;
if (!err)
err = Base64_Encode(data, derLen, pem, &pemLen) != 0;
if (!err) {
err = wolfSSL_BIO_write(bio, PEM_BEGIN, PEM_BEGIN_SZ) !=
(int)PEM_BEGIN_SZ;
}
if (!err)
err = wolfSSL_BIO_write(bio, name, nameLen) != nameLen;
if (!err) {
err = wolfSSL_BIO_write(bio, PEM_HDR_FIN_EOL_NEWLINE,
PEM_HDR_FIN_EOL_SZ) != (int)PEM_HDR_FIN_EOL_SZ;
}
if (!err && headerLen > 0) {
err = wolfSSL_BIO_write(bio, header, headerLen) != headerLen;
/* Blank line after a header and before body. */
if (!err)
err = wolfSSL_BIO_write(bio, "\n", 1) != 1;
headerLen++;
}
if (!err)
err = wolfSSL_BIO_write(bio, pem, pemLen) != (int)pemLen;
if (!err)
err = wolfSSL_BIO_write(bio, PEM_END, PEM_END_SZ) !=
(int)PEM_END_SZ;
if (!err)
err = wolfSSL_BIO_write(bio, name, nameLen) != nameLen;
if (!err) {
err = wolfSSL_BIO_write(bio, PEM_HDR_FIN_EOL_NEWLINE,
PEM_HDR_FIN_EOL_SZ) != (int)PEM_HDR_FIN_EOL_SZ;
}
if (!err) {
outSz = PEM_BEGIN_SZ + nameLen + PEM_HDR_FIN_EOL_SZ + headerLen +
pemLen + PEM_END_SZ + nameLen + PEM_HDR_FIN_EOL_SZ;
}
if (pem != NULL)
XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return outSz;
}
#if !defined(NO_FILESYSTEM)
int wolfSSL_PEM_read(XFILE fp, char **name, char **header,
unsigned char **data, long *len)
{
int ret;
WOLFSSL_BIO* bio;
if (name == NULL || header == NULL || data == NULL || len == NULL)
return WOLFSSL_FAILURE;
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file());
if (bio == NULL)
return 0;
if (wolfSSL_BIO_set_fp(bio, fp, BIO_NOCLOSE) != WOLFSSL_SUCCESS) {
wolfSSL_BIO_free(bio);
bio = NULL;
}
ret = wolfSSL_PEM_read_bio(bio, name, header, data, len);
if (bio != NULL)
wolfSSL_BIO_free(bio);
return ret;
}
int wolfSSL_PEM_write(XFILE fp, const char *name, const char *header,
const unsigned char *data, long len)
{
int ret;
WOLFSSL_BIO* bio;
if (name == NULL || header == NULL || data == NULL)
return 0;
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file());
if (bio == NULL)
return 0;
if (wolfSSL_BIO_set_fp(bio, fp, BIO_NOCLOSE) != WOLFSSL_SUCCESS) {
wolfSSL_BIO_free(bio);
bio = NULL;
}
ret = wolfSSL_PEM_write_bio(bio, name, header, data, len);
if (bio != NULL)
wolfSSL_BIO_free(bio);
return ret;
}
#endif
#endif /* !NO_BIO */
int wolfSSL_PEM_get_EVP_CIPHER_INFO(char* header, EncryptedInfo* cipher)
{
if (header == NULL || cipher == NULL)
return WOLFSSL_FAILURE;
XMEMSET(cipher, 0, sizeof(*cipher));
if (wc_EncryptedInfoParse(cipher, &header, XSTRLEN(header)) != 0)
return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
int wolfSSL_PEM_do_header(EncryptedInfo* cipher, unsigned char* data,
long* len, pem_password_cb* callback, void* ctx)
{
int ret = WOLFSSL_SUCCESS;
char password[NAME_SZ];
int passwordSz;
if (cipher == NULL || data == NULL || len == NULL || callback == NULL)
return WOLFSSL_FAILURE;
passwordSz = callback(password, sizeof(password), PEM_PASS_READ, ctx);
if (passwordSz < 0)
ret = WOLFSSL_FAILURE;
if (ret == WOLFSSL_SUCCESS) {
if (wc_BufferKeyDecrypt(cipher, data, (word32)*len, (byte*)password,
passwordSz, WC_MD5) != 0) {
ret = WOLFSSL_FAILURE;
}
}
if (passwordSz > 0)
XMEMSET(password, 0, passwordSz);
return ret;
}
#ifndef NO_BIO
/*
* bp : bio to read X509 from
* x : x509 to write to
* cb : password call back for reading PEM
* u : password
* _AUX is for working with a trusted X509 certificate
*/
WOLFSSL_X509 *wolfSSL_PEM_read_bio_X509_AUX(WOLFSSL_BIO *bp,
WOLFSSL_X509 **x, pem_password_cb *cb, void *u) {
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_X509");
/* AUX info is; trusted/rejected uses, friendly name, private key id,
* and potentially a stack of "other" info. wolfSSL does not store
* friendly name or private key id yet in WOLFSSL_X509 for human
* readability and does not support extra trusted/rejected uses for
* root CA. */
return wolfSSL_PEM_read_bio_X509(bp, x, cb, u);
}
#endif /* !NO_BIO */
#endif /* OPENSSL_EXTRA || OPENSSL_ALL */
#ifdef OPENSSL_ALL
#ifndef NO_BIO
/* create and return a new WOLFSSL_X509_PKEY structure or NULL on failure */
static WOLFSSL_X509_PKEY* wolfSSL_X509_PKEY_new(void* heap)
{
WOLFSSL_X509_PKEY* ret;
ret = (WOLFSSL_X509_PKEY*)XMALLOC(sizeof(WOLFSSL_X509_PKEY), heap,
DYNAMIC_TYPE_KEY);
if (ret != NULL) {
XMEMSET(ret, 0, sizeof(WOLFSSL_X509_PKEY));
ret->heap = heap;
}
return ret;
}
/* sets the values of X509_PKEY based on certificate passed in
* return WOLFSSL_SUCCESS on success */
static int wolfSSL_X509_PKEY_set(WOLFSSL_X509_PKEY* xPkey,
WOLFSSL_X509* x509)
{
if (xPkey == NULL || x509 == NULL) {
return BAD_FUNC_ARG;
}
wolfSSL_EVP_PKEY_free(xPkey->dec_pkey);
xPkey->dec_pkey = wolfSSL_X509_get_pubkey(x509);
if (xPkey->dec_pkey == NULL) {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#endif /* !NO_BIO */
/* free up all memory used by "xPkey" passed in */
static void wolfSSL_X509_PKEY_free(WOLFSSL_X509_PKEY* xPkey)
{
if (xPkey != NULL) {
wolfSSL_EVP_PKEY_free(xPkey->dec_pkey);
XFREE(xPkey, xPkey->heap, DYNAMIC_TYPE_KEY);
}
}
#ifndef NO_BIO
/* Takes control of x509 on success
* helper function to break out code needed to set WOLFSSL_X509_INFO up
* free's "info" passed in if is not defaults
*
* returns WOLFSSL_SUCCESS on success
*/
static int wolfSSL_X509_INFO_set(WOLFSSL_X509_INFO* info,
WOLFSSL_X509* x509)
{
if (info == NULL || x509 == NULL) {
return BAD_FUNC_ARG;
}
/* check is fresh "info" passed in, if not free it */
if (info->x509 != NULL || info->x_pkey != NULL) {
WOLFSSL_X509_INFO* tmp;
tmp = wolfSSL_X509_INFO_new();
if (tmp == NULL) {
WOLFSSL_MSG("Unable to create new structure");
return MEMORY_E;
}
wolfSSL_X509_INFO_free(info);
info = tmp;
}
info->x509 = x509;
//@TODO info->num
//@TODO info->enc_cipher
//@TODO info->enc_len
//@TODO info->enc_data
//@TODO info->crl
info->x_pkey = wolfSSL_X509_PKEY_new(x509->heap);
return wolfSSL_X509_PKEY_set(info->x_pkey, x509);
}
/**
* This read one structure from bio and returns the read structure
* in the appropriate output parameter (x509, crl, x_pkey). The
* output parameters must be set to NULL.
* @param bio Input for reading structures
* @param cb Password callback
* @param x509 Output
* @param crl Output
* @param x_pkey Output
* @return WOLFSSL_SUCCESSS on success and WOLFSSL_FAILURE otherwise
*/
static int wolfSSL_PEM_X509_X509_CRL_X509_PKEY_read_bio(
WOLFSSL_BIO* bio, pem_password_cb* cb,
WOLFSSL_X509** x509, WOLFSSL_X509_CRL** crl, WOLFSSL_X509_PKEY** x_pkey)
{
#if defined(WOLFSSL_PEM_TO_DER) || defined(WOLFSSL_DER_TO_PEM)
char* pem = NULL;
long i = pem_struct_min_sz, l;
const char* header = NULL;
const char* headerEnd = NULL;
const char* footer = NULL;
const char* footerEnd = NULL;
DerBuffer* der = NULL;
(void)cb;
if (!bio || !x509 || *x509 || !crl || *crl || !x_pkey || *x_pkey) {
WOLFSSL_MSG("Bad input parameter or output parameters "
"not set to a NULL value.");
return WOLFSSL_FAILURE;
}
if ((l = wolfSSL_BIO_get_len(bio)) <= 0) {
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX)
/* No certificate in buffer */
WOLFSSL_ERROR(ASN_NO_PEM_HEADER);
#endif
return WOLFSSL_FAILURE;
}
pem = (char*)XMALLOC(l, 0, DYNAMIC_TYPE_PEM);
if (pem == NULL)
return WOLFSSL_FAILURE;
if (wolfSSL_BIO_read(bio, &pem[0], pem_struct_min_sz) !=
pem_struct_min_sz) {
goto err;
}
/* Read the header and footer */
while (wolfSSL_BIO_read(bio, &pem[i], 1) == 1) {
i++;
if (!header)
header = XSTRNSTR(pem, "-----BEGIN ", (unsigned int)i);
else if (header) {
if (!headerEnd) {
headerEnd = XSTRNSTR(header + XSTR_SIZEOF("-----BEGIN "),
"-----",
(unsigned int)
(i - (header + XSTR_SIZEOF("-----BEGIN ") - pem)));
if (headerEnd) {
headerEnd += XSTR_SIZEOF("-----");
/* Read in the newline */
(void)wolfSSL_BIO_read(bio, &pem[i], 1);
i++;
if (*headerEnd != '\n' && *headerEnd != '\r') {
WOLFSSL_MSG("Missing newline after header");
goto err;
}
}
}
else if (!footer) {
footer = XSTRNSTR(headerEnd, "-----END ",
(unsigned int)(i - (headerEnd - pem)));
}
else if (!footerEnd) {
footerEnd = XSTRNSTR(footer + XSTR_SIZEOF("-----"),
"-----", (unsigned int)(i -
(footer + XSTR_SIZEOF("-----") - pem)));
if (footerEnd) {
footerEnd += XSTR_SIZEOF("-----");
/* Now check that footer matches header */
if (XMEMCMP(header + XSTR_SIZEOF("-----BEGIN "),
footer + XSTR_SIZEOF("-----END "),
headerEnd - (header + XSTR_SIZEOF("-----BEGIN ")))
!= 0) {
WOLFSSL_MSG("Header and footer don't match");
goto err;
}
/* header and footer match */
break;
}
}
else {
break;
}
}
}
if (!footerEnd) {
/* Only check footerEnd since it is set last */
WOLFSSL_ERROR(ASN_NO_PEM_HEADER);
goto err;
}
else {
if (headerEnd - header ==
XSTR_SIZEOF("-----BEGIN CERTIFICATE-----") &&
XMEMCMP(header, "-----BEGIN CERTIFICATE-----",
XSTR_SIZEOF("-----BEGIN CERTIFICATE-----")) == 0) {
/* We have a certificate */
WOLFSSL_MSG("Parsing x509 cert");
*x509 = wolfSSL_X509_load_certificate_buffer(
(const unsigned char*) header,
(int)(footerEnd - header), WOLFSSL_FILETYPE_PEM);
if (!*x509) {
WOLFSSL_MSG("wolfSSL_X509_load_certificate_buffer error");
goto err;
}
}
#ifdef HAVE_CRL
else if (headerEnd - header ==
XSTR_SIZEOF("-----BEGIN X509 CRL-----") &&
XMEMCMP(header, "-----BEGIN X509 CRL-----",
XSTR_SIZEOF("-----BEGIN X509 CRL-----")) == 0) {
/* We have a crl */
WOLFSSL_MSG("Parsing crl");
if((PemToDer((const unsigned char*) header, footerEnd - header,
CRL_TYPE, &der, NULL, NULL, NULL)) < 0) {
WOLFSSL_MSG("PemToDer error");
goto err;
}
*crl = wolfSSL_d2i_X509_CRL(NULL, der->buffer, der->length);
if (!*crl) {
WOLFSSL_MSG("wolfSSL_d2i_X509_CRL error");
goto err;
}
}
#endif
else {
/* TODO support WOLFSSL_X509_PKEY as well */
WOLFSSL_MSG("Unsupported PEM structure");
goto err;
}
}
XFREE(pem, 0, DYNAMIC_TYPE_PEM);
return WOLFSSL_SUCCESS;
err:
if (pem)
XFREE(pem, 0, DYNAMIC_TYPE_PEM);
if (der)
FreeDer(&der);
return WOLFSSL_FAILURE;
#endif /* WOLFSSL_PEM_TO_DER || WOLFSSL_DER_TO_PEM */
}
/*
* bio WOLFSSL_BIO to read certificates from
* sk possible stack to push more X509_INFO structs to. Can be NULL
* cb callback password for encrypted PEM certificates
* u user input such as password
*
* returns stack on success and NULL or default stack passed in on fail
*/
WOLF_STACK_OF(WOLFSSL_X509_INFO)* wolfSSL_PEM_X509_INFO_read_bio(
WOLFSSL_BIO* bio, WOLF_STACK_OF(WOLFSSL_X509_INFO)* sk,
pem_password_cb* cb, void* u)
{
WOLF_STACK_OF(WOLFSSL_X509_INFO)* localSk = NULL;
int ret = WOLFSSL_SUCCESS;
(void)u;
WOLFSSL_ENTER("wolfSSL_PEM_X509_INFO_read_bio");
/* parse through BIO and push new info's found onto stack */
while (1) {
WOLFSSL_X509 *x509 = NULL;
WOLFSSL_X509_CRL *crl = NULL;
WOLFSSL_X509_PKEY *x_pkey = NULL;
if (wolfSSL_PEM_X509_X509_CRL_X509_PKEY_read_bio(bio, cb,
&x509, &crl, &x_pkey) == WOLFSSL_SUCCESS) {
WOLFSSL_X509_INFO* current;
current = wolfSSL_X509_INFO_new();
if (current == NULL) {
WOLFSSL_LEAVE("wolfSSL_PEM_X509_INFO_read_bio", MEMORY_E);
wolfSSL_sk_free(localSk);
return NULL;
}
if (x509) {
ret = wolfSSL_X509_INFO_set(current, x509);
}
else if (crl) {
current->crl = crl;
ret = WOLFSSL_SUCCESS;
}
else if (x_pkey) {
current->x_pkey = x_pkey;
ret = WOLFSSL_SUCCESS;
}
else {
WOLFSSL_MSG("No output parameters set");
WOLFSSL_LEAVE("wolfSSL_PEM_X509_INFO_read_bio", WOLFSSL_FAILURE);
wolfSSL_sk_free(localSk);
wolfSSL_X509_INFO_free(current);
return NULL;
}
if (ret != WOLFSSL_SUCCESS) {
wolfSSL_X509_free(x509);
#ifdef HAVE_CRL
wolfSSL_X509_CRL_free(crl);
#endif
wolfSSL_X509_PKEY_free(x_pkey);
}
else {
if (!localSk) {
/* attempt to used passed in stack
* or create a new one */
if (sk != NULL) {
localSk = sk;
}
else {
localSk = wolfSSL_sk_X509_INFO_new_null();
}
if (localSk == NULL) {
WOLFSSL_LEAVE("wolfSSL_PEM_X509_INFO_read_bio",
MEMORY_E);
return NULL;
}
}
wolfSSL_sk_X509_INFO_push(localSk, current);
}
}
else {
break;
}
}
WOLFSSL_LEAVE("wolfSSL_PEM_X509_INFO_read_bio", ret);
return localSk;
}
#endif /* !NO_BIO */
#endif /* OPENSSL_ALL */
void wolfSSL_X509_NAME_ENTRY_free(WOLFSSL_X509_NAME_ENTRY* ne)
{
WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_free");
if (ne != NULL) {
wolfSSL_ASN1_OBJECT_free(ne->object);
if (ne->value != NULL) {
wolfSSL_ASN1_STRING_free(ne->value);
}
XFREE(ne, NULL, DYNAMIC_TYPE_NAME_ENTRY);
}
}
WOLFSSL_X509_NAME_ENTRY* wolfSSL_X509_NAME_ENTRY_new(void)
{
WOLFSSL_X509_NAME_ENTRY* ne;
ne = (WOLFSSL_X509_NAME_ENTRY*)XMALLOC(sizeof(WOLFSSL_X509_NAME_ENTRY),
NULL, DYNAMIC_TYPE_NAME_ENTRY);
if (ne != NULL) {
XMEMSET(ne, 0, sizeof(WOLFSSL_X509_NAME_ENTRY));
}
return ne;
}
/* Create a new WOLFSSL_X509_NAME_ENTRY structure based on the text passed
* in. Returns NULL on failure */
WOLFSSL_X509_NAME_ENTRY* wolfSSL_X509_NAME_ENTRY_create_by_txt(
WOLFSSL_X509_NAME_ENTRY **neIn, const char *txt, int type,
const unsigned char *data, int dataSz)
{
int nid = -1;
WOLFSSL_X509_NAME_ENTRY* ne = NULL;
WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_create_by_txt()");
if (txt == NULL) {
return NULL;
}
if (neIn != NULL) {
ne = *neIn;
}
nid = wolfSSL_OBJ_txt2nid(txt);
if (nid == NID_undef) {
WOLFSSL_MSG("Unable to find text");
ne = NULL;
}
else {
if (ne == NULL) {
ne = wolfSSL_X509_NAME_ENTRY_new();
if (ne == NULL) {
return NULL;
}
}
ne->nid = nid;
ne->object = wolfSSL_OBJ_nid2obj_ex(nid, ne->object);
ne->value = wolfSSL_ASN1_STRING_type_new(type);
if (ne->value != NULL) {
wolfSSL_ASN1_STRING_set(ne->value, (const void*)data, dataSz);
ne->set = 1;
}
}
return ne;
}
/* Creates a new entry given the NID, type, and data
* "dataSz" is number of bytes in data, if set to -1 then XSTRLEN is used
* "out" can be used to store the new entry data in an existing structure
* if NULL then a new WOLFSSL_X509_NAME_ENTRY structure is created
* returns a pointer to WOLFSSL_X509_NAME_ENTRY on success and NULL on fail
*/
WOLFSSL_X509_NAME_ENTRY* wolfSSL_X509_NAME_ENTRY_create_by_NID(
WOLFSSL_X509_NAME_ENTRY** out, int nid, int type,
const unsigned char* data, int dataSz)
{
WOLFSSL_X509_NAME_ENTRY* ne;
WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_create_by_NID()");
if (!data) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
if (out == NULL || *out == NULL) {
ne = wolfSSL_X509_NAME_ENTRY_new();
if (ne == NULL) {
return NULL;
}
if (out != NULL) {
*out = ne;
}
}
else {
ne = *out;
}
ne->nid = nid;
ne->object = wolfSSL_OBJ_nid2obj_ex(nid, ne->object);
ne->value = wolfSSL_ASN1_STRING_type_new(type);
if (ne->value != NULL) {
wolfSSL_ASN1_STRING_set(ne->value, (const void*)data, dataSz);
ne->set = 1;
}
return ne;
}
/* add all entry of type "nid" to the buffer "fullName" and advance "idx"
* since number of entries is small, a brute force search is used here
* returns the number of entries added
*/
static int AddAllEntry(WOLFSSL_X509_NAME* name, char* fullName,
int fullNameSz, int* idx)
{
int i;
int ret = 0;
for (i = 0; i < MAX_NAME_ENTRIES; i++) {
if (name->entry[i].set) {
WOLFSSL_X509_NAME_ENTRY* e;
WOLFSSL_ASN1_OBJECT* obj;
int sz;
unsigned char* data;
e = &name->entry[i];
obj = wolfSSL_X509_NAME_ENTRY_get_object(e);
if (obj == NULL) {
return BAD_FUNC_ARG;
}
XMEMCPY(fullName + *idx, "/", 1); *idx = *idx + 1;
sz = (int)XSTRLEN(obj->sName);
XMEMCPY(fullName + *idx, obj->sName, sz);
*idx += sz;
XMEMCPY(fullName + *idx, "=", 1); *idx = *idx + 1;
data = wolfSSL_ASN1_STRING_data(e->value);
if (data != NULL) {
sz = (int)XSTRLEN((const char*)data);
XMEMCPY(fullName + *idx, data, sz);
*idx += sz;
}
ret++;
}
}
(void)fullNameSz;
return ret;
}
/* Converts a list of entries in WOLFSSL_X509_NAME struct into a string
* returns 0 on success */
static int RebuildFullName(WOLFSSL_X509_NAME* name)
{
int totalLen = 0, i, idx, entryCount = 0;
char* fullName;
if (name == NULL)
return BAD_FUNC_ARG;
for (i = 0; i < MAX_NAME_ENTRIES; i++) {
if (name->entry[i].set) {
WOLFSSL_X509_NAME_ENTRY* e;
WOLFSSL_ASN1_OBJECT* obj;
e = &name->entry[i];
obj = wolfSSL_X509_NAME_ENTRY_get_object(e);
if (obj == NULL)
return BAD_FUNC_ARG;
totalLen += (int)XSTRLEN(obj->sName) + 2;/*+2 for '/' and '=' */
totalLen += wolfSSL_ASN1_STRING_length(e->value);
}
}
fullName = (char*)XMALLOC(totalLen + 1, name->heap, DYNAMIC_TYPE_X509);
if (fullName == NULL)
return MEMORY_E;
idx = 0;
entryCount = AddAllEntry(name, fullName, totalLen, &idx);
if (entryCount < 0) {
XFREE(fullName, name->heap, DYNAMIC_TYPE_X509);
return entryCount;
}
if (name->dynamicName) {
XFREE(name->name, name->heap, DYNAMIC_TYPE_X509);
}
fullName[idx] = '\0';
name->name = fullName;
name->dynamicName = 1;
name->sz = idx + 1; /* size includes null terminator */
name->entrySz = entryCount;
return 0;
}
/* Copies entry into name. With it being copied freeing entry becomes the
* callers responsibility.
* returns 1 for success and 0 for error */
int wolfSSL_X509_NAME_add_entry(WOLFSSL_X509_NAME* name,
WOLFSSL_X509_NAME_ENTRY* entry, int idx, int set)
{
WOLFSSL_X509_NAME_ENTRY* current = NULL;
int i;
WOLFSSL_ENTER("wolfSSL_X509_NAME_add_entry()");
if (name == NULL || entry == NULL || entry->value == NULL) {
WOLFSSL_MSG("NULL argument passed in");
return WOLFSSL_FAILURE;
}
if (idx >= 0) {
/* place in specific index */
if (idx >= MAX_NAME_ENTRIES) {
WOLFSSL_MSG("Error index to insert entry is larger than array");
return WOLFSSL_FAILURE;
}
i = idx;
}
else {
/* iterate through and find first open spot */
for (i = 0; i < MAX_NAME_ENTRIES; i++) {
if (name->entry[i].set != 1) { /* not set so overwritten */
WOLFSSL_MSG("Found place for name entry");
break;
}
}
if (i == MAX_NAME_ENTRIES) {
WOLFSSL_MSG("No spot found for name entry");
return WOLFSSL_FAILURE;
}
}
current = &(name->entry[i]);
if (current->set == 0)
name->entrySz++;
if (wolfSSL_X509_NAME_ENTRY_create_by_NID(&current,
entry->nid,
wolfSSL_ASN1_STRING_type(entry->value),
wolfSSL_ASN1_STRING_data(entry->value),
wolfSSL_ASN1_STRING_length(entry->value))
== NULL) {
WOLFSSL_MSG("Issue adding the name entry");
if (current->set == 0)
name->entrySz--;
return WOLFSSL_FAILURE;
}
if (RebuildFullName(name) != 0)
return WOLFSSL_FAILURE;
(void)set;
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_NAME_add_entry_by_txt(WOLFSSL_X509_NAME *name,
const char *field, int type,
const unsigned char *bytes, int len,
int loc, int set)
{
int ret = WOLFSSL_FAILURE;
int nid;
WOLFSSL_X509_NAME_ENTRY* entry;
(void)type;
WOLFSSL_ENTER("wolfSSL_X509_NAME_add_entry_by_txt");
if (name == NULL || field == NULL)
return WOLFSSL_FAILURE;
if ((nid = wolfSSL_OBJ_txt2nid(field)) == NID_undef) {
WOLFSSL_MSG("Unable convert text to NID");
return WOLFSSL_FAILURE;
}
entry = wolfSSL_X509_NAME_ENTRY_create_by_NID(NULL,
nid, type, (unsigned char*)bytes, len);
if (entry == NULL)
return WOLFSSL_FAILURE;
ret = wolfSSL_X509_NAME_add_entry(name, entry, loc, set);
wolfSSL_X509_NAME_ENTRY_free(entry);
return ret;
}
int wolfSSL_X509_NAME_add_entry_by_NID(WOLFSSL_X509_NAME *name, int nid,
int type, const unsigned char *bytes,
int len, int loc, int set)
{
int ret;
WOLFSSL_X509_NAME_ENTRY* entry;
WOLFSSL_ENTER("wolfSSL_X509_NAME_add_entry_by_NID");
entry = wolfSSL_X509_NAME_ENTRY_create_by_NID(NULL, nid, type, bytes,
len);
if (entry == NULL)
return WOLFSSL_FAILURE;
ret = wolfSSL_X509_NAME_add_entry(name, entry, loc, set);
wolfSSL_X509_NAME_ENTRY_free(entry);
return ret;
}
WOLFSSL_X509_NAME_ENTRY *wolfSSL_X509_NAME_delete_entry(
WOLFSSL_X509_NAME *name, int loc)
{
WOLFSSL_X509_NAME_ENTRY* ret;
WOLFSSL_ENTER("wolfSSL_X509_NAME_delete_entry");
if (!name) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
ret = wolfSSL_X509_NAME_get_entry(name, loc);
if (!ret) {
WOLFSSL_MSG("loc entry not found");
return NULL;
}
name->entry[loc].set = 0;
return ret;
}
#endif /* !NO_CERTS */
/* NID variables are dependent on compatibility header files currently
*
* returns a pointer to a new WOLFSSL_ASN1_OBJECT struct on success and NULL
* on fail
*/
WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_nid2obj(int id)
{
return wolfSSL_OBJ_nid2obj_ex(id, NULL);
}
WOLFSSL_LOCAL WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_nid2obj_ex(int id,
WOLFSSL_ASN1_OBJECT* arg_obj)
{
word32 oidSz = 0;
const byte* oid;
word32 type = 0;
WOLFSSL_ASN1_OBJECT* obj = arg_obj;
byte objBuf[MAX_OID_SZ + MAX_LENGTH_SZ + 1]; /* +1 for object tag */
word32 objSz = 0;
const char* sName = NULL;
int i;
WOLFSSL_ENTER("wolfSSL_OBJ_nid2obj()");
for (i = 0; i < (int)WOLFSSL_OBJECT_INFO_SZ; i++) {
if (wolfssl_object_info[i].nid == id) {
id = wolfssl_object_info[i].id;
sName = wolfssl_object_info[i].sName;
type = wolfssl_object_info[i].type;
break;
}
}
if (i == (int)WOLFSSL_OBJECT_INFO_SZ) {
WOLFSSL_MSG("NID not in table");
#ifdef WOLFSSL_QT
sName = NULL;
type = id;
#else
return NULL;
#endif
}
#ifdef HAVE_ECC
if (type == 0 && wc_ecc_get_oid(id, &oid, &oidSz) > 0) {
type = oidCurveType;
}
#endif /* HAVE_ECC */
if (sName != NULL) {
if (XSTRLEN(sName) > WOLFSSL_MAX_SNAME - 1) {
WOLFSSL_MSG("Attempted short name is too large");
return NULL;
}
}
oid = OidFromId(id, type, &oidSz);
/* set object ID to buffer */
if (obj == NULL){
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
return NULL;
}
}
obj->type = id;
obj->grp = type;
obj->sName[0] = '\0';
if (sName != NULL) {
XMEMCPY(obj->sName, (char*)sName, XSTRLEN((char*)sName));
}
objBuf[0] = ASN_OBJECT_ID; objSz++;
objSz += SetLength(oidSz, objBuf + 1);
XMEMCPY(objBuf + objSz, oid, oidSz);
objSz += oidSz;
if (obj->objSz == 0 || objSz != obj->objSz) {
obj->objSz = objSz;
if(((obj->dynamic & WOLFSSL_ASN1_DYNAMIC_DATA) != 0) ||
(obj->obj == NULL)) {
if (obj->obj != NULL)
XFREE((byte*)obj->obj, NULL, DYNAMIC_TYPE_ASN1);
obj->obj = (byte*)XMALLOC(obj->objSz, NULL, DYNAMIC_TYPE_ASN1);
if (obj->obj == NULL) {
wolfSSL_ASN1_OBJECT_free(obj);
return NULL;
}
obj->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA ;
}
else {
obj->dynamic &= ~WOLFSSL_ASN1_DYNAMIC_DATA ;
}
}
XMEMCPY((byte*)obj->obj, objBuf, obj->objSz);
(void)type;
return obj;
}
static const char* oid_translate_num_to_str(const char* oid)
{
const struct oid_dict {
const char* num;
const char* desc;
} oid_dict[] = {
{ "2.5.29.37.0", "Any Extended Key Usage" },
{ "1.3.6.1.5.5.7.3.1", "TLS Web Server Authentication" },
{ "1.3.6.1.5.5.7.3.2", "TLS Web Client Authentication" },
{ "1.3.6.1.5.5.7.3.3", "Code Signing" },
{ "1.3.6.1.5.5.7.3.4", "E-mail Protection" },
{ "1.3.6.1.5.5.7.3.8", "Time Stamping" },
{ "1.3.6.1.5.5.7.3.9", "OCSP Signing" },
{ NULL, NULL }
};
const struct oid_dict* idx;
for (idx = oid_dict; idx->num != NULL; idx++) {
if (!XSTRNCMP(oid, idx->num, XSTRLEN(idx->num))) {
return idx->desc;
}
}
return NULL;
}
/* if no_name is one than use numerical form otherwise can be short name.
*
* returns the buffer size on success
*/
int wolfSSL_OBJ_obj2txt(char *buf, int bufLen, WOLFSSL_ASN1_OBJECT *a, int no_name)
{
int bufSz;
const char* desc;
WOLFSSL_ENTER("wolfSSL_OBJ_obj2txt()");
if (buf == NULL || bufLen <= 1 || a == NULL) {
WOLFSSL_MSG("Bad input argument");
return WOLFSSL_FAILURE;
}
if (no_name == 1) {
int length;
word32 idx = 0;
byte tag;
if (GetASNTag(a->obj, &idx, &tag, a->objSz) != 0) {
return WOLFSSL_FAILURE;
}
if (tag != ASN_OBJECT_ID) {
WOLFSSL_MSG("Bad ASN1 Object");
return WOLFSSL_FAILURE;
}
if (GetLength((const byte*)a->obj, &idx, &length,
a->objSz) < 0 || length < 0) {
return ASN_PARSE_E;
}
if (bufLen < MAX_OID_STRING_SZ) {
bufSz = bufLen - 1;
}
else {
bufSz = MAX_OID_STRING_SZ;
}
if ((bufSz = DecodePolicyOID(buf, (word32)bufSz, a->obj + idx,
(word32)length)) <= 0) {
WOLFSSL_MSG("Error decoding OID");
return WOLFSSL_FAILURE;
}
}
else { /* return long name unless using x509small, then return short name */
#if defined(OPENSSL_EXTRA_X509_SMALL) && !defined(OPENSSL_EXTRA)
const char* name = a->sName;
#else
const char* name = wolfSSL_OBJ_nid2ln(wolfSSL_OBJ_obj2nid(a));
#endif
if (XSTRLEN(name) + 1 < (word32)bufLen - 1) {
bufSz = (int)XSTRLEN(name);
}
else {
bufSz = bufLen - 1;
}
if (bufSz) {
XMEMCPY(buf, name, bufSz);
}
else if (wolfSSL_OBJ_obj2txt(buf, bufLen, a, 1)) {
if ((desc = oid_translate_num_to_str(buf))) {
bufSz = (int)XSTRLEN(desc);
XMEMCPY(buf, desc, min(bufSz, bufLen));
}
}
else if (a->type == GEN_DNS || a->type == GEN_EMAIL || a->type == GEN_URI) {
bufSz = (int)XSTRLEN((const char*)a->obj);
XMEMCPY(buf, a->obj, min(bufSz, bufLen));
}
}
buf[bufSz] = '\0';
#ifdef WOLFSSL_QT
/* For unknown extension types, QT expects the short name to be the
text representation of the oid */
if (XSTRLEN(a->sName) == 0) {
XMEMCPY(a->sName, buf, bufSz);
}
#endif
return bufSz;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_EXTRA) && !defined(NO_ASN)
int wolfSSL_X509_NAME_get_index_by_OBJ(WOLFSSL_X509_NAME *name,
const WOLFSSL_ASN1_OBJECT *obj,
int idx) {
if (!name || idx >= MAX_NAME_ENTRIES ||
!obj || !obj->obj) {
return -1;
}
if (idx < 0) {
idx = -1;
}
for (idx++; idx < MAX_NAME_ENTRIES; idx++) {
/* Find index of desired name */
if (name->entry[idx].set) {
if (XSTRLEN(obj->sName) == XSTRLEN(name->entry[idx].object->sName) &&
XSTRNCMP((const char*) obj->sName,
name->entry[idx].object->sName, obj->objSz - 1) == 0) {
return idx;
}
}
}
return -1;
}
#endif
#endif /* !WOLFCRYPT_ONLY */
#if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \
defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \
defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \
defined(WOLFSSL_HAPROXY)
#ifndef NO_SHA
/* One shot SHA1 hash of message.
*
* d message to hash
* n size of d buffer
* md buffer to hold digest. Should be SHA_DIGEST_SIZE.
*
* Note: if md is null then a static buffer of SHA_DIGEST_SIZE is used.
* When the static buffer is used this function is not thread safe.
*
* Returns a pointer to the message digest on success and NULL on failure.
*/
unsigned char *wolfSSL_SHA1(const unsigned char *d, size_t n,
unsigned char *md)
{
static byte dig[WC_SHA_DIGEST_SIZE];
byte* ret = md;
wc_Sha sha;
WOLFSSL_ENTER("wolfSSL_SHA1");
if (wc_InitSha_ex(&sha, NULL, 0) != 0) {
WOLFSSL_MSG("SHA1 Init failed");
return NULL;
}
if (wc_ShaUpdate(&sha, (const byte*)d, (word32)n) != 0) {
WOLFSSL_MSG("SHA1 Update failed");
return NULL;
}
if (md == NULL) {
WOLFSSL_MSG("STATIC BUFFER BEING USED. wolfSSL_SHA1 IS NOT "
"THREAD SAFE WHEN md == NULL");
ret = dig;
}
if (wc_ShaFinal(&sha, ret) != 0) {
WOLFSSL_MSG("SHA1 Final failed");
wc_ShaFree(&sha);
return NULL;
}
wc_ShaFree(&sha);
return ret;
}
#endif /* ! NO_SHA */
#ifndef NO_SHA256
/* One shot SHA256 hash of message.
*
* d message to hash
* n size of d buffer
* md buffer to hold digest. Should be WC_SHA256_DIGEST_SIZE.
*
* Note: if md is null then a static buffer of WC_SHA256_DIGEST_SIZE is used.
* When the static buffer is used this function is not thread safe.
*
* Returns a pointer to the message digest on success and NULL on failure.
*/
unsigned char *wolfSSL_SHA256(const unsigned char *d, size_t n,
unsigned char *md)
{
static byte dig[WC_SHA256_DIGEST_SIZE];
byte* ret = md;
wc_Sha256 sha;
WOLFSSL_ENTER("wolfSSL_SHA256");
if (wc_InitSha256_ex(&sha, NULL, 0) != 0) {
WOLFSSL_MSG("SHA256 Init failed");
return NULL;
}
if (wc_Sha256Update(&sha, (const byte*)d, (word32)n) != 0) {
WOLFSSL_MSG("SHA256 Update failed");
return NULL;
}
if (md == NULL) {
WOLFSSL_MSG("STATIC BUFFER BEING USED. wolfSSL_SHA256 IS NOT "
"THREAD SAFE WHEN md == NULL");
ret = dig;
}
if (wc_Sha256Final(&sha, ret) != 0) {
WOLFSSL_MSG("SHA256 Final failed");
wc_Sha256Free(&sha);
return NULL;
}
wc_Sha256Free(&sha);
return ret;
}
#endif /* ! NO_SHA256 */
#ifdef WOLFSSL_SHA384
/* One shot SHA384 hash of message.
*
* d message to hash
* n size of d buffer
* md buffer to hold digest. Should be WC_SHA256_DIGEST_SIZE.
*
* Note: if md is null then a static buffer of WC_SHA256_DIGEST_SIZE is used.
* When the static buffer is used this function is not thread safe.
*
* Returns a pointer to the message digest on success and NULL on failure.
*/
unsigned char *wolfSSL_SHA384(const unsigned char *d, size_t n,
unsigned char *md)
{
static byte dig[WC_SHA384_DIGEST_SIZE];
byte* ret = md;
wc_Sha384 sha;
WOLFSSL_ENTER("wolfSSL_SHA384");
if (wc_InitSha384_ex(&sha, NULL, 0) != 0) {
WOLFSSL_MSG("SHA384 Init failed");
return NULL;
}
if (wc_Sha384Update(&sha, (const byte*)d, (word32)n) != 0) {
WOLFSSL_MSG("SHA384 Update failed");
return NULL;
}
if (md == NULL) {
WOLFSSL_MSG("STATIC BUFFER BEING USED. wolfSSL_SHA384 IS NOT "
"THREAD SAFE WHEN md == NULL");
ret = dig;
}
if (wc_Sha384Final(&sha, ret) != 0) {
WOLFSSL_MSG("SHA384 Final failed");
wc_Sha384Free(&sha);
return NULL;
}
wc_Sha384Free(&sha);
return ret;
}
#endif /* WOLFSSL_SHA384 */
#if defined(WOLFSSL_SHA512)
/* One shot SHA512 hash of message.
*
* d message to hash
* n size of d buffer
* md buffer to hold digest. Should be WC_SHA256_DIGEST_SIZE.
*
* Note: if md is null then a static buffer of WC_SHA256_DIGEST_SIZE is used.
* When the static buffer is used this function is not thread safe.
*
* Returns a pointer to the message digest on success and NULL on failure.
*/
unsigned char *wolfSSL_SHA512(const unsigned char *d, size_t n,
unsigned char *md)
{
static byte dig[WC_SHA512_DIGEST_SIZE];
byte* ret = md;
wc_Sha512 sha;
WOLFSSL_ENTER("wolfSSL_SHA512");
if (wc_InitSha512_ex(&sha, NULL, 0) != 0) {
WOLFSSL_MSG("SHA512 Init failed");
return NULL;
}
if (wc_Sha512Update(&sha, (const byte*)d, (word32)n) != 0) {
WOLFSSL_MSG("SHA512 Update failed");
return NULL;
}
if (md == NULL) {
WOLFSSL_MSG("STATIC BUFFER BEING USED. wolfSSL_SHA512 IS NOT "
"THREAD SAFE WHEN md == NULL");
ret = dig;
}
if (wc_Sha512Final(&sha, ret) != 0) {
WOLFSSL_MSG("SHA512 Final failed");
wc_Sha512Free(&sha);
return NULL;
}
wc_Sha512Free(&sha);
return ret;
}
#endif /* WOLFSSL_SHA512 */
#endif /* OPENSSL_EXTRA */
#ifndef WOLFCRYPT_ONLY
#if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \
defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \
defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \
defined(WOLFSSL_HAPROXY)
char wolfSSL_CTX_use_certificate(WOLFSSL_CTX *ctx, WOLFSSL_X509 *x)
{
int ret;
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate");
if (!ctx || !x || !x->derCert) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
FreeDer(&ctx->certificate); /* Make sure previous is free'd */
ret = AllocDer(&ctx->certificate, x->derCert->length, CERT_TYPE,
ctx->heap);
if (ret != 0)
return WOLFSSL_FAILURE;
XMEMCPY(ctx->certificate->buffer, x->derCert->buffer,
x->derCert->length);
#ifdef KEEP_OUR_CERT
if (ctx->ourCert != NULL && ctx->ownOurCert) {
wolfSSL_X509_free(ctx->ourCert);
}
#ifndef WOLFSSL_X509_STORE_CERTS
ctx->ourCert = x;
if (wolfSSL_X509_up_ref(x) != 1) {
return WOLFSSL_FAILURE;
}
#else
ctx->ourCert = wolfSSL_X509_d2i(NULL, x->derCert->buffer,x->derCert->length);
if(ctx->ourCert == NULL){
return WOLFSSL_FAILURE;
}
#endif
/* We own the cert because either we up its reference counter
* or we create our own copy of the cert object. */
ctx->ownOurCert = 1;
#endif
/* Update the available options with public keys. */
switch (x->pubKeyOID) {
case RSAk:
ctx->haveRSA = 1;
break;
#ifdef HAVE_ED25519
case ED25519k:
#endif
#ifdef HAVE_ED448
case ED448k:
#endif
case ECDSAk:
ctx->haveECC = 1;
#if defined(HAVE_ECC) || defined(HAVE_ED25519) || defined(HAVE_ED448)
ctx->pkCurveOID = x->pkCurveOID;
#endif
break;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_add1_chain_cert(WOLFSSL_CTX* ctx, WOLFSSL_X509* x509)
{
int ret;
if (ctx == NULL || x509 == NULL || x509->derCert == NULL) {
return WOLFSSL_FAILURE;
}
ret = wolfSSL_CTX_load_verify_buffer(ctx, x509->derCert->buffer,
x509->derCert->length, WOLFSSL_FILETYPE_ASN1);
return (ret == 0) ? WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
#ifndef NO_BIO
int wolfSSL_BIO_read_filename(WOLFSSL_BIO *b, const char *name) {
#ifndef NO_FILESYSTEM
XFILE fp;
WOLFSSL_ENTER("wolfSSL_BIO_new_file");
if ((wolfSSL_BIO_get_fp(b, &fp) == WOLFSSL_SUCCESS) && (fp != XBADFILE))
{
XFCLOSE(fp);
}
fp = XFOPEN(name, "rb");
if (fp == XBADFILE)
return WOLFSSL_BAD_FILE;
if (wolfSSL_BIO_set_fp(b, fp, BIO_CLOSE) != WOLFSSL_SUCCESS) {
XFCLOSE(fp);
return WOLFSSL_BAD_FILE;
}
/* file is closed when bio is free'd */
return WOLFSSL_SUCCESS;
#else
(void)name;
(void)b;
return WOLFSSL_NOT_IMPLEMENTED;
#endif
}
#endif
/* Return the corresponding short name for the nid <n>.
* or NULL if short name can't be found.
*/
const char * wolfSSL_OBJ_nid2sn(int n) {
const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info;
size_t i;
WOLFSSL_ENTER("wolfSSL_OBJ_nid2sn");
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) {
if (obj_info->nid == n) {
return obj_info->sName;
}
}
WOLFSSL_MSG("SN not found");
return NULL;
}
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
int wolfSSL_OBJ_sn2nid(const char *sn) {
WOLFSSL_ENTER("wolfSSL_OBJ_sn2nid");
if (sn == NULL)
return NID_undef;
return wc_OBJ_sn2nid(sn);
}
#endif
/* Gets the NID value that corresponds with the ASN1 object.
*
* o ASN1 object to get NID of
*
* Return NID on success and a negative value on failure
*/
int wolfSSL_OBJ_obj2nid(const WOLFSSL_ASN1_OBJECT *o)
{
word32 oid = 0;
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_OBJ_obj2nid");
if (o == NULL) {
return -1;
}
#ifdef WOLFSSL_QT
if (o->grp == oidCertExtType) {
/* If nid is an unknown extension, return NID_undef */
if (wolfSSL_OBJ_nid2sn(o->nid) == NULL)
return NID_undef;
}
#endif
if (o->nid > 0)
return o->nid;
if ((ret = GetObjectId(o->obj, &idx, &oid, o->grp, o->objSz)) < 0) {
if (ret == ASN_OBJECT_ID_E) {
/* Put ASN object tag in front and try again */
int len = SetObjectId(o->objSz, NULL) + o->objSz;
byte* buf = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (!buf) {
WOLFSSL_MSG("malloc error");
return -1;
}
idx = SetObjectId(o->objSz, buf);
XMEMCPY(buf + idx, o->obj, o->objSz);
idx = 0;
ret = GetObjectId(buf, &idx, &oid, o->grp, len);
XFREE(buf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (ret < 0) {
WOLFSSL_MSG("Issue getting OID of object");
return -1;
}
}
else {
WOLFSSL_MSG("Issue getting OID of object");
return -1;
}
}
return oid2nid(oid, o->grp);
}
/* Returns the long name that corresponds with an ASN1_OBJECT nid value.
* n : NID value of ASN1_OBJECT to search */
const char* wolfSSL_OBJ_nid2ln(int n)
{
const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info;
size_t i;
WOLFSSL_ENTER("wolfSSL_OBJ_nid2ln");
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) {
if (obj_info->nid == n) {
return obj_info->lName;
}
}
WOLFSSL_MSG("NID not found in table");
return NULL;
}
/* Return the corresponding NID for the long name <ln>
* or NID_undef if NID can't be found.
*/
int wolfSSL_OBJ_ln2nid(const char *ln)
{
const WOLFSSL_ObjectInfo *obj_info = wolfssl_object_info;
size_t i, lnlen;
WOLFSSL_ENTER("wolfSSL_OBJ_ln2nid");
if (ln && (lnlen = XSTRLEN(ln)) > 0) {
/* Accept input like "/commonName=" */
if (ln[0] == '/') {
ln++;
lnlen--;
}
if (lnlen) {
if (ln[lnlen-1] == '=') {
lnlen--;
}
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++, obj_info++) {
if (lnlen == XSTRLEN(obj_info->lName) &&
XSTRNCMP(ln, obj_info->lName, lnlen) == 0) {
return obj_info->nid;
}
}
}
}
return NID_undef;
}
/* compares two objects, return 0 if equal */
int wolfSSL_OBJ_cmp(const WOLFSSL_ASN1_OBJECT* a,
const WOLFSSL_ASN1_OBJECT* b)
{
WOLFSSL_ENTER("wolfSSL_OBJ_cmp");
if (a && b && a->obj && b->obj) {
if (a->objSz == b->objSz) {
return XMEMCMP(a->obj, b->obj, a->objSz);
}
else if (a->type == EXT_KEY_USAGE_OID ||
b->type == EXT_KEY_USAGE_OID) {
/* Special case for EXT_KEY_USAGE_OID so that
* cmp will be treated as a substring search */
/* Used in libest to check for id-kp-cmcRA in
* EXT_KEY_USAGE extension */
unsigned int idx;
const byte* s; /* shorter */
unsigned int sLen;
const byte* l; /* longer */
unsigned int lLen;
if (a->objSz > b->objSz) {
s = b->obj; sLen = b->objSz;
l = a->obj; lLen = a->objSz;
}
else {
s = a->obj; sLen = a->objSz;
l = b->obj; lLen = b->objSz;
}
for (idx = 0; idx <= lLen - sLen; idx++) {
if (XMEMCMP(l + idx, s, sLen) == 0) {
/* Found substring */
return 0;
}
}
}
}
return WOLFSSL_FATAL_ERROR;
}
#endif /* OPENSSL_EXTRA, HAVE_LIGHTY, WOLFSSL_MYSQL_COMPATIBLE, HAVE_STUNNEL,
WOLFSSL_NGINX, HAVE_POCO_LIB, WOLFSSL_HAPROXY */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \
defined(HAVE_LIGHTY) || defined(WOLFSSL_MYSQL_COMPATIBLE) || \
defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \
defined(HAVE_POCO_LIB) || defined(WOLFSSL_HAPROXY)
/* Gets the NID value that is related to the OID string passed in. Example
* string would be "2.5.29.14" for subject key ID.
*
* returns NID value on success and NID_undef on error
*/
int wolfSSL_OBJ_txt2nid(const char* s)
{
unsigned int i;
#ifdef WOLFSSL_CERT_EXT
int ret;
unsigned int sum = 0;
unsigned int outSz = MAX_OID_SZ;
unsigned char out[MAX_OID_SZ];
#endif
WOLFSSL_ENTER("OBJ_txt2nid");
if (s == NULL) {
return NID_undef;
}
#ifdef WOLFSSL_CERT_EXT
ret = EncodePolicyOID(out, &outSz, s, NULL);
if (ret == 0) {
/* sum OID */
for (i = 0; i < outSz; i++) {
sum += out[i];
}
}
#endif /* WOLFSSL_CERT_EXT */
/* get the group that the OID's sum is in
* @TODO possible conflict with multiples */
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++) {
int len;
#ifdef WOLFSSL_CERT_EXT
if (ret == 0) {
if (wolfssl_object_info[i].id == (int)sum) {
return wolfssl_object_info[i].nid;
}
}
#endif
/* try as a short name */
len = (int)XSTRLEN(s);
if ((int)XSTRLEN(wolfssl_object_info[i].sName) == len &&
XSTRNCMP(wolfssl_object_info[i].sName, s, len) == 0) {
return wolfssl_object_info[i].nid;
}
/* try as a long name */
if ((int)XSTRLEN(wolfssl_object_info[i].lName) == len &&
XSTRNCMP(wolfssl_object_info[i].lName, s, len) == 0) {
return wolfssl_object_info[i].nid;
}
}
return NID_undef;
}
#endif
#if defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY) || \
defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(HAVE_STUNNEL) || \
defined(WOLFSSL_NGINX) || defined(HAVE_POCO_LIB) || \
defined(WOLFSSL_HAPROXY)
/* Creates new ASN1_OBJECT from short name, long name, or text
* representation of oid. If no_name is 0, then short name, long name, and
* numerical value of oid are interpreted. If no_name is 1, then only the
* numerical value of the oid is interpreted.
*
* Returns pointer to ASN1_OBJECT on success, or NULL on error.
*/
#if defined(WOLFSSL_CERT_EXT) && defined(WOLFSSL_CERT_GEN)
WOLFSSL_ASN1_OBJECT* wolfSSL_OBJ_txt2obj(const char* s, int no_name)
{
int len, i, ret;
int nid = NID_undef;
unsigned int outSz = MAX_OID_SZ;
unsigned char out[MAX_OID_SZ];
WOLFSSL_ASN1_OBJECT* obj;
WOLFSSL_ENTER("wolfSSL_OBJ_txt2obj");
if (s == NULL)
return NULL;
/* If s is numerical value, try to sum oid */
ret = EncodePolicyOID(out, &outSz, s, NULL);
if (ret == 0 && outSz > 0) {
/* If numerical encode succeeded then just
* create object from that because sums are
* not unique and can cause confusion. */
obj = wolfSSL_ASN1_OBJECT_new();
if (obj == NULL) {
WOLFSSL_MSG("Issue creating WOLFSSL_ASN1_OBJECT struct");
return NULL;
}
obj->dynamic |= WOLFSSL_ASN1_DYNAMIC;
obj->obj = (byte*)XMALLOC(1 + MAX_LENGTH_SZ + outSz, NULL,
DYNAMIC_TYPE_ASN1);
if (obj->obj == NULL) {
wolfSSL_ASN1_OBJECT_free(obj);
return NULL;
}
obj->dynamic |= WOLFSSL_ASN1_DYNAMIC_DATA ;
i = SetObjectId(outSz, (byte*)obj->obj);
XMEMCPY((byte*)obj->obj + i, out, outSz);
obj->objSz = i + outSz;
return obj;
}
len = (int)XSTRLEN(s);
/* TODO: update short names in wolfssl_object_info and check OID sums
are correct */
for (i = 0; i < (int)WOLFSSL_OBJECT_INFO_SZ; i++) {
/* Short name, long name, and numerical value are interpreted */
if (no_name == 0 && ((XSTRNCMP(s, wolfssl_object_info[i].sName, len) == 0) ||
(XSTRNCMP(s, wolfssl_object_info[i].lName, len) == 0)))
nid = wolfssl_object_info[i].nid;
}
if (nid != NID_undef)
return wolfSSL_OBJ_nid2obj(nid);
return NULL;
}
#endif
/* compatibility function. Its intended use is to remove OID's from an
* internal table that have been added with OBJ_create. wolfSSL manages its
* own internal OID values and does not currently support OBJ_create. */
void wolfSSL_OBJ_cleanup(void)
{
WOLFSSL_ENTER("wolfSSL_OBJ_cleanup()");
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_OBJ_create(const char *oid, const char *sn, const char *ln)
{
(void)oid;
(void)sn;
(void)ln;
WOLFSSL_STUB("wolfSSL_OBJ_create");
return WOLFSSL_FAILURE;
}
#endif
void wolfSSL_set_verify_depth(WOLFSSL *ssl, int depth)
{
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
WOLFSSL_ENTER("wolfSSL_set_verify_depth");
ssl->options.verifyDepth = (byte)depth;
#endif
}
#endif /* OPENSSL_ALL || HAVE_LIGHTY || WOLFSSL_MYSQL_COMPATIBLE ||
HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_POCO_LIB || WOLFSSL_HAPROXY */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \
defined(HAVE_LIGHTY) || defined(WOLFSSL_MYSQL_COMPATIBLE) || \
defined(HAVE_STUNNEL) || defined(WOLFSSL_NGINX) || \
defined(HAVE_POCO_LIB) || defined(WOLFSSL_HAPROXY)
WOLFSSL_ASN1_OBJECT * wolfSSL_X509_NAME_ENTRY_get_object(WOLFSSL_X509_NAME_ENTRY *ne)
{
WOLFSSL_ASN1_OBJECT* obj = NULL;
WOLFSSL_ENTER("wolfSSL_X509_NAME_ENTRY_get_object");
if (ne == NULL) return NULL;
obj = wolfSSL_OBJ_nid2obj_ex(ne->nid, ne->object);
if (obj != NULL) {
obj->nid = ne->nid;
return obj;
}
return NULL;
}
#endif /* OPENSSL_ALL || HAVE_LIGHTY || WOLFSSL_MYSQL_COMPATIBLE ||
HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_POCO_LIB || WOLFSSL_HAPROXY */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || \
defined(OPENSSL_EXTRA_X509_SMALL)
/* returns a pointer to the internal entry at location 'loc' on success,
* a null pointer is returned in fail cases */
WOLFSSL_X509_NAME_ENTRY *wolfSSL_X509_NAME_get_entry(
WOLFSSL_X509_NAME *name, int loc)
{
WOLFSSL_ENTER("wolfSSL_X509_NAME_get_entry");
if (name == NULL) {
return NULL;
}
if (loc < 0 || loc >= MAX_NAME_ENTRIES) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
if (name->entry[loc].set) {
return &name->entry[loc];
}
else {
return NULL;
}
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
int wolfSSL_X509_check_private_key(WOLFSSL_X509 *x509, WOLFSSL_EVP_PKEY *key)
{
WOLFSSL_ENTER("wolfSSL_X509_check_private_key");
if (!x509 || !key) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
return wc_CheckPrivateKey((byte*)key->pkey.ptr, key->pkey_sz,
x509->pubKey.buffer, x509->pubKey.length,
(enum Key_Sum)x509->pubKeyOID) == 1 ?
WOLFSSL_SUCCESS : WOLFSSL_FAILURE;
}
/* wolfSSL uses negative values for error states. This function returns an
* unsigned type so the value returned is the absolute value of the error.
*/
unsigned long wolfSSL_ERR_peek_last_error_line(const char **file, int *line)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error");
(void)line;
(void)file;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(DEBUG_WOLFSSL) || \
defined(WOLFSSL_HAPROXY)
{
int ret;
if ((ret = wc_PeekErrorNode(-1, file, NULL, line)) < 0) {
WOLFSSL_MSG("Issue peeking at error node in queue");
return 0;
}
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX)
if (ret == -ASN_NO_PEM_HEADER)
return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE;
#endif
return (unsigned long)ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#ifndef NO_CERTS
int wolfSSL_CTX_use_PrivateKey(WOLFSSL_CTX *ctx, WOLFSSL_EVP_PKEY *pkey)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_PrivateKey");
if (ctx == NULL || pkey == NULL) {
return WOLFSSL_FAILURE;
}
if (pkey->pkey.ptr != NULL) {
/* ptr for WOLFSSL_EVP_PKEY struct is expected to be DER format */
return wolfSSL_CTX_use_PrivateKey_buffer(ctx,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, SSL_FILETYPE_ASN1);
}
WOLFSSL_MSG("wolfSSL private key not set");
return BAD_FUNC_ARG;
}
#endif /* !NO_CERTS */
#endif /* OPENSSL_EXTRA */
#if ((defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && defined(HAVE_EX_DATA)) || \
defined(FORTRESS) || \
defined(WOLFSSL_WPAS_SMALL)
void* wolfSSL_CTX_get_ex_data(const WOLFSSL_CTX* ctx, int idx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_ex_data");
#ifdef HAVE_EX_DATA
if(ctx != NULL) {
return wolfSSL_CRYPTO_get_ex_data(&ctx->ex_data, idx);
}
#else
(void)ctx;
(void)idx;
#endif
return NULL;
}
int wolfSSL_CTX_get_ex_new_index(long idx, void* arg, void* a, void* b,
void* c)
{
static int ctx_idx = 0;
WOLFSSL_ENTER("wolfSSL_CTX_get_ex_new_index");
(void)idx;
(void)arg;
(void)a;
(void)b;
(void)c;
return ctx_idx++;
}
/* Return the index that can be used for the WOLFSSL structure to store
* application data.
*
*/
int wolfSSL_get_ex_new_index(long argValue, void* arg,
WOLFSSL_CRYPTO_EX_new* cb1, WOLFSSL_CRYPTO_EX_dup* cb2,
WOLFSSL_CRYPTO_EX_free* cb3)
{
static int ssl_idx = 0;
WOLFSSL_ENTER("wolfSSL_get_ex_new_index");
(void)argValue;
(void)arg;
(void)cb1;
(void)cb2;
(void)cb3;
return ssl_idx++;
}
int wolfSSL_CTX_set_ex_data(WOLFSSL_CTX* ctx, int idx, void* data)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_ex_data");
#ifdef HAVE_EX_DATA
if (ctx != NULL)
{
return wolfSSL_CRYPTO_set_ex_data(&ctx->ex_data, idx, data);
}
#else
(void)ctx;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
#endif /* ((OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) && HAVE_EX_DATA) || FORTRESS || WOLFSSL_WPAS_SMALL */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* Returns char* to app data stored in ex[0].
*
* ssl WOLFSSL structure to get app data from
*/
void* wolfSSL_get_app_data(const WOLFSSL *ssl)
{
/* checkout exdata stuff... */
WOLFSSL_ENTER("wolfSSL_get_app_data");
return wolfSSL_get_ex_data(ssl, 0);
}
/* Set ex array 0 to have app data
*
* ssl WOLFSSL struct to set app data in
* arg data to be stored
*
* Returns WOLFSSL_SUCCESS on success and SSL_FAILURE on failure
*/
int wolfSSL_set_app_data(WOLFSSL *ssl, void* arg) {
WOLFSSL_ENTER("wolfSSL_set_app_data");
return wolfSSL_set_ex_data(ssl, 0, arg);
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \
defined(WOLFSSL_WPAS_SMALL)
int wolfSSL_set_ex_data(WOLFSSL* ssl, int idx, void* data)
{
WOLFSSL_ENTER("wolfSSL_set_ex_data");
#if defined(HAVE_EX_DATA) || defined(FORTRESS)
if (ssl != NULL)
{
return wolfSSL_CRYPTO_set_ex_data(&ssl->ex_data, idx, data);
}
#else
WOLFSSL_MSG("HAVE_EX_DATA macro is not defined");
(void)ssl;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
void* wolfSSL_get_ex_data(const WOLFSSL* ssl, int idx)
{
WOLFSSL_ENTER("wolfSSL_get_ex_data");
#if defined(HAVE_EX_DATA) || defined(FORTRESS)
if (ssl != NULL) {
return wolfSSL_CRYPTO_get_ex_data(&ssl->ex_data, idx);
}
#else
WOLFSSL_MSG("HAVE_EX_DATA macro is not defined");
(void)ssl;
(void)idx;
#endif
return 0;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL || WOLFSSL_WPAS_SMALL */
#ifdef OPENSSL_EXTRA
#ifndef NO_DSA
#ifndef NO_BIO
WOLFSSL_DSA *wolfSSL_PEM_read_bio_DSAparams(WOLFSSL_BIO *bp, WOLFSSL_DSA **x,
pem_password_cb *cb, void *u)
{
WOLFSSL_DSA* dsa;
DsaKey* key;
int length;
unsigned char* buf;
word32 bufSz;
int ret;
word32 idx = 0;
DerBuffer* pDer;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DSAparams");
ret = wolfSSL_BIO_get_mem_data(bp, &buf);
if (ret <= 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret);
return NULL;
}
bufSz = (word32)ret;
if (cb != NULL || u != NULL) {
/*
* cb is for a call back when encountering encrypted PEM files
* if cb == NULL and u != NULL then u = null terminated password string
*/
WOLFSSL_MSG("Not yet supporting call back or password for encrypted PEM");
}
if (PemToDer(buf, (long)bufSz, DSA_PARAM_TYPE, &pDer, NULL, NULL,
NULL) < 0 ) {
WOLFSSL_MSG("Issue converting from PEM to DER");
return NULL;
}
if (GetSequence(pDer->buffer, &idx, &length, pDer->length) < 0) {
WOLFSSL_LEAVE("wolfSSL_PEM_read_bio_DSAparams", ret);
FreeDer(&pDer);
return NULL;
}
dsa = wolfSSL_DSA_new();
if (dsa == NULL) {
FreeDer(&pDer);
WOLFSSL_MSG("Error creating DSA struct");
return NULL;
}
key = (DsaKey*)dsa->internal;
if (key == NULL) {
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
WOLFSSL_MSG("Error finding DSA key struct");
return NULL;
}
if (GetInt(&key->p, pDer->buffer, &idx, pDer->length) < 0 ||
GetInt(&key->q, pDer->buffer, &idx, pDer->length) < 0 ||
GetInt(&key->g, pDer->buffer, &idx, pDer->length) < 0 ) {
WOLFSSL_MSG("dsa key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (SetIndividualExternal(&dsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa p key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (SetIndividualExternal(&dsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa q key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (SetIndividualExternal(&dsa->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa g key error");
FreeDer(&pDer);
wolfSSL_DSA_free(dsa);
return NULL;
}
if (x != NULL) {
*x = dsa;
}
FreeDer(&pDer);
return dsa;
}
#endif /* !NO_BIO */
#endif /* NO_DSA */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA)
/* Begin functions for openssl/buffer.h */
WOLFSSL_BUF_MEM* wolfSSL_BUF_MEM_new(void)
{
WOLFSSL_BUF_MEM* buf;
buf = (WOLFSSL_BUF_MEM*)XMALLOC(sizeof(WOLFSSL_BUF_MEM), NULL,
DYNAMIC_TYPE_OPENSSL);
if (buf) {
XMEMSET(buf, 0, sizeof(WOLFSSL_BUF_MEM));
}
return buf;
}
/* returns length of buffer on success */
int wolfSSL_BUF_MEM_grow(WOLFSSL_BUF_MEM* buf, size_t len)
{
int len_int = (int)len;
int mx;
/* verify provided arguments */
if (buf == NULL || len_int < 0) {
return 0; /* BAD_FUNC_ARG; */
}
/* check to see if fits in existing length */
if (buf->length > len) {
buf->length = len;
return len_int;
}
/* check to see if fits in max buffer */
if (buf->max >= len) {
if (buf->data != NULL) {
XMEMSET(&buf->data[buf->length], 0, len - buf->length);
}
buf->length = len;
return len_int;
}
/* expand size, to handle growth */
mx = (len_int + 3) / 3 * 4;
/* use realloc */
buf->data = (char*)XREALLOC(buf->data, mx, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (buf->data == NULL) {
return 0; /* ERR_R_MALLOC_FAILURE; */
}
buf->max = mx;
XMEMSET(&buf->data[buf->length], 0, len - buf->length);
buf->length = len;
return len_int;
}
void wolfSSL_BUF_MEM_free(WOLFSSL_BUF_MEM* buf)
{
if (buf) {
if (buf->data) {
XFREE(buf->data, NULL, DYNAMIC_TYPE_TMP_BUFFER);
buf->data = NULL;
}
buf->max = 0;
buf->length = 0;
XFREE(buf, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
/* End Functions for openssl/buffer.h */
size_t wolfSSL_strlcpy(char *dst, const char *src, size_t dstSize)
{
size_t i;
if (!dstSize || !dst || !src)
return 0;
/* Always have to leave a space for NULL */
for (i = 0; i < (dstSize - 1) && *src != '\0'; i++) {
*dst++ = *src++;
}
*dst = '\0';
return i; /* return length without NULL */
}
size_t wolfSSL_strlcat(char *dst, const char *src, size_t dstSize)
{
size_t dstLen;
if (!dstSize)
return 0;
dstLen = XSTRLEN(dst);
if (dstSize < dstLen)
return dstLen + XSTRLEN(src);
return dstLen + wolfSSL_strlcpy(dst + dstLen, src, dstSize - dstLen);
}
#endif /* OPENSSL_EXTRA */
#if defined(HAVE_LIGHTY) || defined(HAVE_STUNNEL) \
|| defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(OPENSSL_EXTRA)
#ifndef NO_BIO
WOLFSSL_BIO *wolfSSL_BIO_new_file(const char *filename, const char *mode)
{
#ifndef NO_FILESYSTEM
WOLFSSL_BIO* bio;
XFILE fp;
WOLFSSL_ENTER("wolfSSL_BIO_new_file");
fp = XFOPEN(filename, mode);
if (fp == XBADFILE)
return NULL;
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file());
if (bio == NULL) {
XFCLOSE(fp);
return bio;
}
if (wolfSSL_BIO_set_fp(bio, fp, BIO_CLOSE) != WOLFSSL_SUCCESS) {
XFCLOSE(fp);
wolfSSL_BIO_free(bio);
bio = NULL;
}
/* file is closed when BIO is free'd */
return bio;
#else
(void)filename;
(void)mode;
return NULL;
#endif /* NO_FILESYSTEM */
}
#ifndef NO_FILESYSTEM
WOLFSSL_BIO* wolfSSL_BIO_new_fp(XFILE fp, int close_flag)
{
WOLFSSL_BIO* bio;
WOLFSSL_ENTER("wolfSSL_BIO_new_fp");
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_file());
if (bio == NULL) {
return bio;
}
if (wolfSSL_BIO_set_fp(bio, fp, close_flag) != WOLFSSL_SUCCESS) {
wolfSSL_BIO_free(bio);
bio = NULL;
}
/* file is closed when BIO is free'd or by user depending on flag */
return bio;
}
#endif
#endif /* !NO_BIO */
#ifndef NO_DH
#ifndef NO_BIO
WOLFSSL_DH *wolfSSL_PEM_read_bio_DHparams(WOLFSSL_BIO *bio, WOLFSSL_DH **x,
pem_password_cb *cb, void *u)
{
#ifndef NO_FILESYSTEM
WOLFSSL_DH* localDh = NULL;
unsigned char* mem = NULL;
word32 size;
long sz;
int ret;
DerBuffer *der = NULL;
byte* p = NULL;
byte* g = NULL;
word32 pSz = MAX_DH_SIZE;
word32 gSz = MAX_DH_SIZE;
int memAlloced = 0;
WOLFSSL_ENTER("wolfSSL_PEM_read_bio_DHparams");
(void)cb;
(void)u;
if (bio == NULL) {
WOLFSSL_MSG("Bad Function Argument bio is NULL");
return NULL;
}
if (bio->type == WOLFSSL_BIO_MEMORY) {
/* Use the buffer directly. */
ret = wolfSSL_BIO_get_mem_data(bio, &mem);
if (mem == NULL || ret <= 0) {
WOLFSSL_MSG("Failed to get data from bio struct");
goto end;
}
size = ret;
}
else if (bio->type == WOLFSSL_BIO_FILE) {
/* Read whole file into a new buffer. */
if (XFSEEK((XFILE)bio->ptr, 0, SEEK_END) != 0)
goto end;
sz = XFTELL((XFILE)bio->ptr);
if (XFSEEK((XFILE)bio->ptr, 0, SEEK_SET) != 0)
goto end;
if (sz > MAX_WOLFSSL_FILE_SIZE || sz <= 0L) {
WOLFSSL_MSG("PEM_read_bio_DHparams file size error");
goto end;
}
mem = (unsigned char*)XMALLOC(sz, NULL, DYNAMIC_TYPE_PEM);
if (mem == NULL)
goto end;
memAlloced = 1;
if (wolfSSL_BIO_read(bio, (char *)mem, (int)sz) <= 0)
goto end;
size = (word32)sz;
}
else {
WOLFSSL_MSG("BIO type not supported for reading DH parameters");
goto end;
}
ret = PemToDer(mem, size, DH_PARAM_TYPE, &der, NULL, NULL, NULL);
if (ret != 0)
goto end;
/* Use the object passed in, otherwise allocate a new object */
if (x != NULL)
localDh = *x;
if (localDh == NULL) {
localDh = wolfSSL_DH_new();
if (localDh == NULL)
goto end;
}
/* Load data in manually */
p = (byte*)XMALLOC(pSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
g = (byte*)XMALLOC(gSz, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
if (p == NULL || g == NULL)
goto end;
/* Extract the p and g as data from the DER encoded DH parameters. */
ret = wc_DhParamsLoad(der->buffer, der->length, p, &pSz, g, &gSz);
if (ret != 0) {
if (x != NULL && localDh != *x)
XFREE(localDh, NULL, DYNAMIC_TYPE_OPENSSL);
localDh = NULL;
goto end;
}
if (x != NULL)
*x = localDh;
/* Put p and g in as big numbers. */
if (localDh->p != NULL) {
wolfSSL_BN_free(localDh->p);
localDh->p = NULL;
}
if (localDh->g != NULL) {
wolfSSL_BN_free(localDh->g);
localDh->g = NULL;
}
localDh->p = wolfSSL_BN_bin2bn(p, pSz, NULL);
localDh->g = wolfSSL_BN_bin2bn(g, gSz, NULL);
if (localDh->p == NULL || localDh->g == NULL) {
if (x != NULL && localDh != *x)
wolfSSL_DH_free(localDh);
localDh = NULL;
}
if (localDh != NULL && localDh->inSet == 0) {
if (SetDhInternal(localDh) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Unable to set internal DH structure");
wolfSSL_DH_free(localDh);
localDh = NULL;
}
}
end:
if (memAlloced) XFREE(mem, NULL, DYNAMIC_TYPE_PEM);
if (der != NULL) FreeDer(&der);
XFREE(p, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, NULL, DYNAMIC_TYPE_PUBLIC_KEY);
return localDh;
#else
(void)bio;
(void)x;
(void)cb;
(void)u;
return NULL;
#endif
}
#endif /* !NO_BIO */
#ifndef NO_FILESYSTEM
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL) || defined(WOLFSSL_OPENSSH)
/* Convert DH key parameters to DER format, write to output (outSz)
* If output is NULL then max expected size is set to outSz and LENGTH_ONLY_E is
* returned.
*
* Note : static function due to redefinition complications with DhKey and FIPS
* version 2 build.
*
* return bytes written on success */
int wc_DhParamsToDer(DhKey* key, byte* out, word32* outSz)
{
word32 sz = 0, idx = 0;
int pSz = 0, gSz = 0, ret;
byte scratch[MAX_LENGTH_SZ];
if (key == NULL || outSz == NULL) {
return BAD_FUNC_ARG;
}
pSz = mp_unsigned_bin_size(&key->p);
if (pSz < 0) {
return pSz;
}
if (mp_leading_bit(&key->p)) {
pSz++;
}
gSz = mp_unsigned_bin_size(&key->g);
if (gSz < 0) {
return gSz;
}
if (mp_leading_bit(&key->g)) {
gSz++;
}
sz = ASN_TAG_SZ; /* Integer */
sz += SetLength(pSz, scratch);
sz += ASN_TAG_SZ; /* Integer */
sz += SetLength(gSz, scratch);
sz += gSz + pSz;
if (out == NULL) {
byte seqScratch[MAX_SEQ_SZ];
*outSz = sz + SetSequence(sz, seqScratch);
return LENGTH_ONLY_E;
}
if (*outSz < MAX_SEQ_SZ || *outSz < sz) {
return BUFFER_E;
}
idx += SetSequence(sz, out);
if (*outSz < idx + sz) {
return BUFFER_E;
}
out[idx++] = ASN_INTEGER;
idx += SetLength(pSz, out + idx);
if (mp_leading_bit(&key->p)) {
out[idx++] = 0x00;
pSz -= 1; /* subtract 1 from size to account for leading 0 */
}
ret = mp_to_unsigned_bin(&key->p, out + idx);
if (ret != MP_OKAY) {
return BUFFER_E;
}
idx += pSz;
out[idx++] = ASN_INTEGER;
idx += SetLength(gSz, out + idx);
if (mp_leading_bit(&key->g)) {
out[idx++] = 0x00;
gSz -= 1; /* subtract 1 from size to account for leading 0 */
}
ret = mp_to_unsigned_bin(&key->g, out + idx);
if (ret != MP_OKAY) {
return BUFFER_E;
}
idx += gSz;
return idx;
}
#if !defined(HAVE_FIPS) || (defined(HAVE_FIPS_VERSION) && (HAVE_FIPS_VERSION>2))
int wc_DhPubKeyToDer(DhKey* key, byte* out, word32* outSz)
{
word32 sz = 0;
word32 paramSz = 0;
int ret;
int pubSz = 0;
int idx = 0;
byte scratch[MAX_ALGO_SZ];
/* Get size of entire key */
/* SEQUENCE <--| SetAlgoId
* OBJECT IDENTIFIER <--|
* SEQUENCE <--
* INTEGER | wc_DhParamsToDer
* INTEGER <--
*/
ret = wc_DhParamsToDer(key, NULL, &paramSz);
if (ret != LENGTH_ONLY_E)
return ASN_PARSE_E;
sz += paramSz;
sz += SetAlgoID(DHk, scratch, oidKeyType, paramSz);
/* BIT STRING
* INTEGER
*/
pubSz = mp_unsigned_bin_size(&key->pub);
if (pubSz < 0)
return pubSz;
if (mp_leading_bit(&key->pub))
pubSz++;
sz += ASN_TAG_SZ; /* Integer */
sz += SetLength(pubSz, scratch);
sz += pubSz;
sz += SetBitString(pubSz, 0, scratch);
if (out == NULL) {
/* Uppermost SEQUENCE */
*outSz = sz + SetSequence(sz, scratch);
return LENGTH_ONLY_E;
}
/* end get size of entire key */
/* Check for indexing errors */
if (*outSz < MAX_SEQ_SZ || *outSz < sz) {
return BUFFER_E;
}
/* Build Up Entire Key */
idx += SetSequence(sz, out);
idx += SetAlgoID(DHk, out+idx, oidKeyType, paramSz);
ret = wc_DhParamsToDer(key, out+idx, &paramSz);
if (ret < 0)
return ret;
idx += ret;
/* BIT STRING
* INTEGER
*/
idx += SetBitString(pubSz, 0, out+idx);
out[idx++] = ASN_INTEGER;
idx += SetLength(pubSz, out + idx);
if (mp_leading_bit(&key->pub)) {
out[idx++] = 0x00;
pubSz -= 1; /* subtract 1 from size to account for leading 0 */
}
ret = mp_to_unsigned_bin(&key->pub, out + idx);
if (ret != MP_OKAY) {
return BUFFER_E;
}
idx += pubSz;
return idx;
}
int wc_DhPrivKeyToDer(DhKey* key, byte* out, word32* outSz)
{
word32 sz = 0;
word32 paramSz = 0;
int ret;
int privSz = 0;
int idx = 0;
byte scratch[MAX_ALGO_SZ];
/* Get size of entire key */
/* INTEGER 0 */
sz += ASN_TAG_SZ; /* Integer */
sz += SetLength(1, scratch);
sz += 1;
/* SEQUENCE <--| SetAlgoId
* OBJECT IDENTIFIER <--|
* SEQUENCE <--
* INTEGER | wc_DhParamsToDer
* INTEGER <--
*/
ret = wc_DhParamsToDer(key, NULL, &paramSz);
if (ret != LENGTH_ONLY_E)
return ASN_PARSE_E;
sz += paramSz;
sz += SetAlgoID(DHk, scratch, oidKeyType, paramSz);
/* OCTET STRING
* INTEGER
*/
privSz = mp_unsigned_bin_size(&key->priv);
if (privSz < 0)
return privSz;
else if (privSz > 256) /* Key is larger than 2048 */
return ASN_VERSION_E;
if (mp_leading_bit(&key->priv))
privSz++;
sz += ASN_TAG_SZ; /* Integer */
sz += SetLength(privSz, scratch);
sz += privSz;
sz += SetOctetString(privSz + ASN_OCTET_STRING, scratch);
if (out == NULL) {
/* Uppermost SEQUENCE */
*outSz = sz + SetSequence(sz, scratch);
return LENGTH_ONLY_E;
}
/* end get size of entire key */
/* Check for indexing errors */
if (*outSz < MAX_SEQ_SZ || *outSz < sz) {
return BUFFER_E;
}
/* Build Up Entire Key */
idx += SetSequence(sz, out);
/* INTEGER 0 */
out[idx++] = ASN_INTEGER;
idx += SetLength(1, out+idx);
out[idx++] = 0;
idx += SetAlgoID(DHk, out+idx, oidKeyType, paramSz);
ret = wc_DhParamsToDer(key, out+idx, &paramSz);
if (ret < 0)
return ret;
idx += ret;
/* OCTET STRING
* INTEGER
*/
if (privSz == 256) {
idx += SetOctetString(privSz + ASN_OCTET_STRING, out+idx);
} else if (privSz == 128) {
idx += SetOctetString(privSz + ASN_OCTET_STRING-1, out+idx);
} else if (privSz == 64) {
idx += SetOctetString(privSz + ASN_OCTET_STRING-2, out+idx);
} else {
WOLFSSL_MSG("Unsupported key size");
return ASN_VERSION_E;
}
out[idx++] = ASN_INTEGER;
idx += SetLength(privSz, out + idx);
if (mp_leading_bit(&key->priv)) {
out[idx++] = 0x00;
privSz -= 1; /* subtract 1 from size to account for leading 0 */
}
ret = mp_to_unsigned_bin(&key->priv, out + idx);
if (ret != MP_OKAY) {
return BUFFER_E;
}
idx += privSz;
return idx;
}
/* Writes the DH parameters in PEM format from "dh" out to the file pointer
* passed in.
*
* returns WOLFSSL_SUCCESS on success
*/
int wolfSSL_PEM_write_DHparams(XFILE fp, WOLFSSL_DH* dh)
{
int ret;
word32 derSz = 0, pemSz = 0;
byte *der, *pem;
DhKey* key;
WOLFSSL_ENTER("wolfSSL_PEM_write_DHparams");
if (dh == NULL) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", BAD_FUNC_ARG);
return WOLFSSL_FAILURE;
}
if (dh->inSet == 0) {
if (SetDhInternal(dh) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Unable to set internal DH structure");
return WOLFSSL_FAILURE;
}
}
key = (DhKey*)dh->internal;
ret = wc_DhParamsToDer(key, NULL, &derSz);
if (ret != LENGTH_ONLY_E) {
WOLFSSL_MSG("Failed to get size of DH params");
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", ret);
return WOLFSSL_FAILURE;
}
der = (byte*)XMALLOC(derSz, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (der == NULL) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", MEMORY_E);
return WOLFSSL_FAILURE;
}
ret = wc_DhParamsToDer(key, der, &derSz);
if (ret <= 0) {
WOLFSSL_MSG("Failed to export DH params");
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", ret);
XFREE(der, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
/* convert to PEM */
ret = wc_DerToPem(der, derSz, NULL, 0, DH_PARAM_TYPE);
if (ret < 0) {
WOLFSSL_MSG("Failed to convert DH params to PEM");
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", ret);
XFREE(der, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
pemSz = (word32)ret;
pem = (byte*)XMALLOC(pemSz, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (pem == NULL) {
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", MEMORY_E);
XFREE(der, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
ret = wc_DerToPem(der, derSz, pem, pemSz, DH_PARAM_TYPE);
XFREE(der, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ret < 0) {
WOLFSSL_MSG("Failed to convert DH params to PEM");
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", ret);
XFREE(pem, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
ret = (int)XFWRITE(pem, 1, pemSz, fp);
XFREE(pem, key->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (ret <= 0) {
WOLFSSL_MSG("Failed to write to file");
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", ret);
return WOLFSSL_FAILURE;
}
WOLFSSL_LEAVE("wolfSSL_PEM_write_DHparams", WOLFSSL_SUCCESS);
return WOLFSSL_SUCCESS;
}
#endif /* !HAVE_FIPS || HAVE_FIPS_VERSION > 2 */
#endif /* WOLFSSL_QT || OPENSSL_ALL */
#endif /* !NO_FILESYSTEM */
#endif /* !NO_DH */
#ifndef NO_BIO
#ifdef WOLFSSL_CERT_GEN
#ifdef WOLFSSL_CERT_REQ
/* writes the x509 from x to the WOLFSSL_BIO bp
*
* returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on fail
*/
int wolfSSL_PEM_write_bio_X509_REQ(WOLFSSL_BIO *bp, WOLFSSL_X509 *x)
{
byte* pem;
int pemSz = 0;
const unsigned char* der;
int derSz;
int ret;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_X509_REQ()");
if (x == NULL || bp == NULL) {
return WOLFSSL_FAILURE;
}
der = wolfSSL_X509_get_der(x, &derSz);
if (der == NULL) {
return WOLFSSL_FAILURE;
}
/* get PEM size */
pemSz = wc_DerToPemEx(der, derSz, NULL, 0, NULL, CERTREQ_TYPE);
if (pemSz < 0) {
return WOLFSSL_FAILURE;
}
/* create PEM buffer and convert from DER */
pem = (byte*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (pem == NULL) {
return WOLFSSL_FAILURE;
}
if (wc_DerToPemEx(der, derSz, pem, pemSz, NULL, CERTREQ_TYPE) < 0) {
XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
/* write the PEM to BIO */
ret = wolfSSL_BIO_write(bp, pem, pemSz);
XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (ret <= 0) return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
#endif /* WOLFSSL_CERT_REQ */
/* writes the x509 from x to the WOLFSSL_BIO bp
*
* returns WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on fail
*/
int wolfSSL_PEM_write_bio_X509_AUX(WOLFSSL_BIO *bp, WOLFSSL_X509 *x)
{
byte* pem;
int pemSz = 0;
const unsigned char* der;
int derSz;
int ret;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_X509_AUX()");
if (bp == NULL || x == NULL) {
WOLFSSL_MSG("NULL argument passed in");
return WOLFSSL_FAILURE;
}
der = wolfSSL_X509_get_der(x, &derSz);
if (der == NULL) {
return WOLFSSL_FAILURE;
}
/* get PEM size */
pemSz = wc_DerToPemEx(der, derSz, NULL, 0, NULL, CERT_TYPE);
if (pemSz < 0) {
return WOLFSSL_FAILURE;
}
/* create PEM buffer and convert from DER */
pem = (byte*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (pem == NULL) {
return WOLFSSL_FAILURE;
}
if (wc_DerToPemEx(der, derSz, pem, pemSz, NULL, CERT_TYPE) < 0) {
XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
/* write the PEM to BIO */
ret = wolfSSL_BIO_write(bp, pem, pemSz);
XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (ret <= 0) return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
int wolfSSL_PEM_write_bio_X509(WOLFSSL_BIO *bio, WOLFSSL_X509 *cert)
{
byte* pem = NULL;
int pemSz = 0;
/* Get large buffer to hold cert der */
int derSz = X509_BUFFER_SZ;
#ifdef WOLFSSL_SMALL_STACK
byte* der;
#else
byte der[X509_BUFFER_SZ];
#endif
int ret;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_X509_AUX()");
if (bio == NULL || cert == NULL) {
WOLFSSL_MSG("NULL argument passed in");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
der = (byte*)XMALLOC(derSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (!der) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
#endif
if (wolfssl_x509_make_der(cert, 0, der, &derSz, 1) != WOLFSSL_SUCCESS) {
goto error;
}
/* get PEM size */
pemSz = wc_DerToPemEx(der, derSz, NULL, 0, NULL, CERT_TYPE);
if (pemSz < 0) {
goto error;
}
/* create PEM buffer and convert from DER */
pem = (byte*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (pem == NULL) {
goto error;
}
if (wc_DerToPemEx(der, derSz, pem, pemSz, NULL, CERT_TYPE) < 0) {
goto error;
}
/* write the PEM to BIO */
ret = wolfSSL_BIO_write(bio, pem, pemSz);
XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (ret <= 0) return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
error:
#ifdef WOLFSSL_SMALL_STACK
XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
if (pem)
XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
#endif /* WOLFSSL_CERT_GEN */
#endif /* !NO_BIO */
#if defined(OPENSSL_EXTRA) && !defined(NO_DH)
/* Initialize ctx->dh with dh's params. Return WOLFSSL_SUCCESS on ok */
long wolfSSL_CTX_set_tmp_dh(WOLFSSL_CTX* ctx, WOLFSSL_DH* dh)
{
int pSz, gSz;
byte *p, *g;
int ret=0;
WOLFSSL_ENTER("wolfSSL_CTX_set_tmp_dh");
if(!ctx || !dh)
return BAD_FUNC_ARG;
/* Get needed size for p and g */
pSz = wolfSSL_BN_bn2bin(dh->p, NULL);
gSz = wolfSSL_BN_bn2bin(dh->g, NULL);
if(pSz <= 0 || gSz <= 0)
return WOLFSSL_FATAL_ERROR;
p = (byte*)XMALLOC(pSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if(!p)
return MEMORY_E;
g = (byte*)XMALLOC(gSz, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if(!g) {
XFREE(p, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return MEMORY_E;
}
pSz = wolfSSL_BN_bn2bin(dh->p, p);
gSz = wolfSSL_BN_bn2bin(dh->g, g);
if(pSz >= 0 && gSz >= 0) /* Conversion successful */
ret = wolfSSL_CTX_SetTmpDH(ctx, p, pSz, g, gSz);
XFREE(p, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
XFREE(g, ctx->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return pSz > 0 && gSz > 0 ? ret : WOLFSSL_FATAL_ERROR;
}
#endif /* OPENSSL_EXTRA && !NO_DH */
/* returns the enum value associated with handshake state
*
* ssl the WOLFSSL structure to get state of
*/
int wolfSSL_get_state(const WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_state");
if (ssl == NULL) {
WOLFSSL_MSG("Null argument passed in");
return SSL_FAILURE;
}
return ssl->options.handShakeState;
}
#endif /* HAVE_LIGHTY || HAVE_STUNNEL || WOLFSSL_MYSQL_COMPATIBLE */
#if defined(OPENSSL_ALL) || defined(WOLFSSL_ASIO) || defined(WOLFSSL_HAPROXY) \
|| defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT)
long wolfSSL_ctrl(WOLFSSL* ssl, int cmd, long opt, void* pt)
{
WOLFSSL_ENTER("wolfSSL_ctrl");
if (ssl == NULL)
return BAD_FUNC_ARG;
switch (cmd) {
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
#ifdef HAVE_SNI
case SSL_CTRL_SET_TLSEXT_HOSTNAME:
WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TLSEXT_HOSTNAME.");
if (pt == NULL) {
WOLFSSL_MSG("Passed in NULL Host Name.");
break;
}
return wolfSSL_set_tlsext_host_name(ssl, (const char*) pt);
#endif /* HAVE_SNI */
#endif /* WOLFSSL_NGINX || WOLFSSL_QT || OPENSSL_ALL */
default:
WOLFSSL_MSG("Case not implemented.");
}
(void)opt;
(void)pt;
return WOLFSSL_FAILURE;
}
long wolfSSL_CTX_ctrl(WOLFSSL_CTX* ctx, int cmd, long opt, void* pt)
{
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
long ctrl_opt;
#endif
long ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_CTX_ctrl");
if (ctx == NULL)
return WOLFSSL_FAILURE;
switch (cmd) {
case SSL_CTRL_CHAIN:
#ifdef SESSION_CERTS
{
/*
* We don't care about opt here because a copy of the certificate is
* stored anyway so increasing the reference counter is not necessary.
* Just check to make sure that it is set to one of the correct values.
*/
WOLF_STACK_OF(WOLFSSL_X509)* sk = (WOLF_STACK_OF(WOLFSSL_X509)*) pt;
WOLFSSL_X509* x509;
int i;
if (opt != 0 && opt != 1) {
ret = WOLFSSL_FAILURE;
break;
}
/* Clear certificate chain */
FreeDer(&ctx->certChain);
if (sk) {
for (i = 0; i < wolfSSL_sk_X509_num(sk); i++) {
x509 = wolfSSL_sk_X509_value(sk, i);
/* Prevent wolfSSL_CTX_add_extra_chain_cert from freeing cert */
if (wolfSSL_X509_up_ref(x509) != 1) {
WOLFSSL_MSG("Error increasing reference count");
continue;
}
if (wolfSSL_CTX_add_extra_chain_cert(ctx, x509) !=
WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Error adding certificate to context");
/* Decrease reference count on failure */
wolfSSL_X509_free(x509);
}
}
}
/* Free previous chain */
wolfSSL_sk_X509_free(ctx->x509Chain);
ctx->x509Chain = sk;
if (sk && opt == 1) {
/* up all refs when opt == 1 */
for (i = 0; i < wolfSSL_sk_X509_num(sk); i++) {
x509 = wolfSSL_sk_X509_value(sk, i);
if (wolfSSL_X509_up_ref(x509) != 1) {
WOLFSSL_MSG("Error increasing reference count");
continue;
}
}
}
}
#else
WOLFSSL_MSG("Session certificates not compiled in");
ret = WOLFSSL_FAILURE;
#endif
break;
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
case SSL_CTRL_OPTIONS:
WOLFSSL_MSG("Entering Case: SSL_CTRL_OPTIONS.");
ctrl_opt = wolfSSL_CTX_set_options(ctx, opt);
#ifdef WOLFSSL_QT
/* Set whether to use client or server cipher preference */
if ((ctrl_opt & SSL_OP_CIPHER_SERVER_PREFERENCE)
== SSL_OP_CIPHER_SERVER_PREFERENCE) {
WOLFSSL_MSG("Using Server's Cipher Preference.");
ctx->useClientOrder = FALSE;
} else {
WOLFSSL_MSG("Using Client's Cipher Preference.");
ctx->useClientOrder = TRUE;
}
#endif /* WOLFSSL_QT */
return ctrl_opt;
#endif /* OPENSSL_EXTRA || HAVE_WEBSERVER */
case SSL_CTRL_EXTRA_CHAIN_CERT:
WOLFSSL_MSG("Entering Case: SSL_CTRL_EXTRA_CHAIN_CERT.");
if (pt == NULL) {
WOLFSSL_MSG("Passed in x509 pointer NULL.");
ret = WOLFSSL_FAILURE;
break;
}
return wolfSSL_CTX_add_extra_chain_cert(ctx, (WOLFSSL_X509*)pt);
#ifndef NO_DH
case SSL_CTRL_SET_TMP_DH:
WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TMP_DH.");
if (pt == NULL) {
WOLFSSL_MSG("Passed in DH pointer NULL.");
ret = WOLFSSL_FAILURE;
break;
}
return wolfSSL_CTX_set_tmp_dh(ctx, (WOLFSSL_DH*)pt);
#endif
#ifdef HAVE_ECC
case SSL_CTRL_SET_TMP_ECDH:
WOLFSSL_MSG("Entering Case: SSL_CTRL_SET_TMP_ECDH.");
if (pt == NULL) {
WOLFSSL_MSG("Passed in ECDH pointer NULL.");
ret = WOLFSSL_FAILURE;
break;
}
return wolfSSL_SSL_CTX_set_tmp_ecdh(ctx, (WOLFSSL_EC_KEY*)pt);
#endif
case SSL_CTRL_MODE:
wolfSSL_CTX_set_mode(ctx,opt);
break;
default:
WOLFSSL_MSG("CTX_ctrl cmd not implemented");
ret = WOLFSSL_FAILURE;
break;
}
(void)ctx;
(void)cmd;
(void)opt;
(void)pt;
WOLFSSL_LEAVE("wolfSSL_CTX_ctrl", (int)ret);
return ret;
}
#ifndef WOLFSSL_NO_STUB
long wolfSSL_CTX_callback_ctrl(WOLFSSL_CTX* ctx, int cmd, void (*fp)(void))
{
(void) ctx;
(void) cmd;
(void) fp;
WOLFSSL_STUB("wolfSSL_CTX_callback_ctrl");
return WOLFSSL_FAILURE;
}
#endif /* WOLFSSL_NO_STUB */
#ifndef NO_WOLFSSL_STUB
long wolfSSL_CTX_clear_extra_chain_certs(WOLFSSL_CTX* ctx)
{
return wolfSSL_CTX_ctrl(ctx, SSL_CTRL_CLEAR_EXTRA_CHAIN_CERTS, 0l, NULL);
}
#endif
/* Returns the verifyCallback from the ssl structure if successful.
Returns NULL otherwise. */
VerifyCallback wolfSSL_get_verify_callback(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_verify_callback()");
if (ssl) {
return ssl->verifyCallback;
}
return NULL;
}
#ifndef NO_BIO
/* Creates a new bio pair.
Returns WOLFSSL_SUCCESS if no error, WOLFSSL_FAILURE otherwise.*/
int wolfSSL_BIO_new_bio_pair(WOLFSSL_BIO **bio1_p, size_t writebuf1,
WOLFSSL_BIO **bio2_p, size_t writebuf2)
{
WOLFSSL_BIO *bio1 = NULL, *bio2 = NULL;
int ret = 1;
WOLFSSL_ENTER("wolfSSL_BIO_new_bio_pair()");
if (bio1_p == NULL || bio2_p == NULL) {
WOLFSSL_MSG("Bad Function Argument");
return BAD_FUNC_ARG;
}
/* set up the new bio structures and write buf sizes */
if ((bio1 = wolfSSL_BIO_new(wolfSSL_BIO_s_bio())) == NULL) {
WOLFSSL_MSG("Bio allocation failed");
ret = WOLFSSL_FAILURE;
}
if (ret) {
if ((bio2 = wolfSSL_BIO_new(wolfSSL_BIO_s_bio())) == NULL) {
WOLFSSL_MSG("Bio allocation failed");
ret = WOLFSSL_FAILURE;
}
}
if (ret && writebuf1) {
if (!(ret = wolfSSL_BIO_set_write_buf_size(bio1, (long)writebuf1))) {
WOLFSSL_MSG("wolfSSL_BIO_set_write_buf() failure");
}
}
if (ret && writebuf2) {
if (!(ret = wolfSSL_BIO_set_write_buf_size(bio2, (long)writebuf2))) {
WOLFSSL_MSG("wolfSSL_BIO_set_write_buf() failure");
}
}
if (ret) {
if ((ret = wolfSSL_BIO_make_bio_pair(bio1, bio2))) {
*bio1_p = bio1;
*bio2_p = bio2;
}
}
if (!ret) {
wolfSSL_BIO_free(bio1);
bio1 = NULL;
wolfSSL_BIO_free(bio2);
bio2 = NULL;
}
return ret;
}
#if !defined(HAVE_FAST_RSA) && defined(WOLFSSL_KEY_GEN) && \
!defined(NO_RSA) && !defined(HAVE_USER_RSA)
/* Converts an rsa key from a bio buffer into an internal rsa structure.
Returns a pointer to the new WOLFSSL_RSA structure. */
WOLFSSL_RSA* wolfSSL_d2i_RSAPrivateKey_bio(WOLFSSL_BIO *bio, WOLFSSL_RSA **out)
{
const unsigned char* bioMem = NULL;
int bioMemSz = 0;
WOLFSSL_RSA* key = NULL;
unsigned char *maxKeyBuf = NULL;
unsigned char* bufPtr = NULL;
unsigned char* extraBioMem = NULL;
int extraBioMemSz = 0;
int derLength = 0;
int j = 0, i = 0;
WOLFSSL_ENTER("wolfSSL_d2i_RSAPrivateKey_bio()");
if (bio == NULL) {
WOLFSSL_MSG("Bad Function Argument");
return NULL;
}
(void)out;
bioMemSz = wolfSSL_BIO_get_len(bio);
if (bioMemSz <= 0) {
WOLFSSL_MSG("wolfSSL_BIO_get_len() failure");
return NULL;
}
bioMem = (unsigned char*)XMALLOC(bioMemSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (bioMem == NULL) {
WOLFSSL_MSG("Malloc failure");
return NULL;
}
maxKeyBuf = (unsigned char*)XMALLOC(4096, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (maxKeyBuf == NULL) {
WOLFSSL_MSG("Malloc failure");
XFREE((unsigned char*)bioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
bufPtr = maxKeyBuf;
if (wolfSSL_BIO_read(bio, (unsigned char*)bioMem, (int)bioMemSz) == bioMemSz) {
const byte* bioMemPt = bioMem; /* leave bioMem pointer unaltered */
if ((key = wolfSSL_d2i_RSAPrivateKey(NULL, &bioMemPt, bioMemSz)) == NULL) {
XFREE((unsigned char*)bioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
/* This function is used to get the total length of the rsa key. */
derLength = wolfSSL_i2d_RSAPrivateKey(key, &bufPtr);
/* Write extra data back into bio object if necessary. */
extraBioMemSz = (bioMemSz - derLength);
if (extraBioMemSz > 0) {
extraBioMem = (unsigned char *)XMALLOC(extraBioMemSz, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (extraBioMem == NULL) {
WOLFSSL_MSG("Malloc failure");
XFREE((unsigned char*)extraBioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE((unsigned char*)bioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE((unsigned char*)maxKeyBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
for (i = derLength; i < bioMemSz; i++) {
*(extraBioMem + j) = *(bioMem + i);
j++;
}
wolfSSL_BIO_write(bio, extraBioMem, extraBioMemSz);
if (wolfSSL_BIO_get_len(bio) <= 0) {
WOLFSSL_MSG("Failed to write memory to bio");
XFREE((unsigned char*)extraBioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE((unsigned char*)bioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE((unsigned char*)maxKeyBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
XFREE((unsigned char*)extraBioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
}
if (out != NULL && key != NULL) {
*out = key;
}
}
XFREE((unsigned char*)bioMem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE((unsigned char*)maxKeyBuf, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return key;
}
#endif
#endif /* !NO_BIO */
/* Adds the ASN1 certificate to the user ctx.
Returns WOLFSSL_SUCCESS if no error, returns WOLFSSL_FAILURE otherwise.*/
int wolfSSL_CTX_use_certificate_ASN1(WOLFSSL_CTX *ctx, int derSz,
const unsigned char *der)
{
WOLFSSL_ENTER("wolfSSL_CTX_use_certificate_ASN1()");
if (der != NULL && ctx != NULL) {
if (wolfSSL_CTX_use_certificate_buffer(ctx, der, derSz,
WOLFSSL_FILETYPE_ASN1) == WOLFSSL_SUCCESS) {
return WOLFSSL_SUCCESS;
}
}
return WOLFSSL_FAILURE;
}
#if !defined(HAVE_FAST_RSA) && defined(WOLFSSL_KEY_GEN) && \
!defined(NO_RSA) && !defined(HAVE_USER_RSA)
/* Adds the rsa private key to the user ctx.
Returns WOLFSSL_SUCCESS if no error, returns WOLFSSL_FAILURE otherwise.*/
int wolfSSL_CTX_use_RSAPrivateKey(WOLFSSL_CTX* ctx, WOLFSSL_RSA* rsa)
{
int ret;
int derSize;
unsigned char *maxDerBuf;
unsigned char* key = NULL;
WOLFSSL_ENTER("wolfSSL_CTX_use_RSAPrivateKey()");
if (ctx == NULL || rsa == NULL) {
WOLFSSL_MSG("one or more inputs were NULL");
return BAD_FUNC_ARG;
}
maxDerBuf = (unsigned char*)XMALLOC(4096, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (maxDerBuf == NULL) {
WOLFSSL_MSG("Malloc failure");
return MEMORY_E;
}
key = maxDerBuf;
/* convert RSA struct to der encoded buffer and get the size */
if ((derSize = wolfSSL_i2d_RSAPrivateKey(rsa, &key)) <= 0) {
WOLFSSL_MSG("wolfSSL_i2d_RSAPrivateKey() failure");
XFREE(maxDerBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
ret = wolfSSL_CTX_use_PrivateKey_buffer(ctx, (const unsigned char*)maxDerBuf,
derSize, SSL_FILETYPE_ASN1);
if (ret != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_CTX_USE_PrivateKey_buffer() failure");
XFREE(maxDerBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
XFREE(maxDerBuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif /* NO_RSA && !HAVE_FAST_RSA */
#ifndef NO_BIO
/* Converts EVP_PKEY data from a bio buffer to a WOLFSSL_EVP_PKEY structure.
Returns pointer to private EVP_PKEY struct upon success, NULL if there
is a failure.*/
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_bio(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY** out)
{
unsigned char* mem = NULL;
int memSz = 0;
WOLFSSL_EVP_PKEY* key = NULL;
int i = 0, j = 0;
unsigned char* extraBioMem = NULL;
int extraBioMemSz = 0;
int derLength = 0;
WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_bio()");
if (bio == NULL) {
return NULL;
}
(void)out;
memSz = wolfSSL_BIO_get_len(bio);
if (memSz <= 0) {
WOLFSSL_MSG("wolfSSL_BIO_get_len() failure");
return NULL;
}
mem = (unsigned char*)XMALLOC(memSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (mem == NULL) {
WOLFSSL_MSG("Malloc failure");
return NULL;
}
if (wolfSSL_BIO_read(bio, (unsigned char*)mem, memSz) == memSz) {
/* Determines key type and returns the new private EVP_PKEY object */
if ((key = wolfSSL_d2i_PrivateKey_EVP(NULL, &mem, (long)memSz)) == NULL) {
WOLFSSL_MSG("wolfSSL_d2i_PrivateKey_EVP() failure");
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
/* Write extra data back into bio object if necessary. */
derLength = key->pkey_sz;
extraBioMemSz = (memSz - derLength);
if (extraBioMemSz > 0) {
extraBioMem = (unsigned char *)XMALLOC(extraBioMemSz, NULL,
DYNAMIC_TYPE_TMP_BUFFER);
if (extraBioMem == NULL) {
WOLFSSL_MSG("Malloc failure");
XFREE((unsigned char*)extraBioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
for (i = derLength; i < memSz; i++) {
*(extraBioMem + j) = *(mem + i);
j++;
}
wolfSSL_BIO_write(bio, extraBioMem, extraBioMemSz);
if (wolfSSL_BIO_get_len(bio) <= 0) {
WOLFSSL_MSG("Failed to write memory to bio");
XFREE((unsigned char*)extraBioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return NULL;
}
XFREE((unsigned char*)extraBioMem, bio->heap,
DYNAMIC_TYPE_TMP_BUFFER);
}
if (out != NULL) {
*out = key;
}
}
XFREE(mem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
return key;
}
#endif /* !NO_BIO */
/* Converts a DER encoded private key to a WOLFSSL_EVP_PKEY structure.
* returns a pointer to a new WOLFSSL_EVP_PKEY structure on success and NULL
* on fail */
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PrivateKey_EVP(WOLFSSL_EVP_PKEY** out,
unsigned char** in, long inSz)
{
WOLFSSL_EVP_PKEY* pkey = NULL;
const unsigned char* mem;
long memSz = inSz;
WOLFSSL_ENTER("wolfSSL_d2i_PrivateKey_EVP()");
if (in == NULL || *in == NULL || inSz < 0) {
WOLFSSL_MSG("Bad argument");
return NULL;
}
mem = *in;
#if !defined(NO_RSA)
{
RsaKey rsa;
word32 keyIdx = 0;
/* test if RSA key */
if (wc_InitRsaKey(&rsa, NULL) == 0 &&
wc_RsaPrivateKeyDecode(mem, &keyIdx, &rsa, (word32)memSz) == 0) {
wc_FreeRsaKey(&rsa);
pkey = wolfSSL_EVP_PKEY_new();
if (pkey != NULL) {
pkey->pkey_sz = keyIdx;
pkey->pkey.ptr = (char*)XMALLOC(memSz, NULL,
DYNAMIC_TYPE_PRIVATE_KEY);
if (pkey->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
XMEMCPY(pkey->pkey.ptr, mem, keyIdx);
pkey->type = EVP_PKEY_RSA;
if (out != NULL) {
*out = pkey;
}
pkey->ownRsa = 1;
pkey->rsa = wolfSSL_RSA_new();
if (pkey->rsa == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
if (wolfSSL_RSA_LoadDer_ex(pkey->rsa,
(const unsigned char*)pkey->pkey.ptr,
pkey->pkey_sz, WOLFSSL_RSA_LOAD_PRIVATE) != 1) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
return pkey;
}
}
wc_FreeRsaKey(&rsa);
}
#endif /* NO_RSA */
#ifdef HAVE_ECC
{
word32 keyIdx = 0;
ecc_key ecc;
/* test if ecc key */
if (wc_ecc_init(&ecc) == 0 &&
wc_EccPrivateKeyDecode(mem, &keyIdx, &ecc, (word32)memSz) == 0) {
wc_ecc_free(&ecc);
pkey = wolfSSL_EVP_PKEY_new();
if (pkey != NULL) {
pkey->pkey_sz = keyIdx;
pkey->pkey.ptr = (char*)XMALLOC(keyIdx, NULL,
DYNAMIC_TYPE_PRIVATE_KEY);
if (pkey->pkey.ptr == NULL) {
wolfSSL_EVP_PKEY_free(pkey);
return NULL;
}
XMEMCPY(pkey->pkey.ptr, mem, keyIdx);
pkey->type = EVP_PKEY_EC;
if (out != NULL) {
*out = pkey;
}
return pkey;
}
}
wc_ecc_free(&ecc);
}
#endif /* HAVE_ECC */
return pkey;
}
#endif /* OPENSSL_ALL || WOLFSSL_ASIO || WOLFSSL_HAPROXY || WOLFSSL_QT */
/* stunnel compatibility functions*/
#if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && (defined(HAVE_STUNNEL) || \
defined(WOLFSSL_NGINX) || defined(HAVE_LIGHTY) || \
defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_OPENSSH)))
void wolfSSL_ERR_remove_thread_state(void* pid)
{
(void) pid;
return;
}
#ifndef NO_FILESYSTEM
/***TBD ***/
void wolfSSL_print_all_errors_fp(XFILE fp)
{
(void)fp;
}
#endif /* !NO_FILESYSTEM */
#endif /* OPENSSL_ALL || OPENSSL_EXTRA || HAVE_STUNNEL || WOLFSSL_NGINX ||
HAVE_LIGHTY || WOLFSSL_HAPROXY || WOLFSSL_OPENSSH */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL) || defined(FORTRESS)
int wolfSSL_SESSION_set_ex_data(WOLFSSL_SESSION* session, int idx, void* data)
{
WOLFSSL_ENTER("wolfSSL_SESSION_set_ex_data");
#ifdef HAVE_EX_DATA
if(session != NULL) {
return wolfSSL_CRYPTO_set_ex_data(&session->ex_data, idx, data);
}
#else
(void)session;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
void* wolfSSL_SESSION_get_ex_data(const WOLFSSL_SESSION* session, int idx)
{
WOLFSSL_ENTER("wolfSSL_SESSION_get_ex_data");
#ifdef HAVE_EX_DATA
if (session != NULL) {
return wolfSSL_CRYPTO_get_ex_data(&session->ex_data, idx);
}
#else
(void)session;
(void)idx;
#endif
return NULL;
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL || FORTRESS */
#if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && (defined(HAVE_STUNNEL) || \
defined(WOLFSSL_NGINX) || defined(HAVE_LIGHTY) || \
defined(WOLFSSL_HAPROXY) || defined(WOLFSSL_OPENSSH)))
int wolfSSL_SESSION_get_ex_new_index(long idx, void* data, void* cb1,
void* cb2, CRYPTO_free_func* cb3)
{
WOLFSSL_ENTER("wolfSSL_SESSION_get_ex_new_index");
(void)idx;
(void)cb1;
(void)cb2;
(void)cb3;
if (XSTRNCMP((const char*)data, "redirect index", 14) == 0) {
return 0;
}
else if (XSTRNCMP((const char*)data, "addr index", 10) == 0) {
return 1;
}
return WOLFSSL_FAILURE;
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_CRYPTO_set_mem_ex_functions(void *(*m) (size_t, const char *, int),
void *(*r) (void *, size_t, const char *,
int), void (*f) (void *))
{
(void) m;
(void) r;
(void) f;
WOLFSSL_ENTER("wolfSSL_CRYPTO_set_mem_ex_functions");
WOLFSSL_STUB("CRYPTO_set_mem_ex_functions");
return WOLFSSL_FAILURE;
}
#endif
void wolfSSL_CRYPTO_cleanup_all_ex_data(void){
WOLFSSL_ENTER("CRYPTO_cleanup_all_ex_data");
}
#ifndef NO_WOLFSSL_STUB
WOLFSSL_DH *wolfSSL_DH_generate_parameters(int prime_len, int generator,
void (*callback) (int, int, void *), void *cb_arg)
{
(void)prime_len;
(void)generator;
(void)callback;
(void)cb_arg;
WOLFSSL_ENTER("wolfSSL_DH_generate_parameters");
WOLFSSL_STUB("DH_generate_parameters");
return NULL;
}
#endif
#ifndef NO_WOLFSSL_STUB
int wolfSSL_DH_generate_parameters_ex(WOLFSSL_DH* dh, int prime_len, int generator,
void (*callback) (int, int, void *))
{
(void)prime_len;
(void)generator;
(void)callback;
(void)dh;
WOLFSSL_ENTER("wolfSSL_DH_generate_parameters_ex");
WOLFSSL_STUB("DH_generate_parameters_ex");
return -1;
}
#endif
void wolfSSL_ERR_load_crypto_strings(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_load_crypto_strings");
/* Do nothing */
return;
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_FIPS_mode(void)
{
WOLFSSL_ENTER("wolfSSL_FIPS_mode");
WOLFSSL_STUB("FIPS_mode");
return WOLFSSL_FAILURE;
}
#endif
#ifndef NO_WOLFSSL_STUB
int wolfSSL_FIPS_mode_set(int r)
{
(void)r;
WOLFSSL_ENTER("wolfSSL_FIPS_mode_set");
WOLFSSL_STUB("FIPS_mode_set");
return WOLFSSL_FAILURE;
}
#endif
#ifndef NO_WOLFSSL_STUB
int wolfSSL_RAND_set_rand_method(const void *meth)
{
(void) meth;
WOLFSSL_ENTER("wolfSSL_RAND_set_rand_method");
WOLFSSL_STUB("RAND_set_rand_method");
/* if implemented RAND_bytes and RAND_pseudo_bytes need updated
* those two functions will call the respective functions from meth */
return SSL_FAILURE;
}
#endif
int wolfSSL_CIPHER_get_bits(const WOLFSSL_CIPHER *c, int *alg_bits)
{
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_CIPHER_get_bits");
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
(void)alg_bits;
if (c!= NULL)
ret = c->bits;
#else
if (c != NULL && c->ssl != NULL) {
ret = 8 * c->ssl->specs.key_size;
if (alg_bits != NULL) {
*alg_bits = ret;
}
}
#endif
return ret;
}
#if defined(OPENSSL_ALL)
WOLFSSL_X509_INFO* wolfSSL_X509_INFO_new(void)
{
WOLFSSL_X509_INFO* info;
info = (WOLFSSL_X509_INFO*)XMALLOC(sizeof(WOLFSSL_X509_INFO), NULL,
DYNAMIC_TYPE_X509);
if (info) {
XMEMSET(info, 0, sizeof(*info));
}
return info;
}
void wolfSSL_X509_INFO_free(WOLFSSL_X509_INFO* info)
{
if (info == NULL)
return;
if (info->x509) {
wolfSSL_X509_free(info->x509);
info->x509 = NULL;
}
#ifdef HAVE_CRL
if (info->crl) {
wolfSSL_X509_CRL_free(info->crl);
info->crl = NULL;
}
#endif
wolfSSL_X509_PKEY_free(info->x_pkey);
info->x_pkey = NULL;
XFREE(info, NULL, DYNAMIC_TYPE_X509);
}
#endif
WOLFSSL_STACK* wolfSSL_sk_X509_INFO_new_null(void)
{
WOLFSSL_STACK* sk = wolfSSL_sk_new_node(NULL);
if (sk) {
sk->type = STACK_TYPE_X509_INFO;
}
return sk;
}
/* returns value less than 0 on fail to match
* On a successful match the priority level found is returned
*/
int wolfSSL_sk_SSL_CIPHER_find(
WOLF_STACK_OF(WOLFSSL_CIPHER)* sk, const WOLFSSL_CIPHER* toFind)
{
WOLFSSL_STACK* next;
int i, sz;
if (sk == NULL || toFind == NULL) {
return WOLFSSL_FATAL_ERROR;
}
sz = wolfSSL_sk_SSL_CIPHER_num(sk);
next = sk;
for (i = 0; i < sz && next != NULL; i++) {
if (next->data.cipher.cipherSuite0 == toFind->cipherSuite0 &&
next->data.cipher.cipherSuite == toFind->cipherSuite) {
return sz - i; /* reverse because stack pushed highest on first */
}
next = next->next;
}
return WOLFSSL_FATAL_ERROR;
}
/* nothing to do yet */
static void wolfSSL_CIPHER_free(WOLFSSL_CIPHER* in)
{
(void)in;
}
/* free's all nodes in the stack and there data */
void wolfSSL_sk_SSL_CIPHER_free(WOLF_STACK_OF(WOLFSSL_CIPHER)* sk)
{
WOLFSSL_STACK* current = sk;
while (current != NULL) {
WOLFSSL_STACK* toFree = current;
current = current->next;
wolfSSL_CIPHER_free(&(toFree->data.cipher));
wolfSSL_sk_free_node(toFree);
}
}
int wolfSSL_sk_X509_INFO_num(const WOLF_STACK_OF(WOLFSSL_X509_INFO) *sk)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_INFO_num");
if (sk == NULL)
return -1;
return (int)sk->num;
}
WOLFSSL_X509_INFO* wolfSSL_sk_X509_INFO_value(const WOLF_STACK_OF(WOLFSSL_X509_INFO) *sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_INFO_value");
for (; sk != NULL && i > 0; i--)
sk = sk->next;
if (i != 0 || sk == NULL)
return NULL;
return sk->data.info;
}
WOLFSSL_X509_INFO* wolfSSL_sk_X509_INFO_pop(WOLF_STACK_OF(WOLFSSL_X509_INFO)* sk)
{
WOLFSSL_STACK* node;
WOLFSSL_X509_INFO* info;
if (sk == NULL) {
return NULL;
}
node = sk->next;
info = sk->data.info;
if (node != NULL) { /* update sk and remove node from stack */
sk->data.info = node->data.info;
sk->next = node->next;
wolfSSL_sk_free_node(node);
}
else { /* last x509 in stack */
sk->data.info = NULL;
}
if (sk->num > 0) {
sk->num -= 1;
}
return info;
}
#if defined(OPENSSL_ALL)
void wolfSSL_sk_X509_INFO_pop_free(WOLF_STACK_OF(WOLFSSL_X509_INFO)* sk,
void (*f) (WOLFSSL_X509_INFO*))
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_X509_INFO_pop_free");
if (sk == NULL) {
return;
}
/* parse through stack freeing each node */
node = sk->next;
while (node && sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
if (f)
f(tmp->data.info);
else
wolfSSL_X509_INFO_free(tmp->data.info);
tmp->data.info = NULL;
XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
if (f)
f(sk->data.info);
else
wolfSSL_X509_INFO_free(sk->data.info);
sk->data.info = NULL;
}
XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL);
}
void wolfSSL_sk_X509_INFO_free(WOLF_STACK_OF(WOLFSSL_X509_INFO) *sk)
{
wolfSSL_sk_X509_INFO_pop_free(sk, NULL);
}
/* Adds the WOLFSSL_X509_INFO to the stack "sk". "sk" takes control of "in" and
* tries to free it when the stack is free'd.
*
* return 1 on success 0 on fail
*/
int wolfSSL_sk_X509_INFO_push(WOLF_STACK_OF(WOLFSSL_X509_INFO)* sk,
WOLFSSL_X509_INFO* in)
{
WOLFSSL_STACK* node;
if (sk == NULL || in == NULL) {
return WOLFSSL_FAILURE;
}
/* no previous values in stack */
if (sk->data.info == NULL) {
sk->data.info = in;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
/* stack already has value(s) create a new node and add more */
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_X509);
if (node == NULL) {
WOLFSSL_MSG("Memory error");
return WOLFSSL_FAILURE;
}
XMEMSET(node, 0, sizeof(WOLFSSL_STACK));
/* push new obj onto head of stack */
node->data.info = sk->data.info;
node->next = sk->next;
node->type = sk->type;
sk->next = node;
sk->data.info = in;
sk->num += 1;
return WOLFSSL_SUCCESS;
}
WOLF_STACK_OF(WOLFSSL_X509_NAME)* wolfSSL_sk_X509_NAME_new(wolf_sk_compare_cb cb)
{
WOLFSSL_STACK* sk;
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_new");
sk = wolfSSL_sk_new_node(NULL);
if (sk != NULL) {
sk->type = STACK_TYPE_X509_NAME;
sk->comp = cb;
}
return sk;
}
/* Creates a duplicate of WOLF_STACK_OF(WOLFSSL_X509_NAME).
* Returns a new WOLF_STACK_OF(WOLFSSL_X509_NAME) or NULL on failure */
WOLF_STACK_OF(WOLFSSL_X509_NAME) *wolfSSL_dup_CA_list(
WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk)
{
int i;
const int num = wolfSSL_sk_X509_NAME_num(sk);
WOLF_STACK_OF(WOLFSSL_X509_NAME) *copy;
WOLFSSL_X509_NAME *name;
WOLFSSL_ENTER("wolfSSL_dup_CA_list");
copy = wolfSSL_sk_X509_NAME_new(NULL);
if (copy == NULL) {
WOLFSSL_MSG("Memory error");
return NULL;
}
for (i = 0; i < num; i++) {
name = wolfSSL_X509_NAME_dup(wolfSSL_sk_X509_NAME_value(sk, i));
if (name == NULL || 0 != wolfSSL_sk_X509_NAME_push(copy, name)) {
WOLFSSL_MSG("Memory error");
wolfSSL_sk_X509_NAME_pop_free(copy, wolfSSL_X509_NAME_free);
return NULL;
}
}
return copy;
}
int wolfSSL_sk_X509_NAME_push(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk,
WOLFSSL_X509_NAME* name)
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_push");
if (sk == NULL || name == NULL) {
return BAD_FUNC_ARG;
}
/* no previous values in stack */
if (sk->data.name == NULL) {
sk->data.name = name;
sk->num += 1;
return 0;
}
/* stack already has value(s) create a new node and add more */
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_OPENSSL);
if (node == NULL) {
WOLFSSL_MSG("Memory error");
return MEMORY_E;
}
XMEMSET(node, 0, sizeof(WOLFSSL_STACK));
/* push new obj onto head of stack */
node->data.name = sk->data.name;
node->next = sk->next;
sk->type = STACK_TYPE_X509_NAME;
sk->next = node;
sk->data.name = name;
sk->num += 1;
return 0;
}
/* return index of found, or negative to indicate not found */
int wolfSSL_sk_X509_NAME_find(const WOLF_STACK_OF(WOLFSSL_X509_NAME) *sk,
WOLFSSL_X509_NAME *name)
{
int i;
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_find");
if (sk == NULL)
return BAD_FUNC_ARG;
for (i = 0; sk; i++, sk = sk->next) {
if (wolfSSL_X509_NAME_cmp(sk->data.name, name) == 0) {
return i;
}
}
return -1;
}
int wolfSSL_sk_X509_OBJECT_num(const WOLF_STACK_OF(WOLFSSL_X509_OBJECT) *s)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_OBJECT_num");
if (s) {
return (int)s->num;
} else {
return 0;
}
}
int wolfSSL_sk_X509_NAME_set_cmp_func(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk,
wolf_sk_compare_cb cb)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_set_cmp_func");
if (sk == NULL)
return BAD_FUNC_ARG;
sk->comp = cb;
return 0;
}
#endif /* OPENSSL_ALL */
int wolfSSL_sk_X509_NAME_num(const WOLF_STACK_OF(WOLFSSL_X509_NAME) *sk)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_num");
if (sk == NULL)
return BAD_FUNC_ARG;
return (int)sk->num;
}
/* Getter function for WOLFSSL_X509_NAME pointer
*
* sk is the stack to retrieve pointer from
* i is the index value in stack
*
* returns a pointer to a WOLFSSL_X509_NAME structure on success and NULL on
* fail
*/
WOLFSSL_X509_NAME* wolfSSL_sk_X509_NAME_value(const STACK_OF(WOLFSSL_X509_NAME)* sk,
int i)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_value");
for (; sk != NULL && i > 0; i--) {
sk = sk->next;
}
if (i != 0 || sk == NULL)
return NULL;
return sk->data.name;
}
WOLFSSL_X509_NAME* wolfSSL_sk_X509_NAME_pop(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk)
{
WOLFSSL_STACK* node;
WOLFSSL_X509_NAME* name;
if (sk == NULL) {
return NULL;
}
node = sk->next;
name = sk->data.name;
if (node != NULL) { /* update sk and remove node from stack */
sk->data.name = node->data.name;
sk->next = node->next;
XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL);
}
else { /* last x509 in stack */
sk->data.name = NULL;
}
if (sk->num > 0) {
sk->num -= 1;
}
return name;
}
void wolfSSL_sk_X509_NAME_pop_free(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk,
void (*f) (WOLFSSL_X509_NAME*))
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_pop_free");
if (sk == NULL)
return;
node = sk->next;
while (node && sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
if (f)
f(tmp->data.name);
else
wolfSSL_X509_NAME_free(tmp->data.name);
tmp->data.name = NULL;
XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL);
sk->num -= 1;
}
/* free head of stack */
if (sk->num == 1) {
if (f)
f(sk->data.name);
else
wolfSSL_X509_NAME_free(sk->data.name);
sk->data.name = NULL;
}
XFREE(sk, sk->heap, DYNAMIC_TYPE_OPENSSL);
}
/* Free only the sk structure, NOT X509_NAME members */
void wolfSSL_sk_X509_NAME_free(WOLF_STACK_OF(WOLFSSL_X509_NAME)* sk)
{
WOLFSSL_STACK* node;
WOLFSSL_ENTER("wolfSSL_sk_X509_NAME_free");
if (sk == NULL)
return;
node = sk->next;
while (sk->num > 1) {
WOLFSSL_STACK* tmp = node;
node = node->next;
XFREE(tmp, NULL, DYNAMIC_TYPE_OPENSSL);
sk->num -= 1;
}
XFREE(sk, sk->heap, DYNAMIC_TYPE_OPENSSL);
}
#ifndef NO_BIO
#if defined(WOLFSSL_APACHE_HTTPD) || defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX)
/* Helper function for X509_NAME_print_ex. Sets *buf to string for domain
name attribute based on NID. Returns size of buf */
static int get_dn_attr_by_nid(int n, const char** buf)
{
int len = 0;
const char *str;
switch(n)
{
case NID_commonName :
str = "CN";
len = 2;
break;
case NID_countryName:
str = "C";
len = 1;
break;
case NID_localityName:
str = "L";
len = 1;
break;
case NID_stateOrProvinceName:
str = "ST";
len = 2;
break;
case NID_organizationName:
str = "O";
len = 1;
break;
case NID_organizationalUnitName:
str = "OU";
len = 2;
break;
case NID_emailAddress:
str = "emailAddress";
len = 12;
break;
default:
WOLFSSL_MSG("Attribute type not found");
str = NULL;
}
if (buf != NULL)
*buf = str;
return len;
}
#endif
/*
* The BIO output of wolfSSL_X509_NAME_print_ex does NOT include the null terminator
*/
int wolfSSL_X509_NAME_print_ex(WOLFSSL_BIO* bio, WOLFSSL_X509_NAME* name,
int indent, unsigned long flags)
{
#if defined(WOLFSSL_APACHE_HTTPD) || defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX)
int count = 0, len = 0, totalSz = 0, tmpSz = 0;
char tmp[ASN_NAME_MAX+1];
char fullName[ASN_NAME_MAX];
const char *buf = NULL;
WOLFSSL_X509_NAME_ENTRY* ne;
WOLFSSL_ASN1_STRING* str;
#endif
int i;
(void)flags;
WOLFSSL_ENTER("wolfSSL_X509_NAME_print_ex");
for (i = 0; i < indent; i++) {
if (wolfSSL_BIO_write(bio, " ", 1) != 1)
return WOLFSSL_FAILURE;
}
#if defined(WOLFSSL_APACHE_HTTPD) || defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX)
/* If XN_FLAG_DN_REV is present, print X509_NAME in reverse order */
if (flags == (XN_FLAG_RFC2253 & ~XN_FLAG_DN_REV)) {
fullName[0] = '\0';
count = wolfSSL_X509_NAME_entry_count(name);
for (i = 0; i < count; i++) {
ne = wolfSSL_X509_NAME_get_entry(name, count - i - 1);
if (ne == NULL)
return WOLFSSL_FAILURE;
str = wolfSSL_X509_NAME_ENTRY_get_data(ne);
if (str == NULL)
return WOLFSSL_FAILURE;
len = get_dn_attr_by_nid(ne->nid, &buf);
if (len == 0 || buf == NULL)
return WOLFSSL_FAILURE;
tmpSz = str->length + len + 2; /* + 2 for '=' and comma */
if (tmpSz > ASN_NAME_MAX) {
WOLFSSL_MSG("Size greater than ASN_NAME_MAX");
return WOLFSSL_FAILURE;
}
if (i < count - 1) {
/* tmpSz+1 for last null char */
XSNPRINTF(tmp, tmpSz+1, "%s=%s,", buf, str->data);
XSTRNCAT(fullName, tmp, tmpSz+1);
}
else {
XSNPRINTF(tmp, tmpSz, "%s=%s", buf, str->data);
XSTRNCAT(fullName, tmp, tmpSz-1);
tmpSz--; /* Don't include null char in tmpSz */
}
totalSz += tmpSz;
}
if (wolfSSL_BIO_write(bio, fullName, totalSz) != totalSz)
return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
#else
if (flags == XN_FLAG_RFC2253) {
if (wolfSSL_BIO_write(bio, name->name + 1, name->sz - 2)
!= name->sz - 2)
return WOLFSSL_FAILURE;
}
#endif /* WOLFSSL_APACHE_HTTPD || OPENSSL_ALL || WOLFSSL_NGINX */
else if (wolfSSL_BIO_write(bio, name->name, name->sz - 1) != name->sz - 1)
return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_BIO */
#ifndef NO_FILESYSTEM
int wolfSSL_X509_NAME_print_ex_fp(XFILE file, WOLFSSL_X509_NAME* name,
int indent, unsigned long flags)
{
WOLFSSL_BIO* bio;
int ret;
WOLFSSL_ENTER("wolfSSL_X509_NAME_print_ex_fp");
if (!(bio = wolfSSL_BIO_new_fp(file, BIO_NOCLOSE))) {
WOLFSSL_MSG("wolfSSL_BIO_new_fp error");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_X509_NAME_print_ex(bio, name, indent, flags);
wolfSSL_BIO_free(bio);
return ret;
}
#endif
#ifndef NO_WOLFSSL_STUB
WOLFSSL_ASN1_BIT_STRING* wolfSSL_X509_get0_pubkey_bitstr(const WOLFSSL_X509* x)
{
(void)x;
WOLFSSL_ENTER("wolfSSL_X509_get0_pubkey_bitstr");
WOLFSSL_STUB("X509_get0_pubkey_bitstr");
return NULL;
}
#endif
#ifndef NO_WOLFSSL_STUB
int wolfSSL_CTX_add_session(WOLFSSL_CTX* ctx, WOLFSSL_SESSION* session)
{
(void)ctx;
(void)session;
WOLFSSL_ENTER("wolfSSL_CTX_add_session");
WOLFSSL_STUB("SSL_CTX_add_session");
return WOLFSSL_SUCCESS;
}
#endif
int wolfSSL_version(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_version");
if (ssl->version.major == SSLv3_MAJOR) {
switch (ssl->version.minor) {
case SSLv3_MINOR :
return SSL3_VERSION;
case TLSv1_MINOR :
return TLS1_VERSION;
case TLSv1_1_MINOR :
return TLS1_1_VERSION;
case TLSv1_2_MINOR :
return TLS1_2_VERSION;
case TLSv1_3_MINOR :
return TLS1_3_VERSION;
default:
return WOLFSSL_FAILURE;
}
}
else if (ssl->version.major == DTLS_MAJOR) {
switch (ssl->version.minor) {
case DTLS_MINOR :
return DTLS1_VERSION;
case DTLSv1_2_MINOR :
return DTLS1_2_VERSION;
default:
return WOLFSSL_FAILURE;
}
}
return WOLFSSL_FAILURE;
}
int wolfSSL_X509_NAME_get_sz(WOLFSSL_X509_NAME* name)
{
WOLFSSL_ENTER("wolfSSL_X509_NAME_get_sz");
if(!name)
return -1;
return name->sz;
}
#ifdef HAVE_SNI
int wolfSSL_set_tlsext_host_name(WOLFSSL* ssl, const char* host_name)
{
int ret;
WOLFSSL_ENTER("wolfSSL_set_tlsext_host_name");
ret = wolfSSL_UseSNI(ssl, WOLFSSL_SNI_HOST_NAME,
host_name, (word16)XSTRLEN(host_name));
WOLFSSL_LEAVE("wolfSSL_set_tlsext_host_name", ret);
return ret;
}
#ifndef NO_WOLFSSL_SERVER
const char * wolfSSL_get_servername(WOLFSSL* ssl, byte type)
{
void * serverName = NULL;
if (ssl == NULL)
return NULL;
TLSX_SNI_GetRequest(ssl->extensions, type, &serverName);
return (const char *)serverName;
}
#endif /* NO_WOLFSSL_SERVER */
#endif /* HAVE_SNI */
WOLFSSL_CTX* wolfSSL_set_SSL_CTX(WOLFSSL* ssl, WOLFSSL_CTX* ctx)
{
if (ssl && ctx && SetSSL_CTX(ssl, ctx, 0) == WOLFSSL_SUCCESS)
return ssl->ctx;
return NULL;
}
VerifyCallback wolfSSL_CTX_get_verify_callback(WOLFSSL_CTX* ctx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_verify_callback");
if(ctx)
return ctx->verifyCallback;
return NULL;
}
#ifdef HAVE_SNI
void wolfSSL_CTX_set_servername_callback(WOLFSSL_CTX* ctx, CallbackSniRecv cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_servername_callback");
if (ctx)
ctx->sniRecvCb = cb;
}
int wolfSSL_CTX_set_tlsext_servername_callback(WOLFSSL_CTX* ctx,
CallbackSniRecv cb)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_tlsext_servername_callback");
if (ctx) {
ctx->sniRecvCb = cb;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
int wolfSSL_CTX_set_servername_arg(WOLFSSL_CTX* ctx, void* arg)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_servername_arg");
if (ctx) {
ctx->sniRecvCbArg = arg;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
#endif /* HAVE_SNI */
#ifndef NO_BIO
void wolfSSL_ERR_load_BIO_strings(void) {
WOLFSSL_ENTER("ERR_load_BIO_strings");
/* do nothing */
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_THREADID_set_callback(void(*threadid_func)(void*))
{
WOLFSSL_ENTER("wolfSSL_THREADID_set_callback");
WOLFSSL_STUB("CRYPTO_THREADID_set_callback");
(void)threadid_func;
return;
}
#endif
#ifndef NO_WOLFSSL_STUB
void wolfSSL_THREADID_set_numeric(void* id, unsigned long val)
{
WOLFSSL_ENTER("wolfSSL_THREADID_set_numeric");
WOLFSSL_STUB("CRYPTO_THREADID_set_numeric");
(void)id;
(void)val;
return;
}
#endif
#ifndef NO_WOLFSSL_STUB
WOLF_STACK_OF(WOLFSSL_X509)* wolfSSL_X509_STORE_get1_certs(
WOLFSSL_X509_STORE_CTX* ctx, WOLFSSL_X509_NAME* name)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_get1_certs");
WOLFSSL_STUB("X509_STORE_get1_certs");
(void)ctx;
(void)name;
return NULL;
}
WOLF_STACK_OF(WOLFSSL_X509_OBJECT)* wolfSSL_X509_STORE_get0_objects(
WOLFSSL_X509_STORE* store)
{
WOLFSSL_ENTER("wolfSSL_X509_STORE_get0_objects");
WOLFSSL_STUB("wolfSSL_X509_STORE_get0_objects");
(void)store;
return NULL;
}
WOLFSSL_X509_OBJECT* wolfSSL_sk_X509_OBJECT_delete(
WOLF_STACK_OF(WOLFSSL_X509_OBJECT)* sk, int i)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_OBJECT_delete");
WOLFSSL_STUB("wolfSSL_sk_X509_OBJECT_delete");
(void)sk;
(void)i;
return NULL;
}
void wolfSSL_X509_OBJECT_free(WOLFSSL_X509_OBJECT *a)
{
WOLFSSL_ENTER("wolfSSL_X509_OBJECT_free");
WOLFSSL_STUB("wolfSSL_X509_OBJECT_free");
(void)a;
}
#endif
#endif /* OPENSSL_ALL || (OPENSSL_EXTRA && (HAVE_STUNNEL || WOLFSSL_NGINX || HAVE_LIGHTY)) */
#if defined(OPENSSL_EXTRA)
int wolfSSL_CRYPTO_memcmp(const void *a, const void *b, size_t size)
{
if (!a || !b)
return 0;
return ConstantCompare((const byte*)a, (const byte*)b, (int)size);
}
int wolfSSL_sk_X509_num(const WOLF_STACK_OF(WOLFSSL_X509) *s)
{
WOLFSSL_ENTER("wolfSSL_sk_X509_num");
if (s == NULL)
return -1;
return (int)s->num;
}
unsigned long wolfSSL_ERR_peek_last_error(void)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_last_error");
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_NGINX)
{
int ret;
if ((ret = wc_PeekErrorNode(-1, NULL, NULL, NULL)) < 0) {
WOLFSSL_MSG("Issue peeking at error node in queue");
return 0;
}
if (ret == -ASN_NO_PEM_HEADER)
return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE;
return (unsigned long)ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#endif /* OPENSSL_EXTRA */
WOLFSSL_CTX* wolfSSL_get_SSL_CTX(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_SSL_CTX");
return ssl->ctx;
}
#if defined(OPENSSL_ALL) || \
defined(OPENSSL_EXTRA) || defined(HAVE_STUNNEL) || \
defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
const byte* wolfSSL_SESSION_get_id(WOLFSSL_SESSION* sess, unsigned int* idLen)
{
WOLFSSL_ENTER("wolfSSL_SESSION_get_id");
if(!sess || !idLen) {
WOLFSSL_MSG("Bad func args. Please provide idLen");
return NULL;
}
*idLen = sess->sessionIDSz;
return sess->sessionID;
}
#if (defined(HAVE_SESSION_TICKET) || defined(SESSION_CERTS)) && \
!defined(NO_FILESYSTEM)
#ifndef NO_BIO
#if defined(SESSION_CERTS) || \
(defined(WOLFSSL_TLS13) && defined(HAVE_SESSION_TICKET))
/* returns a pointer to the protocol used by the session */
static const char* wolfSSL_SESSION_get_protocol(const WOLFSSL_SESSION* in)
{
return wolfSSL_internal_get_version((ProtocolVersion*)&in->version);
}
#endif
/* returns true (non 0) if the session has EMS (extended master secret) */
static int wolfSSL_SESSION_haveEMS(const WOLFSSL_SESSION* in)
{
if (in == NULL)
return 0;
return in->haveEMS;
}
#if defined(HAVE_SESSION_TICKET)
/* prints out the ticket to bio passed in
* return WOLFSSL_SUCCESS on success
*/
static int wolfSSL_SESSION_print_ticket(WOLFSSL_BIO* bio,
const WOLFSSL_SESSION* in, const char* tab)
{
unsigned short i, j, z, sz;
short tag = 0;
byte* pt;
if (in == NULL || bio == NULL) {
return BAD_FUNC_ARG;
}
sz = in->ticketLen;
pt = in->ticket;
if (wolfSSL_BIO_printf(bio, "%s\n", (sz == 0)? " NONE": "") <= 0)
return WOLFSSL_FAILURE;
for (i = 0; i < sz;) {
char asc[16];
if (sz - i < 16) {
if (wolfSSL_BIO_printf(bio, "%s%04X -", tab, tag + (sz - i)) <= 0)
return WOLFSSL_FAILURE;
}
else {
if (wolfSSL_BIO_printf(bio, "%s%04X -", tab, tag) <= 0)
return WOLFSSL_FAILURE;
}
for (j = 0; i < sz && j < 8; j++,i++) {
asc[j] = ((pt[i])&0x6f)>='A'?((pt[i])&0x6f):'.';
if (wolfSSL_BIO_printf(bio, " %02X", pt[i]) <= 0)
return WOLFSSL_FAILURE;
}
if (i < sz) {
asc[j] = ((pt[i])&0x6f)>='A'?((pt[i])&0x6f):'.';
if (wolfSSL_BIO_printf(bio, "-%02X", pt[i]) <= 0)
return WOLFSSL_FAILURE;
j++;
i++;
}
for (; i < sz && j < 16; j++,i++) {
asc[j] = ((pt[i])&0x6f)>='A'?((pt[i])&0x6f):'.';
if (wolfSSL_BIO_printf(bio, " %02X", pt[i]) <= 0)
return WOLFSSL_FAILURE;
}
/* pad out spacing */
for (z = j; z < 17; z++) {
if (wolfSSL_BIO_printf(bio, " ") <= 0)
return WOLFSSL_FAILURE;
}
for (z = 0; z < j; z++) {
if (wolfSSL_BIO_printf(bio, "%c", asc[z]) <= 0)
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_printf(bio, "\n") <= 0)
return WOLFSSL_FAILURE;
tag += 16;
}
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_SESSION_TICKET */
/* prints out the session information in human readable form
* return WOLFSSL_SUCCESS on success
*/
int wolfSSL_SESSION_print(WOLFSSL_BIO *bp, const WOLFSSL_SESSION *x)
{
const unsigned char* pt;
unsigned char buf[SECRET_LEN];
unsigned int sz = 0, i;
int ret;
WOLFSSL_SESSION* session = (WOLFSSL_SESSION*)x;
if (session == NULL) {
WOLFSSL_MSG("Bad NULL argument");
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_printf(bp, "%s\n", "SSL-Session:") <= 0)
return WOLFSSL_FAILURE;
#if defined(SESSION_CERTS) || (defined(WOLFSSL_TLS13) && \
defined(HAVE_SESSION_TICKET))
if (wolfSSL_BIO_printf(bp, " Protocol : %s\n",
wolfSSL_SESSION_get_protocol(session)) <= 0)
return WOLFSSL_FAILURE;
#endif
if (wolfSSL_BIO_printf(bp, " Cipher : %s\n",
wolfSSL_SESSION_CIPHER_get_name(session)) <= 0)
return WOLFSSL_FAILURE;
pt = wolfSSL_SESSION_get_id(session, &sz);
if (wolfSSL_BIO_printf(bp, " Session-ID: ") <= 0)
return WOLFSSL_FAILURE;
for (i = 0; i < sz; i++) {
if (wolfSSL_BIO_printf(bp, "%02X", pt[i]) <= 0)
return WOLFSSL_FAILURE;
}
if (wolfSSL_BIO_printf(bp, "\n") <= 0)
return WOLFSSL_FAILURE;
if (wolfSSL_BIO_printf(bp, " Session-ID-ctx: \n") <= 0)
return WOLFSSL_FAILURE;
ret = wolfSSL_SESSION_get_master_key(x, buf, sizeof(buf));
if (wolfSSL_BIO_printf(bp, " Master-Key: ") <= 0)
return WOLFSSL_FAILURE;
if (ret > 0) {
sz = (unsigned int)ret;
for (i = 0; i < sz; i++) {
if (wolfSSL_BIO_printf(bp, "%02X", buf[i]) <= 0)
return WOLFSSL_FAILURE;
}
}
if (wolfSSL_BIO_printf(bp, "\n") <= 0)
return WOLFSSL_FAILURE;
/* @TODO PSK identity hint and SRP */
if (wolfSSL_BIO_printf(bp, " TLS session ticket:") <= 0)
return WOLFSSL_FAILURE;
#ifdef HAVE_SESSION_TICKET
if (wolfSSL_SESSION_print_ticket(bp, x, " ") != WOLFSSL_SUCCESS)
return WOLFSSL_FAILURE;
#endif
#if !defined(NO_SESSION_CACHE) && (defined(OPENSSL_EXTRA) || \
defined(HAVE_EXT_CACHE))
if (wolfSSL_BIO_printf(bp, " Start Time: %ld\n",
wolfSSL_SESSION_get_time(x)) <= 0)
return WOLFSSL_FAILURE;
if (wolfSSL_BIO_printf(bp, " Timeout : %ld (sec)\n",
wolfSSL_SESSION_get_timeout(x)) <= 0)
return WOLFSSL_FAILURE;
#endif /* !NO_SESSION_CACHE && OPENSSL_EXTRA || HAVE_EXT_CACHE */
/* @TODO verify return code print */
if (wolfSSL_BIO_printf(bp, " Extended master secret: %s\n",
(wolfSSL_SESSION_haveEMS(session) == 0)? "no" : "yes") <= 0)
return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
#endif /* !NO_BIO */
#endif /* (HAVE_SESSION_TICKET || SESSION_CERTS) && !NO_FILESYSTEM */
#endif /* OPENSSL_ALL || OPENSSL_EXTRA || HAVE_STUNNEL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */
#if defined(OPENSSL_ALL) || (defined(OPENSSL_EXTRA) && defined(HAVE_STUNNEL)) \
|| defined(WOLFSSL_MYSQL_COMPATIBLE) || defined(WOLFSSL_NGINX)
/* TODO: Doesn't currently track SSL_VERIFY_CLIENT_ONCE */
int wolfSSL_get_verify_mode(const WOLFSSL* ssl) {
int mode = 0;
WOLFSSL_ENTER("wolfSSL_get_verify_mode");
if (!ssl) {
return WOLFSSL_FAILURE;
}
if (ssl->options.verifyNone) {
mode = WOLFSSL_VERIFY_NONE;
}
else {
if (ssl->options.verifyPeer) {
mode |= WOLFSSL_VERIFY_PEER;
}
if (ssl->options.failNoCert) {
mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
if (ssl->options.failNoCertxPSK) {
mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK;
}
}
WOLFSSL_LEAVE("wolfSSL_get_verify_mode", mode);
return mode;
}
int wolfSSL_CTX_get_verify_mode(const WOLFSSL_CTX* ctx)
{
int mode = 0;
WOLFSSL_ENTER("wolfSSL_CTX_get_verify_mode");
if (!ctx) {
return WOLFSSL_FAILURE;
}
if (ctx->verifyNone) {
mode = WOLFSSL_VERIFY_NONE;
}
else {
if (ctx->verifyPeer) {
mode |= WOLFSSL_VERIFY_PEER;
}
if (ctx->failNoCert) {
mode |= WOLFSSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
if (ctx->failNoCertxPSK) {
mode |= WOLFSSL_VERIFY_FAIL_EXCEPT_PSK;
}
}
WOLFSSL_LEAVE("wolfSSL_CTX_get_verify_mode", mode);
return mode;
}
#endif
#if defined(OPENSSL_EXTRA) && defined(HAVE_CURVE25519)
/* return 1 if success, 0 if error
* output keys are little endian format
*/
int wolfSSL_EC25519_generate_key(unsigned char *priv, unsigned int *privSz,
unsigned char *pub, unsigned int *pubSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) priv;
(void) privSz;
(void) pub;
(void) pubSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
int ret = WOLFSSL_FAILURE;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_EC25519_generate_key");
if (priv == NULL || privSz == NULL || *privSz < CURVE25519_KEYSIZE ||
pub == NULL || pubSz == NULL || *pubSz < CURVE25519_KEYSIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FAILURE;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
curve25519_key key;
if (wc_curve25519_init(&key) != MP_OKAY)
WOLFSSL_MSG("wc_curve25519_init failed");
else if (wc_curve25519_make_key(rng, CURVE25519_KEYSIZE, &key)!=MP_OKAY)
WOLFSSL_MSG("wc_curve25519_make_key failed");
/* export key pair */
else if (wc_curve25519_export_key_raw_ex(&key, priv, privSz, pub,
pubSz, EC25519_LITTLE_ENDIAN)
!= MP_OKAY)
WOLFSSL_MSG("wc_curve25519_export_key_raw_ex failed");
else
ret = WOLFSSL_SUCCESS;
wc_curve25519_free(&key);
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
/* return 1 if success, 0 if error
* input and output keys are little endian format
*/
int wolfSSL_EC25519_shared_key(unsigned char *shared, unsigned int *sharedSz,
const unsigned char *priv, unsigned int privSz,
const unsigned char *pub, unsigned int pubSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) shared;
(void) sharedSz;
(void) priv;
(void) privSz;
(void) pub;
(void) pubSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
int ret = WOLFSSL_FAILURE;
curve25519_key privkey, pubkey;
WOLFSSL_ENTER("wolfSSL_EC25519_shared_key");
if (shared == NULL || sharedSz == NULL || *sharedSz < CURVE25519_KEYSIZE ||
priv == NULL || privSz < CURVE25519_KEYSIZE ||
pub == NULL || pubSz < CURVE25519_KEYSIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* import private key */
if (wc_curve25519_init(&privkey) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_init privkey failed");
return ret;
}
if (wc_curve25519_import_private_ex(priv, privSz, &privkey,
EC25519_LITTLE_ENDIAN) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_import_private_ex failed");
wc_curve25519_free(&privkey);
return ret;
}
/* import public key */
if (wc_curve25519_init(&pubkey) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_init pubkey failed");
wc_curve25519_free(&privkey);
return ret;
}
if (wc_curve25519_import_public_ex(pub, pubSz, &pubkey,
EC25519_LITTLE_ENDIAN) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_import_public_ex failed");
wc_curve25519_free(&privkey);
wc_curve25519_free(&pubkey);
return ret;
}
if (wc_curve25519_shared_secret_ex(&privkey, &pubkey,
shared, sharedSz,
EC25519_LITTLE_ENDIAN) != MP_OKAY)
WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed");
else
ret = WOLFSSL_SUCCESS;
wc_curve25519_free(&privkey);
wc_curve25519_free(&pubkey);
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
#endif /* OPENSSL_EXTRA && HAVE_CURVE25519 */
#if defined(OPENSSL_EXTRA) && defined(HAVE_ED25519)
/* return 1 if success, 0 if error
* output keys are little endian format
*/
int wolfSSL_ED25519_generate_key(unsigned char *priv, unsigned int *privSz,
unsigned char *pub, unsigned int *pubSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) priv;
(void) privSz;
(void) pub;
(void) pubSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
int ret = WOLFSSL_FAILURE;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_ED25519_generate_key");
if (priv == NULL || privSz == NULL || *privSz < ED25519_PRV_KEY_SIZE ||
pub == NULL || pubSz == NULL || *pubSz < ED25519_PUB_KEY_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
ed25519_key key;
if (wc_ed25519_init(&key) != MP_OKAY)
WOLFSSL_MSG("wc_ed25519_init failed");
else if (wc_ed25519_make_key(rng, ED25519_KEY_SIZE, &key)!=MP_OKAY)
WOLFSSL_MSG("wc_ed25519_make_key failed");
/* export private key */
else if (wc_ed25519_export_key(&key, priv, privSz, pub, pubSz)!=MP_OKAY)
WOLFSSL_MSG("wc_ed25519_export_key failed");
else
ret = WOLFSSL_SUCCESS;
wc_ed25519_free(&key);
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
/* return 1 if success, 0 if error
* input and output keys are little endian format
* priv is a buffer containing private and public part of key
*/
int wolfSSL_ED25519_sign(const unsigned char *msg, unsigned int msgSz,
const unsigned char *priv, unsigned int privSz,
unsigned char *sig, unsigned int *sigSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) msg;
(void) msgSz;
(void) priv;
(void) privSz;
(void) sig;
(void) sigSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
ed25519_key key;
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_ED25519_sign");
if (priv == NULL || privSz != ED25519_PRV_KEY_SIZE ||
msg == NULL || sig == NULL || *sigSz < ED25519_SIG_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* import key */
if (wc_ed25519_init(&key) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_init failed");
return ret;
}
if (wc_ed25519_import_private_key(priv, privSz/2,
priv+(privSz/2), ED25519_PUB_KEY_SIZE,
&key) != MP_OKAY){
WOLFSSL_MSG("wc_ed25519_import_private failed");
wc_ed25519_free(&key);
return ret;
}
if (wc_ed25519_sign_msg(msg, msgSz, sig, sigSz, &key) != MP_OKAY)
WOLFSSL_MSG("wc_curve25519_shared_secret_ex failed");
else
ret = WOLFSSL_SUCCESS;
wc_ed25519_free(&key);
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
/* return 1 if success, 0 if error
* input and output keys are little endian format
* pub is a buffer containing public part of key
*/
int wolfSSL_ED25519_verify(const unsigned char *msg, unsigned int msgSz,
const unsigned char *pub, unsigned int pubSz,
const unsigned char *sig, unsigned int sigSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) msg;
(void) msgSz;
(void) pub;
(void) pubSz;
(void) sig;
(void) sigSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
ed25519_key key;
int ret = WOLFSSL_FAILURE, check = 0;
WOLFSSL_ENTER("wolfSSL_ED25519_verify");
if (pub == NULL || pubSz != ED25519_PUB_KEY_SIZE ||
msg == NULL || sig == NULL || sigSz != ED25519_SIG_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* import key */
if (wc_ed25519_init(&key) != MP_OKAY) {
WOLFSSL_MSG("wc_curve25519_init failed");
return ret;
}
if (wc_ed25519_import_public(pub, pubSz, &key) != MP_OKAY){
WOLFSSL_MSG("wc_ed25519_import_public failed");
wc_ed25519_free(&key);
return ret;
}
if ((ret = wc_ed25519_verify_msg((byte*)sig, sigSz, msg, msgSz,
&check, &key)) != MP_OKAY) {
WOLFSSL_MSG("wc_ed25519_verify_msg failed");
}
else if (!check)
WOLFSSL_MSG("wc_ed25519_verify_msg failed (signature invalid)");
else
ret = WOLFSSL_SUCCESS;
wc_ed25519_free(&key);
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
#endif /* OPENSSL_EXTRA && HAVE_ED25519 */
#if defined(OPENSSL_EXTRA) && defined(HAVE_CURVE448)
/* return 1 if success, 0 if error
* output keys are little endian format
*/
int wolfSSL_EC448_generate_key(unsigned char *priv, unsigned int *privSz,
unsigned char *pub, unsigned int *pubSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) priv;
(void) privSz;
(void) pub;
(void) pubSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
int ret = WOLFSSL_FAILURE;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_EC448_generate_key");
if (priv == NULL || privSz == NULL || *privSz < CURVE448_KEY_SIZE ||
pub == NULL || pubSz == NULL || *pubSz < CURVE448_KEY_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FAILURE;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
curve448_key key;
if (wc_curve448_init(&key) != MP_OKAY)
WOLFSSL_MSG("wc_curve448_init failed");
else if (wc_curve448_make_key(rng, CURVE448_KEY_SIZE, &key)!=MP_OKAY)
WOLFSSL_MSG("wc_curve448_make_key failed");
/* export key pair */
else if (wc_curve448_export_key_raw_ex(&key, priv, privSz, pub, pubSz,
EC448_LITTLE_ENDIAN)
!= MP_OKAY)
WOLFSSL_MSG("wc_curve448_export_key_raw_ex failed");
else
ret = WOLFSSL_SUCCESS;
wc_curve448_free(&key);
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
/* return 1 if success, 0 if error
* input and output keys are little endian format
*/
int wolfSSL_EC448_shared_key(unsigned char *shared, unsigned int *sharedSz,
const unsigned char *priv, unsigned int privSz,
const unsigned char *pub, unsigned int pubSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) shared;
(void) sharedSz;
(void) priv;
(void) privSz;
(void) pub;
(void) pubSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
int ret = WOLFSSL_FAILURE;
curve448_key privkey, pubkey;
WOLFSSL_ENTER("wolfSSL_EC448_shared_key");
if (shared == NULL || sharedSz == NULL || *sharedSz < CURVE448_KEY_SIZE ||
priv == NULL || privSz < CURVE448_KEY_SIZE ||
pub == NULL || pubSz < CURVE448_KEY_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* import private key */
if (wc_curve448_init(&privkey) != MP_OKAY) {
WOLFSSL_MSG("wc_curve448_init privkey failed");
return ret;
}
if (wc_curve448_import_private_ex(priv, privSz, &privkey,
EC448_LITTLE_ENDIAN) != MP_OKAY) {
WOLFSSL_MSG("wc_curve448_import_private_ex failed");
wc_curve448_free(&privkey);
return ret;
}
/* import public key */
if (wc_curve448_init(&pubkey) != MP_OKAY) {
WOLFSSL_MSG("wc_curve448_init pubkey failed");
wc_curve448_free(&privkey);
return ret;
}
if (wc_curve448_import_public_ex(pub, pubSz, &pubkey,
EC448_LITTLE_ENDIAN) != MP_OKAY) {
WOLFSSL_MSG("wc_curve448_import_public_ex failed");
wc_curve448_free(&privkey);
wc_curve448_free(&pubkey);
return ret;
}
if (wc_curve448_shared_secret_ex(&privkey, &pubkey, shared, sharedSz,
EC448_LITTLE_ENDIAN) != MP_OKAY)
WOLFSSL_MSG("wc_curve448_shared_secret_ex failed");
else
ret = WOLFSSL_SUCCESS;
wc_curve448_free(&privkey);
wc_curve448_free(&pubkey);
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
#endif /* OPENSSL_EXTRA && HAVE_CURVE448 */
#if defined(OPENSSL_EXTRA) && defined(HAVE_ED448)
/* return 1 if success, 0 if error
* output keys are little endian format
*/
int wolfSSL_ED448_generate_key(unsigned char *priv, unsigned int *privSz,
unsigned char *pub, unsigned int *pubSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) priv;
(void) privSz;
(void) pub;
(void) pubSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
int ret = WOLFSSL_FAILURE;
int initTmpRng = 0;
WC_RNG *rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG *tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
WOLFSSL_ENTER("wolfSSL_ED448_generate_key");
if (priv == NULL || privSz == NULL || *privSz < ED448_PRV_KEY_SIZE ||
pub == NULL || pubSz == NULL || *pubSz < ED448_PUB_KEY_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FATAL_ERROR;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0)
WOLFSSL_MSG("Global RNG no Init");
else
rng = &globalRNG;
}
if (rng) {
ed448_key key;
if (wc_ed448_init(&key) != MP_OKAY)
WOLFSSL_MSG("wc_ed448_init failed");
else if (wc_ed448_make_key(rng, ED448_KEY_SIZE, &key) != MP_OKAY)
WOLFSSL_MSG("wc_ed448_make_key failed");
/* export private key */
else if (wc_ed448_export_key(&key, priv, privSz, pub, pubSz) != MP_OKAY)
WOLFSSL_MSG("wc_ed448_export_key failed");
else
ret = WOLFSSL_SUCCESS;
wc_ed448_free(&key);
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
/* return 1 if success, 0 if error
* input and output keys are little endian format
* priv is a buffer containing private and public part of key
*/
int wolfSSL_ED448_sign(const unsigned char *msg, unsigned int msgSz,
const unsigned char *priv, unsigned int privSz,
unsigned char *sig, unsigned int *sigSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) msg;
(void) msgSz;
(void) priv;
(void) privSz;
(void) sig;
(void) sigSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
ed448_key key;
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_ED448_sign");
if (priv == NULL || privSz != ED448_PRV_KEY_SIZE || msg == NULL ||
sig == NULL || *sigSz < ED448_SIG_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* import key */
if (wc_ed448_init(&key) != MP_OKAY) {
WOLFSSL_MSG("wc_curve448_init failed");
return ret;
}
if (wc_ed448_import_private_key(priv, privSz/2, priv+(privSz/2),
ED448_PUB_KEY_SIZE, &key) != MP_OKAY){
WOLFSSL_MSG("wc_ed448_import_private failed");
wc_ed448_free(&key);
return ret;
}
if (wc_ed448_sign_msg(msg, msgSz, sig, sigSz, &key, NULL, 0) != MP_OKAY)
WOLFSSL_MSG("wc_curve448_shared_secret_ex failed");
else
ret = WOLFSSL_SUCCESS;
wc_ed448_free(&key);
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
/* return 1 if success, 0 if error
* input and output keys are little endian format
* pub is a buffer containing public part of key
*/
int wolfSSL_ED448_verify(const unsigned char *msg, unsigned int msgSz,
const unsigned char *pub, unsigned int pubSz,
const unsigned char *sig, unsigned int sigSz)
{
#ifndef WOLFSSL_KEY_GEN
WOLFSSL_MSG("No Key Gen built in");
(void) msg;
(void) msgSz;
(void) pub;
(void) pubSz;
(void) sig;
(void) sigSz;
return WOLFSSL_FAILURE;
#else /* WOLFSSL_KEY_GEN */
ed448_key key;
int ret = WOLFSSL_FAILURE, check = 0;
WOLFSSL_ENTER("wolfSSL_ED448_verify");
if (pub == NULL || pubSz != ED448_PUB_KEY_SIZE || msg == NULL ||
sig == NULL || sigSz != ED448_SIG_SIZE) {
WOLFSSL_MSG("Bad arguments");
return WOLFSSL_FAILURE;
}
/* import key */
if (wc_ed448_init(&key) != MP_OKAY) {
WOLFSSL_MSG("wc_curve448_init failed");
return ret;
}
if (wc_ed448_import_public(pub, pubSz, &key) != MP_OKAY){
WOLFSSL_MSG("wc_ed448_import_public failed");
wc_ed448_free(&key);
return ret;
}
if ((ret = wc_ed448_verify_msg((byte*)sig, sigSz, msg, msgSz, &check,
&key, NULL, 0)) != MP_OKAY) {
WOLFSSL_MSG("wc_ed448_verify_msg failed");
}
else if (!check)
WOLFSSL_MSG("wc_ed448_verify_msg failed (signature invalid)");
else
ret = WOLFSSL_SUCCESS;
wc_ed448_free(&key);
return ret;
#endif /* WOLFSSL_KEY_GEN */
}
#endif /* OPENSSL_EXTRA && HAVE_ED448 */
#ifdef WOLFSSL_JNI
int wolfSSL_set_jobject(WOLFSSL* ssl, void* objPtr)
{
WOLFSSL_ENTER("wolfSSL_set_jobject");
if (ssl != NULL)
{
ssl->jObjectRef = objPtr;
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
void* wolfSSL_get_jobject(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_jobject");
if (ssl != NULL)
return ssl->jObjectRef;
return NULL;
}
#endif /* WOLFSSL_JNI */
#ifdef WOLFSSL_ASYNC_CRYPT
int wolfSSL_CTX_AsyncPoll(WOLFSSL_CTX* ctx, WOLF_EVENT** events, int maxEvents,
WOLF_EVENT_FLAG flags, int* eventCount)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
return wolfAsync_EventQueuePoll(&ctx->event_queue, NULL,
events, maxEvents, flags, eventCount);
}
int wolfSSL_AsyncPoll(WOLFSSL* ssl, WOLF_EVENT_FLAG flags)
{
int ret, eventCount = 0;
WOLF_EVENT* events[1];
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
ret = wolfAsync_EventQueuePoll(&ssl->ctx->event_queue, ssl,
events, sizeof(events)/sizeof(*events), flags, &eventCount);
if (ret == 0) {
ret = eventCount;
}
return ret;
}
#endif /* WOLFSSL_ASYNC_CRYPT */
#ifdef OPENSSL_EXTRA
unsigned long wolfSSL_ERR_peek_error_line_data(const char **file, int *line,
const char **data, int *flags)
{
WOLFSSL_ENTER("wolfSSL_ERR_peek_error_line_data");
(void)line;
(void)file;
/* No data or flags stored - error display only in Nginx. */
if (data != NULL) {
*data = "";
}
if (flags != NULL) {
*flags = 0;
}
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_OPENSSH) || defined(WOLFSSL_HAPROXY) || \
defined(WOLFSSL_MYSQL_COMPATIBLE)
{
int ret = 0;
while (1) {
ret = wc_PeekErrorNode(-1, file, NULL, line);
if (ret == BAD_MUTEX_E || ret == BAD_FUNC_ARG || ret == BAD_STATE_E) {
WOLFSSL_MSG("Issue peeking at error node in queue");
return 0;
}
/* OpenSSL uses positive error codes */
if (ret < 0) {
ret = -ret;
}
if (ret == -ASN_NO_PEM_HEADER)
return (ERR_LIB_PEM << 24) | PEM_R_NO_START_LINE;
if (ret != -WANT_READ && ret != -WANT_WRITE &&
ret != -ZERO_RETURN && ret != -WOLFSSL_ERROR_ZERO_RETURN &&
ret != -SOCKET_PEER_CLOSED_E && ret != -SOCKET_ERROR_E)
break;
wc_RemoveErrorNode(-1);
}
return (unsigned long)ret;
}
#else
return (unsigned long)(0 - NOT_COMPILED_IN);
#endif
}
#endif
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
/* Is the specified cipher suite a fake one used an an extension proxy? */
static WC_INLINE int SCSV_Check(byte suite0, byte suite)
{
(void)suite0;
(void)suite;
#ifdef HAVE_RENEGOTIATION_INDICATION
if (suite0 == CIPHER_BYTE && suite == TLS_EMPTY_RENEGOTIATION_INFO_SCSV)
return 1;
#endif
#ifdef BUILD_TLS_QSH
/* This isn't defined as a SCSV, but it acts like one. */
if (suite0 == QSH_BYTE && suite == TLS_QSH)
return 1;
#endif
return 0;
}
static WC_INLINE int sslCipherMinMaxCheck(const WOLFSSL *ssl, byte suite0,
byte suite)
{
const CipherSuiteInfo* cipher_names = GetCipherNames();
int cipherSz = GetCipherNamesSize();
int i;
for (i = 0; i < cipherSz; i++)
if (cipher_names[i].cipherSuite0 == suite0 &&
cipher_names[i].cipherSuite == suite)
break;
if (i == cipherSz)
return 1;
/* Check min version */
if (cipher_names[i].minor < ssl->options.minDowngrade) {
if (ssl->options.minDowngrade <= TLSv1_2_MINOR &&
cipher_names[i].minor >= TLSv1_MINOR)
/* 1.0 ciphersuites are in general available in 1.1 and
* 1.1 ciphersuites are in general available in 1.2 */
return 0;
return 1;
}
/* Check max version */
switch (cipher_names[i].minor) {
case SSLv3_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_SSLv3;
case TLSv1_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_TLSv1;
case TLSv1_1_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_1;
case TLSv1_2_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_2;
case TLSv1_3_MINOR :
return ssl->options.mask & WOLFSSL_OP_NO_TLSv1_3;
default:
WOLFSSL_MSG("Unrecognized minor version");
return 1;
}
}
/* returns a pointer to internal cipher suite list. Should not be free'd by
* caller.
*/
WOLF_STACK_OF(WOLFSSL_CIPHER) *wolfSSL_get_ciphers_compat(const WOLFSSL *ssl)
{
WOLF_STACK_OF(WOLFSSL_CIPHER)* ret = NULL;
Suites* suites;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
const CipherSuiteInfo* cipher_names = GetCipherNames();
int cipherSz = GetCipherNamesSize();
#endif
WOLFSSL_ENTER("wolfSSL_get_ciphers_compat");
if (ssl == NULL || (ssl->suites == NULL && ssl->ctx->suites == NULL)) {
return NULL;
}
if (ssl->suites != NULL) {
if (ssl->suites->suiteSz == 0 &&
InitSSL_Suites((WOLFSSL*)ssl) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Suite initialization failure");
return NULL;
}
suites = ssl->suites;
}
else {
suites = ssl->ctx->suites;
}
/* check if stack needs populated */
if (suites->stack == NULL) {
int i;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
int j;
#endif
for (i = 0; i < suites->suiteSz; i+=2) {
WOLFSSL_STACK* add;
/* A couple of suites are placeholders for special options,
* skip those. */
if (SCSV_Check(suites->suites[i], suites->suites[i+1])
|| sslCipherMinMaxCheck(ssl, suites->suites[i],
suites->suites[i+1])) {
continue;
}
add = wolfSSL_sk_new_node(ssl->heap);
if (add != NULL) {
add->type = STACK_TYPE_CIPHER;
add->data.cipher.cipherSuite0 = suites->suites[i];
add->data.cipher.cipherSuite = suites->suites[i+1];
add->data.cipher.ssl = ssl;
#if defined(OPENSSL_ALL) || defined(WOLFSSL_QT)
for (j = 0; j < cipherSz; j++) {
if (cipher_names[j].cipherSuite0 ==
add->data.cipher.cipherSuite0 &&
cipher_names[j].cipherSuite ==
add->data.cipher.cipherSuite) {
add->data.cipher.offset = j;
break;
}
}
#endif
#if defined(WOLFSSL_QT) || defined(OPENSSL_ALL)
/* in_stack is checked in wolfSSL_CIPHER_description */
add->data.cipher.in_stack = 1;
#endif
add->next = ret;
if (ret != NULL) {
add->num = ret->num + 1;
}
else {
add->num = 1;
}
ret = add;
}
}
suites->stack = ret;
}
return suites->stack;
}
#ifndef NO_WOLFSSL_STUB
void wolfSSL_OPENSSL_config(char *config_name)
{
(void)config_name;
WOLFSSL_STUB("OPENSSL_config");
}
#endif /* !NO_WOLFSSL_STUB */
#endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) \
|| defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY)
int wolfSSL_X509_get_ex_new_index(int idx, void *arg, void *a, void *b, void *c)
{
static int x509_idx = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_ex_new_index");
(void)idx;
(void)arg;
(void)a;
(void)b;
(void)c;
return x509_idx++;
}
#endif
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL) || \
defined(WOLFSSL_WPAS_SMALL)
#if defined(HAVE_EX_DATA) || defined(FORTRESS)
void* wolfSSL_CRYPTO_get_ex_data(const WOLFSSL_CRYPTO_EX_DATA* ex_data, int idx)
{
WOLFSSL_ENTER("wolfSSL_CTX_get_ex_data");
#ifdef MAX_EX_DATA
if(ex_data && idx < MAX_EX_DATA && idx >= 0) {
return ex_data->ex_data[idx];
}
#else
(void)ex_data;
(void)idx;
#endif
return NULL;
}
int wolfSSL_CRYPTO_set_ex_data(WOLFSSL_CRYPTO_EX_DATA* ex_data, int idx, void *data)
{
WOLFSSL_ENTER("wolfSSL_CRYPTO_set_ex_data");
#ifdef MAX_EX_DATA
if (ex_data && idx < MAX_EX_DATA && idx >= 0) {
ex_data->ex_data[idx] = data;
return WOLFSSL_SUCCESS;
}
#else
(void)ex_data;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
#endif /* HAVE_EX_DATA || FORTRESS */
void *wolfSSL_X509_get_ex_data(X509 *x509, int idx)
{
WOLFSSL_ENTER("wolfSSL_X509_get_ex_data");
#ifdef HAVE_EX_DATA
if (x509 != NULL) {
return wolfSSL_CRYPTO_get_ex_data(&x509->ex_data, idx);
}
#else
(void)x509;
(void)idx;
#endif
return NULL;
}
int wolfSSL_X509_set_ex_data(X509 *x509, int idx, void *data)
{
WOLFSSL_ENTER("wolfSSL_X509_set_ex_data");
#ifdef HAVE_EX_DATA
if (x509 != NULL)
{
return wolfSSL_CRYPTO_set_ex_data(&x509->ex_data, idx, data);
}
#else
(void)x509;
(void)idx;
(void)data;
#endif
return WOLFSSL_FAILURE;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL || WOLFSSL_WPAS_SMALL */
#ifndef NO_ASN
int wolfSSL_X509_check_host(WOLFSSL_X509 *x, const char *chk, size_t chklen,
unsigned int flags, char **peername)
{
int ret;
DecodedCert dCert;
WOLFSSL_ENTER("wolfSSL_X509_check_host");
/* flags and peername not needed for Nginx. */
(void)flags;
(void)peername;
if ((x == NULL) || (chk == NULL)) {
WOLFSSL_MSG("Invalid parameter");
return WOLFSSL_FAILURE;
}
if (flags == WOLFSSL_NO_WILDCARDS) {
WOLFSSL_MSG("X509_CHECK_FLAG_NO_WILDCARDS not yet implemented");
return WOLFSSL_FAILURE;
}
InitDecodedCert(&dCert, x->derCert->buffer, x->derCert->length, NULL);
ret = ParseCertRelative(&dCert, CERT_TYPE, 0, NULL);
if (ret != 0) {
FreeDecodedCert(&dCert);
return WOLFSSL_FAILURE;
}
ret = CheckHostName(&dCert, (char *)chk, chklen);
FreeDecodedCert(&dCert);
if (ret != 0)
return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_check_ip_asc(WOLFSSL_X509 *x, const char *ipasc,
unsigned int flags)
{
int ret = WOLFSSL_FAILURE;
DecodedCert dCert;
WOLFSSL_ENTER("wolfSSL_X509_check_ip_asc");
/* flags not yet implemented */
(void)flags;
if ((x == NULL) || (x->derCert == NULL) || (ipasc == NULL)) {
WOLFSSL_MSG("Invalid parameter");
}
else {
ret = WOLFSSL_SUCCESS;
}
if (ret == WOLFSSL_SUCCESS) {
InitDecodedCert(&dCert, x->derCert->buffer, x->derCert->length, NULL);
ret = ParseCertRelative(&dCert, CERT_TYPE, 0, NULL);
if (ret != 0) {
ret = WOLFSSL_FAILURE;
}
else {
ret = CheckIPAddr(&dCert, ipasc);
if (ret != 0) {
ret = WOLFSSL_FAILURE;
}
else {
ret = WOLFSSL_SUCCESS;
}
}
FreeDecodedCert(&dCert);
}
return ret;
}
#endif
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) \
|| defined(OPENSSL_EXTRA) || defined(HAVE_LIGHTY)
int wolfSSL_X509_NAME_digest(const WOLFSSL_X509_NAME *name,
const WOLFSSL_EVP_MD *type, unsigned char *md, unsigned int *len)
{
WOLFSSL_ENTER("wolfSSL_X509_NAME_digest");
if (name == NULL || type == NULL)
return WOLFSSL_FAILURE;
#if !defined(NO_FILESYSTEM) && !defined(NO_PWDBASED)
return wolfSSL_EVP_Digest((unsigned char*)name->name,
name->sz, md, len, type, NULL);
#else
(void)md;
(void)len;
return NOT_COMPILED_IN;
#endif
}
long wolfSSL_SSL_CTX_get_timeout(const WOLFSSL_CTX *ctx)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_get_timeout");
if (ctx == NULL)
return 0;
return ctx->timeout;
}
/* returns the time in seconds of the current timeout */
long wolfSSL_get_timeout(WOLFSSL* ssl)
{
WOLFSSL_ENTER("wolfSSL_get_timeout");
if (ssl == NULL)
return 0;
return ssl->timeout;
}
#ifdef HAVE_ECC
int wolfSSL_SSL_CTX_set_tmp_ecdh(WOLFSSL_CTX *ctx, WOLFSSL_EC_KEY *ecdh)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_set_tmp_ecdh");
if (ctx == NULL || ecdh == NULL)
return BAD_FUNC_ARG;
ctx->ecdhCurveOID = ecdh->group->curve_oid;
return WOLFSSL_SUCCESS;
}
#endif
/* Assumes that the session passed in is from the cache. */
int wolfSSL_SSL_CTX_remove_session(WOLFSSL_CTX *ctx, WOLFSSL_SESSION *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_CTX_remove_session");
if (ctx == NULL || s == NULL)
return BAD_FUNC_ARG;
#ifdef HAVE_EXT_CACHE
if (!ctx->internalCacheOff)
#endif
{
/* Don't remove session just timeout session. */
s->timeout = 0;
}
#ifdef HAVE_EXT_CACHE
if (ctx->rem_sess_cb != NULL)
ctx->rem_sess_cb(ctx, s);
#endif
return 0;
}
#ifndef NO_BIO
BIO *wolfSSL_SSL_get_rbio(const WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_get_rbio");
/* Nginx sets the buffer size if the read BIO is different to write BIO.
* The setting buffer size doesn't do anything so return NULL for both.
*/
if (s == NULL)
return NULL;
return s->biord;
}
BIO *wolfSSL_SSL_get_wbio(const WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_get_wbio");
(void)s;
/* Nginx sets the buffer size if the read BIO is different to write BIO.
* The setting buffer size doesn't do anything so return NULL for both.
*/
if (s == NULL)
return NULL;
return s->biowr;
}
int wolfSSL_SSL_do_handshake(WOLFSSL *s)
{
WOLFSSL_ENTER("wolfSSL_SSL_do_handshake");
if (s == NULL)
return WOLFSSL_FAILURE;
if (s->options.side == WOLFSSL_CLIENT_END) {
#ifndef NO_WOLFSSL_CLIENT
return wolfSSL_connect(s);
#else
WOLFSSL_MSG("Client not compiled in");
return WOLFSSL_FAILURE;
#endif
}
#ifndef NO_WOLFSSL_SERVER
return wolfSSL_accept(s);
#else
WOLFSSL_MSG("Server not compiled in");
return WOLFSSL_FAILURE;
#endif
}
int wolfSSL_SSL_in_init(WOLFSSL *ssl)
{
WOLFSSL_ENTER("SSL_in_init");
if (ssl == NULL)
return WOLFSSL_FAILURE;
if (ssl->options.side == WOLFSSL_CLIENT_END) {
return ssl->options.connectState < SECOND_REPLY_DONE;
}
return ssl->options.acceptState < ACCEPT_THIRD_REPLY_DONE;
}
int wolfSSL_SSL_in_connect_init(WOLFSSL* ssl)
{
WOLFSSL_ENTER("SSL_connect_init");
if (ssl == NULL)
return WOLFSSL_FAILURE;
if (ssl->options.side == WOLFSSL_CLIENT_END) {
return ssl->options.connectState > CONNECT_BEGIN &&
ssl->options.connectState < SECOND_REPLY_DONE;
}
return ssl->options.acceptState > ACCEPT_BEGIN &&
ssl->options.acceptState < ACCEPT_THIRD_REPLY_DONE;
}
#ifndef NO_SESSION_CACHE
WOLFSSL_SESSION *wolfSSL_SSL_get0_session(const WOLFSSL *ssl)
{
WOLFSSL_SESSION *session;
WOLFSSL_ENTER("wolfSSL_SSL_get0_session");
if (ssl == NULL) {
return NULL;
}
session = wolfSSL_get_session((WOLFSSL*)ssl);
#ifdef HAVE_EXT_CACHE
((WOLFSSL*)ssl)->extSession = session;
#endif
return session;
}
#endif /* NO_SESSION_CACHE */
int wolfSSL_a2i_ASN1_INTEGER(WOLFSSL_BIO *bio, WOLFSSL_ASN1_INTEGER *asn1,
char *buf, int size)
{
int readNextLine;
int lineLen;
int len;
byte isNumCheck;
word32 outLen;
const int extraTagSz = MAX_LENGTH_SZ + 1;
byte intTag[MAX_LENGTH_SZ + 1];
int idx = 0;
WOLFSSL_ENTER("wolfSSL_a2i_ASN1_INTEGER");
if (!bio || !asn1 || !buf || size <= 0) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
/* Reset asn1 */
if (asn1->isDynamic && asn1->data) {
XFREE(asn1->data, NULL, DYNAMIC_TYPE_OPENSSL);
asn1->isDynamic = 0;
}
XMEMSET(asn1->intData, 0, sizeof(WOLFSSL_ASN1_INTEGER));
asn1->data = asn1->intData;
asn1->length = 0;
asn1->negative = 0;
asn1->type = V_ASN1_INTEGER;
lineLen = wolfSSL_BIO_gets(bio, buf, size);
do {
readNextLine = 0;
if (lineLen <= 0) {
WOLFSSL_MSG("wolfSSL_BIO_gets error");
return WOLFSSL_FAILURE;
}
while (lineLen && (buf[lineLen-1] == '\n' || buf[lineLen-1] == '\r'))
lineLen--;
if (buf[lineLen-1] == '\\')
readNextLine = 1;
/* Ignore none-hex chars at the end of the line */
outLen = 1;
while (lineLen && Base16_Decode((byte*)buf + lineLen - 1, 1,
&isNumCheck, &outLen) == ASN_INPUT_E)
lineLen--;
if (!lineLen || lineLen % 2) {
WOLFSSL_MSG("Invalid line length");
return WOLFSSL_FAILURE;
}
len = asn1->length + (lineLen/2);
/* Check if it will fit in static memory and
* save space for the ASN tag in front */
if (len > (int)(sizeof(asn1->intData) - extraTagSz)) {
/* Allocate mem for data */
if (asn1->isDynamic) {
byte* tmp = (byte*)XREALLOC(asn1->data, len + extraTagSz, NULL,
DYNAMIC_TYPE_OPENSSL);
if (!tmp) {
WOLFSSL_MSG("realloc error");
return WOLFSSL_FAILURE;
}
asn1->data = tmp;
}
else {
asn1->data = (byte*)XMALLOC(len + extraTagSz, NULL,
DYNAMIC_TYPE_OPENSSL);
if (!asn1->data) {
WOLFSSL_MSG("malloc error");
return WOLFSSL_FAILURE;
}
XMEMCPY(asn1->data, asn1->intData, asn1->length);
}
}
len = lineLen/2;
if (Base16_Decode((byte*)buf, lineLen, asn1->data + asn1->length,
(word32*)&len) != 0) {
WOLFSSL_MSG("Base16_Decode error");
return WOLFSSL_FAILURE;
}
asn1->length += len;
} while (readNextLine);
/* Write ASN tag */
idx = SetASNInt(asn1->length, asn1->data[0], intTag);
XMEMMOVE(asn1->data + idx, asn1->data, asn1->length);
XMEMCPY(asn1->data, intTag, idx);
asn1->dataMax = asn1->length += idx;
return WOLFSSL_SUCCESS;
}
int wolfSSL_i2a_ASN1_INTEGER(BIO *bp, const WOLFSSL_ASN1_INTEGER *a)
{
word32 idx = 1;
int len = 0;
byte buf[512];
word32 bufLen = 512;
WOLFSSL_ENTER("wolfSSL_i2a_ASN1_INTEGER");
if (bp == NULL || a == NULL)
return WOLFSSL_FAILURE;
/* Skip ASN.1 INTEGER (type) byte. */
if (a->data[idx] == 0x80 || /* Indefinite length, can't determine length */
GetLength(a->data, &idx, &len, a->length) < 0) {
return 0;
}
/* Zero length integer is the value zero. */
if (len == 0) {
wolfSSL_BIO_write(bp, "00", 2);
return 2;
}
if (Base16_Encode(a->data + idx, len, buf, &bufLen) != 0 ||
bufLen <= 0) {
return 0;
}
return wolfSSL_BIO_write(bp, buf, bufLen - 1); /* Don't write out NULL char */
}
#endif /* !NO_BIO */
#if defined(HAVE_SESSION_TICKET) && !defined(NO_WOLFSSL_SERVER)
/* Expected return values from implementations of OpenSSL ticket key callback.
*/
#define TICKET_KEY_CB_RET_FAILURE -1
#define TICKET_KEY_CB_RET_NOT_FOUND 0
#define TICKET_KEY_CB_RET_OK 1
#define TICKET_KEY_CB_RET_RENEW 2
/* The ticket key callback as used in OpenSSL is stored here. */
static int (*ticketKeyCb)(WOLFSSL *ssl, unsigned char *name, unsigned char *iv,
WOLFSSL_EVP_CIPHER_CTX *ectx, WOLFSSL_HMAC_CTX *hctx, int enc) = NULL;
/* Implementation of session ticket encryption/decryption using OpenSSL
* callback to initialize the cipher and HMAC.
*
* ssl The SSL/TLS object.
* keyName The key name - used to identify the key to be used.
* iv The IV to use.
* mac The MAC of the encrypted data.
* enc Encrypt ticket.
* encTicket The ticket data.
* encTicketLen The length of the ticket data.
* encLen The encrypted/decrypted ticket length - output length.
* ctx Ignored. Application specific data.
* returns WOLFSSL_TICKET_RET_OK to indicate success,
* WOLFSSL_TICKET_RET_CREATE if a new ticket is required and
* WOLFSSL_TICKET_RET_FATAL on error.
*/
static int wolfSSL_TicketKeyCb(WOLFSSL* ssl,
unsigned char keyName[WOLFSSL_TICKET_NAME_SZ],
unsigned char iv[WOLFSSL_TICKET_IV_SZ],
unsigned char mac[WOLFSSL_TICKET_MAC_SZ],
int enc, unsigned char* encTicket,
int encTicketLen, int* encLen, void* ctx)
{
byte digest[WC_MAX_DIGEST_SIZE];
WOLFSSL_EVP_CIPHER_CTX evpCtx;
WOLFSSL_HMAC_CTX hmacCtx;
unsigned int mdSz = 0;
int len = 0;
int ret = WOLFSSL_TICKET_RET_FATAL;
int res;
(void)ctx;
if (ticketKeyCb == NULL)
return WOLFSSL_TICKET_RET_FATAL;
wolfSSL_EVP_CIPHER_CTX_init(&evpCtx);
/* Initialize the cipher and HMAC. */
res = ticketKeyCb(ssl, keyName, iv, &evpCtx, &hmacCtx, enc);
if (res != TICKET_KEY_CB_RET_OK && res != TICKET_KEY_CB_RET_RENEW)
return WOLFSSL_TICKET_RET_FATAL;
if (enc)
{
/* Encrypt in place. */
if (!wolfSSL_EVP_CipherUpdate(&evpCtx, encTicket, &len,
encTicket, encTicketLen))
goto end;
encTicketLen = len;
if (!wolfSSL_EVP_EncryptFinal(&evpCtx, &encTicket[encTicketLen], &len))
goto end;
/* Total length of encrypted data. */
encTicketLen += len;
*encLen = encTicketLen;
/* HMAC the encrypted data into the parameter 'mac'. */
if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen))
goto end;
#ifdef WOLFSSL_SHA512
/* Check for SHA512, which would overrun the mac buffer */
if (hmacCtx.hmac.macType == WC_SHA512)
goto end;
#endif
if (!wolfSSL_HMAC_Final(&hmacCtx, mac, &mdSz))
goto end;
}
else
{
/* HMAC the encrypted data and compare it to the passed in data. */
if (!wolfSSL_HMAC_Update(&hmacCtx, encTicket, encTicketLen))
goto end;
if (!wolfSSL_HMAC_Final(&hmacCtx, digest, &mdSz))
goto end;
if (XMEMCMP(mac, digest, mdSz) != 0)
goto end;
/* Decrypt the ticket data in place. */
if (!wolfSSL_EVP_CipherUpdate(&evpCtx, encTicket, &len,
encTicket, encTicketLen))
goto end;
encTicketLen = len;
if (!wolfSSL_EVP_DecryptFinal(&evpCtx, &encTicket[encTicketLen], &len))
goto end;
/* Total length of decrypted data. */
*encLen = encTicketLen + len;
}
ret = (res == TICKET_KEY_CB_RET_RENEW) ? WOLFSSL_TICKET_RET_CREATE :
WOLFSSL_TICKET_RET_OK;
end:
return ret;
}
/* Set the callback to use when encrypting/decrypting tickets.
*
* ctx The SSL/TLS context object.
* cb The OpenSSL session ticket callback.
* returns WOLFSSL_SUCCESS to indicate success.
*/
int wolfSSL_CTX_set_tlsext_ticket_key_cb(WOLFSSL_CTX *ctx, int (*cb)(
WOLFSSL *ssl, unsigned char *name, unsigned char *iv,
WOLFSSL_EVP_CIPHER_CTX *ectx, WOLFSSL_HMAC_CTX *hctx, int enc))
{
/* Store callback in a global. */
ticketKeyCb = cb;
/* Set the ticket encryption callback to be a wrapper around OpenSSL
* callback.
*/
ctx->ticketEncCb = wolfSSL_TicketKeyCb;
return WOLFSSL_SUCCESS;
}
#endif /* HAVE_SESSION_TICKET */
#endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY ||
OPENSSL_EXTRA || HAVE_LIGHTY */
#if defined(HAVE_SESSION_TICKET) && !defined(WOLFSSL_NO_DEF_TICKET_ENC_CB) && \
!defined(NO_WOLFSSL_SERVER)
/* Serialize the session ticket encryption keys.
*
* @param [in] ctx SSL/TLS context object.
* @param [in] keys Buffer to hold session ticket keys.
* @param [in] keylen Length of buffer.
* @return WOLFSSL_SUCCESS on success.
* @return WOLFSSL_FAILURE when ctx is NULL, keys is NULL or keylen is not the
* correct length.
*/
long wolfSSL_CTX_get_tlsext_ticket_keys(WOLFSSL_CTX *ctx,
unsigned char *keys, int keylen)
{
if (ctx == NULL || keys == NULL) {
return WOLFSSL_FAILURE;
}
if (keylen != WOLFSSL_TICKET_KEYS_SZ) {
return WOLFSSL_FAILURE;
}
XMEMCPY(keys, ctx->ticketKeyCtx.name, WOLFSSL_TICKET_NAME_SZ);
keys += WOLFSSL_TICKET_NAME_SZ;
XMEMCPY(keys, ctx->ticketKeyCtx.key[0], WOLFSSL_TICKET_KEY_SZ);
keys += WOLFSSL_TICKET_KEY_SZ;
XMEMCPY(keys, ctx->ticketKeyCtx.key[1], WOLFSSL_TICKET_KEY_SZ);
keys += WOLFSSL_TICKET_KEY_SZ;
c32toa(ctx->ticketKeyCtx.expirary[0], keys);
keys += OPAQUE32_LEN;
c32toa(ctx->ticketKeyCtx.expirary[1], keys);
return WOLFSSL_SUCCESS;
}
/* Deserialize the session ticket encryption keys.
*
* @param [in] ctx SSL/TLS context object.
* @param [in] keys Session ticket keys.
* @param [in] keylen Length of data.
* @return WOLFSSL_SUCCESS on success.
* @return WOLFSSL_FAILURE when ctx is NULL, keys is NULL or keylen is not the
* correct length.
*/
long wolfSSL_CTX_set_tlsext_ticket_keys(WOLFSSL_CTX *ctx,
unsigned char *keys, int keylen)
{
if (ctx == NULL || keys == NULL) {
return WOLFSSL_FAILURE;
}
if (keylen != WOLFSSL_TICKET_KEYS_SZ) {
return WOLFSSL_FAILURE;
}
XMEMCPY(ctx->ticketKeyCtx.name, keys, WOLFSSL_TICKET_NAME_SZ);
keys += WOLFSSL_TICKET_NAME_SZ;
XMEMCPY(ctx->ticketKeyCtx.key[0], keys, WOLFSSL_TICKET_KEY_SZ);
keys += WOLFSSL_TICKET_KEY_SZ;
XMEMCPY(ctx->ticketKeyCtx.key[1], keys, WOLFSSL_TICKET_KEY_SZ);
keys += WOLFSSL_TICKET_KEY_SZ;
ato32(keys, &ctx->ticketKeyCtx.expirary[0]);
keys += OPAQUE32_LEN;
ato32(keys, &ctx->ticketKeyCtx.expirary[1]);
return WOLFSSL_SUCCESS;
}
#endif
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY)
#ifdef HAVE_OCSP
/* Not an OpenSSL API. */
int wolfSSL_get_ocsp_response(WOLFSSL* ssl, byte** response)
{
*response = ssl->ocspResp;
return ssl->ocspRespSz;
}
/* Not an OpenSSL API. */
char* wolfSSL_get_ocsp_url(WOLFSSL* ssl)
{
return ssl->url;
}
/* Not an OpenSSL API. */
int wolfSSL_set_ocsp_url(WOLFSSL* ssl, char* url)
{
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->url = url;
return WOLFSSL_SUCCESS;
}
#endif /* OCSP */
#endif /* OPENSSL_ALL || WOLFSSL_NGINX || WOLFSSL_HAPROXY */
#if defined(HAVE_OCSP) && !defined(NO_ASN_TIME)
int wolfSSL_get_ocsp_producedDate(
WOLFSSL *ssl,
byte *producedDate,
size_t producedDate_space,
int *producedDateFormat)
{
if ((ssl->ocspProducedDateFormat != ASN_UTC_TIME) &&
(ssl->ocspProducedDateFormat != ASN_GENERALIZED_TIME))
return BAD_FUNC_ARG;
if ((producedDate == NULL) || (producedDateFormat == NULL))
return BAD_FUNC_ARG;
if (XSTRLEN((char *)ssl->ocspProducedDate) >= producedDate_space)
return BUFFER_E;
XSTRNCPY((char *)producedDate, (const char *)ssl->ocspProducedDate, producedDate_space);
*producedDateFormat = ssl->ocspProducedDateFormat;
return 0;
}
int wolfSSL_get_ocsp_producedDate_tm(WOLFSSL *ssl, struct tm *produced_tm) {
int idx = 0;
if ((ssl->ocspProducedDateFormat != ASN_UTC_TIME) &&
(ssl->ocspProducedDateFormat != ASN_GENERALIZED_TIME))
return BAD_FUNC_ARG;
if (produced_tm == NULL)
return BAD_FUNC_ARG;
if (ExtractDate(ssl->ocspProducedDate, ssl->ocspProducedDateFormat, produced_tm, &idx))
return 0;
else
return ASN_PARSE_E;
}
#endif
#if defined(WOLFSSL_NGINX) || defined(WOLFSSL_HAPROXY) || \
defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
int wolfSSL_CTX_get_extra_chain_certs(WOLFSSL_CTX* ctx, WOLF_STACK_OF(X509)** chain)
{
word32 idx;
word32 length;
WOLFSSL_STACK* node;
WOLFSSL_STACK* last = NULL;
if (ctx == NULL || chain == NULL) {
chain = NULL;
return WOLFSSL_FAILURE;
}
if (ctx->x509Chain != NULL) {
*chain = ctx->x509Chain;
return WOLFSSL_SUCCESS;
}
/* If there are no chains then success! */
*chain = NULL;
if (ctx->certChain == NULL || ctx->certChain->length == 0) {
return WOLFSSL_SUCCESS;
}
/* Create a new stack of WOLFSSL_X509 object from chain buffer. */
for (idx = 0; idx < ctx->certChain->length; ) {
node = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_OPENSSL);
if (node == NULL)
return WOLFSSL_FAILURE;
node->next = NULL;
/* 3 byte length | X509 DER data */
ato24(ctx->certChain->buffer + idx, &length);
idx += 3;
/* Create a new X509 from DER encoded data. */
node->data.x509 = wolfSSL_X509_d2i(NULL, ctx->certChain->buffer + idx,
length);
if (node->data.x509 == NULL) {
XFREE(node, NULL, DYNAMIC_TYPE_OPENSSL);
/* Return as much of the chain as we created. */
ctx->x509Chain = *chain;
return WOLFSSL_FAILURE;
}
idx += length;
/* Add object to the end of the stack. */
if (last == NULL) {
node->num = 1;
*chain = node;
}
else {
(*chain)->num++;
last->next = node;
}
last = node;
}
ctx->x509Chain = *chain;
return WOLFSSL_SUCCESS;
}
int wolfSSL_CTX_set_tlsext_status_cb(WOLFSSL_CTX* ctx,
int(*cb)(WOLFSSL*, void*))
{
if (ctx == NULL || ctx->cm == NULL)
return WOLFSSL_FAILURE;
#if !defined(NO_WOLFSSL_SERVER) && (defined(HAVE_CERTIFICATE_STATUS_REQUEST) \
|| defined(HAVE_CERTIFICATE_STATUS_REQUEST_V2))
/* Ensure stapling is on for callback to be used. */
wolfSSL_CTX_EnableOCSPStapling(ctx);
if (ctx->cm->ocsp_stapling == NULL)
return WOLFSSL_FAILURE;
ctx->cm->ocsp_stapling->statusCb = cb;
#else
(void)cb;
#endif
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_STORE_CTX_get1_issuer(WOLFSSL_X509 **issuer,
WOLFSSL_X509_STORE_CTX *ctx, WOLFSSL_X509 *x)
{
WOLFSSL_STACK* node;
Signer* ca = NULL;
#ifdef WOLFSSL_SMALL_STACK
DecodedCert* cert = NULL;
#else
DecodedCert cert[1];
#endif
if (issuer == NULL || ctx == NULL || x == NULL)
return WOLFSSL_FATAL_ERROR;
if (ctx->chain != NULL) {
for (node = ctx->chain; node != NULL; node = node->next) {
if (wolfSSL_X509_check_issued(node->data.x509, x) == X509_V_OK) {
*issuer = x;
return WOLFSSL_SUCCESS;
}
}
}
#ifdef WOLFSSL_SMALL_STACK
cert = (DecodedCert*)XMALLOC(sizeof(DecodedCert), NULL, DYNAMIC_TYPE_DCERT);
if (cert == NULL)
return WOLFSSL_FAILURE;
#endif
/* Use existing CA retrieval APIs that use DecodedCert. */
InitDecodedCert(cert, x->derCert->buffer, x->derCert->length, NULL);
if (ParseCertRelative(cert, CERT_TYPE, 0, NULL) == 0) {
#ifndef NO_SKID
if (cert->extAuthKeyIdSet)
ca = GetCA(ctx->store->cm, cert->extAuthKeyId);
if (ca == NULL)
ca = GetCAByName(ctx->store->cm, cert->issuerHash);
#else /* NO_SKID */
ca = GetCA(ctx->store->cm, cert->issuerHash);
#endif /* NO SKID */
}
FreeDecodedCert(cert);
#ifdef WOLFSSL_SMALL_STACK
XFREE(cert, NULL, DYNAMIC_TYPE_DCERT);
#endif
if (ca == NULL)
return WOLFSSL_FAILURE;
#ifdef WOLFSSL_SIGNER_DER_CERT
/* populate issuer with Signer DER */
*issuer = wolfSSL_X509_d2i(issuer, ca->derCert->buffer,
ca->derCert->length);
if (*issuer == NULL)
return WOLFSSL_FAILURE;
#else
/* Create an empty certificate as CA doesn't have a certificate. */
*issuer = (WOLFSSL_X509 *)XMALLOC(sizeof(WOLFSSL_X509), 0,
DYNAMIC_TYPE_OPENSSL);
if (*issuer == NULL)
return WOLFSSL_FAILURE;
InitX509((*issuer), 1, NULL);
#endif
/* Result is ignored when passed to wolfSSL_OCSP_cert_to_id(). */
return WOLFSSL_SUCCESS;
}
void wolfSSL_X509_email_free(WOLF_STACK_OF(WOLFSSL_STRING) *sk)
{
WOLFSSL_STACK *curr;
while (sk != NULL) {
curr = sk;
sk = sk->next;
XFREE(curr, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
WOLF_STACK_OF(WOLFSSL_STRING) *wolfSSL_X509_get1_ocsp(WOLFSSL_X509 *x)
{
WOLFSSL_STACK* list = NULL;
char* url;
if (x->authInfoSz == 0)
return NULL;
list = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK) + x->authInfoSz + 1,
NULL, DYNAMIC_TYPE_OPENSSL);
if (list == NULL)
return NULL;
url = (char*)list;
url += sizeof(WOLFSSL_STACK);
XMEMCPY(url, x->authInfo, x->authInfoSz);
url[x->authInfoSz] = '\0';
list->data.string = url;
list->next = NULL;
return list;
}
int wolfSSL_X509_check_issued(WOLFSSL_X509 *issuer, WOLFSSL_X509 *subject)
{
WOLFSSL_X509_NAME *issuerName = wolfSSL_X509_get_issuer_name(subject);
WOLFSSL_X509_NAME *subjectName = wolfSSL_X509_get_subject_name(issuer);
if (issuerName == NULL || subjectName == NULL)
return X509_V_ERR_SUBJECT_ISSUER_MISMATCH;
/* Literal matching of encoded names and key ids. */
if (issuerName->sz != subjectName->sz ||
XMEMCMP(issuerName->name, subjectName->name, subjectName->sz) != 0) {
return X509_V_ERR_SUBJECT_ISSUER_MISMATCH;
}
if (subject->authKeyId != NULL && issuer->subjKeyId != NULL) {
if (subject->authKeyIdSz != issuer->subjKeyIdSz ||
XMEMCMP(subject->authKeyId, issuer->subjKeyId,
issuer->subjKeyIdSz) != 0) {
return X509_V_ERR_SUBJECT_ISSUER_MISMATCH;
}
}
return X509_V_OK;
}
WOLF_STACK_OF(WOLFSSL_STRING)* wolfSSL_sk_WOLFSSL_STRING_new(void)
{
WOLF_STACK_OF(WOLFSSL_STRING)* ret = wolfSSL_sk_new_node(NULL);
if (ret) {
ret->type = STACK_TYPE_STRING;
}
return ret;
}
void wolfSSL_sk_WOLFSSL_STRING_free(WOLF_STACK_OF(WOLFSSL_STRING)* sk)
{
WOLFSSL_STACK* tmp;
WOLFSSL_ENTER("wolfSSL_sk_WOLFSSL_STRING_free");
if (sk == NULL)
return;
/* parse through stack freeing each node */
while (sk) {
tmp = sk->next;
XFREE(sk->data.string, NULL, DYNAMIC_TYPE_OPENSSL);
XFREE(sk, NULL, DYNAMIC_TYPE_OPENSSL);
sk = tmp;
}
}
WOLFSSL_STRING wolfSSL_sk_WOLFSSL_STRING_value(WOLF_STACK_OF(WOLFSSL_STRING)* strings,
int idx)
{
for (; idx > 0 && strings != NULL; idx--)
strings = strings->next;
if (strings == NULL)
return NULL;
return strings->data.string;
}
int wolfSSL_sk_WOLFSSL_STRING_num(WOLF_STACK_OF(WOLFSSL_STRING)* strings)
{
if (strings)
return (int)strings->num;
return 0;
}
#endif /* WOLFSSL_NGINX || WOLFSSL_HAPROXY || OPENSSL_EXTRA || OPENSSL_ALL */
#if defined(OPENSSL_EXTRA) || defined(WOLFSSL_WPAS_SMALL)
WOLFSSL_X509* wolfSSL_X509_dup(WOLFSSL_X509 *x)
{
WOLFSSL_ENTER("wolfSSL_X509_dup");
if (x == NULL) {
WOLFSSL_MSG("Error: NULL certificate passed in");
return NULL;
}
return wolfSSL_X509_d2i(NULL, x->derCert->buffer, x->derCert->length);
}
#endif /* OPENSSL_EXTRA || WOLFSSL_WPAS_SMALL */
#if defined(OPENSSL_ALL) || defined(WOLFSSL_NGINX) || \
defined(WOLFSSL_HAPROXY) || defined(HAVE_LIGHTY)
#ifdef HAVE_ALPN
void wolfSSL_get0_alpn_selected(const WOLFSSL *ssl, const unsigned char **data,
unsigned int *len)
{
word16 nameLen;
if (ssl != NULL && data != NULL && len != NULL) {
TLSX_ALPN_GetRequest(ssl->extensions, (void **)data, &nameLen);
*len = nameLen;
}
}
int wolfSSL_select_next_proto(unsigned char **out, unsigned char *outLen,
const unsigned char *in, unsigned int inLen,
const unsigned char *clientNames,
unsigned int clientLen)
{
unsigned int i, j;
byte lenIn, lenClient;
if (out == NULL || outLen == NULL || in == NULL || clientNames == NULL)
return OPENSSL_NPN_UNSUPPORTED;
for (i = 0; i < inLen; i += lenIn) {
lenIn = in[i++];
for (j = 0; j < clientLen; j += lenClient) {
lenClient = clientNames[j++];
if (lenIn != lenClient)
continue;
if (XMEMCMP(in + i, clientNames + j, lenIn) == 0) {
*out = (unsigned char *)(in + i);
*outLen = lenIn;
return OPENSSL_NPN_NEGOTIATED;
}
}
}
*out = (unsigned char *)clientNames + 1;
*outLen = clientNames[0];
return OPENSSL_NPN_NO_OVERLAP;
}
void wolfSSL_CTX_set_alpn_select_cb(WOLFSSL_CTX *ctx,
int (*cb) (WOLFSSL *ssl,
const unsigned char **out,
unsigned char *outlen,
const unsigned char *in,
unsigned int inlen,
void *arg), void *arg)
{
if (ctx != NULL) {
ctx->alpnSelect = cb;
ctx->alpnSelectArg = arg;
}
}
void wolfSSL_CTX_set_next_protos_advertised_cb(WOLFSSL_CTX *s,
int (*cb) (WOLFSSL *ssl,
const unsigned char
**out,
unsigned int *outlen,
void *arg), void *arg)
{
(void)s;
(void)cb;
(void)arg;
WOLFSSL_STUB("wolfSSL_CTX_set_next_protos_advertised_cb");
}
void wolfSSL_CTX_set_next_proto_select_cb(WOLFSSL_CTX *s,
int (*cb) (WOLFSSL *ssl,
unsigned char **out,
unsigned char *outlen,
const unsigned char *in,
unsigned int inlen,
void *arg), void *arg)
{
(void)s;
(void)cb;
(void)arg;
WOLFSSL_STUB("wolfSSL_CTX_set_next_proto_select_cb");
}
void wolfSSL_get0_next_proto_negotiated(const WOLFSSL *s, const unsigned char **data,
unsigned *len)
{
(void)s;
(void)data;
(void)len;
WOLFSSL_STUB("wolfSSL_get0_next_proto_negotiated");
}
#endif /* HAVE_ALPN */
#endif /* WOLFSSL_NGINX / WOLFSSL_HAPROXY */
#if defined(OPENSSL_EXTRA) && defined(HAVE_ECC)
int wolfSSL_CTX_set1_curves_list(WOLFSSL_CTX* ctx, const char* names)
{
int idx, start = 0, len;
word16 curve;
char name[MAX_CURVE_NAME_SZ];
/* Disable all curves so that only the ones the user wants are enabled. */
ctx->disabledCurves = 0xFFFFFFFFUL;
for (idx = 1; names[idx-1] != '\0'; idx++) {
if (names[idx] != ':' && names[idx] != '\0')
continue;
len = idx - 1 - start;
if (len > MAX_CURVE_NAME_SZ - 1)
return WOLFSSL_FAILURE;
XMEMCPY(name, names + start, len);
name[len] = 0;
if ((XSTRNCMP(name, "prime256v1", len) == 0) ||
(XSTRNCMP(name, "secp256r1", len) == 0) ||
(XSTRNCMP(name, "P-256", len) == 0)) {
curve = WOLFSSL_ECC_SECP256R1;
}
else if ((XSTRNCMP(name, "secp384r1", len) == 0) ||
(XSTRNCMP(name, "P-384", len) == 0)) {
curve = WOLFSSL_ECC_SECP384R1;
}
else if ((XSTRNCMP(name, "secp521r1", len) == 0) ||
(XSTRNCMP(name, "P-521", len) == 0)) {
curve = WOLFSSL_ECC_SECP521R1;
}
else if (XSTRNCMP(name, "X25519", len) == 0) {
curve = WOLFSSL_ECC_X25519;
}
else if (XSTRNCMP(name, "X448", len) == 0) {
curve = WOLFSSL_ECC_X448;
}
else {
#if !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST)
int ret;
const ecc_set_type *eccSet;
ret = wc_ecc_get_curve_idx_from_name(name);
if (ret < 0) {
WOLFSSL_MSG("Could not find name in set");
return WOLFSSL_FAILURE;
}
eccSet = wc_ecc_get_curve_params(ret);
if (eccSet == NULL) {
WOLFSSL_MSG("NULL set returned");
return WOLFSSL_FAILURE;
}
curve = GetCurveByOID(eccSet->oidSum);
#else
WOLFSSL_MSG("API not present to search farther using name");
return WOLFSSL_FAILURE;
#endif
}
if (curve > (sizeof(word32) * WOLFSSL_BIT_SIZE)) {
/* shift left more than size of ctx->disabledCurves causes static
* analysis report */
WOLFSSL_MSG("curve value is too large for upcoming shift");
return WOLFSSL_FAILURE;
}
#if defined(HAVE_SUPPORTED_CURVES) && !defined(NO_WOLFSSL_CLIENT)
/* set the supported curve so client TLS extension contains only the
* desired curves */
if (wolfSSL_CTX_UseSupportedCurve(ctx, curve) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("Unable to set supported curve");
return WOLFSSL_FAILURE;
}
#endif
/* Switch the bit to off and therefore is enabled. */
ctx->disabledCurves &= ~(1U << curve);
start = idx + 1;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_set1_curves_list(WOLFSSL* ssl, const char* names)
{
if (ssl == NULL) {
return WOLFSSL_FAILURE;
}
return wolfSSL_CTX_set1_curves_list(ssl->ctx, names);
}
#endif /* OPENSSL_EXTRA && HAVE_ECC */
#ifdef OPENSSL_EXTRA
#ifndef NO_WOLFSSL_STUB
int wolfSSL_CTX_set_msg_callback(WOLFSSL_CTX *ctx, SSL_Msg_Cb cb)
{
WOLFSSL_STUB("SSL_CTX_set_msg_callback");
(void)ctx;
(void)cb;
return WOLFSSL_FAILURE;
}
#endif
/* Sets a callback for when sending and receiving protocol messages.
*
* ssl WOLFSSL structure to set callback in
* cb callback to use
*
* return WOLFSSL_SUCCESS on success and SSL_FAILURE with error case
*/
int wolfSSL_set_msg_callback(WOLFSSL *ssl, SSL_Msg_Cb cb)
{
WOLFSSL_ENTER("wolfSSL_set_msg_callback");
if (ssl == NULL) {
return SSL_FAILURE;
}
if (cb != NULL) {
ssl->toInfoOn = 1;
}
ssl->protoMsgCb = cb;
return WOLFSSL_SUCCESS;
}
#ifndef NO_WOLFSSL_STUB
int wolfSSL_CTX_set_msg_callback_arg(WOLFSSL_CTX *ctx, void* arg)
{
WOLFSSL_STUB("SSL_CTX_set_msg_callback_arg");
(void)ctx;
(void)arg;
return WOLFSSL_FAILURE;
}
#endif
int wolfSSL_set_msg_callback_arg(WOLFSSL *ssl, void* arg)
{
WOLFSSL_ENTER("wolfSSL_set_msg_callback_arg");
if (ssl == NULL)
return WOLFSSL_FAILURE;
ssl->protoMsgCtx = arg;
return WOLFSSL_SUCCESS;
}
void *wolfSSL_OPENSSL_memdup(const void *data, size_t siz, const char* file, int line)
{
void *ret;
(void)file;
(void)line;
if (data == NULL || siz >= INT_MAX)
return NULL;
ret = OPENSSL_malloc(siz);
if (ret == NULL) {
return NULL;
}
return XMEMCPY(ret, data, siz);
}
void wolfSSL_OPENSSL_cleanse(void *ptr, size_t len)
{
if (ptr)
ForceZero(ptr, (word32)len);
}
int wolfSSL_CTX_set_alpn_protos(WOLFSSL_CTX *ctx, const unsigned char *p,
unsigned int p_len)
{
WOLFSSL_ENTER("wolfSSL_CTX_set_alpn_protos");
if(ctx == NULL)
return BAD_FUNC_ARG;
if((void *)ctx->alpn_cli_protos != NULL)
wolfSSL_OPENSSL_free((void *)ctx->alpn_cli_protos);
ctx->alpn_cli_protos =
(const unsigned char *)wolfSSL_OPENSSL_memdup(p, p_len, NULL, 0);
if (ctx->alpn_cli_protos == NULL) {
return SSL_FAILURE;
}
ctx->alpn_cli_protos_len = p_len;
return WOLFSSL_SUCCESS;
}
#ifdef HAVE_ALPN
#ifndef NO_BIO
/* Sets the ALPN extension protos
*
* example format is
* unsigned char p[] = {
* 8, 'h', 't', 't', 'p', '/', '1', '.', '1'
* };
*
* returns WOLFSSL_SUCCESS on success */
int wolfSSL_set_alpn_protos(WOLFSSL* ssl,
const unsigned char* p, unsigned int p_len)
{
WOLFSSL_BIO* bio;
char* pt;
unsigned int sz;
unsigned int idx = 0;
int alpn_opt = WOLFSSL_ALPN_CONTINUE_ON_MISMATCH;
WOLFSSL_ENTER("wolfSSL_set_alpn_protos");
if (ssl == NULL || p_len <= 1) {
return WOLFSSL_FAILURE;
}
bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem());
if (bio == NULL) {
return WOLFSSL_FAILURE;
}
/* convert into comma separated list */
while (idx < p_len - 1) {
unsigned int i;
sz = p[idx++];
if (idx + sz > p_len) {
WOLFSSL_MSG("Bad list format");
wolfSSL_BIO_free(bio);
return WOLFSSL_FAILURE;
}
if (sz > 0) {
for (i = 0; i < sz; i++) {
wolfSSL_BIO_write(bio, &p[idx++], 1);
}
if (idx < p_len - 1)
wolfSSL_BIO_write(bio, ",", 1);
}
}
wolfSSL_BIO_write(bio, "\0", 1);
/* clears out all current ALPN extensions set */
TLSX_Remove(&ssl->extensions, TLSX_APPLICATION_LAYER_PROTOCOL, ssl->heap);
if ((sz = wolfSSL_BIO_get_mem_data(bio, &pt)) > 0) {
wolfSSL_UseALPN(ssl, pt, sz, alpn_opt);
}
wolfSSL_BIO_free(bio);
return WOLFSSL_SUCCESS;
}
#endif /* !NO_BIO */
#endif /* HAVE_ALPN */
#endif
#if defined(OPENSSL_EXTRA)
#ifndef NO_BIO
#define WOLFSSL_BIO_INCLUDED
#include "src/bio.c"
#endif
word32 nid2oid(int nid, int grp)
{
/* get OID type */
switch (grp) {
/* oidHashType */
case oidHashType:
switch (nid) {
#ifdef WOLFSSL_MD2
case NID_md2:
return MD2h;
#endif
#ifndef NO_MD5
case NID_md5:
return MD5h;
#endif
#ifndef NO_SHA
case NID_sha1:
return SHAh;
#endif
case NID_sha224:
return SHA224h;
#ifndef NO_SHA256
case NID_sha256:
return SHA256h;
#endif
#ifdef WOLFSSL_SHA384
case NID_sha384:
return SHA384h;
#endif
#ifdef WOLFSSL_SHA512
case NID_sha512:
return SHA512h;
#endif
}
break;
/* oidSigType */
case oidSigType:
switch (nid) {
#ifndef NO_DSA
case CTC_SHAwDSA:
return CTC_SHAwDSA;
#endif /* NO_DSA */
#ifndef NO_RSA
case CTC_MD2wRSA:
return CTC_MD2wRSA;
case CTC_MD5wRSA:
return CTC_MD5wRSA;
case CTC_SHAwRSA:
return CTC_SHAwRSA;
case CTC_SHA224wRSA:
return CTC_SHA224wRSA;
case CTC_SHA256wRSA:
return CTC_SHA256wRSA;
case CTC_SHA384wRSA:
return CTC_SHA384wRSA;
case CTC_SHA512wRSA:
return CTC_SHA512wRSA;
#endif /* NO_RSA */
#ifdef HAVE_ECC
case CTC_SHAwECDSA:
return CTC_SHAwECDSA;
case CTC_SHA224wECDSA:
return CTC_SHA224wECDSA;
case CTC_SHA256wECDSA:
return CTC_SHA256wECDSA;
case CTC_SHA384wECDSA:
return CTC_SHA384wECDSA;
case CTC_SHA512wECDSA:
return CTC_SHA512wECDSA;
#endif /* HAVE_ECC */
}
break;
/* oidKeyType */
case oidKeyType:
switch (nid) {
#ifndef NO_DSA
case DSAk:
return DSAk;
#endif /* NO_DSA */
#ifndef NO_RSA
case RSAk:
return RSAk;
#endif /* NO_RSA */
#ifdef HAVE_NTRU
case NTRUk:
return NTRUk;
#endif /* HAVE_NTRU */
#ifdef HAVE_ECC
case ECDSAk:
return ECDSAk;
#endif /* HAVE_ECC */
}
break;
#ifdef HAVE_ECC
case oidCurveType:
switch (nid) {
case NID_X9_62_prime192v1:
return ECC_SECP192R1_OID;
case NID_X9_62_prime192v2:
return ECC_PRIME192V2_OID;
case NID_X9_62_prime192v3:
return ECC_PRIME192V3_OID;
case NID_X9_62_prime239v1:
return ECC_PRIME239V1_OID;
case NID_X9_62_prime239v2:
return ECC_PRIME239V2_OID;
case NID_X9_62_prime239v3:
return ECC_PRIME239V3_OID;
case NID_X9_62_prime256v1:
return ECC_SECP256R1_OID;
case NID_secp112r1:
return ECC_SECP112R1_OID;
case NID_secp112r2:
return ECC_SECP112R2_OID;
case NID_secp128r1:
return ECC_SECP128R1_OID;
case NID_secp128r2:
return ECC_SECP128R2_OID;
case NID_secp160r1:
return ECC_SECP160R1_OID;
case NID_secp160r2:
return ECC_SECP160R2_OID;
case NID_secp224r1:
return ECC_SECP224R1_OID;
case NID_secp384r1:
return ECC_SECP384R1_OID;
case NID_secp521r1:
return ECC_SECP521R1_OID;
case NID_secp160k1:
return ECC_SECP160K1_OID;
case NID_secp192k1:
return ECC_SECP192K1_OID;
case NID_secp224k1:
return ECC_SECP224K1_OID;
case NID_secp256k1:
return ECC_SECP256K1_OID;
case NID_brainpoolP160r1:
return ECC_BRAINPOOLP160R1_OID;
case NID_brainpoolP192r1:
return ECC_BRAINPOOLP192R1_OID;
case NID_brainpoolP224r1:
return ECC_BRAINPOOLP224R1_OID;
case NID_brainpoolP256r1:
return ECC_BRAINPOOLP256R1_OID;
case NID_brainpoolP320r1:
return ECC_BRAINPOOLP320R1_OID;
case NID_brainpoolP384r1:
return ECC_BRAINPOOLP384R1_OID;
case NID_brainpoolP512r1:
return ECC_BRAINPOOLP512R1_OID;
}
break;
#endif /* HAVE_ECC */
/* oidBlkType */
case oidBlkType:
switch (nid) {
#ifdef WOLFSSL_AES_128
case AES128CBCb:
return AES128CBCb;
#endif
#ifdef WOLFSSL_AES_192
case AES192CBCb:
return AES192CBCb;
#endif
#ifdef WOLFSSL_AES_256
case AES256CBCb:
return AES256CBCb;
#endif
#ifndef NO_DES3
case NID_des:
return DESb;
case NID_des3:
return DES3b;
#endif
}
break;
#ifdef HAVE_OCSP
case oidOcspType:
switch (nid) {
case NID_id_pkix_OCSP_basic:
return OCSP_BASIC_OID;
case OCSP_NONCE_OID:
return OCSP_NONCE_OID;
}
break;
#endif /* HAVE_OCSP */
/* oidCertExtType */
case oidCertExtType:
switch (nid) {
case BASIC_CA_OID:
return BASIC_CA_OID;
case ALT_NAMES_OID:
return ALT_NAMES_OID;
case CRL_DIST_OID:
return CRL_DIST_OID;
case AUTH_INFO_OID:
return AUTH_INFO_OID;
case AUTH_KEY_OID:
return AUTH_KEY_OID;
case SUBJ_KEY_OID:
return SUBJ_KEY_OID;
case INHIBIT_ANY_OID:
return INHIBIT_ANY_OID;
case NID_key_usage:
return KEY_USAGE_OID;
case NID_name_constraints:
return NAME_CONS_OID;
case NID_certificate_policies:
return CERT_POLICY_OID;
}
break;
/* oidCertAuthInfoType */
case oidCertAuthInfoType:
switch (nid) {
case AIA_OCSP_OID:
return AIA_OCSP_OID;
case AIA_CA_ISSUER_OID:
return AIA_CA_ISSUER_OID;
}
break;
/* oidCertPolicyType */
case oidCertPolicyType:
switch (nid) {
case NID_any_policy:
return CP_ANY_OID;
}
break;
/* oidCertAltNameType */
case oidCertAltNameType:
switch (nid) {
case NID_hw_name_oid:
return HW_NAME_OID;
}
break;
/* oidCertKeyUseType */
case oidCertKeyUseType:
switch (nid) {
case NID_anyExtendedKeyUsage:
return EKU_ANY_OID;
case EKU_SERVER_AUTH_OID:
return EKU_SERVER_AUTH_OID;
case EKU_CLIENT_AUTH_OID:
return EKU_CLIENT_AUTH_OID;
case EKU_OCSP_SIGN_OID:
return EKU_OCSP_SIGN_OID;
}
break;
/* oidKdfType */
case oidKdfType:
switch (nid) {
case PBKDF2_OID:
return PBKDF2_OID;
}
break;
/* oidPBEType */
case oidPBEType:
switch (nid) {
case PBE_SHA1_RC4_128:
return PBE_SHA1_RC4_128;
case PBE_SHA1_DES:
return PBE_SHA1_DES;
case PBE_SHA1_DES3:
return PBE_SHA1_DES3;
}
break;
/* oidKeyWrapType */
case oidKeyWrapType:
switch (nid) {
#ifdef WOLFSSL_AES_128
case AES128_WRAP:
return AES128_WRAP;
#endif
#ifdef WOLFSSL_AES_192
case AES192_WRAP:
return AES192_WRAP;
#endif
#ifdef WOLFSSL_AES_256
case AES256_WRAP:
return AES256_WRAP;
#endif
}
break;
/* oidCmsKeyAgreeType */
case oidCmsKeyAgreeType:
switch (nid) {
#ifndef NO_SHA
case dhSinglePass_stdDH_sha1kdf_scheme:
return dhSinglePass_stdDH_sha1kdf_scheme;
#endif
#ifdef WOLFSSL_SHA224
case dhSinglePass_stdDH_sha224kdf_scheme:
return dhSinglePass_stdDH_sha224kdf_scheme;
#endif
#ifndef NO_SHA256
case dhSinglePass_stdDH_sha256kdf_scheme:
return dhSinglePass_stdDH_sha256kdf_scheme;
#endif
#ifdef WOLFSSL_SHA384
case dhSinglePass_stdDH_sha384kdf_scheme:
return dhSinglePass_stdDH_sha384kdf_scheme;
#endif
#ifdef WOLFSSL_SHA512
case dhSinglePass_stdDH_sha512kdf_scheme:
return dhSinglePass_stdDH_sha512kdf_scheme;
#endif
}
break;
default:
WOLFSSL_MSG("NID not in table");
/* MSVC warns without the cast */
return (word32)-1;
}
/* MSVC warns without the cast */
return (word32)-1;
}
int oid2nid(word32 oid, int grp)
{
size_t i;
/* get OID type */
switch (grp) {
/* oidHashType */
case oidHashType:
switch (oid) {
#ifdef WOLFSSL_MD2
case MD2h:
return NID_md2;
#endif
#ifndef NO_MD5
case MD5h:
return NID_md5;
#endif
#ifndef NO_SHA
case SHAh:
return NID_sha1;
#endif
case SHA224h:
return NID_sha224;
#ifndef NO_SHA256
case SHA256h:
return NID_sha256;
#endif
#ifdef WOLFSSL_SHA384
case SHA384h:
return NID_sha384;
#endif
#ifdef WOLFSSL_SHA512
case SHA512h:
return NID_sha512;
#endif
}
break;
/* oidSigType */
case oidSigType:
switch (oid) {
#ifndef NO_DSA
case CTC_SHAwDSA:
return CTC_SHAwDSA;
case CTC_SHA256wDSA:
return CTC_SHA256wDSA;
#endif /* NO_DSA */
#ifndef NO_RSA
case CTC_MD2wRSA:
return CTC_MD2wRSA;
case CTC_MD5wRSA:
return CTC_MD5wRSA;
case CTC_SHAwRSA:
return CTC_SHAwRSA;
case CTC_SHA224wRSA:
return CTC_SHA224wRSA;
case CTC_SHA256wRSA:
return CTC_SHA256wRSA;
case CTC_SHA384wRSA:
return CTC_SHA384wRSA;
case CTC_SHA512wRSA:
return CTC_SHA512wRSA;
#endif /* NO_RSA */
#ifdef HAVE_ECC
case CTC_SHAwECDSA:
return CTC_SHAwECDSA;
case CTC_SHA224wECDSA:
return CTC_SHA224wECDSA;
case CTC_SHA256wECDSA:
return CTC_SHA256wECDSA;
case CTC_SHA384wECDSA:
return CTC_SHA384wECDSA;
case CTC_SHA512wECDSA:
return CTC_SHA512wECDSA;
#endif /* HAVE_ECC */
}
break;
/* oidKeyType */
case oidKeyType:
switch (oid) {
#ifndef NO_DSA
case DSAk:
return DSAk;
#endif /* NO_DSA */
#ifndef NO_RSA
case RSAk:
return RSAk;
#endif /* NO_RSA */
#ifdef HAVE_NTRU
case NTRUk:
return NTRUk;
#endif /* HAVE_NTRU */
#ifdef HAVE_ECC
case ECDSAk:
return ECDSAk;
#endif /* HAVE_ECC */
}
break;
#ifdef HAVE_ECC
case oidCurveType:
switch (oid) {
case ECC_SECP192R1_OID:
return NID_X9_62_prime192v1;
case ECC_PRIME192V2_OID:
return NID_X9_62_prime192v2;
case ECC_PRIME192V3_OID:
return NID_X9_62_prime192v3;
case ECC_PRIME239V1_OID:
return NID_X9_62_prime239v1;
case ECC_PRIME239V2_OID:
return NID_X9_62_prime239v2;
case ECC_PRIME239V3_OID:
return NID_X9_62_prime239v3;
case ECC_SECP256R1_OID:
return NID_X9_62_prime256v1;
case ECC_SECP112R1_OID:
return NID_secp112r1;
case ECC_SECP112R2_OID:
return NID_secp112r2;
case ECC_SECP128R1_OID:
return NID_secp128r1;
case ECC_SECP128R2_OID:
return NID_secp128r2;
case ECC_SECP160R1_OID:
return NID_secp160r1;
case ECC_SECP160R2_OID:
return NID_secp160r2;
case ECC_SECP224R1_OID:
return NID_secp224r1;
case ECC_SECP384R1_OID:
return NID_secp384r1;
case ECC_SECP521R1_OID:
return NID_secp521r1;
case ECC_SECP160K1_OID:
return NID_secp160k1;
case ECC_SECP192K1_OID:
return NID_secp192k1;
case ECC_SECP224K1_OID:
return NID_secp224k1;
case ECC_SECP256K1_OID:
return NID_secp256k1;
case ECC_BRAINPOOLP160R1_OID:
return NID_brainpoolP160r1;
case ECC_BRAINPOOLP192R1_OID:
return NID_brainpoolP192r1;
case ECC_BRAINPOOLP224R1_OID:
return NID_brainpoolP224r1;
case ECC_BRAINPOOLP256R1_OID:
return NID_brainpoolP256r1;
case ECC_BRAINPOOLP320R1_OID:
return NID_brainpoolP320r1;
case ECC_BRAINPOOLP384R1_OID:
return NID_brainpoolP384r1;
case ECC_BRAINPOOLP512R1_OID:
return NID_brainpoolP512r1;
}
break;
#endif /* HAVE_ECC */
/* oidBlkType */
case oidBlkType:
switch (oid) {
#ifdef WOLFSSL_AES_128
case AES128CBCb:
return AES128CBCb;
#endif
#ifdef WOLFSSL_AES_192
case AES192CBCb:
return AES192CBCb;
#endif
#ifdef WOLFSSL_AES_256
case AES256CBCb:
return AES256CBCb;
#endif
#ifndef NO_DES3
case DESb:
return NID_des;
case DES3b:
return NID_des3;
#endif
}
break;
#ifdef HAVE_OCSP
case oidOcspType:
switch (oid) {
case OCSP_BASIC_OID:
return NID_id_pkix_OCSP_basic;
case OCSP_NONCE_OID:
return OCSP_NONCE_OID;
}
break;
#endif /* HAVE_OCSP */
/* oidCertExtType */
case oidCertExtType:
switch (oid) {
case BASIC_CA_OID:
return BASIC_CA_OID;
case ALT_NAMES_OID:
return ALT_NAMES_OID;
case CRL_DIST_OID:
return CRL_DIST_OID;
case AUTH_INFO_OID:
return AUTH_INFO_OID;
case AUTH_KEY_OID:
return AUTH_KEY_OID;
case SUBJ_KEY_OID:
return SUBJ_KEY_OID;
case INHIBIT_ANY_OID:
return INHIBIT_ANY_OID;
case KEY_USAGE_OID:
return NID_key_usage;
case NAME_CONS_OID:
return NID_name_constraints;
case CERT_POLICY_OID:
return NID_certificate_policies;
}
break;
/* oidCertAuthInfoType */
case oidCertAuthInfoType:
switch (oid) {
case AIA_OCSP_OID:
return AIA_OCSP_OID;
case AIA_CA_ISSUER_OID:
return AIA_CA_ISSUER_OID;
}
break;
/* oidCertPolicyType */
case oidCertPolicyType:
switch (oid) {
case CP_ANY_OID:
return NID_any_policy;
}
break;
/* oidCertAltNameType */
case oidCertAltNameType:
switch (oid) {
case HW_NAME_OID:
return NID_hw_name_oid;
}
break;
/* oidCertKeyUseType */
case oidCertKeyUseType:
switch (oid) {
case EKU_ANY_OID:
return NID_anyExtendedKeyUsage;
case EKU_SERVER_AUTH_OID:
return EKU_SERVER_AUTH_OID;
case EKU_CLIENT_AUTH_OID:
return EKU_CLIENT_AUTH_OID;
case EKU_OCSP_SIGN_OID:
return EKU_OCSP_SIGN_OID;
}
break;
/* oidKdfType */
case oidKdfType:
switch (oid) {
case PBKDF2_OID:
return PBKDF2_OID;
}
break;
/* oidPBEType */
case oidPBEType:
switch (oid) {
case PBE_SHA1_RC4_128:
return PBE_SHA1_RC4_128;
case PBE_SHA1_DES:
return PBE_SHA1_DES;
case PBE_SHA1_DES3:
return PBE_SHA1_DES3;
}
break;
/* oidKeyWrapType */
case oidKeyWrapType:
switch (oid) {
#ifdef WOLFSSL_AES_128
case AES128_WRAP:
return AES128_WRAP;
#endif
#ifdef WOLFSSL_AES_192
case AES192_WRAP:
return AES192_WRAP;
#endif
#ifdef WOLFSSL_AES_256
case AES256_WRAP:
return AES256_WRAP;
#endif
}
break;
/* oidCmsKeyAgreeType */
case oidCmsKeyAgreeType:
switch (oid) {
#ifndef NO_SHA
case dhSinglePass_stdDH_sha1kdf_scheme:
return dhSinglePass_stdDH_sha1kdf_scheme;
#endif
#ifdef WOLFSSL_SHA224
case dhSinglePass_stdDH_sha224kdf_scheme:
return dhSinglePass_stdDH_sha224kdf_scheme;
#endif
#ifndef NO_SHA256
case dhSinglePass_stdDH_sha256kdf_scheme:
return dhSinglePass_stdDH_sha256kdf_scheme;
#endif
#ifdef WOLFSSL_SHA384
case dhSinglePass_stdDH_sha384kdf_scheme:
return dhSinglePass_stdDH_sha384kdf_scheme;
#endif
#ifdef WOLFSSL_SHA512
case dhSinglePass_stdDH_sha512kdf_scheme:
return dhSinglePass_stdDH_sha512kdf_scheme;
#endif
}
break;
#ifdef WOLFSSL_CERT_REQ
case oidCsrAttrType:
switch (oid) {
case CHALLENGE_PASSWORD_OID:
return NID_pkcs9_challengePassword;
case SERIAL_NUMBER_OID:
return NID_serialNumber;
}
break;
#endif
default:
WOLFSSL_MSG("NID not in table");
}
/* If not found in above switch then try the table */
for (i = 0; i < WOLFSSL_OBJECT_INFO_SZ; i++) {
if (wolfssl_object_info[i].id == (int)oid) {
return wolfssl_object_info[i].nid;
}
}
return -1;
}
/* when calling SetIndividualInternal, mpi should be cleared by caller if no
* longer used. ie mp_free(mpi). This is to free data when fastmath is
* disabled since a copy of mpi is made by this function and placed into bn.
*/
int SetIndividualInternal(WOLFSSL_BIGNUM* bn, mp_int* mpi)
{
WOLFSSL_MSG("Entering SetIndividualInternal");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FATAL_ERROR;
}
if (mpi == NULL) {
WOLFSSL_MSG("mpi NULL error");
return WOLFSSL_FATAL_ERROR;
}
if (mp_copy((mp_int*)bn->internal, mpi) != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
return WOLFSSL_FATAL_ERROR;
}
return WOLFSSL_SUCCESS;
}
#ifndef NO_ASN
WOLFSSL_BIGNUM *wolfSSL_ASN1_INTEGER_to_BN(const WOLFSSL_ASN1_INTEGER *ai,
WOLFSSL_BIGNUM *bn)
{
mp_int mpi;
word32 idx = 0;
int ret;
WOLFSSL_ENTER("wolfSSL_ASN1_INTEGER_to_BN");
if (ai == NULL) {
return NULL;
}
ret = GetInt(&mpi, ai->data, &idx, ai->dataMax);
if (ret != 0) {
#ifdef WOLFSSL_QT
ret = mp_init(&mpi); /* must init mpi */
if (ret != MP_OKAY) {
return NULL;
}
/* Serial number in QT starts at index 0 of data */
if (mp_read_unsigned_bin(&mpi, (byte*)ai->data, ai->length) != 0) {
mp_clear(&mpi);
return NULL;
}
#else
/* expecting ASN1 format for INTEGER */
WOLFSSL_LEAVE("wolfSSL_ASN1_INTEGER_to_BN", ret);
return NULL;
#endif
}
/* mp_clear needs called because mpi is copied and causes memory leak with
* --disable-fastmath */
ret = SetIndividualExternal(&bn, &mpi);
mp_clear(&mpi);
if (ret != WOLFSSL_SUCCESS) {
return NULL;
}
return bn;
}
#endif /* !NO_ASN */
#if !defined(NO_DSA) && !defined(NO_DH)
WOLFSSL_DH *wolfSSL_DSA_dup_DH(const WOLFSSL_DSA *dsa)
{
WOLFSSL_DH* dh;
DhKey* key;
WOLFSSL_ENTER("wolfSSL_DSA_dup_DH");
if (dsa == NULL) {
return NULL;
}
dh = wolfSSL_DH_new();
if (dh == NULL) {
return NULL;
}
key = (DhKey*)dh->internal;
if (dsa->p != NULL &&
SetIndividualInternal(((WOLFSSL_DSA*)dsa)->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa p key error");
wolfSSL_DH_free(dh);
return NULL;
}
if (dsa->g != NULL &&
SetIndividualInternal(((WOLFSSL_DSA*)dsa)->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa g key error");
wolfSSL_DH_free(dh);
return NULL;
}
if (SetIndividualExternal(&dh->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa p key error");
wolfSSL_DH_free(dh);
return NULL;
}
if (SetIndividualExternal(&dh->g, &key->g) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("dsa g key error");
wolfSSL_DH_free(dh);
return NULL;
}
return dh;
}
#endif /* !NO_DSA && !NO_DH */
#ifndef NO_RSA
#if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
/* Openssl -> WolfSSL */
int SetRsaInternal(WOLFSSL_RSA* rsa)
{
RsaKey* key;
WOLFSSL_MSG("Entering SetRsaInternal");
if (rsa == NULL || rsa->internal == NULL) {
WOLFSSL_MSG("rsa key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (RsaKey*)rsa->internal;
if (SetIndividualInternal(rsa->n, &key->n) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa n key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualInternal(rsa->e, &key->e) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa e key error");
return WOLFSSL_FATAL_ERROR;
}
/* public key */
key->type = RSA_PUBLIC;
if (rsa->d != NULL) {
if (SetIndividualInternal(rsa->d, &key->d) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa d key error");
return WOLFSSL_FATAL_ERROR;
}
/* private key */
key->type = RSA_PRIVATE;
}
if (rsa->p != NULL &&
SetIndividualInternal(rsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa p key error");
return WOLFSSL_FATAL_ERROR;
}
if (rsa->q != NULL &&
SetIndividualInternal(rsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa q key error");
return WOLFSSL_FATAL_ERROR;
}
#ifndef RSA_LOW_MEM
if (rsa->dmp1 != NULL &&
SetIndividualInternal(rsa->dmp1, &key->dP) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa dP key error");
return WOLFSSL_FATAL_ERROR;
}
if (rsa->dmq1 != NULL &&
SetIndividualInternal(rsa->dmq1, &key->dQ) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa dQ key error");
return WOLFSSL_FATAL_ERROR;
}
if (rsa->iqmp != NULL &&
SetIndividualInternal(rsa->iqmp, &key->u) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa u key error");
return WOLFSSL_FATAL_ERROR;
}
#endif /* !RSA_LOW_MEM */
rsa->inSet = 1;
return WOLFSSL_SUCCESS;
}
/* WOLFSSL_SUCCESS on ok */
#ifndef NO_WOLFSSL_STUB
int wolfSSL_RSA_blinding_on(WOLFSSL_RSA* rsa, WOLFSSL_BN_CTX* bn)
{
(void)rsa;
(void)bn;
WOLFSSL_STUB("RSA_blinding_on");
WOLFSSL_MSG("wolfSSL_RSA_blinding_on");
return WOLFSSL_SUCCESS; /* on by default */
}
#endif
/* return compliant with OpenSSL
* size of encrypted data if success , -1 if error
*/
int wolfSSL_RSA_public_encrypt(int len, const unsigned char* fr,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int initTmpRng = 0;
WC_RNG *rng = NULL;
int outLen;
int ret = 0;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG _tmpRNG[1];
WC_RNG* tmpRNG = _tmpRNG;
#endif
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
int mgf = WC_MGF1NONE;
enum wc_HashType hash = WC_HASH_TYPE_NONE;
#endif
WOLFSSL_MSG("wolfSSL_RSA_public_encrypt");
/* Check and remap the padding to internal values, if needed. */
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
if (padding == RSA_PKCS1_PADDING)
padding = WC_RSA_PKCSV15_PAD;
else if (padding == RSA_PKCS1_OAEP_PADDING) {
padding = WC_RSA_OAEP_PAD;
hash = WC_HASH_TYPE_SHA;
mgf = WC_MGF1SHA1;
}
else if (padding == RSA_PKCS1_PSS_PADDING) {
padding = WC_RSA_PSS_PAD;
hash = WC_HASH_TYPE_SHA256;
mgf = WC_MGF1SHA256;
}
else if (padding == RSA_NO_PADDING) {
padding = WC_RSA_NO_PAD;
}
#else
if (padding == RSA_PKCS1_PADDING)
;
#endif
else {
WOLFSSL_MSG("wolfSSL_RSA_public_encrypt unsupported padding");
return 0;
}
if (rsa->inSet == 0)
{
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return 0;
}
}
outLen = wolfSSL_RSA_size(rsa);
rng = WOLFSSL_RSA_GetRNG(rsa, (WC_RNG**)&tmpRNG, &initTmpRng);
if (outLen == 0) {
WOLFSSL_MSG("Bad RSA size");
}
if (rng) {
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
ret = wc_RsaPublicEncrypt_ex(fr, len, to, outLen,
(RsaKey*)rsa->internal, rng, padding,
hash, mgf, NULL, 0);
#else
ret = wc_RsaPublicEncrypt(fr, len, to, outLen,
(RsaKey*)rsa->internal, rng);
#endif
if (ret <= 0) {
WOLFSSL_MSG("Bad Rsa Encrypt");
}
if (len <= 0) {
WOLFSSL_MSG("Bad Rsa Encrypt");
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
if (tmpRNG)
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
if (ret >= 0)
WOLFSSL_MSG("wolfSSL_RSA_public_encrypt success");
else {
WOLFSSL_MSG("wolfSSL_RSA_public_encrypt failed");
ret = WOLFSSL_FATAL_ERROR; /* return -1 on error case */
}
return ret;
}
/* return compliant with OpenSSL
* size of plain recovered data if success , -1 if error
*/
int wolfSSL_RSA_private_decrypt(int len, const unsigned char* fr,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int outLen;
int ret = 0;
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
int mgf = WC_MGF1NONE;
enum wc_HashType hash = WC_HASH_TYPE_NONE;
#endif
WOLFSSL_MSG("wolfSSL_RSA_private_decrypt");
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
if (padding == RSA_PKCS1_PADDING)
padding = WC_RSA_PKCSV15_PAD;
else if (padding == RSA_PKCS1_OAEP_PADDING) {
padding = WC_RSA_OAEP_PAD;
hash = WC_HASH_TYPE_SHA;
mgf = WC_MGF1SHA1;
}
else if (padding == RSA_PKCS1_PSS_PADDING) {
padding = WC_RSA_PSS_PAD;
hash = WC_HASH_TYPE_SHA256;
mgf = WC_MGF1SHA256;
}
else if (padding == RSA_NO_PADDING) {
padding = WC_RSA_NO_PAD;
}
#else
if (padding == RSA_PKCS1_PADDING)
;
#endif
else {
WOLFSSL_MSG("wolfSSL_RSA_private_decrypt unsupported padding");
return 0;
}
if (rsa->inSet == 0)
{
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return 0;
}
}
outLen = wolfSSL_RSA_size(rsa);
if (outLen == 0) {
WOLFSSL_MSG("Bad RSA size");
}
/* size of 'to' buffer must be size of RSA key */
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA)
ret = wc_RsaPrivateDecrypt_ex(fr, len, to, outLen,
(RsaKey*)rsa->internal, padding,
hash, mgf, NULL, 0);
#else
ret = wc_RsaPrivateDecrypt(fr, len, to, outLen,
(RsaKey*)rsa->internal);
#endif
if (len <= 0) {
WOLFSSL_MSG("Bad Rsa Decrypt");
}
if (ret > 0)
WOLFSSL_MSG("wolfSSL_RSA_private_decrypt success");
else {
WOLFSSL_MSG("wolfSSL_RSA_private_decrypt failed");
ret = WOLFSSL_FATAL_ERROR;
}
return ret;
}
#if !defined(HAVE_SELFTEST) && (!defined(HAVE_FIPS) || \
(defined(HAVE_FIPS_VERSION) && HAVE_FIPS_VERSION > 2))
int wolfSSL_RSA_public_decrypt(int flen, const unsigned char* from,
unsigned char* to, WOLFSSL_RSA* rsa, int padding)
{
int tlen = 0;
int pad_type;
WOLFSSL_ENTER("wolfSSL_RSA_public_decrypt");
if (rsa == NULL || rsa->internal == NULL || from == NULL) {
WOLFSSL_MSG("Bad function arguments");
return WOLFSSL_FAILURE;
}
switch (padding) {
case RSA_PKCS1_PADDING:
pad_type = WC_RSA_PKCSV15_PAD;
break;
case RSA_PKCS1_OAEP_PADDING:
pad_type = WC_RSA_OAEP_PAD;
break;
case RSA_PKCS1_PSS_PADDING:
pad_type = WC_RSA_PSS_PAD;
break;
case RSA_NO_PADDING:
pad_type = WC_RSA_NO_PAD;
break;
default:
WOLFSSL_MSG("wolfSSL_RSA_public_decrypt unsupported padding");
return WOLFSSL_FAILURE;
}
if (rsa->inSet == 0)
{
WOLFSSL_MSG("No RSA internal set, do it");
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return WOLFSSL_FAILURE;
}
}
/* size of 'to' buffer must be size of RSA key */
tlen = wc_RsaSSL_Verify_ex(from, flen, to, wolfSSL_RSA_size(rsa),
(RsaKey*)rsa->internal, pad_type);
if (tlen <= 0)
WOLFSSL_MSG("wolfSSL_RSA_public_decrypt failed");
else {
WOLFSSL_MSG("wolfSSL_RSA_public_decrypt success");
}
return tlen;
}
#endif /* !defined(HAVE_FIPS) && !defined(HAVE_SELFTEST) */
/* RSA private encrypt calls wc_RsaSSL_Sign. Similar function set up as RSA
* public decrypt.
*
* len Length of input buffer
* in Input buffer to sign
* out Output buffer (expected to be greater than or equal to RSA key size)
* rsa Key to use for encryption
* padding Type of RSA padding to use.
*/
int wolfSSL_RSA_private_encrypt(int len, unsigned char* in,
unsigned char* out, WOLFSSL_RSA* rsa, int padding)
{
int sz = 0;
WC_RNG* rng = NULL;
#if !defined(WC_RSA_BLINDING) || defined(HAVE_USER_RSA)
WC_RNG rng_lcl;
#endif
RsaKey* key;
WOLFSSL_MSG("wolfSSL_RSA_private_encrypt");
if (len < 0 || rsa == NULL || rsa->internal == NULL || in == NULL) {
WOLFSSL_MSG("Bad function arguments");
return 0;
}
if (padding != RSA_PKCS1_PADDING && padding != RSA_PKCS1_PSS_PADDING) {
WOLFSSL_MSG("wolfSSL_RSA_private_encrypt unsupported padding");
return 0;
}
if (rsa->inSet == 0)
{
WOLFSSL_MSG("Setting internal RSA structure");
if (SetRsaInternal(rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return 0;
}
}
key = (RsaKey*)rsa->internal;
#if defined(WC_RSA_BLINDING) && !defined(HAVE_USER_RSA)
rng = key->rng;
#else
rng = &rng_lcl;
#ifndef HAVE_FIPS
if (wc_InitRng_ex(rng, key->heap, INVALID_DEVID) != 0)
#else
if (wc_InitRng(rng) != 0)
#endif
{
WOLFSSL_MSG("Error with random number");
return SSL_FATAL_ERROR;
}
#endif
/* size of output buffer must be size of RSA key */
sz = wc_RsaSSL_Sign(in, (word32)len, out, wolfSSL_RSA_size(rsa), key, rng);
#if !defined(WC_RSA_BLINDING) || defined(HAVE_USER_RSA)
if (wc_FreeRng(rng) != 0) {
WOLFSSL_MSG("Error freeing random number generator");
return SSL_FATAL_ERROR;
}
#endif
if (sz <= 0) {
WOLFSSL_LEAVE("wolfSSL_RSA_private_encrypt", sz);
return 0;
}
return sz;
}
#endif /* HAVE_USER_RSA */
#endif
/* frees all nodes in the current threads error queue
*
* id thread id. ERR_remove_state is depreciated and id is ignored. The
* current threads queue will be free'd.
*/
void wolfSSL_ERR_remove_state(unsigned long id)
{
WOLFSSL_ENTER("wolfSSL_ERR_remove_state");
(void)id;
if (wc_ERR_remove_state() != 0) {
WOLFSSL_MSG("Error with removing the state");
}
}
WOLFSSL_BN_CTX* wolfSSL_BN_CTX_new(void)
{
static int ctx; /* wolfcrypt doesn't now need ctx */
WOLFSSL_MSG("wolfSSL_BN_CTX_new");
return (WOLFSSL_BN_CTX*)&ctx;
}
void wolfSSL_BN_CTX_init(WOLFSSL_BN_CTX* ctx)
{
(void)ctx;
WOLFSSL_MSG("wolfSSL_BN_CTX_init");
}
void wolfSSL_BN_CTX_free(WOLFSSL_BN_CTX* ctx)
{
(void)ctx;
WOLFSSL_MSG("wolfSSL_BN_CTX_free");
/* do free since static ctx that does nothing */
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_BN_sub(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* a,
const WOLFSSL_BIGNUM* b)
{
WOLFSSL_MSG("wolfSSL_BN_sub");
if (r == NULL || a == NULL || b == NULL)
return 0;
if (mp_sub((mp_int*)a->internal,(mp_int*)b->internal,
(mp_int*)r->internal) == MP_OKAY)
return WOLFSSL_SUCCESS;
WOLFSSL_MSG("wolfSSL_BN_sub mp_sub failed");
return 0;
}
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_BN_mod(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* a,
const WOLFSSL_BIGNUM* b, const WOLFSSL_BN_CTX* c)
{
(void)c;
WOLFSSL_MSG("wolfSSL_BN_mod");
if (r == NULL || a == NULL || b == NULL)
return 0;
if (mp_mod((mp_int*)a->internal,(mp_int*)b->internal,
(mp_int*)r->internal) == MP_OKAY)
return WOLFSSL_SUCCESS;
WOLFSSL_MSG("wolfSSL_BN_mod mp_mod failed");
return 0;
}
/* r = (a^p) % m */
int wolfSSL_BN_mod_exp(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *a,
const WOLFSSL_BIGNUM *p, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx)
{
int ret;
WOLFSSL_ENTER("wolfSSL_BN_mod_exp");
(void) ctx;
if (r == NULL || a == NULL || p == NULL || m == NULL) {
WOLFSSL_MSG("Bad Argument");
return WOLFSSL_FAILURE;
}
if ((ret = mp_exptmod((mp_int*)a->internal,(mp_int*)p->internal,
(mp_int*)m->internal, (mp_int*)r->internal)) == MP_OKAY) {
return WOLFSSL_SUCCESS;
}
WOLFSSL_LEAVE("wolfSSL_BN_mod_exp", ret);
(void)ret;
return WOLFSSL_FAILURE;
}
/* r = (a * p) % m */
int wolfSSL_BN_mod_mul(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *a,
const WOLFSSL_BIGNUM *p, const WOLFSSL_BIGNUM *m, WOLFSSL_BN_CTX *ctx)
{
int ret;
WOLFSSL_ENTER("wolfSSL_BN_mod_mul");
(void) ctx;
if (r == NULL || a == NULL || p == NULL || m == NULL) {
WOLFSSL_MSG("Bad Argument");
return SSL_FAILURE;
}
if ((ret = mp_mulmod((mp_int*)a->internal,(mp_int*)p->internal,
(mp_int*)m->internal, (mp_int*)r->internal)) == MP_OKAY) {
return WOLFSSL_SUCCESS;
}
WOLFSSL_LEAVE("wolfSSL_BN_mod_mul", ret);
(void)ret;
return SSL_FAILURE;
}
const WOLFSSL_BIGNUM* wolfSSL_BN_value_one(void)
{
WOLFSSL_MSG("wolfSSL_BN_value_one");
if (bn_one == NULL) {
bn_one = wolfSSL_BN_new();
if (bn_one) {
if (mp_set_int((mp_int*)bn_one->internal, 1) != MP_OKAY) {
/* handle error by freeing BN and returning NULL */
wolfSSL_BN_free(bn_one);
bn_one = NULL;
}
}
}
return bn_one;
}
/* return compliant with OpenSSL
* size of BIGNUM in bytes, 0 if error */
int wolfSSL_BN_num_bytes(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_ENTER("wolfSSL_BN_num_bytes");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
return mp_unsigned_bin_size((mp_int*)bn->internal);
}
/* return compliant with OpenSSL
* size of BIGNUM in bits, 0 if error */
int wolfSSL_BN_num_bits(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_ENTER("wolfSSL_BN_num_bits");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
return mp_count_bits((mp_int*)bn->internal);
}
int wolfSSL_BN_is_negative(const WOLFSSL_BIGNUM* bn)
{
if (bn == NULL)
return WOLFSSL_FAILURE;
return mp_isneg((mp_int*)bn->internal);
}
/* return compliant with OpenSSL
* 1 if BIGNUM is zero, 0 else */
int wolfSSL_BN_is_zero(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_is_zero");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
if (mp_iszero((mp_int*)bn->internal) == MP_YES)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
/* return compliant with OpenSSL
* 1 if BIGNUM is one, 0 else */
int wolfSSL_BN_is_one(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_is_one");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
if (mp_cmp_d((mp_int*)bn->internal, 1) == MP_EQ)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
/* return compliant with OpenSSL
* 1 if BIGNUM is odd, 0 else */
int wolfSSL_BN_is_odd(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_is_odd");
if (bn == NULL || bn->internal == NULL)
return WOLFSSL_FAILURE;
if (mp_isodd((mp_int*)bn->internal) == MP_YES)
return WOLFSSL_SUCCESS;
return WOLFSSL_FAILURE;
}
/* return compliant with OpenSSL
* 1 if BIGNUM is word, 0 else */
int wolfSSL_BN_is_word(const WOLFSSL_BIGNUM* bn, WOLFSSL_BN_ULONG w)
{
WOLFSSL_MSG("wolfSSL_BN_is_word");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (w <= MP_MASK) {
if (mp_isword((mp_int*)bn->internal, (mp_digit)w) == MP_YES) {
return WOLFSSL_SUCCESS;
}
} else {
int ret;
mp_int w_mp;
if (mp_init(&w_mp) != MP_OKAY)
return WOLFSSL_FAILURE;
if (mp_set_int(&w_mp, w) != MP_OKAY)
return WOLFSSL_FAILURE;
ret = mp_cmp((mp_int *)bn->internal, &w_mp);
mp_free(&w_mp);
if (ret == MP_EQ)
return WOLFSSL_SUCCESS;
}
return WOLFSSL_FAILURE;
}
/* return compliant with OpenSSL
* -1 if a < b, 0 if a == b and 1 if a > b
*/
int wolfSSL_BN_cmp(const WOLFSSL_BIGNUM* a, const WOLFSSL_BIGNUM* b)
{
int ret;
WOLFSSL_MSG("wolfSSL_BN_cmp");
if (a == NULL || a->internal == NULL || b == NULL || b->internal == NULL)
return WOLFSSL_FATAL_ERROR;
ret = mp_cmp((mp_int*)a->internal, (mp_int*)b->internal);
return (ret == MP_EQ ? 0 : (ret == MP_GT ? 1 : -1));
}
/* return compliant with OpenSSL
* length of BIGNUM in bytes, -1 if error */
int wolfSSL_BN_bn2bin(const WOLFSSL_BIGNUM* bn, unsigned char* r)
{
WOLFSSL_MSG("wolfSSL_BN_bn2bin");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("NULL bn error");
return WOLFSSL_FATAL_ERROR;
}
if (r == NULL)
return mp_unsigned_bin_size((mp_int*)bn->internal);
if (mp_to_unsigned_bin((mp_int*)bn->internal, r) != MP_OKAY) {
WOLFSSL_MSG("mp_to_unsigned_bin error");
return WOLFSSL_FATAL_ERROR;
}
return mp_unsigned_bin_size((mp_int*)bn->internal);
}
WOLFSSL_BIGNUM* wolfSSL_BN_bin2bn(const unsigned char* str, int len,
WOLFSSL_BIGNUM* ret)
{
int weOwn = 0;
WOLFSSL_MSG("wolfSSL_BN_bin2bn");
/* if ret is null create a BN */
if (ret == NULL) {
ret = wolfSSL_BN_new();
weOwn = 1;
if (ret == NULL)
return NULL;
}
/* check ret and ret->internal then read in value */
if (ret && ret->internal) {
if (mp_read_unsigned_bin((mp_int*)ret->internal, str, len) != 0) {
WOLFSSL_MSG("mp_read_unsigned_bin failure");
if (weOwn)
wolfSSL_BN_free(ret);
return NULL;
}
} else {
return NULL;
}
return ret;
}
/* return compliant with OpenSSL
* 1 if success, 0 if error */
#ifndef NO_WOLFSSL_STUB
int wolfSSL_mask_bits(WOLFSSL_BIGNUM* bn, int n)
{
(void)bn;
(void)n;
WOLFSSL_ENTER("wolfSSL_BN_mask_bits");
WOLFSSL_STUB("BN_mask_bits");
return SSL_FAILURE;
}
#endif
/* WOLFSSL_SUCCESS on ok */
int wolfSSL_BN_rand(WOLFSSL_BIGNUM* bn, int bits, int top, int bottom)
{
int ret = 0;
int len = bits / 8;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
byte* buff = NULL;
#else
WC_RNG tmpRNG[1];
byte buff[1024];
#endif
(void)top;
(void)bottom;
WOLFSSL_MSG("wolfSSL_BN_rand");
if (bits % 8)
len++;
#ifdef WOLFSSL_SMALL_STACK
buff = (byte*)XMALLOC(1024, NULL, DYNAMIC_TYPE_TMP_BUFFER);
tmpRNG = (WC_RNG*) XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (buff == NULL || tmpRNG == NULL) {
XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
return ret;
}
#endif
if (bn == NULL || bn->internal == NULL)
WOLFSSL_MSG("Bad function arguments");
else if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else if (initGlobalRNG)
rng = &globalRNG;
if (rng) {
if (wc_RNG_GenerateBlock(rng, buff, len) != 0)
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
else {
buff[0] |= 0x80 | 0x40;
buff[len-1] |= 0x01;
if (mp_read_unsigned_bin((mp_int*)bn->internal,buff,len) != MP_OKAY)
WOLFSSL_MSG("mp read bin failed");
else
ret = WOLFSSL_SUCCESS;
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
return ret;
}
/* WOLFSSL_SUCCESS on ok
* code is same as wolfSSL_BN_rand except for how top and bottom is handled.
* top -1 then leave most sig bit alone
* top 0 then most sig is set to 1
* top is 1 then first two most sig bits are 1
*
* bottom is hot then odd number */
int wolfSSL_BN_pseudo_rand(WOLFSSL_BIGNUM* bn, int bits, int top, int bottom)
{
int ret = 0;
int len = bits / 8;
int initTmpRng = 0;
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
byte* buff = NULL;
#else
WC_RNG tmpRNG[1];
byte buff[1024];
#endif
WOLFSSL_MSG("wolfSSL_BN_rand");
if (bits % 8)
len++;
#ifdef WOLFSSL_SMALL_STACK
buff = (byte*)XMALLOC(1024, NULL, DYNAMIC_TYPE_TMP_BUFFER);
tmpRNG = (WC_RNG*) XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (buff == NULL || tmpRNG == NULL) {
XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret;
}
#endif
if (bn == NULL || bn->internal == NULL)
WOLFSSL_MSG("Bad function arguments");
else if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else if (initGlobalRNG)
rng = &globalRNG;
if (rng) {
if (wc_RNG_GenerateBlock(rng, buff, len) != 0)
WOLFSSL_MSG("Bad wc_RNG_GenerateBlock");
else {
switch (top) {
case -1:
break;
case 0:
buff[0] |= 0x80;
break;
case 1:
buff[0] |= 0x80 | 0x40;
break;
}
if (bottom == 1) {
buff[len-1] |= 0x01;
}
if (mp_read_unsigned_bin((mp_int*)bn->internal,buff,len) != MP_OKAY)
WOLFSSL_MSG("mp read bin failed");
else
ret = WOLFSSL_SUCCESS;
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(buff, NULL, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
/* return code compliant with OpenSSL :
* 1 if bit set, 0 else
*/
int wolfSSL_BN_is_bit_set(const WOLFSSL_BIGNUM* bn, int n)
{
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
return mp_is_bit_set((mp_int*)bn->internal, (mp_digit)n);
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_set_bit(WOLFSSL_BIGNUM* bn, int n)
{
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_set_bit((mp_int*)bn->internal, n) != MP_OKAY) {
WOLFSSL_MSG("mp_set_bit error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_BN_clear_bit(WOLFSSL_BIGNUM* bn, int n)
{
int ret = WOLFSSL_FAILURE;
#ifndef WOLFSSL_SMALL_STACK
mp_int tmp[1];
#else
mp_int* tmp = NULL;
#endif
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
goto cleanup;
}
if (mp_is_bit_set((mp_int*)bn->internal, n)) {
#ifdef WOLFSSL_SMALL_STACK
tmp = (mp_int*)XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (tmp == NULL) {
goto cleanup;
}
#endif
if (mp_init(tmp) != MP_OKAY) {
goto cleanup;
}
if (mp_set_bit(tmp, n) != MP_OKAY) {
goto cleanup;
}
if (mp_sub((mp_int*)bn->internal, tmp, (mp_int*)bn->internal) != MP_OKAY) {
goto cleanup;
}
}
ret = WOLFSSL_SUCCESS;
cleanup:
mp_clear(tmp);
#ifdef WOLFSSL_SMALL_STACK
if (tmp)
XFREE(tmp, NULL, DYNAMIC_TYPE_BIGINT);
#endif
return ret;
}
/* WOLFSSL_SUCCESS on ok */
/* Note on use: this function expects str to be an even length. It is
* converting pairs of bytes into 8-bit values. As an example, the RSA
* public exponent is commonly 0x010001. To get it to convert, you need
* to pass in the string "010001", it will fail if you use "10001". This
* is an affect of how Base16_Decode() works.
*/
int wolfSSL_BN_hex2bn(WOLFSSL_BIGNUM** bn, const char* str)
{
int ret = 0;
word32 decSz = 1024;
#ifdef WOLFSSL_SMALL_STACK
byte* decoded;
#else
byte decoded[1024];
#endif
int weOwn = 0;
int strLen;
WOLFSSL_MSG("wolfSSL_BN_hex2bn");
#ifdef WOLFSSL_SMALL_STACK
decoded = (byte*)XMALLOC(decSz, NULL, DYNAMIC_TYPE_DER);
if (decoded == NULL)
return ret;
#endif
if (str == NULL || str[0] == '\0') {
WOLFSSL_MSG("Bad function argument");
ret = WOLFSSL_FAILURE;
} else {
strLen = (int)XSTRLEN(str);
/* ignore trailing new lines */
while (str[strLen-1] == '\n' && strLen > 0) strLen--;
if (Base16_Decode((byte*)str, strLen, decoded, &decSz) < 0)
WOLFSSL_MSG("Bad Base16_Decode error");
else if (bn == NULL)
ret = decSz;
else {
if (*bn == NULL) {
*bn = wolfSSL_BN_new();
if (*bn != NULL) {
weOwn = 1;
}
}
if (*bn == NULL)
WOLFSSL_MSG("BN new failed");
else if (wolfSSL_BN_bin2bn(decoded, decSz, *bn) == NULL) {
WOLFSSL_MSG("Bad bin2bn error");
if (weOwn == 1) {
wolfSSL_BN_free(*bn); /* Free new BN */
}
}
else
ret = WOLFSSL_SUCCESS;
}
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(decoded, NULL, DYNAMIC_TYPE_DER);
#endif
return ret;
}
WOLFSSL_BIGNUM* wolfSSL_BN_dup(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_BIGNUM* ret;
WOLFSSL_MSG("wolfSSL_BN_dup");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return NULL;
}
ret = wolfSSL_BN_new();
if (ret == NULL) {
WOLFSSL_MSG("bn new error");
return NULL;
}
if (mp_copy((mp_int*)bn->internal, (mp_int*)ret->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
wolfSSL_BN_free(ret);
return NULL;
}
ret->neg = bn->neg;
return ret;
}
WOLFSSL_BIGNUM* wolfSSL_BN_copy(WOLFSSL_BIGNUM* r, const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_copy");
if (r == NULL || bn == NULL) {
WOLFSSL_MSG("r or bn NULL error");
return NULL;
}
if (mp_copy((mp_int*)bn->internal, (mp_int*)r->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
return NULL;
}
r->neg = bn->neg;
return r;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_set_word(WOLFSSL_BIGNUM* bn, unsigned long w)
{
WOLFSSL_MSG("wolfSSL_BN_set_word");
if (bn == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_set_int((mp_int*)bn->internal, w) != MP_OKAY) {
WOLFSSL_MSG("mp_init_set_int error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
static WOLFSSL_BN_ULONG wolfSSL_BN_get_word_1(mp_int *mp) {
#if DIGIT_BIT == (SIZEOF_LONG * 8)
return (WOLFSSL_BN_ULONG)mp->dp[0];
#else
WOLFSSL_BN_ULONG ret = 0UL;
int digit_i;
for (digit_i = 0; digit_i < mp->used; ++digit_i) {
ret <<= (WOLFSSL_BN_ULONG)DIGIT_BIT;
ret |= (WOLFSSL_BN_ULONG)mp->dp[digit_i];
}
return ret;
#endif
}
/* Returns the big number as an unsigned long if possible.
*
* bn big number structure to get value from
*
* Returns value or 0xFFFFFFFFL if bigger than unsigned long.
*/
WOLFSSL_BN_ULONG wolfSSL_BN_get_word(const WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_get_word");
if (bn == NULL) {
WOLFSSL_MSG("Invalid argument");
return 0;
}
if (wolfSSL_BN_num_bytes(bn) > (int)sizeof(unsigned long)) {
WOLFSSL_MSG("bignum is larger than unsigned long");
return 0xFFFFFFFFL;
}
return wolfSSL_BN_get_word_1((mp_int*)bn->internal);
}
/* return code compliant with OpenSSL :
* number length in decimal if success, 0 if error
*/
#ifndef NO_WOLFSSL_STUB
int wolfSSL_BN_dec2bn(WOLFSSL_BIGNUM** bn, const char* str)
{
(void)bn;
(void)str;
WOLFSSL_MSG("wolfSSL_BN_dec2bn");
WOLFSSL_STUB("BN_dec2bn");
return SSL_FAILURE;
}
#endif
#if defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY)
char *wolfSSL_BN_bn2dec(const WOLFSSL_BIGNUM *bn)
{
int len = 0;
char *buf;
WOLFSSL_MSG("wolfSSL_BN_bn2dec");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return NULL;
}
if (mp_radix_size((mp_int*)bn->internal, MP_RADIX_DEC, &len) != MP_OKAY) {
WOLFSSL_MSG("mp_radix_size failure");
return NULL;
}
buf = (char*) XMALLOC(len, NULL, DYNAMIC_TYPE_OPENSSL);
if (buf == NULL) {
WOLFSSL_MSG("BN_bn2dec malloc buffer failure");
return NULL;
}
if (mp_todecimal((mp_int*)bn->internal, buf) != MP_OKAY) {
XFREE(buf, NULL, DYNAMIC_TYPE_ECC);
return NULL;
}
return buf;
}
#else
char* wolfSSL_BN_bn2dec(const WOLFSSL_BIGNUM* bn)
{
(void)bn;
WOLFSSL_MSG("wolfSSL_BN_bn2dec");
return NULL;
}
#endif /* defined(WOLFSSL_KEY_GEN) || defined(HAVE_COMP_KEY) */
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_lshift(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *bn, int n)
{
WOLFSSL_MSG("wolfSSL_BN_lshift");
if (r == NULL || r->internal == NULL || bn == NULL || bn->internal == NULL){
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_mul_2d((mp_int*)bn->internal, n, (mp_int*)r->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_mul_2d error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_rshift(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *bn, int n)
{
WOLFSSL_MSG("wolfSSL_BN_rshift");
if (r == NULL || r->internal == NULL || bn == NULL || bn->internal == NULL){
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_div_2d((mp_int*)bn->internal, n,
(mp_int*)r->internal, NULL) != MP_OKAY) {
WOLFSSL_MSG("mp_mul_2d error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_add_word(WOLFSSL_BIGNUM *bn, WOLFSSL_BN_ULONG w)
{
WOLFSSL_MSG("wolfSSL_BN_add_word");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (w <= MP_MASK) {
if (mp_add_d((mp_int*)bn->internal, (mp_digit)w, (mp_int*)bn->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_add_d error");
return WOLFSSL_FAILURE;
}
} else {
int ret;
mp_int w_mp;
if (mp_init(&w_mp) != MP_OKAY)
return WOLFSSL_FAILURE;
if (mp_set_int(&w_mp, w) != MP_OKAY)
return WOLFSSL_FAILURE;
ret = mp_add((mp_int *)bn->internal, &w_mp, (mp_int *)bn->internal);
mp_free(&w_mp);
if (ret != MP_OKAY) {
WOLFSSL_MSG("mp_add error");
return WOLFSSL_FAILURE;
}
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* 1 if success, 0 else
*/
int wolfSSL_BN_add(WOLFSSL_BIGNUM *r, WOLFSSL_BIGNUM *a, WOLFSSL_BIGNUM *b)
{
WOLFSSL_MSG("wolfSSL_BN_add");
if (r == NULL || r->internal == NULL || a == NULL || a->internal == NULL ||
b == NULL || b->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_add((mp_int*)a->internal, (mp_int*)b->internal,
(mp_int*)r->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_add_d error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* r = a + b (mod m) */
int wolfSSL_BN_mod_add(WOLFSSL_BIGNUM *r, const WOLFSSL_BIGNUM *a,
const WOLFSSL_BIGNUM *b, const WOLFSSL_BIGNUM *m,
WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
WOLFSSL_MSG("wolfSSL_BN_add");
if (r == NULL || r->internal == NULL ||
a == NULL || a->internal == NULL ||
b == NULL || b->internal == NULL ||
m == NULL || m->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
if (mp_addmod((mp_int*)a->internal, (mp_int*)b->internal,
(mp_int*)m->internal, (mp_int*)r->internal) != MP_OKAY) {
WOLFSSL_MSG("mp_add_d error");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
#ifdef WOLFSSL_KEY_GEN
/* return code compliant with OpenSSL :
* 1 if prime, 0 if not, -1 if error
*/
int wolfSSL_BN_is_prime_ex(const WOLFSSL_BIGNUM *bn, int nbchecks,
WOLFSSL_BN_CTX *ctx, WOLFSSL_BN_GENCB *cb)
{
WC_RNG* rng = NULL;
#ifdef WOLFSSL_SMALL_STACK
WC_RNG* tmpRNG = NULL;
#else
WC_RNG tmpRNG[1];
#endif
int initTmpRng = 0;
int res = MP_NO;
(void)ctx;
(void)cb;
WOLFSSL_MSG("wolfSSL_BN_is_prime_ex");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FATAL_ERROR;
}
#ifdef WOLFSSL_SMALL_STACK
tmpRNG = (WC_RNG*)XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (tmpRNG == NULL)
return WOLFSSL_FAILURE;
#endif
if (wc_InitRng(tmpRNG) == 0) {
rng = tmpRNG;
initTmpRng = 1;
}
else {
WOLFSSL_MSG("Bad RNG Init, trying global");
if (initGlobalRNG == 0) {
WOLFSSL_MSG("Global RNG no Init");
}
else
rng = &globalRNG;
}
if (rng) {
if (mp_prime_is_prime_ex((mp_int*)bn->internal,
nbchecks, &res, rng) != MP_OKAY) {
WOLFSSL_MSG("mp_prime_is_prime_ex error");
res = MP_NO;
}
}
if (initTmpRng)
wc_FreeRng(tmpRNG);
#ifdef WOLFSSL_SMALL_STACK
XFREE(tmpRNG, NULL, DYNAMIC_TYPE_RNG);
#endif
if (res != MP_YES) {
WOLFSSL_MSG("mp_prime_is_prime_ex not prime");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* return code compliant with OpenSSL :
* (bn mod w) if success, -1 if error
*/
WOLFSSL_BN_ULONG wolfSSL_BN_mod_word(const WOLFSSL_BIGNUM *bn,
WOLFSSL_BN_ULONG w)
{
WOLFSSL_BN_ULONG ret = 0;
WOLFSSL_MSG("wolfSSL_BN_mod_word");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return (WOLFSSL_BN_ULONG)WOLFSSL_FATAL_ERROR;
}
if (w <= MP_MASK) {
mp_digit bn_ret;
if (mp_mod_d((mp_int*)bn->internal, (WOLFSSL_BN_ULONG)w, &bn_ret) != MP_OKAY) {
WOLFSSL_MSG("mp_add_d error");
return (WOLFSSL_BN_ULONG)WOLFSSL_FATAL_ERROR;
}
ret = (WOLFSSL_BN_ULONG)bn_ret;
} else {
int mp_ret;
mp_int w_mp, r_mp;
if (mp_init(&w_mp) != MP_OKAY)
return (unsigned long)WOLFSSL_FAILURE;
if (mp_init(&r_mp) != MP_OKAY)
return (unsigned long)WOLFSSL_FAILURE;
if (mp_set_int(&w_mp, w) != MP_OKAY)
return (unsigned long)WOLFSSL_FAILURE;
mp_ret = mp_mod((mp_int *)bn->internal, &w_mp, &r_mp);
ret = wolfSSL_BN_get_word_1(&r_mp);
mp_free(&r_mp);
mp_free(&w_mp);
if (mp_ret != MP_OKAY) {
WOLFSSL_MSG("mp_mod error");
return (WOLFSSL_BN_ULONG)WOLFSSL_FAILURE;
}
}
return ret;
}
#endif /* #ifdef WOLFSSL_KEY_GEN */
char *wolfSSL_BN_bn2hex(const WOLFSSL_BIGNUM *bn)
{
int len = 0;
char *buf;
WOLFSSL_ENTER("wolfSSL_BN_bn2hex");
if (bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return NULL;
}
if (mp_radix_size((mp_int*)bn->internal, MP_RADIX_HEX, &len) != MP_OKAY) {
WOLFSSL_MSG("mp_radix_size failure");
return NULL;
}
buf = (char*)XMALLOC(len, NULL, DYNAMIC_TYPE_OPENSSL);
if (buf == NULL) {
WOLFSSL_MSG("BN_bn2hex malloc buffer failure");
return NULL;
}
if (mp_tohex((mp_int*)bn->internal, buf) != MP_OKAY) {
XFREE(buf, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
return buf;
}
#ifndef NO_FILESYSTEM
/* return code compliant with OpenSSL :
* 1 if success, 0 if error
*/
int wolfSSL_BN_print_fp(XFILE fp, const WOLFSSL_BIGNUM *bn)
{
char *buf;
WOLFSSL_ENTER("wolfSSL_BN_print_fp");
if (fp == XBADFILE || bn == NULL || bn->internal == NULL) {
WOLFSSL_MSG("bn NULL error");
return WOLFSSL_FAILURE;
}
buf = wolfSSL_BN_bn2hex(bn);
if (buf == NULL) {
WOLFSSL_MSG("wolfSSL_BN_bn2hex failure");
return WOLFSSL_FAILURE;
}
XFPRINTF(fp, "%s", buf);
XFREE(buf, NULL, DYNAMIC_TYPE_OPENSSL);
return WOLFSSL_SUCCESS;
}
#endif /* !NO_FILESYSTEM */
WOLFSSL_BIGNUM *wolfSSL_BN_CTX_get(WOLFSSL_BN_CTX *ctx)
{
/* ctx is not used, return new Bignum */
(void)ctx;
WOLFSSL_ENTER("wolfSSL_BN_CTX_get");
return wolfSSL_BN_new();
}
#ifndef NO_WOLFSSL_STUB
void wolfSSL_BN_CTX_start(WOLFSSL_BN_CTX *ctx)
{
(void)ctx;
WOLFSSL_ENTER("wolfSSL_BN_CTX_start");
WOLFSSL_STUB("BN_CTX_start");
WOLFSSL_MSG("wolfSSL_BN_CTX_start TBD");
}
#endif
WOLFSSL_BIGNUM *wolfSSL_BN_mod_inverse(WOLFSSL_BIGNUM *r,
WOLFSSL_BIGNUM *a,
const WOLFSSL_BIGNUM *n,
WOLFSSL_BN_CTX *ctx)
{
int dynamic = 0;
/* ctx is not used */
(void)ctx;
WOLFSSL_ENTER("wolfSSL_BN_mod_inverse");
/* check parameter */
if (r == NULL) {
r = wolfSSL_BN_new();
if (r == NULL){
WOLFSSL_MSG("WolfSSL_BN_new() failed");
return NULL;
}
dynamic = 1;
}
if (a == NULL) {
WOLFSSL_MSG("a NULL error");
if (dynamic == 1) {
wolfSSL_BN_free(r);
}
return NULL;
}
if (n == NULL) {
WOLFSSL_MSG("n NULL error");
if (dynamic == 1) {
wolfSSL_BN_free(r);
}
return NULL;
}
/* Compute inverse of a modulo n and return r */
if (mp_invmod((mp_int *)a->internal,(mp_int *)n->internal,
(mp_int*)r->internal) == MP_VAL){
WOLFSSL_MSG("mp_invmod() error");
if (dynamic == 1) {
wolfSSL_BN_free(r);
}
return NULL;
}
return r;
}
#endif /* OPENSSL_EXTRA */
#if (defined(WOLFSSL_QT) || defined(OPENSSL_ALL)) && !defined(NO_ASN)
#ifndef NO_BIO
static int unprintable_char(char c)
{
const unsigned char last_unprintable = 31;
const unsigned char LF = 10;
const unsigned char CR = 13;
if (c <= last_unprintable && c != LF && c != CR) {
return 1;
}
return 0;
}
int wolfSSL_ASN1_STRING_print(WOLFSSL_BIO *out, WOLFSSL_ASN1_STRING *str)
{
int i;
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_print");
if (out == NULL || str == NULL)
return WOLFSSL_FAILURE;
for (i=0; i < str->length; i++) {
if (unprintable_char(str->data[i])) {
str->data[i] = '.';
}
}
if (wolfSSL_BIO_write(out, str->data, str->length) != str->length){
return WOLFSSL_FAILURE;
}
return str->length;
}
#endif /* !NO_BIO */
#endif /* (WOLFSSL_QT || OPENSSL_ALL) && !NO_ASN */
#if defined(OPENSSL_EXTRA)
int wolfSSL_X509_check_ca(WOLFSSL_X509 *x509)
{
WOLFSSL_ENTER("X509_check_ca");
if (x509 == NULL)
return WOLFSSL_FAILURE;
if (x509->isCa)
return 1;
if (x509->extKeyUsageCrit)
return 4;
return 0;
}
const char *wolfSSL_ASN1_tag2str(int tag)
{
static const char *const tag_label[31] = {
"EOC", "BOOLEAN", "INTEGER", "BIT STRING", "OCTET STRING", "NULL",
"OBJECT", "OBJECT DESCRIPTOR", "EXTERNAL", "REAL", "ENUMERATED",
"<ASN1 11>", "UTF8STRING", "<ASN1 13>", "<ASN1 14>", "<ASN1 15>",
"SEQUENCE", "SET", "NUMERICSTRING", "PRINTABLESTRING", "T61STRING",
"VIDEOTEXTSTRING", "IA5STRING", "UTCTIME", "GENERALIZEDTIME",
"GRAPHICSTRING", "VISIBLESTRING", "GENERALSTRING", "UNIVERSALSTRING",
"<ASN1 29>", "BMPSTRING"
};
if ((tag == V_ASN1_NEG_INTEGER) || (tag == V_ASN1_NEG_ENUMERATED))
tag &= ~0x100;
if (tag < 0 || tag > 30)
return "(unknown)";
return tag_label[tag];
}
#ifndef NO_BIO
static int check_esc_char(char c, char *esc)
{
char *ptr;
ptr = esc;
while(*ptr != 0){
if (c == *ptr)
return 1;
ptr++;
}
return 0;
}
int wolfSSL_ASN1_STRING_print_ex(WOLFSSL_BIO *out, WOLFSSL_ASN1_STRING *str,
unsigned long flags)
{
size_t str_len = 0, type_len = 0;
unsigned char *typebuf = NULL;
const char *hash="#";
WOLFSSL_ENTER("wolfSSL_ASN1_STRING_PRINT_ex");
if (out == NULL || str == NULL)
return WOLFSSL_FAILURE;
/* add ASN1 type tag */
if (flags & ASN1_STRFLGS_SHOW_TYPE){
const char *tag = wolfSSL_ASN1_tag2str(str->type);
/* colon len + tag len + null*/
type_len = XSTRLEN(tag) + 2;
typebuf = (unsigned char *)XMALLOC(type_len , NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (typebuf == NULL){
WOLFSSL_MSG("memory alloc failed.");
return WOLFSSL_FAILURE;
}
XMEMSET(typebuf, 0, type_len);
XSNPRINTF((char*)typebuf, (size_t)type_len , "%s:", tag);
type_len--;
}
/* dump hex */
if (flags & ASN1_STRFLGS_DUMP_ALL){
static const char hex_char[] = { '0', '1', '2', '3', '4', '5', '6',
'7','8', '9', 'A', 'B', 'C', 'D',
'E', 'F' };
char hex_tmp[4];
char *str_ptr, *str_end;
if (type_len > 0){
if (wolfSSL_BIO_write(out, typebuf, (int)type_len) != (int)type_len){
XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
str_len += type_len;
}
if (wolfSSL_BIO_write(out, hash, 1) != 1){
goto err_exit;
}
str_len++;
if (flags & ASN1_STRFLGS_DUMP_DER){
hex_tmp[0] = hex_char[str->type >> 4];
hex_tmp[1] = hex_char[str->type & 0xf];
hex_tmp[2] = hex_char[str->length >> 4];
hex_tmp[3] = hex_char[str->length & 0xf];
if (wolfSSL_BIO_write(out, hex_tmp, 4) != 4){
goto err_exit;
}
str_len += 4;
XMEMSET(hex_tmp, 0, 4);
}
str_ptr = str->data;
str_end = str->data + str->length;
while (str_ptr < str_end){
hex_tmp[0] = hex_char[*str_ptr >> 4];
hex_tmp[1] = hex_char[*str_ptr & 0xf];
if (wolfSSL_BIO_write(out, hex_tmp, 2) != 2){
goto err_exit;
}
str_ptr++;
str_len += 2;
}
if (type_len > 0)
XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return (int)str_len;
}
if (type_len > 0){
if (wolfSSL_BIO_write(out, typebuf, (int)type_len) != (int)type_len){
XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
str_len += type_len;
}
if (flags & ASN1_STRFLGS_ESC_2253){
char esc_ch[] = "+;<>\\";
char* esc_ptr;
esc_ptr = str->data;
while (*esc_ptr != 0){
if (check_esc_char(*esc_ptr, esc_ch)){
if (wolfSSL_BIO_write(out,"\\", 1) != 1)
goto err_exit;
str_len++;
}
if (wolfSSL_BIO_write(out, esc_ptr, 1) != 1)
goto err_exit;
str_len++;
esc_ptr++;
}
if (type_len > 0)
XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return (int)str_len;
}
if (wolfSSL_BIO_write(out, str->data, str->length) != str->length){
goto err_exit;
}
str_len += str->length;
if (type_len > 0)
XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return (int)str_len;
err_exit:
if (type_len > 0)
XFREE(typebuf, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return WOLFSSL_FAILURE;
}
#endif /* !NO_BIO */
#if !defined(NO_ASN_TIME) && !defined(USER_TIME) && !defined(TIME_OVERRIDES)
WOLFSSL_ASN1_TIME* wolfSSL_ASN1_TIME_adj(WOLFSSL_ASN1_TIME *s, time_t t,
int offset_day, long offset_sec)
{
const time_t sec_per_day = 24*60*60;
struct tm* ts = NULL;
struct tm* tmpTime;
time_t t_adj = 0;
time_t offset_day_sec = 0;
#if defined(NEED_TMP_TIME)
struct tm tmpTimeStorage;
tmpTime = &tmpTimeStorage;
#else
tmpTime = NULL;
#endif
(void)tmpTime;
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_adj");
if (s == NULL){
s = wolfSSL_ASN1_TIME_new();
if (s == NULL){
return NULL;
}
}
/* compute GMT time with offset */
offset_day_sec = offset_day * sec_per_day;
t_adj = t + offset_day_sec + offset_sec;
ts = (struct tm *)XGMTIME(&t_adj, tmpTime);
if (ts == NULL){
WOLFSSL_MSG("failed to get time data.");
XFREE(s, NULL, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
/* create ASN1 time notation */
/* UTC Time */
if (ts->tm_year >= 50 && ts->tm_year < 150){
char utc_str[ASN_UTC_TIME_SIZE];
int utc_year = 0,utc_mon,utc_day,utc_hour,utc_min,utc_sec;
s->type = V_ASN1_UTCTIME;
s->length = ASN_UTC_TIME_SIZE;
if (ts->tm_year >= 50 && ts->tm_year < 100){
utc_year = ts->tm_year;
} else if (ts->tm_year >= 100 && ts->tm_year < 150){
utc_year = ts->tm_year - 100;
}
utc_mon = ts->tm_mon + 1;
utc_day = ts->tm_mday;
utc_hour = ts->tm_hour;
utc_min = ts->tm_min;
utc_sec = ts->tm_sec;
XSNPRINTF((char *)utc_str, sizeof(utc_str),
"%02d%02d%02d%02d%02d%02dZ",
utc_year, utc_mon, utc_day, utc_hour, utc_min, utc_sec);
XMEMCPY(s->data, (byte *)utc_str, s->length);
/* GeneralizedTime */
} else {
char gt_str[ASN_GENERALIZED_TIME_MAX];
int gt_year,gt_mon,gt_day,gt_hour,gt_min,gt_sec;
s->type = V_ASN1_GENERALIZEDTIME;
s->length = ASN_GENERALIZED_TIME_SIZE;
gt_year = ts->tm_year + 1900;
gt_mon = ts->tm_mon + 1;
gt_day = ts->tm_mday;
gt_hour = ts->tm_hour;
gt_min = ts->tm_min;
gt_sec = ts->tm_sec;
XSNPRINTF((char *)gt_str, sizeof(gt_str),
"%4d%02d%02d%02d%02d%02dZ",
gt_year, gt_mon, gt_day, gt_hour, gt_min,gt_sec);
XMEMCPY(s->data, (byte *)gt_str, s->length);
}
return s;
}
#endif /* !NO_ASN_TIME && !USER_TIME && !TIME_OVERRIDES */
#ifndef NO_ASN_TIME
WOLFSSL_ASN1_TIME* wolfSSL_ASN1_TIME_new(void)
{
WOLFSSL_ASN1_TIME* ret = (WOLFSSL_ASN1_TIME*)
XMALLOC(sizeof(WOLFSSL_ASN1_TIME), NULL, DYNAMIC_TYPE_OPENSSL);
if (!ret)
return NULL;
XMEMSET(ret, 0, sizeof(WOLFSSL_ASN1_TIME));
return ret;
}
void wolfSSL_ASN1_TIME_free(WOLFSSL_ASN1_TIME* t)
{
if (t) {
XFREE(t, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
/* not a compatibility function - length getter for opaque type */
int wolfSSL_ASN1_TIME_get_length(WOLFSSL_ASN1_TIME *t)
{
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_get_length");
if (t == NULL)
return WOLFSSL_FAILURE;
return t->length;
}
/* not a compatibility function - data getter for opaque type */
unsigned char* wolfSSL_ASN1_TIME_get_data(WOLFSSL_ASN1_TIME *t)
{
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_get_data");
if (t == NULL)
return NULL;
return t->data;
}
WOLFSSL_ASN1_TIME* wolfSSL_ASN1_TIME_to_generalizedtime(WOLFSSL_ASN1_TIME *t,
WOLFSSL_ASN1_TIME **out)
{
int time_type = 0;
WOLFSSL_ASN1_TIME *ret = NULL;
WOLFSSL_ENTER("wolfSSL_ASN1_TIME_to_generalizedtime");
if (t == NULL) {
WOLFSSL_MSG("Invalid ASN_TIME value");
} else {
time_type = t->type;
if (time_type != ASN_UTC_TIME && time_type != ASN_GENERALIZED_TIME){
WOLFSSL_MSG("Invalid ASN_TIME type.");
} else {
if (out == NULL || *out == NULL) {
ret = wolfSSL_ASN1_TIME_new();
if (ret == NULL){
WOLFSSL_MSG("memory alloc failed.");
}
} else {
ret = *out;
}
}
}
if (ret != NULL) {
if (time_type == ASN_GENERALIZED_TIME){
XMEMCPY(ret->data, t->data, ASN_GENERALIZED_TIME_SIZE);
} else { /* ASN_UTC_TIME */
/* convert UTC to generalized time */
ret->type = ASN_GENERALIZED_TIME;
ret->length = ASN_GENERALIZED_TIME_SIZE;
if (t->data[0] >= '5') {
ret->data[0] = '1'; ret->data[1] = '9';
} else {
ret->data[0] = '2'; ret->data[1] = '0';
}
XMEMCPY(&ret->data[2], t->data, ASN_UTC_TIME_SIZE);
}
}
return ret;
}
#endif /* !NO_ASN_TIME */
#ifndef NO_ASN
int wolfSSL_i2c_ASN1_INTEGER(WOLFSSL_ASN1_INTEGER *a, unsigned char **pp)
{
unsigned char *pptr = NULL;
char pad = 0 ;
unsigned char pad_val = 0;
int ret_size = 0;
unsigned char data1 = 0;
unsigned char neg = 0;
int i = 0;
WOLFSSL_ENTER("wolfSSL_i2c_ASN1_INTEGER");
if (a == NULL)
return WOLFSSL_FAILURE;
ret_size = a->intData[1];
if (ret_size == 0)
ret_size = 1;
else{
ret_size = (int)a->intData[1];
neg = a->negative;
data1 = a->intData[2];
if (ret_size == 1 && data1 == 0)
neg = 0;
/* 0x80 or greater positive number in first byte */
if (!neg && (data1 > 127)){
pad = 1;
pad_val = 0;
} else if (neg){
/* negative number */
if (data1 > 128){
pad = 1;
pad_val = 0xff;
} else if (data1 == 128){
for (i = 3; i < a->intData[1] + 2; i++){
if (a->intData[i]){
pad = 1;
pad_val = 0xff;
break;
}
}
}
}
ret_size += (int)pad;
}
if (pp == NULL)
return ret_size;
pptr = *pp;
if (pad)
*(pptr++) = pad_val;
if (a->intData[1] == 0)
*(pptr++) = 0;
else if (!neg){
/* positive number */
for (i=0; i < a->intData[1]; i++){
*pptr = a->intData[i+2];
pptr++;
}
} else {
/* negative number */
int str_len = 0;
/* 0 padding from end of buffer */
str_len = (int)a->intData[1];
pptr += a->intData[1] - 1;
while (!a->intData[str_len + 2] && str_len > 1){
*(pptr--) = 0;
str_len--;
}
/* 2's complement next octet */
*(pptr--) = ((a->intData[str_len + 1]) ^ 0xff) + 1;
str_len--;
/* Complement any octets left */
while (str_len > 0){
*(pptr--) = a->intData[str_len + 1] ^ 0xff;
str_len--;
}
}
*pp += ret_size;
return ret_size;
}
#endif /* !NO_ASN */
#ifndef NO_CERTS
int wolfSSL_X509_CA_num(WOLFSSL_X509_STORE* store)
{
int i = 0;
int cnt_ret = 0;
Signer **table;
WOLFSSL_ENTER("wolfSSL_X509_CA_num");
if (store == NULL || store->cm == NULL){
WOLFSSL_MSG("invalid parameter");
return WOLFSSL_FAILURE;
}
table = store->cm->caTable;
if (table){
if (wc_LockMutex(&store->cm->caLock) == 0){
for (i = 0; i < CA_TABLE_SIZE; i++) {
Signer* signer = table[i];
while (signer) {
Signer* next = signer->next;
cnt_ret++;
signer = next;
}
}
wc_UnLockMutex(&store->cm->caLock);
}
}
return cnt_ret;
}
#endif /* !NO_CERTS */
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
long wolfSSL_X509_get_version(const WOLFSSL_X509 *x509)
{
int version = 0;
WOLFSSL_ENTER("wolfSSL_X509_get_version");
if (x509 == NULL){
WOLFSSL_MSG("invalid parameter");
return 0L;
}
version = x509->version;
if (version != 0)
return (long)version - 1L;
return 0L;
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if defined(OPENSSL_EXTRA)
int wolfSSL_X509_get_signature_nid(const WOLFSSL_X509 *x)
{
if (x == NULL)
return 0;
return oid2nid(x->sigOID, oidSigType);
}
#endif /* OPENSSL_EXTRA */
#if defined(OPENSSL_EXTRA) && !defined(NO_RSA)
/* return compliant with OpenSSL
* RSA modulus size in bytes, -1 if error
*/
int wolfSSL_RSA_size(const WOLFSSL_RSA* rsa)
{
WOLFSSL_ENTER("wolfSSL_RSA_size");
if (rsa == NULL)
return WOLFSSL_FATAL_ERROR;
if (rsa->inSet == 0)
{
if (SetRsaInternal((WOLFSSL_RSA*)rsa) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("SetRsaInternal failed");
return 0;
}
}
return wc_RsaEncryptSize((RsaKey*)rsa->internal);
}
#endif
#if !defined(HAVE_USER_RSA) && !defined(HAVE_FAST_RSA) && \
!defined(NO_RSA) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL))
/* WolfSSL -> OpenSSL */
int SetRsaExternal(WOLFSSL_RSA* rsa)
{
RsaKey* key;
WOLFSSL_MSG("Entering SetRsaExternal");
if (rsa == NULL || rsa->internal == NULL) {
WOLFSSL_MSG("rsa key NULL error");
return WOLFSSL_FATAL_ERROR;
}
key = (RsaKey*)rsa->internal;
if (SetIndividualExternal(&rsa->n, &key->n) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa n key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->e, &key->e) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa e key error");
return WOLFSSL_FATAL_ERROR;
}
if (key->type == RSA_PRIVATE) {
if (SetIndividualExternal(&rsa->d, &key->d) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa d key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->p, &key->p) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa p key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->q, &key->q) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa q key error");
return WOLFSSL_FATAL_ERROR;
}
#ifndef RSA_LOW_MEM
if (SetIndividualExternal(&rsa->dmp1, &key->dP) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa dP key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->dmq1, &key->dQ) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa dQ key error");
return WOLFSSL_FATAL_ERROR;
}
if (SetIndividualExternal(&rsa->iqmp, &key->u) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("rsa u key error");
return WOLFSSL_FATAL_ERROR;
}
#endif /* !RSA_LOW_MEM */
}
rsa->exSet = 1;
return WOLFSSL_SUCCESS;
}
#endif
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)
/* when calling SetIndividualExternal, mpi should be cleared by caller if no
* longer used. ie mp_free(mpi). This is to free data when fastmath is
* disabled since a copy of mpi is made by this function and placed into bn.
*/
int SetIndividualExternal(WOLFSSL_BIGNUM** bn, mp_int* mpi)
{
byte dynamic = 0;
WOLFSSL_MSG("Entering SetIndividualExternal");
if (mpi == NULL || bn == NULL) {
WOLFSSL_MSG("mpi NULL error");
return WOLFSSL_FATAL_ERROR;
}
if (*bn == NULL) {
*bn = wolfSSL_BN_new();
if (*bn == NULL) {
WOLFSSL_MSG("SetIndividualExternal alloc failed");
return WOLFSSL_FATAL_ERROR;
}
dynamic = 1;
}
if (mp_copy(mpi, (mp_int*)((*bn)->internal)) != MP_OKAY) {
WOLFSSL_MSG("mp_copy error");
if (dynamic == 1) {
wolfSSL_BN_free(*bn);
}
return WOLFSSL_FATAL_ERROR;
}
return WOLFSSL_SUCCESS;
}
static void InitwolfSSL_BigNum(WOLFSSL_BIGNUM* bn)
{
if (bn) {
XMEMSET(bn, 0, sizeof(WOLFSSL_BIGNUM));
bn->neg = 0;
bn->internal = NULL;
}
}
WOLFSSL_BIGNUM* wolfSSL_BN_new(void)
{
WOLFSSL_BIGNUM* external;
mp_int* mpi;
WOLFSSL_MSG("wolfSSL_BN_new");
#if !defined(USE_FAST_MATH) || defined(HAVE_WOLF_BIGINT)
mpi = (mp_int*) XMALLOC(sizeof(mp_int), NULL, DYNAMIC_TYPE_BIGINT);
if (mpi == NULL) {
WOLFSSL_MSG("wolfSSL_BN_new malloc mpi failure");
return NULL;
}
#endif
external = (WOLFSSL_BIGNUM*) XMALLOC(sizeof(WOLFSSL_BIGNUM), NULL,
DYNAMIC_TYPE_BIGINT);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_BN_new malloc WOLFSSL_BIGNUM failure");
#if !defined(USE_FAST_MATH) || defined(HAVE_WOLF_BIGINT)
XFREE(mpi, NULL, DYNAMIC_TYPE_BIGINT);
#endif
return NULL;
}
#if defined(USE_FAST_MATH) && !defined(HAVE_WOLF_BIGINT)
mpi = &external->fp;
#endif
InitwolfSSL_BigNum(external);
if (mp_init(mpi) != MP_OKAY) {
wolfSSL_BN_free(external);
return NULL;
}
external->internal = mpi;
return external;
}
#if defined(USE_FAST_MATH) && !defined(HAVE_WOLF_BIGINT)
/* This function works without BN_free only with TFM */
void wolfSSL_BN_init(WOLFSSL_BIGNUM* bn)
{
if(bn == NULL)return;
WOLFSSL_MSG("wolfSSL_BN_init");
InitwolfSSL_BigNum(bn);
if (mp_init(&bn->fp) != MP_OKAY)
return;
bn->internal = (void *)&bn->fp;
}
#endif
void wolfSSL_BN_free(WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_free");
if (bn) {
if (bn->internal) {
mp_int* bni = (mp_int*)bn->internal;
mp_free(bni);
#if !defined(USE_FAST_MATH) || defined(HAVE_WOLF_BIGINT)
XFREE(bn->internal, NULL, DYNAMIC_TYPE_BIGINT);
#endif
bn->internal = NULL;
}
XFREE(bn, NULL, DYNAMIC_TYPE_BIGINT);
/* bn = NULL, don't try to access or double free it */
}
}
void wolfSSL_BN_clear_free(WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_clear_free");
if (bn) {
if (bn->internal) {
mp_int* bni = (mp_int*)bn->internal;
mp_forcezero(bni);
}
wolfSSL_BN_free(bn);
}
}
void wolfSSL_BN_clear(WOLFSSL_BIGNUM* bn)
{
WOLFSSL_MSG("wolfSSL_BN_clear");
if (bn && bn->internal) {
mp_forcezero((mp_int*)bn->internal);
}
}
#endif /* OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL */
#if !defined(NO_RSA) && (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL))
static void InitwolfSSL_Rsa(WOLFSSL_RSA* rsa)
{
if (rsa) {
XMEMSET(rsa, 0, sizeof(WOLFSSL_RSA));
}
}
void wolfSSL_RSA_free(WOLFSSL_RSA* rsa)
{
WOLFSSL_ENTER("wolfSSL_RSA_free");
if (rsa) {
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
int doFree = 0;
if (wc_LockMutex(&rsa->refMutex) != 0) {
WOLFSSL_MSG("Couldn't lock rsa mutex");
}
/* only free if all references to it are done */
rsa->refCount--;
if (rsa->refCount == 0) {
doFree = 1;
}
wc_UnLockMutex(&rsa->refMutex);
if (!doFree) {
return;
}
wc_FreeMutex(&rsa->refMutex);
#endif
if (rsa->internal) {
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING)
WC_RNG* rng;
/* check if RNG is owned before freeing it */
if (rsa->ownRng) {
rng = ((RsaKey*)rsa->internal)->rng;
if (rng != NULL && rng != &globalRNG) {
wc_FreeRng(rng);
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
}
}
#endif /* WC_RSA_BLINDING */
wc_FreeRsaKey((RsaKey*)rsa->internal);
XFREE(rsa->internal, NULL, DYNAMIC_TYPE_RSA);
rsa->internal = NULL;
}
wolfSSL_BN_free(rsa->iqmp);
wolfSSL_BN_free(rsa->dmq1);
wolfSSL_BN_free(rsa->dmp1);
wolfSSL_BN_free(rsa->q);
wolfSSL_BN_free(rsa->p);
wolfSSL_BN_free(rsa->d);
wolfSSL_BN_free(rsa->e);
wolfSSL_BN_free(rsa->n);
#ifdef WC_RSA_BLINDING
if (rsa->rng && wc_FreeRng(rsa->rng) != 0) {
WOLFSSL_MSG("Issue freeing rng");
}
XFREE(rsa->rng, NULL, DYNAMIC_TYPE_RNG);
#endif
#if defined(OPENSSL_EXTRA) && !defined(WOLFCRYPT_ONLY)
if (rsa->meth) {
wolfSSL_RSA_meth_free(rsa->meth);
}
#endif
InitwolfSSL_Rsa(rsa); /* set back to NULLs for safety */
XFREE(rsa, NULL, DYNAMIC_TYPE_RSA);
/* rsa = NULL, don't try to access or double free it */
}
}
WOLFSSL_RSA* wolfSSL_RSA_new(void)
{
WOLFSSL_RSA* external;
RsaKey* key;
WOLFSSL_ENTER("wolfSSL_RSA_new");
key = (RsaKey*) XMALLOC(sizeof(RsaKey), NULL, DYNAMIC_TYPE_RSA);
if (key == NULL) {
WOLFSSL_MSG("wolfSSL_RSA_new malloc RsaKey failure");
return NULL;
}
external = (WOLFSSL_RSA*) XMALLOC(sizeof(WOLFSSL_RSA), NULL,
DYNAMIC_TYPE_RSA);
if (external == NULL) {
WOLFSSL_MSG("wolfSSL_RSA_new malloc WOLFSSL_RSA failure");
XFREE(key, NULL, DYNAMIC_TYPE_RSA);
return NULL;
}
InitwolfSSL_Rsa(external);
if (wc_InitRsaKey(key, NULL) != 0) {
WOLFSSL_MSG("InitRsaKey WOLFSSL_RSA failure");
XFREE(external, NULL, DYNAMIC_TYPE_RSA);
XFREE(key, NULL, DYNAMIC_TYPE_RSA);
return NULL;
}
#if !defined(HAVE_FIPS) && !defined(HAVE_USER_RSA) && \
!defined(HAVE_FAST_RSA) && defined(WC_RSA_BLINDING)
{
WC_RNG* rng;
rng = (WC_RNG*) XMALLOC(sizeof(WC_RNG), NULL, DYNAMIC_TYPE_RNG);
if (rng != NULL && wc_InitRng(rng) != 0) {
WOLFSSL_MSG("InitRng failure, attempting to use global RNG");
XFREE(rng, NULL, DYNAMIC_TYPE_RNG);
rng = NULL;
}
external->ownRng = 1;
if (rng == NULL && initGlobalRNG) {
external->ownRng = 0;
rng = &globalRNG;
}
if (rng == NULL) {
WOLFSSL_MSG("wolfSSL_RSA_new no WC_RNG for blinding");
XFREE(external, NULL, DYNAMIC_TYPE_RSA);
XFREE(key, NULL, DYNAMIC_TYPE_RSA);
return NULL;
}
wc_RsaSetRNG(key, rng);
}
#else
XMEMSET(key, 0, sizeof(RsaKey));
#endif /* WC_RSA_BLINDING */
external->internal = key;
external->inSet = 0;
#if defined(OPENSSL_EXTRA) || defined(OPENSSL_ALL)
external->refCount = 1;
wc_InitMutex(&external->refMutex);
#endif
return external;
}
#endif /* !NO_RSA && (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) */
#if defined(OPENSSL_ALL) && defined(HAVE_PKCS7)
PKCS7* wolfSSL_PKCS7_new(void)
{
WOLFSSL_PKCS7* pkcs7;
int ret = 0;
pkcs7 = (WOLFSSL_PKCS7*)XMALLOC(sizeof(*pkcs7), NULL, DYNAMIC_TYPE_PKCS7);
if (pkcs7 != NULL) {
XMEMSET(pkcs7, 0, sizeof(*pkcs7));
ret = wc_PKCS7_Init(&pkcs7->pkcs7, NULL, INVALID_DEVID);
}
if (ret != 0 && pkcs7 != NULL) {
XFREE(pkcs7, NULL, DYNAMIC_TYPE_PKCS7);
pkcs7 = NULL;
}
return (PKCS7*)pkcs7;
}
/******************************************************************************
* wolfSSL_PKCS7_SIGNED_new - allocates PKCS7 and initialize it for a signed data
*
* RETURNS:
* returns pointer to the PKCS7 structure on success, otherwise returns NULL
*/
PKCS7_SIGNED* wolfSSL_PKCS7_SIGNED_new(void)
{
byte signedData[]= { 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x07, 0x02};
PKCS7* pkcs7 = NULL;
if ((pkcs7 = wolfSSL_PKCS7_new()) == NULL)
return NULL;
pkcs7->contentOID = SIGNED_DATA;
if ((wc_PKCS7_SetContentType(pkcs7, signedData, sizeof(signedData))) < 0) {
if (pkcs7) {
wolfSSL_PKCS7_free(pkcs7);
return NULL;
}
}
return pkcs7;
}
void wolfSSL_PKCS7_free(PKCS7* pkcs7)
{
WOLFSSL_PKCS7* p7 = (WOLFSSL_PKCS7*)pkcs7;
if (p7 != NULL) {
if (p7->data != NULL)
XFREE(p7->data, NULL, DYNAMIC_TYPE_PKCS7);
wc_PKCS7_Free(&p7->pkcs7);
if (p7->certs)
wolfSSL_sk_free(p7->certs);
XFREE(p7, NULL, DYNAMIC_TYPE_PKCS7);
}
}
void wolfSSL_PKCS7_SIGNED_free(PKCS7_SIGNED* p7)
{
wolfSSL_PKCS7_free(p7);
return;
}
PKCS7* wolfSSL_d2i_PKCS7(PKCS7** p7, const unsigned char** in, int len)
{
return wolfSSL_d2i_PKCS7_ex(p7, in, len, NULL, 0);
}
/*****************************************************************************
* wolfSSL_d2i_PKCS7_ex - Converts the given unsigned char buffer of size len
* into a PKCS7 object. Optionally, accepts a byte buffer of content which
* is stored as the PKCS7 object's content, to support detached signatures.
* @param content The content which is signed, in case the signature is
* detached. Ignored if NULL.
* @param contentSz The size of the passed in content.
*
* RETURNS:
* returns pointer to a PKCS7 structure on success, otherwise returns NULL
*/
PKCS7* wolfSSL_d2i_PKCS7_ex(PKCS7** p7, const unsigned char** in, int len,
byte* content, word32 contentSz)
{
WOLFSSL_PKCS7* pkcs7 = NULL;
word32 idx = 0;
WOLFSSL_ENTER("wolfSSL_d2i_PKCS7_ex");
if (in == NULL || *in == NULL)
return NULL;
if ((pkcs7 = (WOLFSSL_PKCS7*)wolfSSL_PKCS7_new()) == NULL)
return NULL;
if (GetSequence(*in, &idx, &pkcs7->len, len) < 0) {
wolfSSL_PKCS7_free((PKCS7*)pkcs7);
return NULL;
}
pkcs7->len += idx;
pkcs7->data = (byte*)XMALLOC(pkcs7->len, NULL, DYNAMIC_TYPE_PKCS7);
if (pkcs7->data == NULL) {
wolfSSL_PKCS7_free((PKCS7*)pkcs7);
return NULL;
}
XMEMCPY(pkcs7->data, *in, pkcs7->len);
if (content != NULL) {
pkcs7->pkcs7.content = content;
pkcs7->pkcs7.contentSz = contentSz;
}
if (wc_PKCS7_VerifySignedData(&pkcs7->pkcs7, pkcs7->data, pkcs7->len) != 0) {
wolfSSL_PKCS7_free((PKCS7*)pkcs7);
return NULL;
}
if (p7 != NULL)
*p7 = (PKCS7*)pkcs7;
*in += pkcs7->len;
return (PKCS7*)pkcs7;
}
#ifndef NO_BIO
PKCS7* wolfSSL_d2i_PKCS7_bio(WOLFSSL_BIO* bio, PKCS7** p7)
{
WOLFSSL_PKCS7* pkcs7;
int ret;
WOLFSSL_ENTER("wolfSSL_d2i_PKCS7_bio");
if (bio == NULL)
return NULL;
if ((pkcs7 = (WOLFSSL_PKCS7*)wolfSSL_PKCS7_new()) == NULL)
return NULL;
pkcs7->len = wolfSSL_BIO_get_len(bio);
pkcs7->data = (byte*)XMALLOC(pkcs7->len, NULL, DYNAMIC_TYPE_PKCS7);
if (pkcs7->data == NULL) {
wolfSSL_PKCS7_free((PKCS7*)pkcs7);
return NULL;
}
if ((ret = wolfSSL_BIO_read(bio, pkcs7->data, pkcs7->len)) <= 0) {
wolfSSL_PKCS7_free((PKCS7*)pkcs7);
return NULL;
}
/* pkcs7->len may change if using b64 for example */
pkcs7->len = ret;
if (wc_PKCS7_VerifySignedData(&pkcs7->pkcs7, pkcs7->data, pkcs7->len) != 0) {
return NULL;
}
if (p7 != NULL)
*p7 = (PKCS7*)pkcs7;
return (PKCS7*)pkcs7;
}
int wolfSSL_i2d_PKCS7_bio(WOLFSSL_BIO *bio, PKCS7 *p7)
{
byte* output = NULL;
int len;
WC_RNG rng;
int ret = WOLFSSL_FAILURE;
WOLFSSL_ENTER("wolfSSL_i2d_PKCS7_bio");
if (!bio || !p7) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (!p7->rng) {
if (wc_InitRng(&rng) != 0) {
WOLFSSL_MSG("wc_InitRng error");
return WOLFSSL_FAILURE;
}
p7->rng = &rng;
}
if ((len = wc_PKCS7_EncodeSignedData(p7, NULL, 0)) < 0) {
WOLFSSL_MSG("wc_PKCS7_EncodeSignedData error");
goto cleanup;
}
output = (byte*)XMALLOC(len, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (!output) {
WOLFSSL_MSG("malloc error");
goto cleanup;
}
if ((len = wc_PKCS7_EncodeSignedData(p7, output, len)) < 0) {
WOLFSSL_MSG("wc_PKCS7_EncodeSignedData error");
goto cleanup;
}
if (wolfSSL_BIO_write(bio, output, len) <= 0) {
WOLFSSL_MSG("wolfSSL_BIO_write error");
goto cleanup;
}
ret = WOLFSSL_SUCCESS;
cleanup:
if (p7->rng == &rng) {
wc_FreeRng(&rng);
p7->rng = NULL;
}
if (output) {
XFREE(output, NULL, DYNAMIC_TYPE_TMP_BUFFER);
}
return ret;
}
int wolfSSL_PKCS7_verify(PKCS7* pkcs7, WOLFSSL_STACK* certs,
WOLFSSL_X509_STORE* store, WOLFSSL_BIO* in,
WOLFSSL_BIO* out, int flags)
{
int ret = 0;
unsigned char* mem = NULL;
int memSz = 0;
WOLFSSL_PKCS7* p7 = (WOLFSSL_PKCS7*)pkcs7;
WOLFSSL_ENTER("wolfSSL_PKCS7_verify");
if (pkcs7 == NULL)
return WOLFSSL_FAILURE;
if (in != NULL) {
if ((memSz = wolfSSL_BIO_get_mem_data(in, &mem)) < 0)
return WOLFSSL_FAILURE;
p7->pkcs7.content = mem;
p7->pkcs7.contentSz = memSz;
}
/* certs is the list of certificates to find the cert with issuer/serial. */
(void)certs;
/* store is the certificate store to use to verify signer certificate
* associated with the signers.
*/
(void)store;
ret = wc_PKCS7_VerifySignedData(&p7->pkcs7, p7->data, p7->len);
if (ret != 0)
return WOLFSSL_FAILURE;
if ((flags & PKCS7_NOVERIFY) != PKCS7_NOVERIFY) {
/* All signer certificates are verified. */
return WOLFSSL_FAILURE;
}
if (out != NULL)
wolfSSL_BIO_write(out, p7->pkcs7.content, p7->pkcs7.contentSz);
return WOLFSSL_SUCCESS;
}
/**
* This API was added as a helper function for libest. It
* encodes a stack of certificates to pkcs7 format.
* @param pkcs7 PKCS7 parameter object
* @param certs WOLFSSL_STACK_OF(WOLFSSL_X509)*
* @param out Output bio
* @return WOLFSSL_SUCCESS on success and WOLFSSL_FAILURE on failure
*/
int wolfSSL_PKCS7_encode_certs(PKCS7* pkcs7, WOLFSSL_STACK* certs,
WOLFSSL_BIO* out)
{
int ret;
WOLFSSL_PKCS7* p7;
WOLFSSL_ENTER("wolfSSL_PKCS7_encode_certs");
if (!pkcs7 || !certs || !out) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
p7 = (WOLFSSL_PKCS7*)pkcs7;
/* take ownership of certs */
p7->certs = certs;
if (pkcs7->certList) {
WOLFSSL_MSG("wolfSSL_PKCS7_encode_certs called multiple times on same "
"struct");
return WOLFSSL_FAILURE;
}
if (certs) {
/* Save some of the values */
int hashOID = pkcs7->hashOID;
byte version = pkcs7->version;
if (!certs->data.x509 || !certs->data.x509->derCert) {
WOLFSSL_MSG("Missing cert");
return WOLFSSL_FAILURE;
}
if (wc_PKCS7_InitWithCert(pkcs7, certs->data.x509->derCert->buffer,
certs->data.x509->derCert->length) != 0) {
WOLFSSL_MSG("wc_PKCS7_InitWithCert error");
return WOLFSSL_FAILURE;
}
certs = certs->next;
pkcs7->hashOID = hashOID;
pkcs7->version = version;
}
/* Add the certs to the PKCS7 struct */
while (certs) {
if (!certs->data.x509 || !certs->data.x509->derCert) {
WOLFSSL_MSG("Missing cert");
return WOLFSSL_FAILURE;
}
if (wc_PKCS7_AddCertificate(pkcs7, certs->data.x509->derCert->buffer,
certs->data.x509->derCert->length) != 0) {
WOLFSSL_MSG("wc_PKCS7_AddCertificate error");
return WOLFSSL_FAILURE;
}
certs = certs->next;
}
if (wc_PKCS7_SetSignerIdentifierType(pkcs7, DEGENERATE_SID) != 0) {
WOLFSSL_MSG("wc_PKCS7_SetSignerIdentifierType error");
return WOLFSSL_FAILURE;
}
ret = wolfSSL_i2d_PKCS7_bio(out, pkcs7);
return ret;
}
#endif /* !NO_BIO */
/**
* This API was added as a helper function for libest. It
* extracts a stack of certificates from the pkcs7 object.
* @param pkcs7 PKCS7 parameter object
* @return WOLFSSL_STACK_OF(WOLFSSL_X509)*
*/
WOLFSSL_STACK* wolfSSL_PKCS7_to_stack(PKCS7* pkcs7)
{
int i;
WOLFSSL_PKCS7* p7 = (WOLFSSL_PKCS7*)pkcs7;
WOLF_STACK_OF(WOLFSSL_X509)* ret = NULL;
WOLFSSL_ENTER("wolfSSL_PKCS7_to_stack");
if (!p7) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
if (p7->certs)
return p7->certs;
for (i = 0; i < MAX_PKCS7_CERTS && p7->pkcs7.cert[i]; i++) {
WOLFSSL_X509* x509 = wolfSSL_X509_d2i(NULL, p7->pkcs7.cert[i],
p7->pkcs7.certSz[i]);
if (!ret)
ret = wolfSSL_sk_X509_new();
if (x509) {
if (wolfSSL_sk_X509_push(ret, x509) != WOLFSSL_SUCCESS) {
wolfSSL_X509_free(x509);
WOLFSSL_MSG("wolfSSL_sk_X509_push error");
goto error;
}
}
else {
WOLFSSL_MSG("wolfSSL_X509_d2i error");
goto error;
}
}
/* Save stack to free later */
if (p7->certs)
wolfSSL_sk_free(p7->certs);
p7->certs = ret;
return ret;
error:
if (ret) {
wolfSSL_sk_free(ret);
}
return NULL;
}
WOLFSSL_STACK* wolfSSL_PKCS7_get0_signers(PKCS7* pkcs7, WOLFSSL_STACK* certs,
int flags)
{
WOLFSSL_STACK* signers = NULL;
WOLFSSL_PKCS7* p7 = (WOLFSSL_PKCS7*)pkcs7;
if (p7 == NULL)
return NULL;
/* Only PKCS#7 messages with a single cert that is the verifying certificate
* is supported.
*/
if ((flags | PKCS7_NOINTERN) == PKCS7_NOINTERN)
return NULL;
signers = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_X509);
if (signers == NULL)
return NULL;
signers->num = 1;
signers->data.x509 = (WOLFSSL_X509*)XMALLOC(sizeof(WOLFSSL_X509), NULL,
DYNAMIC_TYPE_X509);
if (signers->data.x509 == NULL) {
XFREE(signers, NULL, DYNAMIC_TYPE_X509);
return NULL;
}
if (DecodeToX509(signers->data.x509, p7->pkcs7.singleCert,
p7->pkcs7.singleCertSz) != 0) {
XFREE(signers->data.x509, NULL, DYNAMIC_TYPE_X509);
XFREE(signers, NULL, DYNAMIC_TYPE_X509);
return NULL;
}
(void)certs;
return signers;
}
#ifndef NO_BIO
/******************************************************************************
* wolfSSL_PEM_write_bio_PKCS7 - writes the PKCS7 data to BIO
*
* RETURNS:
* returns WOLFSSL_SUCCESS on success, otherwise returns WOLFSSL_FAILURE
*/
int wolfSSL_PEM_write_bio_PKCS7(WOLFSSL_BIO* bio, PKCS7* p7)
{
#ifdef WOLFSSL_SMALL_STACK
byte* outputHead;
byte* outputFoot;
#else
byte outputHead[2048];
byte outputFoot[2048];
#endif
word32 outputHeadSz = 2048;
word32 outputFootSz = 2048;
word32 outputSz = 0;
byte* output = NULL;
byte* pem = NULL;
int pemSz = -1;
enum wc_HashType hashType;
byte hashBuf[WC_MAX_DIGEST_SIZE];
word32 hashSz = -1;
WOLFSSL_ENTER("wolfSSL_PEM_write_bio_PKCS7()");
if (bio == NULL || p7 == NULL)
return WOLFSSL_FAILURE;
#ifdef WOLFSSL_SMALL_STACK
outputHead = (byte*)XMALLOC(outputHeadSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (outputHead == NULL)
return MEMORY_E;
outputFoot = (byte*)XMALLOC(outputFootSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (outputFoot == NULL)
goto error;
#endif
XMEMSET(hashBuf, 0, WC_MAX_DIGEST_SIZE);
XMEMSET(outputHead, 0, outputHeadSz);
XMEMSET(outputFoot, 0, outputFootSz);
hashType = wc_OidGetHash(p7->hashOID);
hashSz = wc_HashGetDigestSize(hashType);
if (hashSz > WC_MAX_DIGEST_SIZE)
return WOLFSSL_FAILURE;
/* only SIGNED_DATA is supported */
switch (p7->contentOID) {
case SIGNED_DATA:
break;
default:
WOLFSSL_MSG("Unknown PKCS#7 Type");
return WOLFSSL_FAILURE;
};
if ((wc_PKCS7_EncodeSignedData_ex(p7, hashBuf, hashSz,
outputHead, &outputHeadSz, outputFoot, &outputFootSz)) != 0)
return WOLFSSL_FAILURE;
outputSz = outputHeadSz + p7->contentSz + outputFootSz;
output = (byte*)XMALLOC(outputSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
if (!output)
return WOLFSSL_FAILURE;
XMEMSET(output, 0, outputSz);
outputSz = 0;
XMEMCPY(&output[outputSz], outputHead, outputHeadSz);
outputSz += outputHeadSz;
XMEMCPY(&output[outputSz], p7->content, p7->contentSz);
outputSz += p7->contentSz;
XMEMCPY(&output[outputSz], outputFoot, outputFootSz);
outputSz += outputFootSz;
/* get PEM size */
pemSz = wc_DerToPemEx(output, outputSz, NULL, 0, NULL, CERT_TYPE);
if (pemSz < 0)
goto error;
pemSz++; /* for '\0'*/
/* create PEM buffer and convert from DER to PEM*/
if ((pem = (byte*)XMALLOC(pemSz, bio->heap, DYNAMIC_TYPE_TMP_BUFFER)) == NULL)
goto error;
XMEMSET(pem, 0, pemSz);
if (wc_DerToPemEx(output, outputSz, pem, pemSz, NULL, CERT_TYPE) < 0) {
goto error;
}
if ((wolfSSL_BIO_write(bio, pem, pemSz) == pemSz)) {
XFREE(output, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(pem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
#ifdef WOLFSSL_SMALL_STACK
XFREE(outputHead, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
XFREE(outputFoot, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return WOLFSSL_SUCCESS;
}
error:
#ifdef WOLFSSL_SMALL_STACK
if (outputHead) {
XFREE(outputHead, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (outputFoot) {
XFREE(outputFoot, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
if (output) {
XFREE(output, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
if (pem) {
XFREE(pem, bio->heap, DYNAMIC_TYPE_TMP_BUFFER);
}
return WOLFSSL_FAILURE;
}
#ifdef HAVE_SMIME
/*****************************************************************************
* wolfSSL_SMIME_read_PKCS7 - Reads the given S/MIME message and parses it into
* a PKCS7 object. In case of a multipart message, stores the signed data in
* bcont.
*
* RETURNS:
* returns pointer to a PKCS7 structure on success, otherwise returns NULL
*/
WOLFSSL_API PKCS7* wolfSSL_SMIME_read_PKCS7(WOLFSSL_BIO* in,
WOLFSSL_BIO** bcont)
{
MimeHdr* allHdrs = NULL;
MimeHdr* curHdr = NULL;
MimeParam* curParam = NULL;
int inLen = 0;
byte* bcontMem = NULL;
int bcontMemSz = 0;
int sectionLen = 0;
int ret = -1;
char* section = NULL;
PKCS7* pkcs7 = NULL;
word32 outLen = 0;
byte* out = NULL;
byte* outHead = NULL;
int lineLen = 0;
int remainLen = 0;
byte isEnd = 0;
size_t boundLen = 0;
char* boundary = NULL;
static const char* kContType = "Content-Type";
static const char* kCTE = "Content-Transfer-Encoding";
static const char* kMultSigned = "multipart/signed";
static const char* kAppPkcsSign = "application/pkcs7-signature";
static const char* kAppXPkcsSign = "application/x-pkcs7-signature";
static const char* kAppPkcs7Mime = "application/pkcs7-mime";
static const char* kAppXPkcs7Mime = "application/x-pkcs7-mime";
if (in == NULL || bcont == NULL) {
goto error;
}
inLen = wolfSSL_BIO_get_len(in);
if (inLen <= 0) {
goto error;
}
remainLen = wolfSSL_BIO_get_len(in);
if (remainLen <= 0) {
goto error;
}
section = (char*)XMALLOC((remainLen+1)*sizeof(char), NULL,
DYNAMIC_TYPE_PKCS7);
if (section == NULL) {
goto error;
}
lineLen = wolfSSL_BIO_gets(in, section, remainLen);
if (lineLen <= 0) {
goto error;
}
while(isEnd == 0 && remainLen > 0) {
sectionLen += lineLen;
remainLen -= lineLen;
lineLen = wolfSSL_BIO_gets(in, &section[sectionLen], remainLen);
if (lineLen <= 0) {
goto error;
}
/* Line with just newline signals end of headers. */
if ((lineLen==2 && !XSTRNCMP(&section[sectionLen],
"\r\n", 2)) ||
(lineLen==1 && (section[sectionLen] == '\r' ||
section[sectionLen] == '\n'))) {
isEnd = 1;
}
}
section[sectionLen] = '\0';
ret = wc_MIME_parse_headers(section, sectionLen, &allHdrs);
if (ret < 0) {
WOLFSSL_MSG("Parsing MIME headers failed.\n");
goto error;
}
isEnd = 0;
section[0] = '\0';
sectionLen = 0;
curHdr = wc_MIME_find_header_name(kContType, allHdrs);
if (curHdr && !XSTRNCMP(curHdr->body, kMultSigned,
XSTR_SIZEOF(kMultSigned))) {
curParam = wc_MIME_find_param_attr("protocol", curHdr->params);
if (curParam && (!XSTRNCMP(curParam->value, kAppPkcsSign,
XSTR_SIZEOF(kAppPkcsSign)) ||
!XSTRNCMP(curParam->value, kAppXPkcsSign,
XSTR_SIZEOF(kAppXPkcsSign)))) {
curParam = wc_MIME_find_param_attr("boundary", curHdr->params);
if (curParam == NULL) {
goto error;
}
boundLen = XSTRLEN(curParam->value) + 2;
boundary = (char*)XMALLOC((boundLen+1)*sizeof(char), NULL,
DYNAMIC_TYPE_PKCS7);
if (boundary == NULL) {
goto error;
}
XMEMSET(boundary, 0, (word32)((boundLen+1)*sizeof(char)));
boundary[0] = boundary[1] = '-';
XSTRNCPY(&boundary[2], curParam->value, boundLen-2);
/* Parse up to first boundary, ignore everything here. */
lineLen = wolfSSL_BIO_gets(in, section, remainLen);
if (lineLen <= 0) {
goto error;
}
while(XSTRNCMP(&section[sectionLen], boundary, boundLen) &&
remainLen > 0) {
sectionLen += lineLen;
remainLen -= lineLen;
lineLen = wolfSSL_BIO_gets(in, &section[sectionLen],
remainLen);
if (lineLen <= 0) {
goto error;
}
}
section[0] = '\0';
sectionLen = 0;
lineLen = wolfSSL_BIO_gets(in, section, remainLen);
while(XSTRNCMP(&section[sectionLen], boundary, boundLen) &&
remainLen > 0) {
sectionLen += lineLen;
remainLen -= lineLen;
lineLen = wolfSSL_BIO_gets(in, &section[sectionLen],
remainLen);
if (lineLen <= 0) {
goto error;
}
}
sectionLen--;
/* Strip the final trailing newline. Support \r, \n or \r\n. */
if (section[sectionLen] == '\n') {
sectionLen--;
if (section[sectionLen] == '\r') {
sectionLen--;
}
}
else if (section[sectionLen] == '\r') {
sectionLen--;
}
section[sectionLen+1] = '\0';
*bcont = wolfSSL_BIO_new(wolfSSL_BIO_s_mem());
ret = wolfSSL_BIO_write(*bcont, section, (int)XSTRLEN(section));
if (ret != (int)XSTRLEN(section)) {
goto error;
}
if ((bcontMemSz = wolfSSL_BIO_get_mem_data(*bcont, &bcontMem)) < 0) {
goto error;
}
wc_MIME_free_hdrs(allHdrs);
section[0] = '\0';
sectionLen = 0;
lineLen = wolfSSL_BIO_gets(in, section, remainLen);
if (lineLen <= 0) {
goto error;
}
while(isEnd == 0 && remainLen > 0) {
sectionLen += lineLen;
remainLen -= lineLen;
lineLen = wolfSSL_BIO_gets(in, &section[sectionLen],
remainLen);
if (lineLen <= 0) {
goto error;
}
/* Line with just newline signals end of headers. */
if ((lineLen==2 && !XSTRNCMP(&section[sectionLen],
"\r\n", 2)) ||
(lineLen==1 && (section[sectionLen] == '\r' ||
section[sectionLen] == '\n'))) {
isEnd = 1;
}
}
section[sectionLen] = '\0';
ret = wc_MIME_parse_headers(section, sectionLen, &allHdrs);
if (ret < 0) {
WOLFSSL_MSG("Parsing MIME headers failed.\n");
goto error;
}
curHdr = wc_MIME_find_header_name(kContType, allHdrs);
if (curHdr == NULL || (XSTRNCMP(curHdr->body, kAppPkcsSign,
XSTR_SIZEOF(kAppPkcsSign)) &&
XSTRNCMP(curHdr->body, kAppXPkcsSign,
XSTR_SIZEOF(kAppXPkcsSign)))) {
WOLFSSL_MSG("S/MIME headers not found inside "
"multipart message.\n");
goto error;
}
section[0] = '\0';
sectionLen = 0;
lineLen = wolfSSL_BIO_gets(in, section, remainLen);
while(XSTRNCMP(&section[sectionLen], boundary, boundLen) &&
remainLen > 0) {
sectionLen += lineLen;
remainLen -= lineLen;
lineLen = wolfSSL_BIO_gets(in, &section[sectionLen],
remainLen);
if (lineLen <= 0) {
goto error;
}
}
XFREE(boundary, NULL, DYNAMIC_TYPE_PKCS7);
}
}
else if (curHdr && (!XSTRNCMP(curHdr->body, kAppPkcs7Mime,
XSTR_SIZEOF(kAppPkcs7Mime)) ||
!XSTRNCMP(curHdr->body, kAppXPkcs7Mime,
XSTR_SIZEOF(kAppXPkcs7Mime)))) {
sectionLen = wolfSSL_BIO_get_len(in);
if (sectionLen <= 0) {
goto error;
}
ret = wolfSSL_BIO_read(in, section, sectionLen);
if (ret < 0 || ret != sectionLen) {
WOLFSSL_MSG("Error reading input BIO.\n");
goto error;
}
}
else {
WOLFSSL_MSG("S/MIME headers not found.\n");
goto error;
}
curHdr = wc_MIME_find_header_name(kCTE, allHdrs);
if (curHdr == NULL) {
WOLFSSL_MSG("Content-Transfer-Encoding header not found, "
"assuming base64 encoding.");
}
else if (XSTRNCMP(curHdr->body, "base64", XSTRLEN("base64"))) {
WOLFSSL_MSG("S/MIME encodings other than base64 are not "
"currently supported.\n");
goto error;
}
if (section == NULL || sectionLen <= 0) {
goto error;
}
outLen = ((sectionLen*3+3)/4)+1;
out = (byte*)XMALLOC(outLen*sizeof(byte), NULL, DYNAMIC_TYPE_PKCS7);
outHead = out;
if (outHead == NULL) {
goto error;
}
/* Strip trailing newlines. */
while ((section[sectionLen-1] == '\r' || section[sectionLen-1] == '\n') &&
sectionLen > 0) {
sectionLen--;
}
section[sectionLen] = '\0';
ret = Base64_Decode((const byte*)section, sectionLen, out, &outLen);
if (ret < 0) {
WOLFSSL_MSG("Error base64 decoding S/MIME message.\n");
goto error;
}
pkcs7 = wolfSSL_d2i_PKCS7_ex(NULL, (const unsigned char**)&out, outLen,
bcontMem, bcontMemSz);
wc_MIME_free_hdrs(allHdrs);
XFREE(outHead, NULL, DYNAMIC_TYPE_PKCS7);
XFREE(section, NULL, DYNAMIC_TYPE_PKCS7);
return pkcs7;
error:
wc_MIME_free_hdrs(allHdrs);
XFREE(boundary, NULL, DYNAMIC_TYPE_PKCS7);
XFREE(outHead, NULL, DYNAMIC_TYPE_PKCS7);
XFREE(section, NULL, DYNAMIC_TYPE_PKCS7);
wolfSSL_BIO_free(*bcont);
return NULL;
}
#endif /* HAVE_SMIME */
#endif /* !NO_BIO */
#endif /* OPENSSL_ALL && HAVE_PKCS7 */
#if defined(OPENSSL_EXTRA)
WOLFSSL_STACK* wolfSSL_sk_X509_new(void)
{
WOLFSSL_STACK* s = (WOLFSSL_STACK*)XMALLOC(sizeof(WOLFSSL_STACK), NULL,
DYNAMIC_TYPE_X509);
if (s != NULL) {
XMEMSET(s, 0, sizeof(*s));
s->type = STACK_TYPE_X509;
}
return s;
}
#endif
#ifdef OPENSSL_ALL
#ifndef NO_BIO
int wolfSSL_PEM_write_bio_PKCS8PrivateKey(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY* pkey,
const WOLFSSL_EVP_CIPHER* enc,
char* passwd, int passwdSz,
pem_password_cb* cb, void* ctx)
{
int ret = 0;
char password[NAME_SZ];
byte* key = NULL;
word32 keySz;
byte* pem = NULL;
int pemSz;
int type = PKCS8_PRIVATEKEY_TYPE;
int algId;
const byte* curveOid;
word32 oidSz;
int encAlgId;
if (bio == NULL || pkey == NULL)
return -1;
keySz = pkey->pkey_sz + 128;
key = (byte*)XMALLOC(keySz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (key == NULL)
ret = MEMORY_E;
if (ret == 0 && enc != NULL && passwd == NULL) {
passwdSz = cb(password, sizeof(password), 1, ctx);
if (passwdSz < 0)
ret = WOLFSSL_FAILURE;
passwd = password;
}
if (ret == 0 && enc != NULL) {
WC_RNG rng;
ret = wc_InitRng(&rng);
if (ret == 0) {
#ifndef NO_DES3
if (enc == EVP_DES_CBC)
encAlgId = DESb;
else if (enc == EVP_DES_EDE3_CBC)
encAlgId = DES3b;
else
#endif
#if !defined(NO_AES) && defined(HAVE_AES_CBC)
#ifdef WOLFSSL_AES_256
if (enc == EVP_AES_256_CBC)
encAlgId = AES256CBCb;
else
#endif
#endif
ret = -1;
if (ret == 0) {
ret = TraditionalEnc((byte*)pkey->pkey.ptr, pkey->pkey_sz, key,
&keySz, passwd, passwdSz, PKCS5, PBES2,
encAlgId, NULL, 0, WC_PKCS12_ITT_DEFAULT,
&rng, NULL);
if (ret > 0) {
keySz = ret;
ret = 0;
}
}
wc_FreeRng(&rng);
}
type = PKCS8_ENC_PRIVATEKEY_TYPE;
}
if (ret == 0 && enc == NULL) {
type = PKCS8_PRIVATEKEY_TYPE;
#ifdef HAVE_ECC
if (pkey->type == EVP_PKEY_EC) {
algId = ECDSAk;
ret = wc_ecc_get_oid(pkey->ecc->group->curve_oid, &curveOid,
&oidSz);
}
else
#endif
{
algId = RSAk;
curveOid = NULL;
oidSz = 0;
}
if (ret >= 0) {
ret = wc_CreatePKCS8Key(key, &keySz, (byte*)pkey->pkey.ptr,
pkey->pkey_sz, algId, curveOid, oidSz);
keySz = ret;
}
}
if (password == passwd)
XMEMSET(password, 0, passwdSz);
if (ret >= 0) {
pemSz = 2 * keySz + 2 * 64;
pem = (byte*)XMALLOC(pemSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (pem == NULL)
ret = MEMORY_E;
}
if (ret >= 0)
ret = wc_DerToPemEx(key, keySz, pem, pemSz, NULL, type);
if (key != NULL)
XFREE(key, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (ret >= 0) {
if (wolfSSL_BIO_write(bio, pem, ret) != ret)
ret = -1;
}
if (pem != NULL)
XFREE(pem, NULL, DYNAMIC_TYPE_TMP_BUFFER);
return ret < 0 ? 0 : ret;
}
static int bio_get_data(WOLFSSL_BIO* bio, byte** data)
{
int ret = 0;
byte* mem = NULL;
#ifndef NO_FILESYSTEM
long memSz;
XFILE file;
long curr;
#endif
if ((ret = wolfSSL_BIO_pending(bio)) > 0) {
}
#ifndef NO_FILESYSTEM
else if (bio->type == WOLFSSL_BIO_FILE) {
if (wolfSSL_BIO_get_fp(bio, &file) != WOLFSSL_SUCCESS)
ret = BAD_FUNC_ARG;
if (ret == 0) {
curr = XFTELL(file);
if (curr < 0) {
ret = WOLFSSL_BAD_FILE;
}
if (XFSEEK(file, 0, XSEEK_END) != 0)
ret = WOLFSSL_BAD_FILE;
}
if (ret == 0) {
memSz = XFTELL(file);
if (memSz > MAX_WOLFSSL_FILE_SIZE || memSz < 0) {
ret = WOLFSSL_BAD_FILE;
}
}
if (ret == 0) {
memSz -= curr;
ret = (int)memSz;
if (XFSEEK(file, curr, SEEK_SET) != 0)
ret = WOLFSSL_BAD_FILE;
}
}
#endif
if (ret > 0) {
mem = (byte*)XMALLOC(ret, bio->heap, DYNAMIC_TYPE_OPENSSL);
if (mem == NULL) {
WOLFSSL_MSG("Memory error");
ret = MEMORY_E;
}
if (ret >= 0) {
if ((ret = wolfSSL_BIO_read(bio, mem, ret)) <= 0) {
XFREE(mem, bio->heap, DYNAMIC_TYPE_OPENSSL);
ret = MEMORY_E;
mem = NULL;
}
}
}
*data = mem;
return ret;
}
#ifndef NO_WOLFSSL_STUB
void wolfSSL_BIO_set_init(WOLFSSL_BIO* bio, int init)
{
WOLFSSL_STUB("wolfSSL_BIO_set_init");
(void)bio;
(void)init;
}
void wolfSSL_BIO_set_shutdown(WOLFSSL_BIO* bio, int shut)
{
WOLFSSL_STUB("wolfSSL_BIO_set_shutdown");
(void)bio;
(void)shut;
}
int wolfSSL_BIO_get_shutdown(WOLFSSL_BIO* bio)
{
WOLFSSL_STUB("wolfSSL_BIO_get_shutdown");
(void)bio;
return 0;
}
#endif /* NO_WOLFSSL_STUB */
void wolfSSL_BIO_clear_retry_flags(WOLFSSL_BIO* bio)
{
WOLFSSL_ENTER("wolfSSL_BIO_clear_retry_flags");
if (bio)
bio->flags &= ~(WOLFSSL_BIO_FLAG_READ|WOLFSSL_BIO_FLAG_RETRY);
}
int wolfSSL_BIO_should_retry(WOLFSSL_BIO *bio)
{
int ret = 0;
if (bio != NULL) {
ret = (int)(bio->flags & WOLFSSL_BIO_FLAG_RETRY);
}
return ret;
}
/* DER data is PKCS#8 encrypted. */
WOLFSSL_EVP_PKEY* wolfSSL_d2i_PKCS8PrivateKey_bio(WOLFSSL_BIO* bio,
WOLFSSL_EVP_PKEY** pkey,
pem_password_cb* cb,
void* ctx)
{
int ret;
byte* der;
int len;
byte* p;
char password[NAME_SZ];
int passwordSz;
word32 algId;
WOLFSSL_EVP_PKEY* key;
if ((len = bio_get_data(bio, &der)) < 0)
return NULL;
if (cb != NULL) {
passwordSz = cb(password, sizeof(password), PEM_PASS_READ, ctx);
if (passwordSz < 0) {
XFREE(der, bio->heap, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
ret = ToTraditionalEnc(der, len, password, passwordSz, &algId);
if (ret < 0) {
XFREE(der, bio->heap, DYNAMIC_TYPE_OPENSSL);
return NULL;
}
XMEMSET(password, 0, passwordSz);
}
p = der;
key = wolfSSL_d2i_PrivateKey_EVP(pkey, &p, len);
XFREE(der, bio->heap, DYNAMIC_TYPE_OPENSSL);
return key;
}
#endif /* !NO_BIO */
/* Detect which type of key it is before decoding. */
WOLFSSL_EVP_PKEY* wolfSSL_d2i_AutoPrivateKey(WOLFSSL_EVP_PKEY** pkey,
const unsigned char** pp,
long length)
{
int ret;
WOLFSSL_EVP_PKEY* key = NULL;
const byte* der = *pp;
word32 idx = 0;
int len = 0;
word32 end = 0;
int cnt = 0;
int type;
word32 algId;
word32 keyLen = (word32)length;
/* Take off PKCS#8 wrapper if found. */
if ((len = ToTraditionalInline_ex(der, &idx, keyLen, &algId)) >= 0) {
der += idx;
keyLen = len;
}
idx = 0;
len = 0;
/* Use the number of elements in the outer sequence to determine key type.
*/
ret = GetSequence(der, &idx, &len, keyLen);
if (ret >= 0) {
end = idx + len;
while (ret >= 0 && idx < end) {
/* Skip type */
idx++;
/* Get length and skip over - keeping count */
len = 0;
ret = GetLength(der, &idx, &len, keyLen);
if (ret >= 0) {
if (idx + len > end)
ret = ASN_PARSE_E;
else {
idx += len;
cnt++;
}
}
}
}
if (ret >= 0) {
/* ECC includes version, private[, curve][, public key] */
if (cnt >= 2 && cnt <= 4)
type = EVP_PKEY_EC;
else
type = EVP_PKEY_RSA;
key = wolfSSL_d2i_PrivateKey(type, pkey, &der, keyLen);
*pp = der;
}
return key;
}
#endif
#if (defined(OPENSSL_EXTRA) || defined(OPENSSL_EXTRA_X509_SMALL)) && \
!defined(WOLFCRYPT_ONLY)
/* unlike wolfSSL_X509_NAME_dup this does not malloc a duplicate, only deep
* copy. "to" is expected to be a fresh blank name, if not pointers could be
* lost */
int wolfSSL_X509_NAME_copy(WOLFSSL_X509_NAME* from, WOLFSSL_X509_NAME* to)
{
int i;
WOLFSSL_X509_NAME_ENTRY* ne;
WOLFSSL_ENTER("wolfSSL_X509_NAME_copy");
if (from == NULL || to == NULL) {
WOLFSSL_MSG("NULL parameter");
return BAD_FUNC_ARG;
}
if (from->dynamicName) {
to->name = (char*)XMALLOC(from->sz, to->heap, DYNAMIC_TYPE_SUBJECT_CN);
if (to->name == NULL)
return WOLFSSL_FAILURE;
to->dynamicName = 1;
}
XMEMCPY(to->name, from->name, from->sz);
to->sz = from->sz;
for (i = 0; i < MAX_NAME_ENTRIES; i++) {
ne = wolfSSL_X509_NAME_get_entry(from, i);
if (ne != NULL)
wolfSSL_X509_NAME_add_entry(to, ne, i, 1);
}
to->entrySz = from->entrySz;
return WOLFSSL_SUCCESS;
}
/* copies over information from "name" to the "cert" subject name
* returns WOLFSSL_SUCCESS on success */
int wolfSSL_X509_set_subject_name(WOLFSSL_X509 *cert, WOLFSSL_X509_NAME *name)
{
WOLFSSL_ENTER("X509_set_subject_name");
if (cert == NULL || name == NULL)
return WOLFSSL_FAILURE;
FreeX509Name(&cert->subject);
InitX509Name(&cert->subject, 0, cert->heap);
if (wolfSSL_X509_NAME_copy(name, &cert->subject) != WOLFSSL_SUCCESS) {
FreeX509Name(&cert->subject);
return WOLFSSL_FAILURE;
}
cert->subject.x509 = cert;
return WOLFSSL_SUCCESS;
}
/* copies over information from "name" to the "cert" issuer name
* returns WOLFSSL_SUCCESS on success */
int wolfSSL_X509_set_issuer_name(WOLFSSL_X509 *cert, WOLFSSL_X509_NAME *name)
{
WOLFSSL_ENTER("X509_set_issuer_name");
if (cert == NULL || name == NULL)
return WOLFSSL_FAILURE;
FreeX509Name(&cert->issuer);
InitX509Name(&cert->issuer, 0, cert->heap);
if (wolfSSL_X509_NAME_copy(name, &cert->issuer) != WOLFSSL_SUCCESS) {
FreeX509Name(&cert->issuer);
return WOLFSSL_FAILURE;
}
cert->issuer.x509 = cert;
cert->issuerSet = 1;
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_set_notAfter(WOLFSSL_X509* x509, const WOLFSSL_ASN1_TIME* t)
{
if (x509 == NULL || t == NULL) {
return WOLFSSL_FAILURE;
}
x509->notAfter.type = t->type;
x509->notAfter.length = t->length;
XMEMCPY(x509->notAfter.data, t->data, CTC_DATE_SIZE);
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_set_notBefore(WOLFSSL_X509* x509, const WOLFSSL_ASN1_TIME* t)
{
if (x509 == NULL || t == NULL) {
return WOLFSSL_FAILURE;
}
x509->notBefore.type = t->type;
x509->notBefore.length = t->length;
XMEMCPY(x509->notBefore.data, t->data, CTC_DATE_SIZE);
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_set_serialNumber(WOLFSSL_X509* x509, WOLFSSL_ASN1_INTEGER* s)
{
WOLFSSL_ENTER("wolfSSL_X509_set_serialNumber");
if (!x509 || !s || s->length >= EXTERNAL_SERIAL_SIZE)
return WOLFSSL_FAILURE;
/* WOLFSSL_ASN1_INTEGER has type | size | data */
if (s->length < 3) {
return WOLFSSL_FAILURE;
}
XMEMCPY(x509->serial, s->data + 2, s->length - 2);
x509->serialSz = s->length - 2;
x509->serial[s->length] = 0;
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_set_pubkey(WOLFSSL_X509 *cert, WOLFSSL_EVP_PKEY *pkey)
{
byte* p = NULL;
WOLFSSL_ENTER("wolfSSL_X509_set_pubkey");
if (cert == NULL || pkey == NULL)
return WOLFSSL_FAILURE;
if (pkey->type == EVP_PKEY_RSA
#ifndef NO_DSA
|| pkey->type == EVP_PKEY_DSA
#endif /* !NO_DSA */
) {
p = (byte*)XMALLOC(pkey->pkey_sz, cert->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (p == NULL)
return WOLFSSL_FAILURE;
if (cert->pubKey.buffer != NULL)
XFREE(cert->pubKey.buffer, cert->heap, DYNAMIC_TYPE_PUBLIC_KEY);
cert->pubKey.buffer = p;
XMEMCPY(cert->pubKey.buffer, pkey->pkey.ptr, pkey->pkey_sz);
cert->pubKey.length = pkey->pkey_sz;
#ifndef NO_DSA
if (pkey->type == EVP_PKEY_DSA)
cert->pubKeyOID = DSAk;
else
#endif /* !NO_DSA */
cert->pubKeyOID = RSAk;
}
#ifdef HAVE_ECC
else if (pkey->type == EVP_PKEY_EC) {
/* Generate since pkey->pkey.ptr may contain private key */
ecc_key* ecc;
int derSz;
if (pkey->ecc == NULL || pkey->ecc->internal == NULL)
return WOLFSSL_FAILURE;
ecc = (ecc_key*)pkey->ecc->internal;
derSz = wc_EccPublicKeyDerSize(ecc, 1);
if (derSz <= 0)
return WOLFSSL_FAILURE;
p = (byte*)XMALLOC(derSz, cert->heap, DYNAMIC_TYPE_PUBLIC_KEY);
if (p == NULL)
return WOLFSSL_FAILURE;
if ((derSz = wc_EccPublicKeyToDer(ecc, p, derSz, 1)) <= 0) {
XFREE(p, cert->heap, DYNAMIC_TYPE_PUBLIC_KEY);
return WOLFSSL_FAILURE;
}
cert->pubKey.buffer = p;
cert->pubKey.length = derSz;
cert->pubKeyOID = ECDSAk;
}
#endif /* HAVE_ECC */
else
return WOLFSSL_FAILURE;
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_set_version(WOLFSSL_X509* x509, long v)
{
WOLFSSL_ENTER("wolfSSL_X509_set_version");
if ((x509 == NULL) || (v < 0) || (v > INT_MAX)) {
return WOLFSSL_FAILURE;
}
x509->version = (int) v + 1;
return WOLFSSL_SUCCESS;
}
#endif /* (OPENSSL_EXTRA || OPENSSL_EXTRA_X509_SMALL) && WOLFSSL_CERT_GEN */
#if defined(OPENSSL_ALL) && !defined(NO_CERTS) && \
defined(WOLFSSL_CERT_GEN) && defined(WOLFSSL_CERT_REQ)
void wolfSSL_X509V3_set_ctx(WOLFSSL_X509V3_CTX* ctx, WOLFSSL_X509* issuer,
WOLFSSL_X509* subject, WOLFSSL_X509* req, WOLFSSL_X509_CRL* crl,
int flag)
{
int ret = WOLFSSL_SUCCESS;
WOLFSSL_ENTER("wolfSSL_X509V3_set_ctx");
if (!ctx || !ctx->x509)
return;
if (!ctx->x509) {
ctx->x509 = wolfSSL_X509_new();
if (!ctx->x509)
return;
}
/* Set parameters in ctx as long as ret == WOLFSSL_SUCCESS */
if (issuer)
ret = wolfSSL_X509_set_issuer_name(ctx->x509,&issuer->issuer);
if (subject && ret == WOLFSSL_SUCCESS)
ret = wolfSSL_X509_set_subject_name(ctx->x509,&subject->subject);
if (req && ret == WOLFSSL_SUCCESS) {
WOLFSSL_MSG("req not implemented.");
}
if (crl && ret == WOLFSSL_SUCCESS) {
WOLFSSL_MSG("crl not implemented.");
}
if (flag && ret == WOLFSSL_SUCCESS) {
WOLFSSL_MSG("flag not implemented.");
}
if (!ret) {
WOLFSSL_MSG("Error setting WOLFSSL_X509V3_CTX parameters.");
}
}
int wolfSSL_i2d_X509_REQ(WOLFSSL_X509* req, unsigned char** out)
{
int derSz = 0;
int ret = WOLFSSL_FAILURE;
WOLFSSL_BIO* bio = NULL;
WOLFSSL_ENTER("wolfSSL_i2d_X509_REQ");
if (req == NULL || out == NULL) {
return BAD_FUNC_ARG;
}
if (!(bio = wolfSSL_BIO_new(wolfSSL_BIO_s_mem()))) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_i2d_X509_REQ_bio(bio, req) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_i2d_X509_REQ_bio error");
goto cleanup;
}
derSz = wolfSSL_BIO_get_len(bio);
if (*out == NULL) {
*out = (unsigned char*)XMALLOC(derSz, NULL, DYNAMIC_TYPE_OPENSSL);
if (!*out) {
WOLFSSL_MSG("malloc error");
ret = MEMORY_E;
goto cleanup;
}
}
if (wolfSSL_BIO_read(bio, *out, derSz) != derSz) {
WOLFSSL_MSG("wolfSSL_BIO_read error");
goto cleanup;
}
ret = derSz;
cleanup:
wolfSSL_BIO_free(bio);
return ret;
}
WOLFSSL_X509* wolfSSL_X509_REQ_new(void)
{
return wolfSSL_X509_new();
}
void wolfSSL_X509_REQ_free(WOLFSSL_X509* req)
{
wolfSSL_X509_free(req);
}
int wolfSSL_X509_REQ_sign(WOLFSSL_X509 *req, WOLFSSL_EVP_PKEY *pkey,
const WOLFSSL_EVP_MD *md)
{
byte der[2048];
int derSz = sizeof(der);
if (req == NULL || pkey == NULL || md == NULL)
return WOLFSSL_FAILURE;
/* Create a Cert that has the certificate request fields. */
req->sigOID = wolfSSL_sigTypeFromPKEY((WOLFSSL_EVP_MD*)md, pkey);
if (wolfssl_x509_make_der(req, 1, der, &derSz, 0) != WOLFSSL_SUCCESS) {
return WOLFSSL_FAILURE;
}
if (wolfSSL_X509_resign_cert(req, 1, der, sizeof(der), derSz,
(WOLFSSL_EVP_MD*)md, pkey) <= 0) {
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
int wolfSSL_X509_REQ_sign_ctx(WOLFSSL_X509 *req,
WOLFSSL_EVP_MD_CTX* md_ctx)
{
if (md_ctx && md_ctx->pctx)
return wolfSSL_X509_REQ_sign(req, md_ctx->pctx->pkey,
wolfSSL_EVP_MD_CTX_md(md_ctx));
else
return WOLFSSL_FAILURE;
}
static int regenX509REQDerBuffer(WOLFSSL_X509* x509)
{
int derSz = X509_BUFFER_SZ;
int ret = WOLFSSL_FAILURE;
#ifdef WOLFSSL_SMALL_STACK
byte* der;
der = (byte*)XMALLOC(derSz, NULL, DYNAMIC_TYPE_TMP_BUFFER);
if (!der) {
WOLFSSL_MSG("malloc failed");
return WOLFSSL_FAILURE;
}
#else
byte der[X509_BUFFER_SZ];
#endif
if (wolfssl_x509_make_der(x509, 1, der, &derSz, 0) == WOLFSSL_SUCCESS) {
FreeDer(&x509->derCert);
if (AllocDer(&x509->derCert, derSz, CERT_TYPE, x509->heap) == 0) {
XMEMCPY(x509->derCert->buffer, der, derSz);
ret = WOLFSSL_SUCCESS;
}
else {
WOLFSSL_MSG("Failed to allocate DER buffer for X509");
}
}
else {
WOLFSSL_MSG("Unable to make DER for X509 REQ");
}
#ifdef WOLFSSL_SMALL_STACK
XFREE(der, NULL, DYNAMIC_TYPE_TMP_BUFFER);
#endif
return ret;
}
int wolfSSL_X509_REQ_add_extensions(WOLFSSL_X509* req,
WOLF_STACK_OF(WOLFSSL_X509_EXTENSION)* ext_sk)
{
if (!req || !ext_sk) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
while (ext_sk) {
WOLFSSL_X509_EXTENSION* ext = ext_sk->data.ext;
if (wolfSSL_X509_add_ext(req, ext, -1) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_X509_add_ext error");
return WOLFSSL_FAILURE;
}
ext_sk = ext_sk->next;
}
return regenX509REQDerBuffer(req);
}
int wolfSSL_X509_REQ_add1_attr_by_txt(WOLFSSL_X509 *req,
const char *attrname, int type,
const unsigned char *bytes, int len)
{
WOLFSSL_ENTER("wolfSSL_X509_REQ_add1_attr_by_txt");
#ifdef HAVE_LIBEST
if (!req || !attrname || !bytes || type != MBSTRING_ASC) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
if (len < 0) {
len = (int)XSTRLEN((char*)bytes);
}
/* For now just pretend that we support this for libest testing */
if (len == XSTR_SIZEOF("1.3.6.1.1.1.1.22") &&
XMEMCMP("1.3.6.1.1.1.1.22", bytes, len) == 0) {
/* MAC Address */
}
else if (len == XSTR_SIZEOF("1.2.840.10045.2.1") &&
XMEMCMP("1.2.840.10045.2.1", bytes, len) == 0) {
/* ecPublicKey */
}
else if (len == XSTR_SIZEOF("1.2.840.10045.4.3.3") &&
XMEMCMP("1.2.840.10045.4.3.3", bytes, len) == 0) {
/* ecdsa-with-SHA384 */
}
else {
return WOLFSSL_FAILURE;
}
/* return error if not built for libest */
return WOLFSSL_SUCCESS;
#else
(void)req;
(void)attrname;
(void)type;
(void)bytes;
(void)len;
return WOLFSSL_FAILURE;
#endif
}
int wolfSSL_X509_REQ_add1_attr_by_NID(WOLFSSL_X509 *req,
int nid, int type,
const unsigned char *bytes,
int len)
{
WOLFSSL_ENTER("wolfSSL_X509_REQ_add1_attr_by_NID");
if (!req || !bytes || type != MBSTRING_ASC) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FAILURE;
}
switch (nid) {
case NID_pkcs9_challengePassword:
if (len < 0)
len = (int)XSTRLEN((char*)bytes);
if (len < CTC_NAME_SIZE) {
XMEMCPY(req->challengePw, bytes, len);
req->challengePw[len] = '\0';
}
else {
WOLFSSL_MSG("Challenge password too long");
return WOLFSSL_FAILURE;
}
if (req->challengePwAttr) {
wolfSSL_X509_ATTRIBUTE_free(req->challengePwAttr);
}
req->challengePwAttr = wolfSSL_X509_ATTRIBUTE_new();
if (req->challengePwAttr) {
req->challengePwAttr->value->value.asn1_string =
wolfSSL_ASN1_STRING_new();
if (wolfSSL_ASN1_STRING_set(
req->challengePwAttr->value->value.asn1_string,
bytes, len) != WOLFSSL_SUCCESS) {
WOLFSSL_MSG("wolfSSL_ASN1_STRING_set error");
return WOLFSSL_FAILURE;
}
req->challengePwAttr->value->type = V_ASN1_PRINTABLESTRING;
}
else {
WOLFSSL_MSG("wolfSSL_X509_ATTRIBUTE_new error");
return WOLFSSL_FAILURE;
}
break;
case NID_serialNumber:
if (len < 0)
len = (int)XSTRLEN((char*)bytes);
if (len + 1 > EXTERNAL_SERIAL_SIZE) {
WOLFSSL_MSG("SerialNumber too long");
return WOLFSSL_FAILURE;
}
XMEMCPY(req->serial, bytes, len);
req->serialSz = len;
break;
default:
WOLFSSL_MSG("Unsupported attribute");
return WOLFSSL_FAILURE;
}
return WOLFSSL_SUCCESS;
}
/* Return NID as the attr index */
int wolfSSL_X509_REQ_get_attr_by_NID(const WOLFSSL_X509 *req,
int nid, int lastpos)
{
WOLFSSL_ENTER("wolfSSL_X509_REQ_get_attr_by_NID");
/* Since we only support 1 attr per attr type then a lastpos of >= 0
* indicates that one was already returned */
if (!req || lastpos >= 0) {
WOLFSSL_MSG("Bad parameter");
return WOLFSSL_FATAL_ERROR;
}
switch (nid) {
case NID_pkcs9_challengePassword:
return req->challengePwAttr ? nid : WOLFSSL_FATAL_ERROR;
default:
WOLFSSL_MSG("Unsupported attribute");
return WOLFSSL_FATAL_ERROR;
}
}
/**
* @param req X509_REQ containing attribute
* @param loc NID of the attribute to return
*/
WOLFSSL_X509_ATTRIBUTE *wolfSSL_X509_REQ_get_attr(
const WOLFSSL_X509 *req, int loc)
{
WOLFSSL_ENTER("wolfSSL_X509_REQ_get_attr");
if (!req) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
switch (loc) {
case NID_pkcs9_challengePassword:
return req->challengePwAttr;
default:
WOLFSSL_MSG("Unsupported attribute");
return NULL;
}
}
WOLFSSL_X509_ATTRIBUTE* wolfSSL_X509_ATTRIBUTE_new(void)
{
WOLFSSL_X509_ATTRIBUTE* ret;
WOLFSSL_ENTER("wolfSSL_X509_ATTRIBUTE_new");
ret = (WOLFSSL_X509_ATTRIBUTE*)XMALLOC(sizeof(WOLFSSL_X509_ATTRIBUTE),
NULL, DYNAMIC_TYPE_OPENSSL);
if (!ret) {
WOLFSSL_MSG("malloc error");
return NULL;
}
XMEMSET(ret, 0, sizeof(WOLFSSL_X509_ATTRIBUTE));
ret->object = wolfSSL_ASN1_OBJECT_new();
ret->value = wolfSSL_ASN1_TYPE_new();
/* Don't allocate ret->set since WOLFSSL_ASN1_TYPE
* is not supported as a stack type */
if (!ret->object || !ret->value) {
WOLFSSL_MSG("wolfSSL_ASN1_OBJECT_new or wolfSSL_ASN1_TYPE_new error");
wolfSSL_X509_ATTRIBUTE_free(ret);
return NULL;
}
return ret;
}
void wolfSSL_X509_ATTRIBUTE_free(WOLFSSL_X509_ATTRIBUTE* attr)
{
WOLFSSL_ENTER("wolfSSL_X509_ATTRIBUTE_free");
if (attr) {
if (attr->object) {
wolfSSL_ASN1_OBJECT_free(attr->object);
}
if (attr->value) {
wolfSSL_ASN1_TYPE_free(attr->value);
}
if (attr->set) {
wolfSSL_sk_free(attr->set);
}
XFREE(attr, NULL, DYNAMIC_TYPE_OPENSSL);
}
}
WOLFSSL_ASN1_TYPE *wolfSSL_X509_ATTRIBUTE_get0_type(
WOLFSSL_X509_ATTRIBUTE *attr, int idx)
{
WOLFSSL_ENTER("wolfSSL_X509_ATTRIBUTE_get0_type");
if (!attr || idx != 0) {
WOLFSSL_MSG("Bad parameter");
return NULL;
}
return attr->value;
}
WOLFSSL_X509 *wolfSSL_X509_to_X509_REQ(WOLFSSL_X509 *x,
WOLFSSL_EVP_PKEY *pkey, const WOLFSSL_EVP_MD *md)
{
WOLFSSL_ENTER("wolfSSL_X509_to_X509_REQ");
(void)pkey;
(void)md;
return wolfSSL_X509_dup(x);
}
int wolfSSL_X509_REQ_set_subject_name(WOLFSSL_X509 *req,
WOLFSSL_X509_NAME *name)
{
return wolfSSL_X509_set_subject_name(req, name);
}
int wolfSSL_X509_REQ_set_pubkey(WOLFSSL_X509 *req, WOLFSSL_EVP_PKEY *pkey)
{
return wolfSSL_X509_set_pubkey(req, pkey);
}
#endif /* OPENSSL_ALL && !NO_CERTS && WOLFSSL_CERT_GEN && WOLFSSL_CERT_REQ */
#ifdef WOLFSSL_STATIC_EPHEMERAL
static int SetStaticEphemeralKey(StaticKeyExchangeInfo_t* staticKE, int keyAlgo,
const char* key, unsigned int keySz, int format, void* heap, WOLFSSL_CTX* ctx)
{
int ret = 0;
DerBuffer* der = NULL;
byte* keyBuf = NULL;
#ifndef NO_FILESYSTEM
const char* keyFile = NULL;
#endif
/* allow empty key to free buffer */
if (staticKE == NULL || (key == NULL && keySz > 0)) {
return BAD_FUNC_ARG;
}
WOLFSSL_ENTER("SetStaticEphemeralKey");
/* if key is already set free it */
#ifndef NO_DH
if (keyAlgo == WC_PK_TYPE_DH && staticKE->dhKey &&
(ctx == NULL || staticKE->dhKey != ctx->staticKE.dhKey))
FreeDer(&staticKE->dhKey);
#endif
#ifdef HAVE_ECC
if (keyAlgo == WC_PK_TYPE_ECDH && staticKE->ecKey &&
(ctx == NULL || staticKE->ecKey != ctx->staticKE.ecKey))
FreeDer(&staticKE->ecKey);
#endif
/* check if just free'ing key */
if (key == NULL && keySz == 0) {
return 0;
}
#ifndef NO_FILESYSTEM
/* load file from filesystem */
if (key && keySz == 0) {
size_t keyBufSz = 0;
keyFile = (const char*)key;
ret = wc_FileLoad(keyFile, &keyBuf, &keyBufSz, heap);
if (ret != 0) {
return ret;
}
keySz = (unsigned int)keyBufSz;
}
else
#endif
{
/* use as key buffer directly */
keyBuf = (byte*)key;
}
if (format == WOLFSSL_FILETYPE_PEM) {
#ifdef WOLFSSL_PEM_TO_DER
int keyFormat = 0;
ret = PemToDer(keyBuf, keySz, PRIVATEKEY_TYPE, &der,
heap, NULL, &keyFormat);
/* auto detect key type */
if (ret == 0 && keyAlgo == 0) {
if (keyFormat == ECDSAk)
keyAlgo = WC_PK_TYPE_ECDH;
else
keyAlgo = WC_PK_TYPE_DH;
}
#else
ret = NOT_COMPILED_IN;
#endif
}
else {
ret = AllocDer(&der, keySz, PRIVATEKEY_TYPE, heap);
if (ret == 0) {
XMEMCPY(der->buffer, keyBuf, keySz);
}
}
switch (keyAlgo) {
#ifndef NO_DH
case WC_PK_TYPE_DH:
staticKE->dhKey = der;
break;
#endif
#ifdef HAVE_ECC
case WC_PK_TYPE_ECDH:
staticKE->ecKey = der;
break;
#endif
default:
/* not supported */
ret = NOT_COMPILED_IN;
FreeDer(&der);
break;
}
#ifndef NO_FILESYSTEM
if (keyFile && keyBuf) {
XFREE(keyBuf, heap, DYNAMIC_TYPE_TMP_BUFFER);
}
#endif
WOLFSSL_LEAVE("SetStaticEphemeralKey", ret);
return ret;
}
int wolfSSL_CTX_set_ephemeral_key(WOLFSSL_CTX* ctx, int keyAlgo,
const char* key, unsigned int keySz, int format)
{
if (ctx == NULL) {
return BAD_FUNC_ARG;
}
return SetStaticEphemeralKey(&ctx->staticKE, keyAlgo, key, keySz, format,
ctx->heap, NULL);
}
int wolfSSL_set_ephemeral_key(WOLFSSL* ssl, int keyAlgo,
const char* key, unsigned int keySz, int format)
{
if (ssl == NULL) {
return BAD_FUNC_ARG;
}
return SetStaticEphemeralKey(&ssl->staticKE, keyAlgo, key, keySz, format,
ssl->heap, ssl->ctx);
}
#endif /* WOLFSSL_STATIC_EPHEMERAL */
#endif /* !WOLFCRYPT_ONLY */