342 lines
9.9 KiB
C
342 lines
9.9 KiB
C
/* rabbit.c
|
|
*
|
|
* Copyright (C) 2006-2020 wolfSSL Inc.
|
|
*
|
|
* This file is part of wolfSSL.
|
|
*
|
|
* wolfSSL is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* wolfSSL is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
|
|
*/
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <wolfssl/wolfcrypt/settings.h>
|
|
|
|
#ifndef NO_RABBIT
|
|
|
|
#include <wolfssl/wolfcrypt/rabbit.h>
|
|
#include <wolfssl/wolfcrypt/error-crypt.h>
|
|
#include <wolfssl/wolfcrypt/logging.h>
|
|
#ifdef NO_INLINE
|
|
#include <wolfssl/wolfcrypt/misc.h>
|
|
#else
|
|
#define WOLFSSL_MISC_INCLUDED
|
|
#include <wolfcrypt/src/misc.c>
|
|
#endif
|
|
|
|
|
|
#ifdef BIG_ENDIAN_ORDER
|
|
#define LITTLE32(x) ByteReverseWord32(x)
|
|
#else
|
|
#define LITTLE32(x) (x)
|
|
#endif
|
|
|
|
#define U32V(x) ((word32)(x) & 0xFFFFFFFFU)
|
|
|
|
|
|
/* Square a 32-bit unsigned integer to obtain the 64-bit result and return */
|
|
/* the upper 32 bits XOR the lower 32 bits */
|
|
static word32 RABBIT_g_func(word32 x)
|
|
{
|
|
/* Temporary variables */
|
|
word32 a, b, h, l;
|
|
|
|
/* Construct high and low argument for squaring */
|
|
a = x&0xFFFF;
|
|
b = x>>16;
|
|
|
|
/* Calculate high and low result of squaring */
|
|
h = (((U32V(a*a)>>17) + U32V(a*b))>>15) + b*b;
|
|
l = x*x;
|
|
|
|
/* Return high XOR low */
|
|
return U32V(h^l);
|
|
}
|
|
|
|
|
|
/* Calculate the next internal state */
|
|
static void RABBIT_next_state(RabbitCtx* ctx)
|
|
{
|
|
/* Temporary variables */
|
|
word32 g[8], c_old[8], i;
|
|
|
|
/* Save old counter values */
|
|
for (i=0; i<8; i++)
|
|
c_old[i] = ctx->c[i];
|
|
|
|
/* Calculate new counter values */
|
|
ctx->c[0] = U32V(ctx->c[0] + 0x4D34D34D + ctx->carry);
|
|
ctx->c[1] = U32V(ctx->c[1] + 0xD34D34D3 + (ctx->c[0] < c_old[0]));
|
|
ctx->c[2] = U32V(ctx->c[2] + 0x34D34D34 + (ctx->c[1] < c_old[1]));
|
|
ctx->c[3] = U32V(ctx->c[3] + 0x4D34D34D + (ctx->c[2] < c_old[2]));
|
|
ctx->c[4] = U32V(ctx->c[4] + 0xD34D34D3 + (ctx->c[3] < c_old[3]));
|
|
ctx->c[5] = U32V(ctx->c[5] + 0x34D34D34 + (ctx->c[4] < c_old[4]));
|
|
ctx->c[6] = U32V(ctx->c[6] + 0x4D34D34D + (ctx->c[5] < c_old[5]));
|
|
ctx->c[7] = U32V(ctx->c[7] + 0xD34D34D3 + (ctx->c[6] < c_old[6]));
|
|
ctx->carry = (ctx->c[7] < c_old[7]);
|
|
|
|
/* Calculate the g-values */
|
|
for (i=0;i<8;i++)
|
|
g[i] = RABBIT_g_func(U32V(ctx->x[i] + ctx->c[i]));
|
|
|
|
/* Calculate new state values */
|
|
ctx->x[0] = U32V(g[0] + rotlFixed(g[7],16) + rotlFixed(g[6], 16));
|
|
ctx->x[1] = U32V(g[1] + rotlFixed(g[0], 8) + g[7]);
|
|
ctx->x[2] = U32V(g[2] + rotlFixed(g[1],16) + rotlFixed(g[0], 16));
|
|
ctx->x[3] = U32V(g[3] + rotlFixed(g[2], 8) + g[1]);
|
|
ctx->x[4] = U32V(g[4] + rotlFixed(g[3],16) + rotlFixed(g[2], 16));
|
|
ctx->x[5] = U32V(g[5] + rotlFixed(g[4], 8) + g[3]);
|
|
ctx->x[6] = U32V(g[6] + rotlFixed(g[5],16) + rotlFixed(g[4], 16));
|
|
ctx->x[7] = U32V(g[7] + rotlFixed(g[6], 8) + g[5]);
|
|
}
|
|
|
|
|
|
/* IV setup */
|
|
static void wc_RabbitSetIV(Rabbit* ctx, const byte* inIv)
|
|
{
|
|
/* Temporary variables */
|
|
word32 i0, i1, i2, i3, i;
|
|
word32 iv[2];
|
|
|
|
if (inIv)
|
|
XMEMCPY(iv, inIv, sizeof(iv));
|
|
else
|
|
XMEMSET(iv, 0, sizeof(iv));
|
|
|
|
/* Generate four subvectors */
|
|
i0 = LITTLE32(iv[0]);
|
|
i2 = LITTLE32(iv[1]);
|
|
i1 = (i0>>16) | (i2&0xFFFF0000);
|
|
i3 = (i2<<16) | (i0&0x0000FFFF);
|
|
|
|
/* Modify counter values */
|
|
ctx->workCtx.c[0] = ctx->masterCtx.c[0] ^ i0;
|
|
ctx->workCtx.c[1] = ctx->masterCtx.c[1] ^ i1;
|
|
ctx->workCtx.c[2] = ctx->masterCtx.c[2] ^ i2;
|
|
ctx->workCtx.c[3] = ctx->masterCtx.c[3] ^ i3;
|
|
ctx->workCtx.c[4] = ctx->masterCtx.c[4] ^ i0;
|
|
ctx->workCtx.c[5] = ctx->masterCtx.c[5] ^ i1;
|
|
ctx->workCtx.c[6] = ctx->masterCtx.c[6] ^ i2;
|
|
ctx->workCtx.c[7] = ctx->masterCtx.c[7] ^ i3;
|
|
|
|
/* Copy state variables */
|
|
for (i=0; i<8; i++)
|
|
ctx->workCtx.x[i] = ctx->masterCtx.x[i];
|
|
ctx->workCtx.carry = ctx->masterCtx.carry;
|
|
|
|
/* Iterate the system four times */
|
|
for (i=0; i<4; i++)
|
|
RABBIT_next_state(&(ctx->workCtx));
|
|
}
|
|
|
|
|
|
/* Key setup */
|
|
static WC_INLINE int DoKey(Rabbit* ctx, const byte* key, const byte* iv)
|
|
{
|
|
/* Temporary variables */
|
|
word32 k0, k1, k2, k3, i;
|
|
|
|
/* Generate four subkeys */
|
|
k0 = LITTLE32(*(word32*)(key+ 0));
|
|
k1 = LITTLE32(*(word32*)(key+ 4));
|
|
k2 = LITTLE32(*(word32*)(key+ 8));
|
|
k3 = LITTLE32(*(word32*)(key+12));
|
|
|
|
/* Generate initial state variables */
|
|
ctx->masterCtx.x[0] = k0;
|
|
ctx->masterCtx.x[2] = k1;
|
|
ctx->masterCtx.x[4] = k2;
|
|
ctx->masterCtx.x[6] = k3;
|
|
ctx->masterCtx.x[1] = U32V(k3<<16) | (k2>>16);
|
|
ctx->masterCtx.x[3] = U32V(k0<<16) | (k3>>16);
|
|
ctx->masterCtx.x[5] = U32V(k1<<16) | (k0>>16);
|
|
ctx->masterCtx.x[7] = U32V(k2<<16) | (k1>>16);
|
|
|
|
/* Generate initial counter values */
|
|
ctx->masterCtx.c[0] = rotlFixed(k2, 16);
|
|
ctx->masterCtx.c[2] = rotlFixed(k3, 16);
|
|
ctx->masterCtx.c[4] = rotlFixed(k0, 16);
|
|
ctx->masterCtx.c[6] = rotlFixed(k1, 16);
|
|
ctx->masterCtx.c[1] = (k0&0xFFFF0000) | (k1&0xFFFF);
|
|
ctx->masterCtx.c[3] = (k1&0xFFFF0000) | (k2&0xFFFF);
|
|
ctx->masterCtx.c[5] = (k2&0xFFFF0000) | (k3&0xFFFF);
|
|
ctx->masterCtx.c[7] = (k3&0xFFFF0000) | (k0&0xFFFF);
|
|
|
|
/* Clear carry bit */
|
|
ctx->masterCtx.carry = 0;
|
|
|
|
/* Iterate the system four times */
|
|
for (i=0; i<4; i++)
|
|
RABBIT_next_state(&(ctx->masterCtx));
|
|
|
|
/* Modify the counters */
|
|
for (i=0; i<8; i++)
|
|
ctx->masterCtx.c[i] ^= ctx->masterCtx.x[(i+4)&0x7];
|
|
|
|
/* Copy master instance to work instance */
|
|
for (i=0; i<8; i++) {
|
|
ctx->workCtx.x[i] = ctx->masterCtx.x[i];
|
|
ctx->workCtx.c[i] = ctx->masterCtx.c[i];
|
|
}
|
|
ctx->workCtx.carry = ctx->masterCtx.carry;
|
|
|
|
wc_RabbitSetIV(ctx, iv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int wc_Rabbit_SetHeap(Rabbit* ctx, void* heap)
|
|
{
|
|
if (ctx == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
#ifdef XSTREAM_ALIGN
|
|
ctx->heap = heap;
|
|
#endif
|
|
|
|
(void)heap;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Key setup */
|
|
int wc_RabbitSetKey(Rabbit* ctx, const byte* key, const byte* iv)
|
|
{
|
|
if (ctx == NULL || key == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
#ifdef XSTREAM_ALIGN
|
|
/* default heap to NULL or heap test value */
|
|
#ifdef WOLFSSL_HEAP_TEST
|
|
ctx->heap = (void*)WOLFSSL_HEAP_TEST;
|
|
#else
|
|
ctx->heap = NULL;
|
|
#endif /* WOLFSSL_HEAP_TEST */
|
|
|
|
if ((wolfssl_word)key % 4) {
|
|
int alignKey[4];
|
|
|
|
/* iv aligned in SetIV */
|
|
WOLFSSL_MSG("wc_RabbitSetKey unaligned key");
|
|
|
|
XMEMCPY(alignKey, key, sizeof(alignKey));
|
|
|
|
return DoKey(ctx, (const byte*)alignKey, iv);
|
|
}
|
|
#endif /* XSTREAM_ALIGN */
|
|
|
|
return DoKey(ctx, key, iv);
|
|
}
|
|
|
|
|
|
/* Encrypt/decrypt a message of any size */
|
|
static WC_INLINE int DoProcess(Rabbit* ctx, byte* output, const byte* input,
|
|
word32 msglen)
|
|
{
|
|
/* Encrypt/decrypt all full blocks */
|
|
while (msglen >= 16) {
|
|
/* Iterate the system */
|
|
RABBIT_next_state(&(ctx->workCtx));
|
|
|
|
/* Encrypt/decrypt 16 bytes of data */
|
|
*(word32*)(output+ 0) = *(word32*)(input+ 0) ^
|
|
LITTLE32(ctx->workCtx.x[0] ^ (ctx->workCtx.x[5]>>16) ^
|
|
U32V(ctx->workCtx.x[3]<<16));
|
|
*(word32*)(output+ 4) = *(word32*)(input+ 4) ^
|
|
LITTLE32(ctx->workCtx.x[2] ^ (ctx->workCtx.x[7]>>16) ^
|
|
U32V(ctx->workCtx.x[5]<<16));
|
|
*(word32*)(output+ 8) = *(word32*)(input+ 8) ^
|
|
LITTLE32(ctx->workCtx.x[4] ^ (ctx->workCtx.x[1]>>16) ^
|
|
U32V(ctx->workCtx.x[7]<<16));
|
|
*(word32*)(output+12) = *(word32*)(input+12) ^
|
|
LITTLE32(ctx->workCtx.x[6] ^ (ctx->workCtx.x[3]>>16) ^
|
|
U32V(ctx->workCtx.x[1]<<16));
|
|
|
|
/* Increment pointers and decrement length */
|
|
input += 16;
|
|
output += 16;
|
|
msglen -= 16;
|
|
}
|
|
|
|
/* Encrypt/decrypt remaining data */
|
|
if (msglen) {
|
|
|
|
word32 i;
|
|
word32 tmp[4];
|
|
byte* buffer = (byte*)tmp;
|
|
|
|
XMEMSET(tmp, 0, sizeof(tmp)); /* help static analysis */
|
|
|
|
/* Iterate the system */
|
|
RABBIT_next_state(&(ctx->workCtx));
|
|
|
|
/* Generate 16 bytes of pseudo-random data */
|
|
tmp[0] = LITTLE32(ctx->workCtx.x[0] ^
|
|
(ctx->workCtx.x[5]>>16) ^ U32V(ctx->workCtx.x[3]<<16));
|
|
tmp[1] = LITTLE32(ctx->workCtx.x[2] ^
|
|
(ctx->workCtx.x[7]>>16) ^ U32V(ctx->workCtx.x[5]<<16));
|
|
tmp[2] = LITTLE32(ctx->workCtx.x[4] ^
|
|
(ctx->workCtx.x[1]>>16) ^ U32V(ctx->workCtx.x[7]<<16));
|
|
tmp[3] = LITTLE32(ctx->workCtx.x[6] ^
|
|
(ctx->workCtx.x[3]>>16) ^ U32V(ctx->workCtx.x[1]<<16));
|
|
|
|
/* Encrypt/decrypt the data */
|
|
for (i=0; i<msglen; i++)
|
|
output[i] = input[i] ^ buffer[i];
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Encrypt/decrypt a message of any size */
|
|
int wc_RabbitProcess(Rabbit* ctx, byte* output, const byte* input, word32 msglen)
|
|
{
|
|
if (ctx == NULL || output == NULL || input == NULL) {
|
|
return BAD_FUNC_ARG;
|
|
}
|
|
|
|
#ifdef XSTREAM_ALIGN
|
|
if ((wolfssl_word)input % 4 || (wolfssl_word)output % 4) {
|
|
#ifndef NO_WOLFSSL_ALLOC_ALIGN
|
|
byte* tmp;
|
|
WOLFSSL_MSG("wc_RabbitProcess unaligned");
|
|
|
|
tmp = (byte*)XMALLOC(msglen, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
if (tmp == NULL) return MEMORY_E;
|
|
|
|
XMEMCPY(tmp, input, msglen);
|
|
DoProcess(ctx, tmp, tmp, msglen);
|
|
XMEMCPY(output, tmp, msglen);
|
|
|
|
XFREE(tmp, ctx->heap, DYNAMIC_TYPE_TMP_BUFFER);
|
|
|
|
return 0;
|
|
#else
|
|
return BAD_ALIGN_E;
|
|
#endif
|
|
}
|
|
#endif /* XSTREAM_ALIGN */
|
|
|
|
return DoProcess(ctx, output, input, msglen);
|
|
}
|
|
|
|
|
|
#endif /* NO_RABBIT */
|