OVMS3/OVMS.V3/components/wolfssl/wolfcrypt/src/wc_port.c

2528 lines
59 KiB
C
Raw Normal View History

/* port.c
*
* Copyright (C) 2006-2020 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <wolfssl/wolfcrypt/settings.h>
#include <wolfssl/wolfcrypt/types.h>
#include <wolfssl/wolfcrypt/error-crypt.h>
#include <wolfssl/wolfcrypt/logging.h>
#include <wolfssl/wolfcrypt/wc_port.h>
#ifdef HAVE_ECC
#include <wolfssl/wolfcrypt/ecc.h>
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
#include <wolfssl/wolfcrypt/async.h>
#endif
/* IPP header files for library initialization */
#ifdef HAVE_FAST_RSA
#include <ipp.h>
#include <ippcp.h>
#endif
#ifdef FREESCALE_LTC_TFM
#include <wolfssl/wolfcrypt/port/nxp/ksdk_port.h>
#endif
#ifdef WOLFSSL_PSOC6_CRYPTO
#include <wolfssl/wolfcrypt/port/cypress/psoc6_crypto.h>
#endif
#if defined(WOLFSSL_ATMEL) || defined(WOLFSSL_ATECC508A) || \
defined(WOLFSSL_ATECC608A)
#include <wolfssl/wolfcrypt/port/atmel/atmel.h>
#endif
#if defined(WOLFSSL_RENESAS_TSIP)
#include <wolfssl/wolfcrypt/port/Renesas/renesas-tsip-crypt.h>
#endif
#if defined(WOLFSSL_STSAFEA100)
#include <wolfssl/wolfcrypt/port/st/stsafe.h>
#endif
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
#include <wolfssl/openssl/evp.h>
#endif
#if defined(USE_WOLFSSL_MEMORY) && defined(WOLFSSL_TRACK_MEMORY)
#include <wolfssl/wolfcrypt/memory.h>
#include <wolfssl/wolfcrypt/mem_track.h>
#endif
#if defined(WOLFSSL_IMX6_CAAM) || defined(WOLFSSL_IMX6_CAAM_RNG) || \
defined(WOLFSSL_IMX6_CAAM_BLOB)
#include <wolfssl/wolfcrypt/port/caam/wolfcaam.h>
#endif
#ifdef WOLFSSL_IMXRT_DCP
#include <wolfssl/wolfcrypt/port/nxp/dcp_port.h>
#endif
#ifdef WOLF_CRYPTO_CB
#include <wolfssl/wolfcrypt/cryptocb.h>
#endif
#ifdef HAVE_INTEL_QA_SYNC
#include <wolfssl/wolfcrypt/port/intel/quickassist_sync.h>
#endif
#ifdef HAVE_CAVIUM_OCTEON_SYNC
#include <wolfssl/wolfcrypt/port/cavium/cavium_octeon_sync.h>
#endif
#ifdef WOLFSSL_SCE
#include "hal_data.h"
#endif
#if defined(WOLFSSL_DSP) && !defined(WOLFSSL_DSP_BUILD)
#include "rpcmem.h"
#endif
#ifdef _MSC_VER
/* 4996 warning to use MS extensions e.g., strcpy_s instead of strncpy */
#pragma warning(disable: 4996)
#endif
/* prevent multiple mutex initializations */
static volatile int initRefCount = 0;
/* Used to initialize state for wolfcrypt
return 0 on success
*/
int wolfCrypt_Init(void)
{
int ret = 0;
if (initRefCount == 0) {
WOLFSSL_ENTER("wolfCrypt_Init");
#ifdef WOLFSSL_FORCE_MALLOC_FAIL_TEST
{
word32 rngMallocFail;
time_t seed = time(NULL);
srand((word32)seed);
rngMallocFail = rand() % 2000; /* max 2000 */
printf("\n--- RNG MALLOC FAIL AT %d---\n", rngMallocFail);
wolfSSL_SetMemFailCount(rngMallocFail);
}
#endif
#ifdef WOLF_CRYPTO_CB
wc_CryptoCb_Init();
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
ret = wolfAsync_HardwareStart();
if (ret != 0) {
WOLFSSL_MSG("Async hardware start failed");
/* don't return failure, allow operation to continue */
}
#endif
#if defined(WOLFSSL_RENESAS_TSIP_CRYPT)
ret = tsip_Open( );
if( ret != TSIP_SUCCESS ) {
WOLFSSL_MSG("RENESAS TSIP Open failed");
/* not return 1 since WOLFSSL_SUCCESS=1*/
ret = -1;/* FATAL ERROR */
return ret;
}
#endif
#if defined(WOLFSSL_TRACK_MEMORY) && !defined(WOLFSSL_STATIC_MEMORY)
ret = InitMemoryTracker();
if (ret != 0) {
WOLFSSL_MSG("InitMemoryTracker failed");
return ret;
}
#endif
#if WOLFSSL_CRYPT_HW_MUTEX
/* If crypto hardware mutex protection is enabled, then initialize it */
ret = wolfSSL_CryptHwMutexInit();
if (ret != 0) {
WOLFSSL_MSG("Hw crypt mutex init failed");
return ret;
}
#endif
/* if defined have fast RSA then initialize Intel IPP */
#ifdef HAVE_FAST_RSA
WOLFSSL_MSG("Attempting to use optimized IPP Library");
if ((ret = ippInit()) != ippStsNoErr) {
/* possible to get a CPU feature support status on optimized IPP
library but still use default library and see competitive speeds */
WOLFSSL_MSG("Warning when trying to set up optimization");
WOLFSSL_MSG(ippGetStatusString(ret));
WOLFSSL_MSG("Using default fast IPP library");
ret = 0;
(void)ret; /* suppress not read warning */
}
#endif
#if defined(FREESCALE_LTC_TFM) || defined(FREESCALE_LTC_ECC)
ret = ksdk_port_init();
if (ret != 0) {
WOLFSSL_MSG("KSDK port init failed");
return ret;
}
#endif
#if defined(WOLFSSL_ATMEL) || defined(WOLFSSL_ATECC508A) || \
defined(WOLFSSL_ATECC608A)
ret = atmel_init();
if (ret != 0) {
WOLFSSL_MSG("CryptoAuthLib init failed");
return ret;
}
#endif
#if defined(WOLFSSL_CRYPTOCELL)
/* enable and initialize the ARM CryptoCell 3xx runtime library */
ret = cc310_Init();
if (ret != 0) {
WOLFSSL_MSG("CRYPTOCELL init failed");
return ret;
}
#endif
#if defined(WOLFSSL_STSAFEA100)
stsafe_interface_init();
#endif
#if defined(WOLFSSL_PSOC6_CRYPTO)
ret = psoc6_crypto_port_init();
if (ret != 0) {
WOLFSSL_MSG("PSoC6 crypto engine init failed");
return ret;
}
#endif
#ifdef WOLFSSL_SILABS_SE_ACCEL
/* init handles if it is already initialized */
ret = sl_se_init();
#endif
#ifdef WOLFSSL_ARMASM
WOLFSSL_MSG("Using ARM hardware acceleration");
#endif
#ifdef WOLFSSL_AFALG
WOLFSSL_MSG("Using AF_ALG for crypto acceleration");
#endif
#if !defined(WOLFCRYPT_ONLY) && defined(OPENSSL_EXTRA)
wolfSSL_EVP_init();
#endif
#if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)
if ((ret = wc_LoggingInit()) != 0) {
WOLFSSL_MSG("Error creating logging mutex");
return ret;
}
#endif
#ifdef HAVE_ECC
#ifdef FP_ECC
wc_ecc_fp_init();
#endif
#ifdef ECC_CACHE_CURVE
if ((ret = wc_ecc_curve_cache_init()) != 0) {
WOLFSSL_MSG("Error creating curve cache");
return ret;
}
#endif
#endif
#ifdef WOLFSSL_SCE
ret = (int)WOLFSSL_SCE_GSCE_HANDLE.p_api->open(
WOLFSSL_SCE_GSCE_HANDLE.p_ctrl, WOLFSSL_SCE_GSCE_HANDLE.p_cfg);
if (ret == SSP_ERR_CRYPTO_SCE_ALREADY_OPEN) {
WOLFSSL_MSG("SCE already open");
ret = 0;
}
if (ret != SSP_SUCCESS) {
WOLFSSL_MSG("Error opening SCE");
return -1; /* FATAL_ERROR */
}
#endif
#if defined(WOLFSSL_IMX6_CAAM) || defined(WOLFSSL_IMX6_CAAM_RNG) || \
defined(WOLFSSL_IMX6_CAAM_BLOB)
if ((ret = wc_caamInit()) != 0) {
return ret;
}
#endif
#ifdef WOLFSSL_IMXRT_DCP
if ((ret = wc_dcp_init()) != 0) {
return ret;
}
#endif
#if defined(WOLFSSL_DSP) && !defined(WOLFSSL_DSP_BUILD)
if ((ret = wolfSSL_InitHandle()) != 0) {
return ret;
}
rpcmem_init();
#endif
}
initRefCount++;
return ret;
}
#ifdef WOLFSSL_TRACK_MEMORY_VERBOSE
long wolfCrypt_heap_peakAllocs_checkpoint(void) {
long ret = ourMemStats.peakAllocsTripOdometer;
ourMemStats.peakAllocsTripOdometer = ourMemStats.totalAllocs -
ourMemStats.totalDeallocs;
return ret;
}
long wolfCrypt_heap_peakBytes_checkpoint(void) {
long ret = ourMemStats.peakBytesTripOdometer;
ourMemStats.peakBytesTripOdometer = ourMemStats.currentBytes;
return ret;
}
#endif
/* return success value is the same as wolfCrypt_Init */
int wolfCrypt_Cleanup(void)
{
int ret = 0;
initRefCount--;
if (initRefCount < 0)
initRefCount = 0;
if (initRefCount == 0) {
WOLFSSL_ENTER("wolfCrypt_Cleanup");
#ifdef HAVE_ECC
#ifdef FP_ECC
wc_ecc_fp_free();
#endif
#ifdef ECC_CACHE_CURVE
wc_ecc_curve_cache_free();
#endif
#endif /* HAVE_ECC */
#if defined(OPENSSL_EXTRA) || defined(DEBUG_WOLFSSL_VERBOSE)
ret = wc_LoggingCleanup();
#endif
#if defined(WOLFSSL_TRACK_MEMORY) && !defined(WOLFSSL_STATIC_MEMORY)
ShowMemoryTracker();
#endif
#ifdef WOLFSSL_ASYNC_CRYPT
wolfAsync_HardwareStop();
#endif
#ifdef WOLFSSL_SCE
WOLFSSL_SCE_GSCE_HANDLE.p_api->close(WOLFSSL_SCE_GSCE_HANDLE.p_ctrl);
#endif
#if defined(WOLFSSL_IMX6_CAAM) || defined(WOLFSSL_IMX6_CAAM_RNG) || \
defined(WOLFSSL_IMX6_CAAM_BLOB)
wc_caamFree();
#endif
#if defined(WOLFSSL_CRYPTOCELL)
cc310_Free();
#endif
#ifdef WOLFSSL_SILABS_SE_ACCEL
ret = sl_se_deinit();
#endif
#if defined(WOLFSSL_RENESAS_TSIP_CRYPT)
tsip_Close();
#endif
#if defined(WOLFSSL_DSP) && !defined(WOLFSSL_DSP_BUILD)
rpcmem_deinit();
wolfSSL_CleanupHandle();
#endif
}
return ret;
}
#ifndef NO_FILESYSTEM
/* Helpful function to load file into allocated buffer */
int wc_FileLoad(const char* fname, unsigned char** buf, size_t* bufLen,
void* heap)
{
int ret;
size_t fileSz;
XFILE f;
if (fname == NULL || buf == NULL || bufLen == NULL) {
return BAD_FUNC_ARG;
}
/* set defaults */
*buf = NULL;
*bufLen = 0;
/* open file (read-only binary) */
f = XFOPEN(fname, "rb");
if (!f) {
WOLFSSL_MSG("wc_LoadFile file load error");
return BAD_PATH_ERROR;
}
XFSEEK(f, 0, XSEEK_END);
fileSz = XFTELL(f);
XREWIND(f);
if (fileSz > 0) {
*bufLen = fileSz;
*buf = (byte*)XMALLOC(*bufLen, heap, DYNAMIC_TYPE_TMP_BUFFER);
if (*buf == NULL) {
WOLFSSL_MSG("wc_LoadFile memory error");
ret = MEMORY_E;
}
else {
size_t readLen = XFREAD(*buf, 1, *bufLen, f);
/* check response code */
ret = (readLen == *bufLen) ? 0 : -1;
}
}
else {
ret = BUFFER_E;
}
XFCLOSE(f);
(void)heap;
return ret;
}
#if !defined(NO_WOLFSSL_DIR) && \
!defined(WOLFSSL_NUCLEUS) && !defined(WOLFSSL_NUCLEUS_1_2)
/* File Handling Helpers */
/* returns 0 if file found, WC_READDIR_NOFILE if no files or negative error */
int wc_ReadDirFirst(ReadDirCtx* ctx, const char* path, char** name)
{
int ret = WC_READDIR_NOFILE; /* default to no files found */
int pathLen = 0;
int dnameLen = 0;
if (name)
*name = NULL;
if (ctx == NULL || path == NULL) {
return BAD_FUNC_ARG;
}
XMEMSET(ctx->name, 0, MAX_FILENAME_SZ);
pathLen = (int)XSTRLEN(path);
#ifdef USE_WINDOWS_API
if (pathLen > MAX_FILENAME_SZ - 3)
return BAD_PATH_ERROR;
XSTRNCPY(ctx->name, path, MAX_FILENAME_SZ - 3);
XSTRNCPY(ctx->name + pathLen, "\\*", MAX_FILENAME_SZ - pathLen);
ctx->hFind = FindFirstFileA(ctx->name, &ctx->FindFileData);
if (ctx->hFind == INVALID_HANDLE_VALUE) {
WOLFSSL_MSG("FindFirstFile for path verify locations failed");
return BAD_PATH_ERROR;
}
do {
if (!(ctx->FindFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) {
dnameLen = (int)XSTRLEN(ctx->FindFileData.cFileName);
if (pathLen + dnameLen + 2 > MAX_FILENAME_SZ) {
return BAD_PATH_ERROR;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '\\';
XSTRNCPY(ctx->name + pathLen + 1,
ctx->FindFileData.cFileName,
MAX_FILENAME_SZ - pathLen - 1);
if (name)
*name = ctx->name;
return 0;
}
} while (FindNextFileA(ctx->hFind, &ctx->FindFileData));
#elif defined(WOLFSSL_ZEPHYR)
if (fs_opendir(&ctx->dir, path) != 0) {
WOLFSSL_MSG("opendir path verify locations failed");
return BAD_PATH_ERROR;
}
ctx->dirp = &ctx->dir;
while ((fs_readdir(&ctx->dir, &ctx->entry)) != 0) {
dnameLen = (int)XSTRLEN(ctx->entry.name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry.name, dnameLen + 1);
if (fs_stat(ctx->name, &ctx->s) != 0) {
WOLFSSL_MSG("stat on name failed");
ret = BAD_PATH_ERROR;
break;
} else if (ctx->s.type == FS_DIR_ENTRY_FILE) {
if (name)
*name = ctx->name;
return 0;
}
}
#elif defined(WOLFSSL_TELIT_M2MB)
ctx->dir = m2mb_fs_opendir((const CHAR*)path);
if (ctx->dir == NULL) {
WOLFSSL_MSG("opendir path verify locations failed");
return BAD_PATH_ERROR;
}
while ((ctx->entry = m2mb_fs_readdir(ctx->dir)) != NULL) {
dnameLen = (int)XSTRLEN(ctx->entry->d_name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry->d_name, dnameLen + 1);
if (m2mb_fs_stat(ctx->name, &ctx->s) != 0) {
WOLFSSL_MSG("stat on name failed");
ret = BAD_PATH_ERROR;
break;
}
else if (ctx->s.st_mode & M2MB_S_IFREG) {
if (name)
*name = ctx->name;
return 0;
}
}
#else
ctx->dir = opendir(path);
if (ctx->dir == NULL) {
WOLFSSL_MSG("opendir path verify locations failed");
return BAD_PATH_ERROR;
}
while ((ctx->entry = readdir(ctx->dir)) != NULL) {
dnameLen = (int)XSTRLEN(ctx->entry->d_name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry->d_name, dnameLen + 1);
if (stat(ctx->name, &ctx->s) != 0) {
WOLFSSL_MSG("stat on name failed");
ret = BAD_PATH_ERROR;
break;
} else if (S_ISREG(ctx->s.st_mode)) {
if (name)
*name = ctx->name;
return 0;
}
}
#endif
wc_ReadDirClose(ctx);
return ret;
}
/* returns 0 if file found, WC_READDIR_NOFILE if no more files */
int wc_ReadDirNext(ReadDirCtx* ctx, const char* path, char** name)
{
int ret = WC_READDIR_NOFILE; /* default to no file found */
int pathLen = 0;
int dnameLen = 0;
if (name)
*name = NULL;
if (ctx == NULL || path == NULL) {
return BAD_FUNC_ARG;
}
XMEMSET(ctx->name, 0, MAX_FILENAME_SZ);
pathLen = (int)XSTRLEN(path);
#ifdef USE_WINDOWS_API
while (FindNextFileA(ctx->hFind, &ctx->FindFileData)) {
if (!(ctx->FindFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) {
dnameLen = (int)XSTRLEN(ctx->FindFileData.cFileName);
if (pathLen + dnameLen + 2 > MAX_FILENAME_SZ) {
return BAD_PATH_ERROR;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '\\';
XSTRNCPY(ctx->name + pathLen + 1,
ctx->FindFileData.cFileName,
MAX_FILENAME_SZ - pathLen - 1);
if (name)
*name = ctx->name;
return 0;
}
}
#elif defined(WOLFSSL_ZEPHYR)
while ((fs_readdir(&ctx->dir, &ctx->entry)) != 0) {
dnameLen = (int)XSTRLEN(ctx->entry.name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so that dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry.name, dnameLen + 1);
if (fs_stat(ctx->name, &ctx->s) != 0) {
WOLFSSL_MSG("stat on name failed");
ret = BAD_PATH_ERROR;
break;
} else if (ctx->s.type == FS_DIR_ENTRY_FILE) {
if (name)
*name = ctx->name;
return 0;
}
}
#elif defined(WOLFSSL_TELIT_M2MB)
while ((ctx->entry = m2mb_fs_readdir(ctx->dir)) != NULL) {
dnameLen = (int)XSTRLEN(ctx->entry->d_name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry->d_name, dnameLen + 1);
if (m2mb_fs_stat(ctx->name, &ctx->s) != 0) {
WOLFSSL_MSG("stat on name failed");
ret = BAD_PATH_ERROR;
break;
}
else if (ctx->s.st_mode & M2MB_S_IFREG) {
if (name)
*name = ctx->name;
return 0;
}
}
#else
while ((ctx->entry = readdir(ctx->dir)) != NULL) {
dnameLen = (int)XSTRLEN(ctx->entry->d_name);
if (pathLen + dnameLen + 2 >= MAX_FILENAME_SZ) {
ret = BAD_PATH_ERROR;
break;
}
XSTRNCPY(ctx->name, path, pathLen + 1);
ctx->name[pathLen] = '/';
/* Use dnameLen + 1 for GCC 8 warnings of truncating d_name. Because
* of earlier check it is known that dnameLen is less than
* MAX_FILENAME_SZ - (pathLen + 2) so that dnameLen +1 will fit */
XSTRNCPY(ctx->name + pathLen + 1, ctx->entry->d_name, dnameLen + 1);
if (stat(ctx->name, &ctx->s) != 0) {
WOLFSSL_MSG("stat on name failed");
ret = BAD_PATH_ERROR;
break;
} else if (S_ISREG(ctx->s.st_mode)) {
if (name)
*name = ctx->name;
return 0;
}
}
#endif
wc_ReadDirClose(ctx);
return ret;
}
void wc_ReadDirClose(ReadDirCtx* ctx)
{
if (ctx == NULL) {
return;
}
#ifdef USE_WINDOWS_API
if (ctx->hFind != INVALID_HANDLE_VALUE) {
FindClose(ctx->hFind);
ctx->hFind = INVALID_HANDLE_VALUE;
}
#elif defined(WOLFSSL_ZEPHYR)
if (ctx->dirp) {
fs_closedir(ctx->dirp);
ctx->dirp = NULL;
}
#elif defined(WOLFSSL_TELIT_M2MB)
if (ctx->dir) {
m2mb_fs_closedir(ctx->dir);
ctx->dir = NULL;
}
#else
if (ctx->dir) {
closedir(ctx->dir);
ctx->dir = NULL;
}
#endif
}
#endif /* !NO_WOLFSSL_DIR */
#endif /* !NO_FILESYSTEM */
#if !defined(NO_FILESYSTEM) && defined(WOLFSSL_ZEPHYR)
XFILE z_fs_open(const char* filename, const char* perm)
{
XFILE file;
file = (XFILE)XMALLOC(sizeof(*file), NULL, DYNAMIC_TYPE_FILE);
if (file != NULL) {
if (fs_open(file, filename) != 0) {
XFREE(file, NULL, DYNAMIC_TYPE_FILE);
file = NULL;
}
}
return file;
}
int z_fs_close(XFILE file)
{
int ret;
if (file == NULL)
return -1;
ret = (fs_close(file) == 0) ? 0 : -1;
XFREE(file, NULL, DYNAMIC_TYPE_FILE);
return ret;
}
#endif /* !NO_FILESYSTEM && !WOLFSSL_ZEPHYR */
#if !defined(WOLFSSL_USER_MUTEX)
wolfSSL_Mutex* wc_InitAndAllocMutex(void)
{
wolfSSL_Mutex* m = (wolfSSL_Mutex*) XMALLOC(sizeof(wolfSSL_Mutex), NULL,
DYNAMIC_TYPE_MUTEX);
if (m != NULL) {
if (wc_InitMutex(m) != 0) {
WOLFSSL_MSG("Init Mutex failed");
XFREE(m, NULL, DYNAMIC_TYPE_MUTEX);
m = NULL;
}
}
else {
WOLFSSL_MSG("Memory error with Mutex allocation");
}
return m;
}
#endif
#ifdef USE_WOLF_STRTOK
/* String token (delim) search. If str is null use nextp. */
char* wc_strtok(char *str, const char *delim, char **nextp)
{
char* ret;
int i, j;
/* Use next if str is NULL */
if (str == NULL && nextp)
str = *nextp;
/* verify str input */
if (str == NULL || *str == '\0')
return NULL;
/* match on entire delim */
for (i = 0; str[i]; i++) {
for (j = 0; delim[j]; j++) {
if (delim[j] == str[i])
break;
}
if (!delim[j])
break;
}
str += i;
/* if end of string, not found so return NULL */
if (*str == '\0')
return NULL;
ret = str;
/* match on first delim */
for (i = 0; str[i]; i++) {
for (j = 0; delim[j]; j++) {
if (delim[j] == str[i])
break;
}
if (delim[j] == str[i])
break;
}
str += i;
/* null terminate found string */
if (*str)
*str++ = '\0';
/* return pointer to next */
if (nextp)
*nextp = str;
return ret;
}
#endif /* USE_WOLF_STRTOK */
#ifdef USE_WOLF_STRSEP
char* wc_strsep(char **stringp, const char *delim)
{
char *s, *tok;
const char *spanp;
/* null check */
if (stringp == NULL || *stringp == NULL)
return NULL;
s = *stringp;
for (tok = s; *tok; ++tok) {
for (spanp = delim; *spanp; ++spanp) {
/* found delimiter */
if (*tok == *spanp) {
*tok = '\0'; /* replace delim with null term */
*stringp = tok + 1; /* return past delim */
return s;
}
}
}
*stringp = NULL;
return s;
}
#endif /* USE_WOLF_STRSEP */
#if WOLFSSL_CRYPT_HW_MUTEX
/* Mutex for protection of cryptography hardware */
static wolfSSL_Mutex wcCryptHwMutex;
static int wcCryptHwMutexInit = 0;
int wolfSSL_CryptHwMutexInit(void)
{
int ret = 0;
if (wcCryptHwMutexInit == 0) {
ret = wc_InitMutex(&wcCryptHwMutex);
if (ret == 0) {
wcCryptHwMutexInit = 1;
}
}
return ret;
}
int wolfSSL_CryptHwMutexLock(void)
{
int ret = BAD_MUTEX_E;
/* Make sure HW Mutex has been initialized */
ret = wolfSSL_CryptHwMutexInit();
if (ret == 0) {
ret = wc_LockMutex(&wcCryptHwMutex);
}
return ret;
}
int wolfSSL_CryptHwMutexUnLock(void)
{
int ret = BAD_MUTEX_E;
if (wcCryptHwMutexInit) {
ret = wc_UnLockMutex(&wcCryptHwMutex);
}
return ret;
}
#endif /* WOLFSSL_CRYPT_HW_MUTEX */
/* ---------------------------------------------------------------------------*/
/* Mutex Ports */
/* ---------------------------------------------------------------------------*/
#if defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER)
static mutex_cb* compat_mutex_cb = NULL;
/* Function that locks or unlocks a mutex based on the flag passed in.
*
* flag lock or unlock i.e. CRYPTO_LOCK
* type the type of lock to unlock or lock
* file name of the file calling
* line the line number from file calling
*/
int wc_LockMutex_ex(int flag, int type, const char* file, int line)
{
if (compat_mutex_cb != NULL) {
compat_mutex_cb(flag, type, file, line);
return 0;
}
else {
WOLFSSL_MSG("Mutex call back function not set. Call wc_SetMutexCb");
return BAD_STATE_E;
}
}
/* Set the callback function to use for locking/unlocking mutex
*
* cb callback function to use
*/
int wc_SetMutexCb(mutex_cb* cb)
{
compat_mutex_cb = cb;
return 0;
}
#endif /* defined(OPENSSL_EXTRA) || defined(HAVE_WEBSERVER) */
#ifdef SINGLE_THREADED
int wc_InitMutex(wolfSSL_Mutex* m)
{
(void)m;
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex *m)
{
(void)m;
return 0;
}
int wc_LockMutex(wolfSSL_Mutex *m)
{
(void)m;
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex *m)
{
(void)m;
return 0;
}
#elif defined(FREERTOS) || defined(FREERTOS_TCP) || \
defined(FREESCALE_FREE_RTOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int iReturn;
*m = ( wolfSSL_Mutex ) xSemaphoreCreateMutex();
if( *m != NULL )
iReturn = 0;
else
iReturn = BAD_MUTEX_E;
return iReturn;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
vSemaphoreDelete( *m );
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
/* Assume an infinite block, or should there be zero block? */
xSemaphoreTake( *m, portMAX_DELAY );
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
xSemaphoreGive( *m );
return 0;
}
#elif defined(RTTHREAD)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int iReturn;
*m = ( wolfSSL_Mutex ) rt_mutex_create("mutex",RT_IPC_FLAG_FIFO);
if( *m != NULL )
iReturn = 0;
else
iReturn = BAD_MUTEX_E;
return iReturn;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
rt_mutex_delete( *m );
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
/* Assume an infinite block, or should there be zero block? */
return rt_mutex_take( *m, RT_WAITING_FOREVER );
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
return rt_mutex_release( *m );
}
#elif defined(WOLFSSL_SAFERTOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
vSemaphoreCreateBinary(m->mutexBuffer, m->mutex);
if (m->mutex == NULL)
return BAD_MUTEX_E;
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
(void)m;
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
/* Assume an infinite block */
xSemaphoreTake(m->mutex, portMAX_DELAY);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
xSemaphoreGive(m->mutex);
return 0;
}
#elif defined(USE_WINDOWS_API)
int wc_InitMutex(wolfSSL_Mutex* m)
{
InitializeCriticalSection(m);
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
DeleteCriticalSection(m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
EnterCriticalSection(m);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
LeaveCriticalSection(m);
return 0;
}
#elif defined(WOLFSSL_PTHREADS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (pthread_mutex_init(m, 0) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (pthread_mutex_destroy(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (pthread_mutex_lock(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (pthread_mutex_unlock(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_KTHREADS)
/* Linux kernel mutex routines are voids, alas. */
int wc_InitMutex(wolfSSL_Mutex* m)
{
mutex_init(m);
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
mutex_destroy(m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
mutex_lock(m);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
mutex_unlock(m);
return 0;
}
#elif defined(WOLFSSL_VXWORKS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (m) {
if ((*m = semMCreate(0)) != SEM_ID_NULL)
return 0;
}
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (m) {
if (semDelete(*m) == OK)
return 0;
}
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (m) {
if (semTake(*m, WAIT_FOREVER) == OK)
return 0;
}
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (m) {
if (semGive(*m) == OK)
return 0;
}
return BAD_MUTEX_E;
}
#elif defined(THREADX)
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_create(m, "wolfSSL Mutex", TX_NO_INHERIT) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_delete(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_get(m, TX_WAIT_FOREVER) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (tx_mutex_put(m) == 0)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_DEOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
mutexStatus mutStat;
/*
The empty string "" denotes an anonymous mutex, so objects do not cause name collisions.
`protectWolfSSLTemp` in an XML configuration element template describing a mutex.
*/
if (m) {
mutStat = createMutex("", "protectWolfSSLTemp", m);
if (mutStat == mutexSuccess)
return 0;
else{
WOLFSSL_MSG("wc_InitMutex failed");
return mutStat;
}
}
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
mutexStatus mutStat;
if (m) {
mutStat = deleteMutex(*m);
if (mutStat == mutexSuccess)
return 0;
else{
WOLFSSL_MSG("wc_FreeMutex failed");
return mutStat;
}
}
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
mutexStatus mutStat;
if (m) {
mutStat = lockMutex(*m);
if (mutStat == mutexSuccess)
return 0;
else{
WOLFSSL_MSG("wc_LockMutex failed");
return mutStat;
}
}
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
mutexStatus mutStat;
if (m) {
mutStat = unlockMutex(*m);
if (mutStat== mutexSuccess)
return 0;
else{
WOLFSSL_MSG("wc_UnLockMutex failed");
return mutStat;
}
}
return BAD_MUTEX_E;
}
#elif defined(MICRIUM)
#if (OS_VERSION < 50000)
#define MICRIUM_ERR_TYPE OS_ERR
#define MICRIUM_ERR_NONE OS_ERR_NONE
#define MICRIUM_ERR_CODE(err) err
#else
#define MICRIUM_ERR_TYPE RTOS_ERR
#define MICRIUM_ERR_NONE RTOS_ERR_NONE
#define MICRIUM_ERR_CODE(err) RTOS_ERR_CODE_GET(err)
#endif
int wc_InitMutex(wolfSSL_Mutex* m)
{
MICRIUM_ERR_TYPE err;
OSMutexCreate(m, "wolfSSL Mutex", &err);
if (MICRIUM_ERR_CODE(err) == MICRIUM_ERR_NONE)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
#if (OS_CFG_MUTEX_DEL_EN == DEF_ENABLED)
MICRIUM_ERR_TYPE err;
OSMutexDel(m, OS_OPT_DEL_ALWAYS, &err);
if (MICRIUM_ERR_CODE(err) == MICRIUM_ERR_NONE)
return 0;
else
return BAD_MUTEX_E;
#else
(void)m;
return 0;
#endif
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
MICRIUM_ERR_TYPE err;
OSMutexPend(m, 0, OS_OPT_PEND_BLOCKING, NULL, &err);
if (MICRIUM_ERR_CODE(err) == MICRIUM_ERR_NONE)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
MICRIUM_ERR_TYPE err;
OSMutexPost(m, OS_OPT_POST_NONE, &err);
if (MICRIUM_ERR_CODE(err) == MICRIUM_ERR_NONE)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(EBSNET)
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (rtp_sig_mutex_alloc(m, "wolfSSL Mutex") == -1)
return BAD_MUTEX_E;
else
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
rtp_sig_mutex_free(*m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (rtp_sig_mutex_claim_timed(*m, RTIP_INF) == 0)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
rtp_sig_mutex_release(*m);
return 0;
}
int ebsnet_fseek(int a, long b, int c)
{
int retval;
retval = vf_lseek(a, b, c);
if (retval > 0)
retval = 0;
else
retval = -1;
return(retval);
}
#elif defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
int wc_InitMutex(wolfSSL_Mutex* m)
{
if (_mutex_init(m, NULL) == MQX_EOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (_mutex_destroy(m) == MQX_EOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
if (_mutex_lock(m) == MQX_EOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (_mutex_unlock(m) == MQX_EOK)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_TIRTOS)
#include <xdc/runtime/Error.h>
int wc_InitMutex(wolfSSL_Mutex* m)
{
Semaphore_Params params;
Error_Block eb;
Error_init(&eb);
Semaphore_Params_init(&params);
params.mode = Semaphore_Mode_BINARY;
*m = Semaphore_create(1, &params, &eb);
if (Error_check(&eb)) {
Error_raise(&eb, Error_E_generic, "Failed to Create the semaphore.",
NULL);
return BAD_MUTEX_E;
}
else
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
Semaphore_delete(m);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
Semaphore_pend(*m, BIOS_WAIT_FOREVER);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
Semaphore_post(*m);
return 0;
}
#elif defined(WOLFSSL_uITRON4)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int iReturn;
m->sem.sematr = TA_TFIFO;
m->sem.isemcnt = 1;
m->sem.maxsem = 1;
m->sem.name = NULL;
m->id = acre_sem(&m->sem);
if( m->id != E_OK )
iReturn = 0;
else
iReturn = BAD_MUTEX_E;
return iReturn;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
del_sem( m->id );
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
wai_sem(m->id);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
sig_sem(m->id);
return 0;
}
/**** uITRON malloc/free ***/
static ID ID_wolfssl_MPOOL = 0;
static T_CMPL wolfssl_MPOOL = {TA_TFIFO, 0, NULL, "wolfSSL_MPOOL"};
int uITRON4_minit(size_t poolsz) {
ER ercd;
wolfssl_MPOOL.mplsz = poolsz;
ercd = acre_mpl(&wolfssl_MPOOL);
if (ercd > 0) {
ID_wolfssl_MPOOL = ercd;
return 0;
} else {
return -1;
}
}
void *uITRON4_malloc(size_t sz) {
ER ercd;
void *p = NULL;
ercd = get_mpl(ID_wolfssl_MPOOL, sz, (VP)&p);
if (ercd == E_OK) {
return p;
} else {
return 0;
}
}
void *uITRON4_realloc(void *p, size_t sz) {
ER ercd;
void *newp;
if(p) {
ercd = get_mpl(ID_wolfssl_MPOOL, sz, (VP)&newp);
if (ercd == E_OK) {
XMEMCPY(newp, p, sz);
ercd = rel_mpl(ID_wolfssl_MPOOL, (VP)p);
if (ercd == E_OK) {
return newp;
}
}
}
return 0;
}
void uITRON4_free(void *p) {
ER ercd;
ercd = rel_mpl(ID_wolfssl_MPOOL, (VP)p);
if (ercd == E_OK) {
return;
} else {
return;
}
}
#elif defined(WOLFSSL_uTKERNEL2)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int iReturn;
m->sem.sematr = TA_TFIFO;
m->sem.isemcnt = 1;
m->sem.maxsem = 1;
m->id = tk_cre_sem(&m->sem);
if( m->id != NULL )
iReturn = 0;
else
iReturn = BAD_MUTEX_E;
return iReturn;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
tk_del_sem(m->id);
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
tk_wai_sem(m->id, 1, TMO_FEVR);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
tk_sig_sem(m->id, 1);
return 0;
}
/**** uT-Kernel malloc/free ***/
static ID ID_wolfssl_MPOOL = 0;
static T_CMPL wolfssl_MPOOL = {
NULL, /* Extended information */
TA_TFIFO, /* Memory pool attribute */
0, /* Size of whole memory pool (byte) */
"wolfSSL" /* Object name (max 8-char) */
};
int uTKernel_init_mpool(unsigned int sz) {
ER ercd;
wolfssl_MPOOL.mplsz = sz;
ercd = tk_cre_mpl(&wolfssl_MPOOL);
if (ercd > 0) {
ID_wolfssl_MPOOL = ercd;
return 0;
} else {
return (int)ercd;
}
}
void *uTKernel_malloc(unsigned int sz) {
ER ercd;
void *p = NULL;
ercd = tk_get_mpl(ID_wolfssl_MPOOL, sz, (VP)&p, TMO_FEVR);
if (ercd == E_OK) {
return p;
} else {
return 0;
}
}
void *uTKernel_realloc(void *p, unsigned int sz) {
ER ercd;
void *newp;
if (p) {
ercd = tk_get_mpl(ID_wolfssl_MPOOL, sz, (VP)&newp, TMO_FEVR);
if (ercd == E_OK) {
XMEMCPY(newp, p, sz);
ercd = tk_rel_mpl(ID_wolfssl_MPOOL, (VP)p);
if (ercd == E_OK) {
return newp;
}
}
}
return 0;
}
void uTKernel_free(void *p) {
ER ercd;
ercd = tk_rel_mpl(ID_wolfssl_MPOOL, (VP)p);
if (ercd == E_OK) {
return;
} else {
return;
}
}
#elif defined (WOLFSSL_FROSTED)
int wc_InitMutex(wolfSSL_Mutex* m)
{
*m = mutex_init();
if (*m)
return 0;
else
return -1;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
mutex_destroy(*m);
return(0);
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
mutex_lock(*m);
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
mutex_unlock(*m);
return 0;
}
#elif defined(WOLFSSL_CMSIS_RTOS)
#define CMSIS_NMUTEX 10
osMutexDef(wolfSSL_mt0); osMutexDef(wolfSSL_mt1); osMutexDef(wolfSSL_mt2);
osMutexDef(wolfSSL_mt3); osMutexDef(wolfSSL_mt4); osMutexDef(wolfSSL_mt5);
osMutexDef(wolfSSL_mt6); osMutexDef(wolfSSL_mt7); osMutexDef(wolfSSL_mt8);
osMutexDef(wolfSSL_mt9);
static const osMutexDef_t *CMSIS_mutex[] = { osMutex(wolfSSL_mt0),
osMutex(wolfSSL_mt1), osMutex(wolfSSL_mt2), osMutex(wolfSSL_mt3),
osMutex(wolfSSL_mt4), osMutex(wolfSSL_mt5), osMutex(wolfSSL_mt6),
osMutex(wolfSSL_mt7), osMutex(wolfSSL_mt8), osMutex(wolfSSL_mt9) };
static osMutexId CMSIS_mutexID[CMSIS_NMUTEX] = {0};
int wc_InitMutex(wolfSSL_Mutex* m)
{
int i;
for (i=0; i<CMSIS_NMUTEX; i++) {
if(CMSIS_mutexID[i] == 0) {
CMSIS_mutexID[i] = osMutexCreate(CMSIS_mutex[i]);
(*m) = CMSIS_mutexID[i];
return 0;
}
}
return -1;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
int i;
osMutexDelete (*m);
for (i=0; i<CMSIS_NMUTEX; i++) {
if(CMSIS_mutexID[i] == (*m)) {
CMSIS_mutexID[i] = 0;
return(0);
}
}
return(-1);
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
osMutexWait(*m, osWaitForever);
return(0);
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
osMutexRelease (*m);
return 0;
}
#elif defined(WOLFSSL_CMSIS_RTOSv2)
int wc_InitMutex(wolfSSL_Mutex *m)
{
static const osMutexAttr_t attr = {
"wolfSSL_mutex", osMutexRecursive, NULL, 0};
if ((*m = osMutexNew(&attr)) != NULL)
return 0;
else
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex *m)
{
if (osMutexDelete(*m) == osOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex *m)
{
if (osMutexAcquire(*m, osWaitForever) == osOK)
return 0;
else
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex *m)
{
if (osMutexRelease(*m) == osOK)
return 0;
else
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_MDK_ARM)
int wc_InitMutex(wolfSSL_Mutex* m)
{
os_mut_init (m);
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
return(0);
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
os_mut_wait (m, 0xffff);
return(0);
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
os_mut_release (m);
return 0;
}
#elif defined(INTIME_RTOS)
int wc_InitMutex(wolfSSL_Mutex* m)
{
int ret = 0;
if (m == NULL)
return BAD_FUNC_ARG;
*m = CreateRtSemaphore(
1, /* initial unit count */
1, /* maximum unit count */
PRIORITY_QUEUING /* creation flags: FIFO_QUEUING or PRIORITY_QUEUING */
);
if (*m == BAD_RTHANDLE) {
ret = GetLastRtError();
if (ret != E_OK)
ret = BAD_MUTEX_E;
}
return ret;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
int ret = 0;
BOOLEAN del;
if (m == NULL)
return BAD_FUNC_ARG;
del = DeleteRtSemaphore(
*m /* handle for RT semaphore */
);
if (del != TRUE)
ret = BAD_MUTEX_E;
return ret;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
int ret = 0;
DWORD lck;
if (m == NULL)
return BAD_FUNC_ARG;
lck = WaitForRtSemaphore(
*m, /* handle for RT semaphore */
1, /* number of units to wait for */
WAIT_FOREVER /* number of milliseconds to wait for units */
);
if (lck == WAIT_FAILED) {
ret = GetLastRtError();
if (ret != E_OK)
ret = BAD_MUTEX_E;
}
return ret;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
int ret = 0;
BOOLEAN rel;
if (m == NULL)
return BAD_FUNC_ARG;
rel = ReleaseRtSemaphore(
*m, /* handle for RT semaphore */
1 /* number of units to release to semaphore */
);
if (rel != TRUE)
ret = BAD_MUTEX_E;
return ret;
}
#elif defined(WOLFSSL_NUCLEUS_1_2)
int wc_InitMutex(wolfSSL_Mutex* m)
{
/* Call the Nucleus function to create the semaphore */
if (NU_Create_Semaphore(m, "WOLFSSL_MTX", 1,
NU_PRIORITY) == NU_SUCCESS) {
return 0;
}
return BAD_MUTEX_E;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
if (NU_Delete_Semaphore(m) == NU_SUCCESS)
return 0;
return BAD_MUTEX_E;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
/* passing suspend task option */
if (NU_Obtain_Semaphore(m, NU_SUSPEND) == NU_SUCCESS)
return 0;
return BAD_MUTEX_E;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
if (NU_Release_Semaphore(m) == NU_SUCCESS)
return 0;
return BAD_MUTEX_E;
}
#elif defined(WOLFSSL_ZEPHYR)
int wc_InitMutex(wolfSSL_Mutex* m)
{
k_mutex_init(m);
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
int ret = 0;
if (k_mutex_lock(m, K_FOREVER) != 0)
ret = BAD_MUTEX_E;
return ret;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
k_mutex_unlock(m);
return 0;
}
#elif defined(WOLFSSL_TELIT_M2MB)
int wc_InitMutex(wolfSSL_Mutex* m)
{
M2MB_OS_RESULT_E osRes;
M2MB_OS_MTX_ATTR_HANDLE mtxAttrHandle;
UINT32 inheritVal = 1;
osRes = m2mb_os_mtx_setAttrItem(&mtxAttrHandle,
CMDS_ARGS(
M2MB_OS_MTX_SEL_CMD_CREATE_ATTR, NULL,
M2MB_OS_MTX_SEL_CMD_NAME, "wolfMtx",
M2MB_OS_MTX_SEL_CMD_INHERIT, inheritVal
)
);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
osRes = m2mb_os_mtx_init(m, &mtxAttrHandle);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
return 0;
}
int wc_FreeMutex(wolfSSL_Mutex* m)
{
M2MB_OS_RESULT_E osRes;
if (m == NULL)
return BAD_MUTEX_E;
osRes = m2mb_os_mtx_deinit(*m);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
return 0;
}
int wc_LockMutex(wolfSSL_Mutex* m)
{
M2MB_OS_RESULT_E osRes;
if (m == NULL)
return BAD_MUTEX_E;
osRes = m2mb_os_mtx_get(*m, M2MB_OS_WAIT_FOREVER);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
return 0;
}
int wc_UnLockMutex(wolfSSL_Mutex* m)
{
M2MB_OS_RESULT_E osRes;
if (m == NULL)
return BAD_MUTEX_E;
osRes = m2mb_os_mtx_put(*m);
if (osRes != M2MB_OS_SUCCESS) {
return BAD_MUTEX_E;
}
return 0;
}
#elif defined(WOLFSSL_USER_MUTEX)
/* Use user own mutex */
/*
int wc_InitMutex(wolfSSL_Mutex* m) { ... }
int wc_FreeMutex(wolfSSL_Mutex *m) { ... }
int wc_LockMutex(wolfSSL_Mutex *m) { ... }
int wc_UnLockMutex(wolfSSL_Mutex *m) { ... }
*/
#else
#warning No mutex handling defined
#endif
#ifndef NO_ASN_TIME
#if defined(_WIN32_WCE)
time_t windows_time(time_t* timer)
{
SYSTEMTIME sysTime;
FILETIME fTime;
ULARGE_INTEGER intTime;
time_t localTime;
if (timer == NULL)
timer = &localTime;
GetSystemTime(&sysTime);
SystemTimeToFileTime(&sysTime, &fTime);
XMEMCPY(&intTime, &fTime, sizeof(FILETIME));
/* subtract EPOCH */
intTime.QuadPart -= 0x19db1ded53e8000;
/* to secs */
intTime.QuadPart /= 10000000;
*timer = (time_t)intTime.QuadPart;
return *timer;
}
#endif /* _WIN32_WCE */
#if defined(WOLFSSL_APACHE_MYNEWT)
#include "os/os_time.h"
time_t mynewt_time(time_t* timer)
{
time_t now;
struct os_timeval tv;
os_gettimeofday(&tv, NULL);
now = (time_t)tv.tv_sec;
if(timer != NULL) {
*timer = now;
}
return now;
}
#endif /* WOLFSSL_APACHE_MYNEWT */
#if defined(WOLFSSL_GMTIME)
struct tm* gmtime(const time_t* timer)
{
#define YEAR0 1900
#define EPOCH_YEAR 1970
#define SECS_DAY (24L * 60L * 60L)
#define LEAPYEAR(year) (!((year) % 4) && (((year) % 100) || !((year) %400)))
#define YEARSIZE(year) (LEAPYEAR(year) ? 366 : 365)
static const int _ytab[2][12] =
{
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
};
static struct tm st_time;
struct tm* ret = &st_time;
time_t secs = *timer;
unsigned long dayclock, dayno;
int year = EPOCH_YEAR;
dayclock = (unsigned long)secs % SECS_DAY;
dayno = (unsigned long)secs / SECS_DAY;
ret->tm_sec = (int) dayclock % 60;
ret->tm_min = (int)(dayclock % 3600) / 60;
ret->tm_hour = (int) dayclock / 3600;
ret->tm_wday = (int) (dayno + 4) % 7; /* day 0 a Thursday */
while(dayno >= (unsigned long)YEARSIZE(year)) {
dayno -= YEARSIZE(year);
year++;
}
ret->tm_year = year - YEAR0;
ret->tm_yday = (int)dayno;
ret->tm_mon = 0;
while(dayno >= (unsigned long)_ytab[LEAPYEAR(year)][ret->tm_mon]) {
dayno -= _ytab[LEAPYEAR(year)][ret->tm_mon];
ret->tm_mon++;
}
ret->tm_mday = (int)++dayno;
#ifndef WOLFSSL_LINUXKM
ret->tm_isdst = 0;
#endif
return ret;
}
#endif /* WOLFSSL_GMTIME */
#if defined(HAVE_RTP_SYS)
#define YEAR0 1900
struct tm* rtpsys_gmtime(const time_t* timer) /* has a gmtime() but hangs */
{
static struct tm st_time;
struct tm* ret = &st_time;
DC_RTC_CALENDAR cal;
dc_rtc_time_get(&cal, TRUE);
ret->tm_year = cal.year - YEAR0; /* gm starts at 1900 */
ret->tm_mon = cal.month - 1; /* gm starts at 0 */
ret->tm_mday = cal.day;
ret->tm_hour = cal.hour;
ret->tm_min = cal.minute;
ret->tm_sec = cal.second;
return ret;
}
#endif /* HAVE_RTP_SYS */
#if defined(MICROCHIP_TCPIP_V5) || defined(MICROCHIP_TCPIP)
/*
* time() is just a stub in Microchip libraries. We need our own
* implementation. Use SNTP client to get seconds since epoch.
*/
time_t pic32_time(time_t* timer)
{
#ifdef MICROCHIP_TCPIP_V5
DWORD sec = 0;
#else
word32 sec = 0;
#endif
time_t localTime;
if (timer == NULL)
timer = &localTime;
#ifdef MICROCHIP_MPLAB_HARMONY
sec = TCPIP_SNTP_UTCSecondsGet();
#else
sec = SNTPGetUTCSeconds();
#endif
*timer = (time_t) sec;
return *timer;
}
#endif /* MICROCHIP_TCPIP || MICROCHIP_TCPIP_V5 */
#if defined(WOLFSSL_DEOS)
time_t deos_time(time_t* timer)
{
const word32 systemTickTimeInHz = 1000000 / systemTickInMicroseconds();
word32 *systemTickPtr = systemTickPointer();
if (timer != NULL)
*timer = *systemTickPtr/systemTickTimeInHz;
#if defined(CURRENT_UNIX_TIMESTAMP)
/* CURRENT_UNIX_TIMESTAMP is seconds since Jan 01 1970. (UTC) */
return (time_t) *systemTickPtr/systemTickTimeInHz + CURRENT_UNIX_TIMESTAMP;
#else
return (time_t) *systemTickPtr/systemTickTimeInHz;
#endif
}
#endif /* WOLFSSL_DEOS */
#if defined(MICRIUM)
time_t micrium_time(time_t* timer)
{
CLK_TS_SEC sec;
Clk_GetTS_Unix(&sec);
if (timer != NULL)
*timer = sec;
return (time_t) sec;
}
#endif /* MICRIUM */
#if defined(FREESCALE_MQX) || defined(FREESCALE_KSDK_MQX)
time_t mqx_time(time_t* timer)
{
time_t localTime;
TIME_STRUCT time_s;
if (timer == NULL)
timer = &localTime;
_time_get(&time_s);
*timer = (time_t) time_s.SECONDS;
return *timer;
}
#endif /* FREESCALE_MQX || FREESCALE_KSDK_MQX */
#if defined(WOLFSSL_TIRTOS) && defined(USER_TIME)
time_t XTIME(time_t * timer)
{
time_t sec = 0;
sec = (time_t) Seconds_get();
if (timer != NULL)
*timer = sec;
return sec;
}
#endif /* WOLFSSL_TIRTOS */
#if defined(WOLFSSL_XILINX)
#include "xrtcpsu.h"
time_t xilinx_time(time_t * timer)
{
time_t sec = 0;
XRtcPsu_Config* con;
XRtcPsu rtc;
con = XRtcPsu_LookupConfig(XPAR_XRTCPSU_0_DEVICE_ID);
if (con != NULL) {
if (XRtcPsu_CfgInitialize(&rtc, con, con->BaseAddr) == XST_SUCCESS) {
sec = (time_t)XRtcPsu_GetCurrentTime(&rtc);
}
else {
WOLFSSL_MSG("Unable to initialize RTC");
}
}
if (timer != NULL)
*timer = sec;
return sec;
}
#endif /* WOLFSSL_XILINX */
#if defined(WOLFSSL_ZEPHYR)
time_t z_time(time_t * timer)
{
struct timespec ts;
if (clock_gettime(CLOCK_REALTIME, &ts) == 0)
if (timer != NULL)
*timer = ts.tv_sec;
return ts.tv_sec;
}
#endif /* WOLFSSL_ZEPHYR */
#if defined(WOLFSSL_WICED)
#ifndef WOLFSSL_WICED_PSEUDO_UNIX_EPOCH_TIME
#error Please define WOLFSSL_WICED_PSEUDO_UNIX_EPOCH_TIME at build time.
#endif /* WOLFSSL_WICED_PSEUDO_UNIX_EPOCH_TIME */
time_t wiced_pseudo_unix_epoch_time(time_t * timer)
{
time_t epoch_time;
/* The time() function return uptime on WICED platform. */
epoch_time = time(NULL) + WOLFSSL_WICED_PSEUDO_UNIX_EPOCH_TIME;
if (timer != NULL) {
*timer = epoch_time;
}
return epoch_time;
}
#endif /* WOLFSSL_WICED */
#ifdef WOLFSSL_TELIT_M2MB
time_t m2mb_xtime(time_t * timer)
{
time_t myTime = 0;
INT32 fd = m2mb_rtc_open("/dev/rtc0", 0);
if (fd != -1) {
M2MB_RTC_TIMEVAL_T timeval;
m2mb_rtc_ioctl(fd, M2MB_RTC_IOCTL_GET_TIMEVAL, &timeval);
myTime = timeval.sec;
m2mb_rtc_close(fd);
}
return myTime;
}
#ifdef WOLFSSL_TLS13
time_t m2mb_xtime_ms(time_t * timer)
{
time_t myTime = 0;
INT32 fd = m2mb_rtc_open("/dev/rtc0", 0);
if (fd != -1) {
M2MB_RTC_TIMEVAL_T timeval;
m2mb_rtc_ioctl(fd, M2MB_RTC_IOCTL_GET_TIMEVAL, &timeval);
myTime = timeval.sec + timeval.msec;
m2mb_rtc_close(fd);
}
return myTime;
}
#endif /* WOLFSSL_TLS13 */
#ifndef NO_CRYPT_BENCHMARK
double m2mb_xtime_bench(int reset)
{
double myTime = 0;
INT32 fd = m2mb_rtc_open("/dev/rtc0", 0);
if (fd != -1) {
M2MB_RTC_TIMEVAL_T timeval;
m2mb_rtc_ioctl(fd, M2MB_RTC_IOCTL_GET_TIMEVAL, &timeval);
myTime = (double)timeval.sec + ((double)timeval.msec / 1000);
m2mb_rtc_close(fd);
}
return myTime;
}
#endif /* !NO_CRYPT_BENCHMARK */
#endif /* WOLFSSL_TELIT_M2MB */
#if defined(WOLFSSL_LINUXKM)
time_t time(time_t * timer)
{
time_t ret;
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 0, 0)
struct timespec ts;
getnstimeofday(&ts);
ret = ts.tv_sec * 1000000000LL + ts.tv_nsec;
#else
ret = ktime_get_real_seconds();
#endif
if (timer)
*timer = ret;
return ret;
}
#endif /* WOLFSSL_LINUXKM */
#endif /* !NO_ASN_TIME */
#ifndef WOLFSSL_LEANPSK
char* mystrnstr(const char* s1, const char* s2, unsigned int n)
{
unsigned int s2_len = (unsigned int)XSTRLEN(s2);
if (s2_len == 0)
return (char*)s1;
while (n >= s2_len && s1[0]) {
if (s1[0] == s2[0])
if (XMEMCMP(s1, s2, s2_len) == 0)
return (char*)s1;
s1++;
n--;
}
return NULL;
}
#endif
/* custom memory wrappers */
#ifdef WOLFSSL_NUCLEUS_1_2
/* system memory pool */
extern NU_MEMORY_POOL System_Memory;
void* nucleus_malloc(unsigned long size, void* heap, int type)
{
STATUS status;
void* stack_ptr;
status = NU_Allocate_Memory(&System_Memory, &stack_ptr, size,
NU_NO_SUSPEND);
if (status == NU_SUCCESS) {
return 0;
} else {
return stack_ptr;
}
}
void* nucleus_realloc(void* ptr, unsigned long size, void* heap, int type)
{
DM_HEADER* old_header;
word32 old_size, copy_size;
void* new_mem;
/* if ptr is NULL, behave like malloc */
new_mem = nucleus_malloc(size, NULL, 0);
if (new_mem == 0 || ptr == 0) {
return new_mem;
}
/* calculate old memory block size */
/* mem pointers stored in block headers (ref dm_defs.h) */
old_header = (DM_HEADER*) ((byte*)ptr - DM_OVERHEAD);
old_size = (byte*)old_header->dm_next_memory - (byte*)ptr;
/* copy old to new */
if (old_size < size) {
copy_size = old_size;
} else {
copy_size = size;
}
XMEMCPY(new_mem, ptr, copy_size);
/* free old */
nucleus_free(ptr, NULL, 0);
return new_mem;
}
void nucleus_free(void* ptr, void* heap, int type)
{
if (ptr != NULL)
NU_Deallocate_Memory(ptr);
}
#endif /* WOLFSSL_NUCLEUS_1_2 */
#ifdef WOLFSSL_LINUXKM
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 12, 0)
/* adapted from kvrealloc() draft by Changli Gao, 2010-05-13 */
void *lkm_realloc(void *ptr, size_t newsize) {
void *nptr;
size_t oldsize;
if (unlikely(newsize == 0)) {
kvfree(ptr);
return ZERO_SIZE_PTR;
}
if (unlikely(ptr == NULL))
return kvmalloc(newsize, GFP_KERNEL);
if (is_vmalloc_addr(ptr)) {
/* no way to discern the size of the old allocation,
* because the kernel doesn't export find_vm_area(). if
* it did, we could then call get_vm_area_size() on the
* returned struct vm_struct.
*/
return NULL;
} else {
struct page *page;
page = virt_to_head_page(ptr);
if (PageSlab(page) || PageCompound(page)) {
if (newsize < PAGE_SIZE)
return krealloc(ptr, newsize, GFP_KERNEL);
oldsize = ksize(ptr);
} else {
oldsize = page->private;
if (newsize <= oldsize)
return ptr;
}
}
nptr = kvmalloc(newsize, GFP_KERNEL);
if (nptr != NULL) {
memcpy(nptr, ptr, oldsize);
kvfree(ptr);
}
return nptr;
}
#endif /* >= 4.12 */
#endif /* WOLFSSL_LINUXKM */
#if defined(WOLFSSL_TI_CRYPT) || defined(WOLFSSL_TI_HASH)
#include <wolfcrypt/src/port/ti/ti-ccm.c> /* initialize and Mutex for TI Crypt Engine */
#include <wolfcrypt/src/port/ti/ti-hash.c> /* md5, sha1, sha224, sha256 */
#endif
#if defined(WOLFSSL_CRYPTOCELL)
#define WOLFSSL_CRYPTOCELL_C
#include <wolfcrypt/src/port/arm/cryptoCell.c> /* CC310, RTC and RNG */
#if !defined(NO_SHA256)
#define WOLFSSL_CRYPTOCELL_HASH_C
#include <wolfcrypt/src/port/arm/cryptoCellHash.c> /* sha256 */
#endif
#endif