OVMS3/OVMS.V3/components/duktape/examples/debug-trans-dvalue/duk_trans_dvalue.c

1241 lines
34 KiB
C

/*
* Example debug transport with a local debug message encoder/decoder.
*
* Provides a "received dvalue" callback for a fully parsed dvalue (user
* code frees dvalue) and a "cooperate" callback for e.g. UI integration.
* There are a few other callbacks. See test.c for usage examples.
*
* This transport implementation is not multithreaded which means that:
*
* - Callbacks to "received dvalue" callback come from the Duktape thread,
* either during normal execution or from duk_debugger_cooperate().
*
* - Calls into duk_trans_dvalue_send() must be made from the callbacks
* provided (e.g. "received dvalue" or "cooperate") which use the active
* Duktape thread.
*
* - The only exception to this is when Duktape is idle: you can then call
* duk_trans_dvalue_send() from any thread (only one thread at a time).
* When you next call into Duktape or call duk_debugger_cooperate(), the
* queued data will be read and processed by Duktape.
*
* There are functions for creating and freeing values; internally they use
* malloc() and free() for memory management. Duktape heap alloc functions
* are not used to minimize disturbances to the Duktape heap under debugging.
*
* Doesn't depend on C99 types; assumes "int" is at least 32 bits, and makes
* a few assumptions about format specifiers.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "duktape.h"
#include "duk_trans_dvalue.h"
/* Define to enable debug prints to stderr. */
#if 0
#define DEBUG_PRINTS
#endif
/* Define to enable error prints to stderr. */
#if 1
#define ERROR_PRINTS
#endif
/*
* Dvalue handling
*/
duk_dvalue *duk_dvalue_alloc(void) {
duk_dvalue *dv = (duk_dvalue *) malloc(sizeof(duk_dvalue));
if (dv) {
memset((void *) dv, 0, sizeof(duk_dvalue));
dv->buf = NULL;
}
return dv;
}
void duk_dvalue_free(duk_dvalue *dv) {
if (dv) {
free(dv->buf); /* tolerates NULL */
dv->buf = NULL;
free(dv);
}
}
static void duk__dvalue_bufesc(duk_dvalue *dv, char *buf, size_t maxbytes, int stresc) {
size_t i, limit;
*buf = (char) 0;
limit = dv->len > maxbytes ? maxbytes : dv->len;
for (i = 0; i < limit; i++) {
unsigned char c = dv->buf[i];
if (stresc) {
if (c >= 0x20 && c <= 0x7e && c != (char) '"' && c != (char) '\'') {
sprintf(buf, "%c", c);
buf++;
} else {
sprintf(buf, "\\x%02x", (unsigned int) c);
buf += 4;
}
} else {
sprintf(buf, "%02x", (unsigned int) c);
buf += 2;
}
}
if (dv->len > maxbytes) {
sprintf(buf, "...");
buf += 3;
}
}
/* Caller must provide a buffer at least DUK_DVALUE_TOSTRING_BUFLEN in size. */
void duk_dvalue_to_string(duk_dvalue *dv, char *buf) {
char hexbuf[32 * 4 + 4]; /* 32 hex encoded or \xXX escaped bytes, possible "...", NUL */
if (!dv) {
sprintf(buf, "NULL");
return;
}
switch (dv->tag) {
case DUK_DVALUE_EOM:
sprintf(buf, "EOM");
break;
case DUK_DVALUE_REQ:
sprintf(buf, "REQ");
break;
case DUK_DVALUE_REP:
sprintf(buf, "REP");
break;
case DUK_DVALUE_ERR:
sprintf(buf, "ERR");
break;
case DUK_DVALUE_NFY:
sprintf(buf, "NFY");
break;
case DUK_DVALUE_INTEGER:
sprintf(buf, "%d", dv->i);
break;
case DUK_DVALUE_STRING:
duk__dvalue_bufesc(dv, hexbuf, 32, 1);
sprintf(buf, "str:%ld:\"%s\"", (long) dv->len, hexbuf);
break;
case DUK_DVALUE_BUFFER:
duk__dvalue_bufesc(dv, hexbuf, 32, 0);
sprintf(buf, "buf:%ld:%s", (long) dv->len, hexbuf);
break;
case DUK_DVALUE_UNUSED:
sprintf(buf, "undefined");
break;
case DUK_DVALUE_UNDEFINED:
sprintf(buf, "undefined");
break;
case DUK_DVALUE_NULL:
sprintf(buf, "null");
break;
case DUK_DVALUE_TRUE:
sprintf(buf, "true");
break;
case DUK_DVALUE_FALSE:
sprintf(buf, "false");
break;
case DUK_DVALUE_NUMBER:
if (fpclassify(dv->d) == FP_ZERO) {
if (signbit(dv->d)) {
sprintf(buf, "-0");
} else {
sprintf(buf, "0");
}
} else {
sprintf(buf, "%lg", dv->d);
}
break;
case DUK_DVALUE_OBJECT:
duk__dvalue_bufesc(dv, hexbuf, 32, 0);
sprintf(buf, "obj:%d:%s", (int) dv->i, hexbuf);
break;
case DUK_DVALUE_POINTER:
duk__dvalue_bufesc(dv, hexbuf, 32, 0);
sprintf(buf, "ptr:%s", hexbuf);
break;
case DUK_DVALUE_LIGHTFUNC:
duk__dvalue_bufesc(dv, hexbuf, 32, 0);
sprintf(buf, "lfunc:%04x:%s", (unsigned int) dv->i, hexbuf);
break;
case DUK_DVALUE_HEAPPTR:
duk__dvalue_bufesc(dv, hexbuf, 32, 0);
sprintf(buf, "heapptr:%s", hexbuf);
break;
default:
sprintf(buf, "unknown:%d", (int) dv->tag);
}
}
duk_dvalue *duk_dvalue_make_tag(int tag) {
duk_dvalue *dv = duk_dvalue_alloc();
if (!dv) { return NULL; }
dv->tag = tag;
return dv;
}
duk_dvalue *duk_dvalue_make_tag_int(int tag, int intval) {
duk_dvalue *dv = duk_dvalue_alloc();
if (!dv) { return NULL; }
dv->tag = tag;
dv->i = intval;
return dv;
}
duk_dvalue *duk_dvalue_make_tag_double(int tag, double dblval) {
duk_dvalue *dv = duk_dvalue_alloc();
if (!dv) { return NULL; }
dv->tag = tag;
dv->d = dblval;
return dv;
}
duk_dvalue *duk_dvalue_make_tag_data(int tag, const char *buf, size_t len) {
unsigned char *p;
duk_dvalue *dv = duk_dvalue_alloc();
if (!dv) { return NULL; }
/* Alloc size is len + 1 so that a NUL terminator is always
* guaranteed which is convenient, e.g. you can printf() the
* value safely.
*/
p = (unsigned char *) malloc(len + 1);
if (!p) {
free(dv);
return NULL;
}
memcpy((void *) p, (const void *) buf, len);
p[len] = (unsigned char) 0;
dv->tag = tag;
dv->buf = p;
dv->len = len;
return dv;
}
duk_dvalue *duk_dvalue_make_tag_int_data(int tag, int intval, const char *buf, size_t len) {
duk_dvalue *dv = duk_dvalue_make_tag_data(tag, buf, len);
if (!dv) { return NULL; }
dv->i = intval;
return dv;
}
/*
* Dvalue transport handling
*/
static void duk__trans_dvalue_double_byteswap(duk_trans_dvalue_ctx *ctx, volatile unsigned char *p) {
unsigned char t;
/* Portable IEEE double byteswap. Relies on runtime detection of
* host endianness.
*/
if (ctx->double_byteorder == 0) {
/* little endian */
t = p[0]; p[0] = p[7]; p[7] = t;
t = p[1]; p[1] = p[6]; p[6] = t;
t = p[2]; p[2] = p[5]; p[5] = t;
t = p[3]; p[3] = p[4]; p[4] = t;
} else if (ctx->double_byteorder == 1) {
/* big endian: ok as is */
;
} else {
/* mixed endian */
t = p[0]; p[0] = p[3]; p[3] = t;
t = p[1]; p[1] = p[2]; p[2] = t;
t = p[4]; p[4] = p[7]; p[7] = t;
t = p[5]; p[5] = p[6]; p[6] = t;
}
}
static unsigned int duk__trans_dvalue_parse_u32(duk_trans_dvalue_ctx *ctx, unsigned char *p) {
/* Integers are network endian, read back into host format in
* a portable manner.
*/
(void) ctx;
return (((unsigned int) p[0]) << 24) +
(((unsigned int) p[1]) << 16) +
(((unsigned int) p[2]) << 8) +
(((unsigned int) p[3]) << 0);
}
static int duk__trans_dvalue_parse_i32(duk_trans_dvalue_ctx *ctx, unsigned char *p) {
/* Portable sign handling, doesn't assume 'int' is exactly 32 bits
* like a direct cast would.
*/
unsigned int tmp = duk__trans_dvalue_parse_u32(ctx, p);
if (tmp & 0x80000000UL) {
return -((int) ((tmp ^ 0xffffffffUL) + 1UL));
} else {
return tmp;
}
}
static unsigned int duk__trans_dvalue_parse_u16(duk_trans_dvalue_ctx *ctx, unsigned char *p) {
/* Integers are network endian, read back into host format. */
(void) ctx;
return (((unsigned int) p[0]) << 8) +
(((unsigned int) p[1]) << 0);
}
static double duk__trans_dvalue_parse_double(duk_trans_dvalue_ctx *ctx, unsigned char *p) {
/* IEEE doubles are network endian, read back into host format. */
volatile union {
double d;
unsigned char b[8];
} u;
memcpy((void *) u.b, (const void *) p, 8);
duk__trans_dvalue_double_byteswap(ctx, u.b);
return u.d;
}
static unsigned char *duk__trans_dvalue_encode_u32(duk_trans_dvalue_ctx *ctx, unsigned char *p, unsigned int val) {
/* Integers are written in network endian format. */
(void) ctx;
*p++ = (unsigned char) ((val >> 24) & 0xff);
*p++ = (unsigned char) ((val >> 16) & 0xff);
*p++ = (unsigned char) ((val >> 8) & 0xff);
*p++ = (unsigned char) (val & 0xff);
return p;
}
static unsigned char *duk__trans_dvalue_encode_i32(duk_trans_dvalue_ctx *ctx, unsigned char *p, int val) {
return duk__trans_dvalue_encode_u32(ctx, p, (unsigned int) val & 0xffffffffUL);
}
static unsigned char *duk__trans_dvalue_encode_u16(duk_trans_dvalue_ctx *ctx, unsigned char *p, unsigned int val) {
/* Integers are written in network endian format. */
(void) ctx;
*p++ = (unsigned char) ((val >> 8) & 0xff);
*p++ = (unsigned char) (val & 0xff);
return p;
}
static unsigned char *duk__trans_dvalue_encode_double(duk_trans_dvalue_ctx *ctx, unsigned char *p, double val) {
/* IEEE doubles are written in network endian format. */
volatile union {
double d;
unsigned char b[8];
} u;
u.d = val;
duk__trans_dvalue_double_byteswap(ctx, u.b);
memcpy((void *) p, (const void *) u.b, 8);
p += 8;
return p;
}
static unsigned char *duk__trans_buffer_ensure(duk_trans_buffer *dbuf, size_t space) {
size_t avail;
size_t used;
size_t new_size;
void *new_alloc;
used = dbuf->write_offset;
avail = dbuf->alloc_size - dbuf->write_offset;
if (avail >= space) {
if (avail - space > 256) {
/* Too big, resize so that we reclaim memory if we have just
* received a large string/buffer value.
*/
goto do_realloc;
}
} else {
/* Too small, resize. */
goto do_realloc;
}
return dbuf->base + dbuf->write_offset;
do_realloc:
new_size = used + space + 256; /* some extra to reduce resizes */
new_alloc = realloc(dbuf->base, new_size);
if (new_alloc) {
dbuf->base = (unsigned char *) new_alloc;
dbuf->alloc_size = new_size;
#if defined(DEBUG_PRINTS)
fprintf(stderr, "%s: resized buffer %p to %ld bytes, read_offset=%ld, write_offset=%ld\n",
__func__, (void *) dbuf, (long) new_size, (long) dbuf->read_offset, (long) dbuf->write_offset);
fflush(stderr);
#endif
return dbuf->base + dbuf->write_offset;
} else {
return NULL;
}
}
/* When read_offset is large enough, "rebase" buffer by deleting already
* read data and updating offsets.
*/
static void duk__trans_buffer_rebase(duk_trans_buffer *dbuf) {
if (dbuf->read_offset > 64) {
#if defined(DEBUG_PRINTS)
fprintf(stderr, "%s: rebasing buffer %p, read_offset=%ld, write_offset=%ld\n",
__func__, (void *) dbuf, (long) dbuf->read_offset, (long) dbuf->write_offset);
fflush(stderr);
#endif
if (dbuf->write_offset > dbuf->read_offset) {
memmove((void *) dbuf->base, (const void *) (dbuf->base + dbuf->read_offset), dbuf->write_offset - dbuf->read_offset);
}
dbuf->write_offset -= dbuf->read_offset;
dbuf->read_offset = 0;
}
}
duk_trans_dvalue_ctx *duk_trans_dvalue_init(void) {
volatile union {
double d;
unsigned char b[8];
} u;
duk_trans_dvalue_ctx *ctx = NULL;
ctx = (duk_trans_dvalue_ctx *) malloc(sizeof(duk_trans_dvalue_ctx));
if (!ctx) { goto fail; }
memset((void *) ctx, 0, sizeof(duk_trans_dvalue_ctx));
ctx->received = NULL;
ctx->cooperate = NULL;
ctx->handshake = NULL;
ctx->detached = NULL;
ctx->send_buf.base = NULL;
ctx->recv_buf.base = NULL;
ctx->send_buf.base = malloc(256);
if (!ctx->send_buf.base) { goto fail; }
ctx->send_buf.alloc_size = 256;
ctx->recv_buf.base = malloc(256);
if (!ctx->recv_buf.base) { goto fail; }
ctx->recv_buf.alloc_size = 256;
/* IEEE double byte order, detect at run time (could also use
* preprocessor defines but that's verbose to make portable).
*
* >>> struct.unpack('>d', '1122334455667788'.decode('hex'))
* (3.841412024471731e-226,)
* >>> struct.unpack('>d', '8877665544332211'.decode('hex'))
* (-7.086876636573014e-268,)
* >>> struct.unpack('>d', '4433221188776655'.decode('hex'))
* (3.5294303071877444e+20,)
*/
u.b[0] = 0x11; u.b[1] = 0x22; u.b[2] = 0x33; u.b[3] = 0x44;
u.b[4] = 0x55; u.b[5] = 0x66; u.b[6] = 0x77; u.b[7] = 0x88;
if (u.d < 0.0) {
ctx->double_byteorder = 0; /* little endian */
} else if (u.d < 1.0) {
ctx->double_byteorder = 1; /* big endian */
} else {
ctx->double_byteorder = 2; /* mixed endian (arm) */
}
#if defined(DEBUG_PRINTS)
fprintf(stderr, "double endianness test value is %lg -> byteorder %d\n",
u.d, ctx->double_byteorder);
fflush(stderr);
#endif
return ctx;
fail:
if (ctx) {
free(ctx->recv_buf.base); /* tolerates NULL */
free(ctx->send_buf.base); /* tolerates NULL */
free(ctx);
}
return NULL;
}
void duk_trans_dvalue_free(duk_trans_dvalue_ctx *ctx) {
if (ctx) {
free(ctx->send_buf.base); /* tolerates NULL */
free(ctx->recv_buf.base); /* tolerates NULL */
free(ctx);
}
}
void duk_trans_dvalue_send(duk_trans_dvalue_ctx *ctx, duk_dvalue *dv) {
unsigned char *p;
/* Convert argument dvalue into Duktape debug protocol format.
* Literal constants are used here for the debug protocol,
* e.g. initial byte 0x02 is REP, see doc/debugger.rst.
*/
#if defined(DEBUG_PRINTS)
{
char buf[DUK_DVALUE_TOSTRING_BUFLEN];
duk_dvalue_to_string(dv, buf);
fprintf(stderr, "%s: sending dvalue: %s\n", __func__, buf);
fflush(stderr);
}
#endif
switch (dv->tag) {
case DUK_DVALUE_EOM: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x00;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_REQ: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x01;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_REP: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x02;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_ERR: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x03;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_NFY: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x04;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_INTEGER: {
int i = dv->i;
if (i >= 0 && i <= 63) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = (unsigned char) (0x80 + i);
ctx->send_buf.write_offset += 1;
} else if (i >= 0 && i <= 16383L) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 2);
if (!p) { goto alloc_error; }
*p++ = (unsigned char) (0xc0 + (i >> 8));
*p++ = (unsigned char) (i & 0xff);
ctx->send_buf.write_offset += 2;
} else if (i >= -0x80000000L && i <= 0x7fffffffL) { /* Harmless warning on some platforms (re: range) */
p = duk__trans_buffer_ensure(&ctx->send_buf, 5);
if (!p) { goto alloc_error; }
*p++ = 0x10;
p = duk__trans_dvalue_encode_i32(ctx, p, i);
ctx->send_buf.write_offset += 5;
} else {
goto dvalue_error;
}
break;
}
case DUK_DVALUE_STRING: {
size_t i = dv->len;
if (i <= 0x1fUL) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1 + i);
if (!p) { goto alloc_error; }
*p++ = (unsigned char) (0x60 + i);
memcpy((void *) p, (const void *) dv->buf, i);
p += i;
ctx->send_buf.write_offset += 1 + i;
} else if (i <= 0xffffUL) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 3 + i);
if (!p) { goto alloc_error; }
*p++ = 0x12;
p = duk__trans_dvalue_encode_u16(ctx, p, (unsigned int) i);
memcpy((void *) p, (const void *) dv->buf, i);
p += i;
ctx->send_buf.write_offset += 3 + i;
} else if (i <= 0xffffffffUL) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 5 + i);
if (!p) { goto alloc_error; }
*p++ = 0x11;
p = duk__trans_dvalue_encode_u32(ctx, p, (unsigned int) i);
memcpy((void *) p, (const void *) dv->buf, i);
p += i;
ctx->send_buf.write_offset += 5 + i;
} else {
goto dvalue_error;
}
break;
}
case DUK_DVALUE_BUFFER: {
size_t i = dv->len;
if (i <= 0xffffUL) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 3 + i);
if (!p) { goto alloc_error; }
*p++ = 0x14;
p = duk__trans_dvalue_encode_u16(ctx, p, (unsigned int) i);
memcpy((void *) p, (const void *) dv->buf, i);
p += i;
ctx->send_buf.write_offset += 3 + i;
} else if (i <= 0xffffffffUL) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 5 + i);
if (!p) { goto alloc_error; }
*p++ = 0x13;
p = duk__trans_dvalue_encode_u32(ctx, p, (unsigned int) i);
memcpy((void *) p, (const void *) dv->buf, i);
p += i;
ctx->send_buf.write_offset += 5 + i;
} else {
goto dvalue_error;
}
break;
}
case DUK_DVALUE_UNUSED: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x15;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_UNDEFINED: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x16;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_NULL: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x17;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_TRUE: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x18;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_FALSE: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 1);
if (!p) { goto alloc_error; }
*p++ = 0x19;
ctx->send_buf.write_offset += 1;
break;
}
case DUK_DVALUE_NUMBER: {
p = duk__trans_buffer_ensure(&ctx->send_buf, 9);
if (!p) { goto alloc_error; }
*p++ = 0x1a;
p = duk__trans_dvalue_encode_double(ctx, p, dv->d);
ctx->send_buf.write_offset += 9;
break;
}
case DUK_DVALUE_OBJECT: {
size_t i = dv->len;
if (i <= 0xffUL && dv->i >= 0 && dv->i <= 0xffL) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 3 + i);
if (!p) { goto alloc_error; }
*p++ = 0x1b;
*p++ = (unsigned char) dv->i;
*p++ = (unsigned char) i;
memcpy((void *) p, (const void *) dv->buf, i);
ctx->send_buf.write_offset += 3 + i;
} else {
goto dvalue_error;
}
break;
}
case DUK_DVALUE_POINTER: {
size_t i = dv->len;
if (i <= 0xffUL) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 2 + i);
if (!p) { goto alloc_error; }
*p++ = 0x1c;
*p++ = (unsigned char) i;
memcpy((void *) p, (const void *) dv->buf, i);
ctx->send_buf.write_offset += 2 + i;
} else {
goto dvalue_error;
}
break;
}
case DUK_DVALUE_LIGHTFUNC: {
size_t i = dv->len;
if (i <= 0xffUL && dv->i >= 0 && dv->i <= 0xffffL) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 4 + i);
if (!p) { goto alloc_error; }
*p++ = 0x1d;
p = duk__trans_dvalue_encode_u16(ctx, p, (unsigned int) dv->i);
*p++ = (unsigned char) i;
memcpy((void *) p, (const void *) dv->buf, i);
ctx->send_buf.write_offset += 4 + i;
} else {
goto dvalue_error;
}
break;
}
case DUK_DVALUE_HEAPPTR: {
size_t i = dv->len;
if (i <= 0xffUL) {
p = duk__trans_buffer_ensure(&ctx->send_buf, 2 + i);
if (!p) { goto alloc_error; }
*p++ = 0x1e;
*p++ = (unsigned char) i;
memcpy((void *) p, (const void *) dv->buf, i);
ctx->send_buf.write_offset += 2 + i;
} else {
goto dvalue_error;
}
break;
}
default: {
goto dvalue_error;
}
} /* end switch */
return;
dvalue_error:
#if defined(ERROR_PRINTS)
fprintf(stderr, "%s: internal error, argument dvalue is invalid\n", __func__);
fflush(stdout);
#endif
return;
alloc_error:
#if defined(ERROR_PRINTS)
fprintf(stderr, "%s: internal error, failed to allocate space for write\n", __func__);
fflush(stdout);
#endif
return;
}
static void duk__trans_dvalue_send_and_free(duk_trans_dvalue_ctx *ctx, duk_dvalue *dv) {
if (!dv) { return; }
duk_trans_dvalue_send(ctx, dv);
duk_dvalue_free(dv);
}
void duk_trans_dvalue_send_eom(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_EOM));
}
void duk_trans_dvalue_send_req(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_REQ));
}
void duk_trans_dvalue_send_rep(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_REP));
}
void duk_trans_dvalue_send_err(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_ERR));
}
void duk_trans_dvalue_send_nfy(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_NFY));
}
void duk_trans_dvalue_send_integer(duk_trans_dvalue_ctx *ctx, int val) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag_int(DUK_DVALUE_INTEGER, val));
}
void duk_trans_dvalue_send_string(duk_trans_dvalue_ctx *ctx, const char *str) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag_data(DUK_DVALUE_STRING, str, strlen(str)));
}
void duk_trans_dvalue_send_lstring(duk_trans_dvalue_ctx *ctx, const char *str, size_t len) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag_data(DUK_DVALUE_STRING, str, len));
}
void duk_trans_dvalue_send_buffer(duk_trans_dvalue_ctx *ctx, const char *buf, size_t len) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag_data(DUK_DVALUE_BUFFER, buf, len));
}
void duk_trans_dvalue_send_unused(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_UNUSED));
}
void duk_trans_dvalue_send_undefined(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_UNDEFINED));
}
void duk_trans_dvalue_send_null(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_NULL));
}
void duk_trans_dvalue_send_true(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_TRUE));
}
void duk_trans_dvalue_send_false(duk_trans_dvalue_ctx *ctx) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag(DUK_DVALUE_FALSE));
}
void duk_trans_dvalue_send_number(duk_trans_dvalue_ctx *ctx, double val) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag_double(DUK_DVALUE_NUMBER, val));
}
void duk_trans_dvalue_send_object(duk_trans_dvalue_ctx *ctx, int classnum, const char *ptr_data, size_t ptr_len) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag_int_data(DUK_DVALUE_OBJECT, classnum, ptr_data, ptr_len));
}
void duk_trans_dvalue_send_pointer(duk_trans_dvalue_ctx *ctx, const char *ptr_data, size_t ptr_len) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag_data(DUK_DVALUE_POINTER, ptr_data, ptr_len));
}
void duk_trans_dvalue_send_lightfunc(duk_trans_dvalue_ctx *ctx, int lf_flags, const char *ptr_data, size_t ptr_len) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag_int_data(DUK_DVALUE_LIGHTFUNC, lf_flags, ptr_data, ptr_len));
}
void duk_trans_dvalue_send_heapptr(duk_trans_dvalue_ctx *ctx, const char *ptr_data, size_t ptr_len) {
duk__trans_dvalue_send_and_free(ctx, duk_dvalue_make_tag_data(DUK_DVALUE_HEAPPTR, ptr_data, ptr_len));
}
void duk_trans_dvalue_send_req_cmd(duk_trans_dvalue_ctx *ctx, int cmd) {
duk_trans_dvalue_send_req(ctx);
duk_trans_dvalue_send_integer(ctx, cmd);
}
static duk_dvalue *duk__trans_trial_parse_dvalue(duk_trans_dvalue_ctx *ctx) {
unsigned char *p;
size_t len;
unsigned char ib;
duk_dvalue *dv;
size_t datalen;
p = ctx->recv_buf.base + ctx->recv_buf.read_offset;
len = ctx->recv_buf.write_offset - ctx->recv_buf.read_offset;
if (len == 0) {
return NULL;
}
ib = p[0];
#if defined(DEBUG_PRINTS)
{
size_t i;
fprintf(stderr, "%s: parsing dvalue, window:", __func__);
for (i = 0; i < 16; i++) {
if (i < len) {
fprintf(stderr, " %02x", (unsigned int) p[i]);
} else {
fprintf(stderr, " ??");
}
}
fprintf(stderr, " (length %ld, read_offset %ld, write_offset %ld, alloc_size %ld)\n",
(long) len, (long) ctx->recv_buf.read_offset, (long) ctx->recv_buf.write_offset,
(long) ctx->recv_buf.alloc_size);
fflush(stderr);
}
#endif
if (ib <= 0x1fU) {
/* 0x00 ... 0x1f */
switch (ib) {
case 0x00: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_EOM);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x01: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_REQ);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x02: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_REP);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x03: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_ERR);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x04: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_NFY);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x10: {
int intval;
if (len < 5) { goto partial; }
intval = duk__trans_dvalue_parse_i32(ctx, p + 1);
ctx->recv_buf.read_offset += 5;
dv = duk_dvalue_make_tag_int(DUK_DVALUE_INTEGER, intval);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x11: {
if (len < 5) { goto partial; }
datalen = (size_t) duk__trans_dvalue_parse_u32(ctx, p + 1);
if (len < 5 + datalen) { goto partial; }
ctx->recv_buf.read_offset += 5 + datalen;
dv = duk_dvalue_make_tag_data(DUK_DVALUE_STRING, (const char *) (p + 5), datalen);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x12: {
if (len < 3) { goto partial; }
datalen = (size_t) duk__trans_dvalue_parse_u16(ctx, p + 1);
if (len < 3 + datalen) { goto partial; }
ctx->recv_buf.read_offset += 3 + datalen;
dv = duk_dvalue_make_tag_data(DUK_DVALUE_STRING, (const char *) (p + 3), datalen);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x13: {
if (len < 5) { goto partial; }
datalen = (size_t) duk__trans_dvalue_parse_u32(ctx, p + 1);
if (len < 5 + datalen) { goto partial; }
ctx->recv_buf.read_offset += 5 + datalen;
dv = duk_dvalue_make_tag_data(DUK_DVALUE_BUFFER, (const char *) (p + 5), datalen);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x14: {
if (len < 3) { goto partial; }
datalen = (size_t) duk__trans_dvalue_parse_u16(ctx, p + 1);
if (len < 3 + datalen) { goto partial; }
ctx->recv_buf.read_offset += 3 + datalen;
dv = duk_dvalue_make_tag_data(DUK_DVALUE_BUFFER, (const char *) (p + 3), datalen);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x15: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_UNUSED);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x16: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_UNDEFINED);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x17: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_NULL);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x18: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_TRUE);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x19: {
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag(DUK_DVALUE_FALSE);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x1a: {
double dblval;
if (len < 9) { goto partial; }
dblval = duk__trans_dvalue_parse_double(ctx, p + 1);
ctx->recv_buf.read_offset += 9;
dv = duk_dvalue_make_tag_double(DUK_DVALUE_NUMBER, dblval);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x1b: {
int classnum;
if (len < 3) { goto partial; }
datalen = (size_t) p[2];
if (len < 3 + datalen) { goto partial; }
classnum = (int) p[1];
ctx->recv_buf.read_offset += 3 + datalen;
dv = duk_dvalue_make_tag_int_data(DUK_DVALUE_OBJECT, classnum, (const char *) (p + 3), datalen);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x1c: {
if (len < 2) { goto partial; }
datalen = (size_t) p[1];
if (len < 2 + datalen) { goto partial; }
ctx->recv_buf.read_offset += 2 + datalen;
dv = duk_dvalue_make_tag_data(DUK_DVALUE_POINTER, (const char *) (p + 2), datalen);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x1d: {
int lf_flags;
if (len < 4) { goto partial; }
datalen = (size_t) p[3];
if (len < 4 + datalen) { goto partial; }
lf_flags = (int) duk__trans_dvalue_parse_u16(ctx, p + 1);
ctx->recv_buf.read_offset += 4 + datalen;
dv = duk_dvalue_make_tag_int_data(DUK_DVALUE_LIGHTFUNC, lf_flags, (const char *) (p + 4), datalen);
if (!dv) { goto alloc_error; }
return dv;
}
case 0x1e: {
if (len < 2) { goto partial; }
datalen = (size_t) p[1];
if (len < 2 + datalen) { goto partial; }
ctx->recv_buf.read_offset += 2 + datalen;
dv = duk_dvalue_make_tag_data(DUK_DVALUE_HEAPPTR, (const char *) (p + 2), datalen);
if (!dv) { goto alloc_error; }
return dv;
}
default: {
goto format_error;
}
} /* end switch */
} else if (ib <= 0x5fU) {
/* 0x20 ... 0x5f */
goto format_error;
} else if (ib <= 0x7fU) {
/* 0x60 ... 0x7f */
datalen = (size_t) (ib - 0x60U);
if (len < 1 + datalen) { goto partial; }
ctx->recv_buf.read_offset += 1 + datalen;
dv = duk_dvalue_make_tag_data(DUK_DVALUE_STRING, (const char *) (p + 1), datalen);
if (!dv) { goto alloc_error; }
return dv;
} else if (ib <= 0xbfU) {
/* 0x80 ... 0xbf */
int intval;
intval = (int) (ib - 0x80U);
ctx->recv_buf.read_offset += 1;
dv = duk_dvalue_make_tag_int(DUK_DVALUE_INTEGER, intval);
if (!dv) { goto alloc_error; }
return dv;
} else {
/* 0xc0 ... 0xff */
int intval;
if (len < 2) { goto partial; }
intval = (((int) (ib - 0xc0U)) << 8) + (int) p[1];
ctx->recv_buf.read_offset += 2;
dv = duk_dvalue_make_tag_int(DUK_DVALUE_INTEGER, intval);
if (!dv) { goto alloc_error; }
return dv;
}
/* never here */
partial:
return NULL;
alloc_error:
#if defined(ERROR_PRINTS)
fprintf(stderr, "%s: internal error, cannot allocate space for dvalue\n", __func__);
fflush(stdout);
#endif
return NULL;
format_error:
#if defined(ERROR_PRINTS)
fprintf(stderr, "%s: internal error, dvalue format error\n", __func__);
fflush(stdout);
#endif
return NULL;
}
static duk_dvalue *duk__trans_trial_parse_handshake(duk_trans_dvalue_ctx *ctx) {
unsigned char *p;
size_t len;
duk_dvalue *dv;
size_t i;
p = ctx->recv_buf.base + ctx->recv_buf.read_offset;
len = ctx->recv_buf.write_offset - ctx->recv_buf.read_offset;
for (i = 0; i < len; i++) {
if (p[i] == 0x0a) {
/* Handshake line is returned as a dvalue for convenience; it's
* not actually a part of the dvalue phase of the protocol.
*/
ctx->recv_buf.read_offset += i + 1;
dv = duk_dvalue_make_tag_data(DUK_DVALUE_STRING, (const char *) p, i);
if (!dv) { goto alloc_error; }
return dv;
}
}
return NULL;
alloc_error:
#if defined(ERROR_PRINTS)
fprintf(stderr, "%s: internal error, cannot allocate space for handshake line\n", __func__);
fflush(stdout);
#endif
return NULL;
}
static void duk__trans_call_cooperate(duk_trans_dvalue_ctx *ctx, int block) {
if (ctx->cooperate) {
ctx->cooperate(ctx, block);
}
}
static void duk__trans_call_received(duk_trans_dvalue_ctx *ctx, duk_dvalue *dv) {
if (ctx->received) {
ctx->received(ctx, dv);
}
}
static void duk__trans_call_handshake(duk_trans_dvalue_ctx *ctx, const char *line) {
if (ctx->handshake) {
ctx->handshake(ctx, line);
}
}
static void duk__trans_call_detached(duk_trans_dvalue_ctx *ctx) {
if (ctx->detached) {
ctx->detached(ctx);
}
}
/*
* Duktape callbacks
*/
duk_size_t duk_trans_dvalue_read_cb(void *udata, char *buffer, duk_size_t length) {
duk_trans_dvalue_ctx *ctx = (duk_trans_dvalue_ctx *) udata;
#if defined(DEBUG_PRINTS)
fprintf(stderr, "%s: %p %p %ld\n", __func__, udata, (void *) buffer, (long) length);
fflush(stderr);
#endif
duk__trans_call_cooperate(ctx, 0);
for (;;) {
size_t avail, now;
avail = (size_t) (ctx->send_buf.write_offset - ctx->send_buf.read_offset);
if (avail == 0) {
/* Must cooperate until user callback provides data. From
* Duktape's perspective we MUST block until data is received.
*/
duk__trans_call_cooperate(ctx, 1);
} else {
now = avail;
if (now > length) {
now = length;
}
memcpy((void *) buffer, (const void *) (ctx->send_buf.base + ctx->send_buf.read_offset), now);
duk__trans_buffer_rebase(&ctx->send_buf);
ctx->send_buf.read_offset += now;
return now;
}
}
}
duk_size_t duk_trans_dvalue_write_cb(void *udata, const char *buffer, duk_size_t length) {
duk_trans_dvalue_ctx *ctx = (duk_trans_dvalue_ctx *) udata;
unsigned char *p;
#if defined(DEBUG_PRINTS)
fprintf(stderr, "%s: %p %p %ld\n", __func__, udata, (void *) buffer, (long) length);
fflush(stderr);
#endif
duk__trans_call_cooperate(ctx, 0);
/* Append data. */
duk__trans_buffer_rebase(&ctx->recv_buf);
p = duk__trans_buffer_ensure(&ctx->recv_buf, length);
memcpy((void *) p, (const void *) buffer, (size_t) length);
ctx->recv_buf.write_offset += length;
/* Trial parse handshake line or dvalue(s). */
if (!ctx->handshake_done) {
duk_dvalue *dv = duk__trans_trial_parse_handshake(ctx);
if (dv) {
/* Handshake line is available for caller for the
* duration of the callback, and must not be freed
* by the caller.
*/
duk__trans_call_handshake(ctx, (const char *) dv->buf);
#if defined(DEBUG_PRINTS)
fprintf(stderr, "%s: handshake ok\n", __func__);
fflush(stderr);
#endif
duk_dvalue_free(dv);
ctx->handshake_done = 1;
}
}
if (ctx->handshake_done) {
for (;;) {
duk_dvalue *dv = duk__trans_trial_parse_dvalue(ctx);
if (dv) {
#if defined(DEBUG_PRINTS)
{
char buf[DUK_DVALUE_TOSTRING_BUFLEN];
duk_dvalue_to_string(dv, buf);
fprintf(stderr, "%s: received dvalue: %s\n", __func__, buf);
fflush(stderr);
}
#endif
duk__trans_call_received(ctx, dv);
} else {
break;
}
}
}
duk__trans_call_cooperate(ctx, 0); /* just in case, if dvalues changed something */
return length;
}
duk_size_t duk_trans_dvalue_peek_cb(void *udata) {
duk_trans_dvalue_ctx *ctx = (duk_trans_dvalue_ctx *) udata;
size_t avail;
#if defined(DEBUG_PRINTS)
fprintf(stderr, "%s: %p\n", __func__, udata);
fflush(stderr);
#endif
duk__trans_call_cooperate(ctx, 0);
avail = (size_t) (ctx->send_buf.write_offset - ctx->send_buf.read_offset);
return (duk_size_t) avail;
}
void duk_trans_dvalue_read_flush_cb(void *udata) {
duk_trans_dvalue_ctx *ctx = (duk_trans_dvalue_ctx *) udata;
#if defined(DEBUG_PRINTS)
fprintf(stderr, "%s: %p\n", __func__, udata);
fflush(stderr);
#endif
duk__trans_call_cooperate(ctx, 0);
}
void duk_trans_dvalue_write_flush_cb(void *udata) {
duk_trans_dvalue_ctx *ctx = (duk_trans_dvalue_ctx *) udata;
#if defined(DEBUG_PRINTS)
fprintf(stderr, "%s: %p\n", __func__, udata);
fflush(stderr);
#endif
duk__trans_call_cooperate(ctx, 0);
}
void duk_trans_dvalue_detached_cb(duk_context *duk_ctx, void *udata) {
duk_trans_dvalue_ctx *ctx = (duk_trans_dvalue_ctx *) udata;
(void) duk_ctx;
#if defined(DEBUG_PRINTS)
fprintf(stderr, "%s: %p\n", __func__, udata);
fflush(stderr);
#endif
duk__trans_call_detached(ctx);
}