520 lines
13 KiB
C
520 lines
13 KiB
C
|
/*
|
||
|
* Math built-ins
|
||
|
*/
|
||
|
|
||
|
#include "duk_internal.h"
|
||
|
|
||
|
#if defined(DUK_USE_MATH_BUILTIN)
|
||
|
|
||
|
/*
|
||
|
* Use static helpers which can work with math.h functions matching
|
||
|
* the following signatures. This is not portable if any of these math
|
||
|
* functions is actually a macro.
|
||
|
*
|
||
|
* Typing here is intentionally 'double' wherever values interact with
|
||
|
* the standard library APIs.
|
||
|
*/
|
||
|
|
||
|
typedef double (*duk__one_arg_func)(double);
|
||
|
typedef double (*duk__two_arg_func)(double, double);
|
||
|
|
||
|
DUK_LOCAL duk_ret_t duk__math_minmax(duk_hthread *thr, duk_double_t initial, duk__two_arg_func min_max) {
|
||
|
duk_idx_t n = duk_get_top(thr);
|
||
|
duk_idx_t i;
|
||
|
duk_double_t res = initial;
|
||
|
duk_double_t t;
|
||
|
|
||
|
/*
|
||
|
* Note: fmax() does not match the E5 semantics. E5 requires
|
||
|
* that if -any- input to Math.max() is a NaN, the result is a
|
||
|
* NaN. fmax() will return a NaN only if -both- inputs are NaN.
|
||
|
* Same applies to fmin().
|
||
|
*
|
||
|
* Note: every input value must be coerced with ToNumber(), even
|
||
|
* if we know the result will be a NaN anyway: ToNumber() may have
|
||
|
* side effects for which even order of evaluation matters.
|
||
|
*/
|
||
|
|
||
|
for (i = 0; i < n; i++) {
|
||
|
t = duk_to_number(thr, i);
|
||
|
if (DUK_FPCLASSIFY(t) == DUK_FP_NAN || DUK_FPCLASSIFY(res) == DUK_FP_NAN) {
|
||
|
/* Note: not normalized, but duk_push_number() will normalize */
|
||
|
res = (duk_double_t) DUK_DOUBLE_NAN;
|
||
|
} else {
|
||
|
res = (duk_double_t) min_max(res, (double) t);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
duk_push_number(thr, res);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
DUK_LOCAL double duk__fmin_fixed(double x, double y) {
|
||
|
/* fmin() with args -0 and +0 is not guaranteed to return
|
||
|
* -0 as ECMAScript requires.
|
||
|
*/
|
||
|
if (duk_double_equals(x, 0.0) && duk_double_equals(y, 0.0)) {
|
||
|
duk_double_union du1, du2;
|
||
|
du1.d = x;
|
||
|
du2.d = y;
|
||
|
|
||
|
/* Already checked to be zero so these must hold, and allow us
|
||
|
* to check for "x is -0 or y is -0" by ORing the high parts
|
||
|
* for comparison.
|
||
|
*/
|
||
|
DUK_ASSERT(du1.ui[DUK_DBL_IDX_UI0] == 0 || du1.ui[DUK_DBL_IDX_UI0] == 0x80000000UL);
|
||
|
DUK_ASSERT(du2.ui[DUK_DBL_IDX_UI0] == 0 || du2.ui[DUK_DBL_IDX_UI0] == 0x80000000UL);
|
||
|
|
||
|
/* XXX: what's the safest way of creating a negative zero? */
|
||
|
if ((du1.ui[DUK_DBL_IDX_UI0] | du2.ui[DUK_DBL_IDX_UI0]) != 0) {
|
||
|
/* Enter here if either x or y (or both) is -0. */
|
||
|
return -0.0;
|
||
|
} else {
|
||
|
return +0.0;
|
||
|
}
|
||
|
}
|
||
|
return duk_double_fmin(x, y);
|
||
|
}
|
||
|
|
||
|
DUK_LOCAL double duk__fmax_fixed(double x, double y) {
|
||
|
/* fmax() with args -0 and +0 is not guaranteed to return
|
||
|
* +0 as ECMAScript requires.
|
||
|
*/
|
||
|
if (duk_double_equals(x, 0.0) && duk_double_equals(y, 0.0)) {
|
||
|
if (DUK_SIGNBIT(x) == 0 || DUK_SIGNBIT(y) == 0) {
|
||
|
return +0.0;
|
||
|
} else {
|
||
|
return -0.0;
|
||
|
}
|
||
|
}
|
||
|
return duk_double_fmax(x, y);
|
||
|
}
|
||
|
|
||
|
#if defined(DUK_USE_ES6)
|
||
|
DUK_LOCAL double duk__cbrt(double x) {
|
||
|
/* cbrt() is C99. To avoid hassling embedders with the need to provide a
|
||
|
* cube root function, we can get by with pow(). The result is not
|
||
|
* identical, but that's OK: ES2015 says it's implementation-dependent.
|
||
|
*/
|
||
|
|
||
|
#if defined(DUK_CBRT)
|
||
|
/* cbrt() matches ES2015 requirements. */
|
||
|
return DUK_CBRT(x);
|
||
|
#else
|
||
|
duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
||
|
|
||
|
/* pow() does not, however. */
|
||
|
if (c == DUK_FP_NAN || c == DUK_FP_INFINITE || c == DUK_FP_ZERO) {
|
||
|
return x;
|
||
|
}
|
||
|
if (DUK_SIGNBIT(x)) {
|
||
|
return -DUK_POW(-x, 1.0 / 3.0);
|
||
|
} else {
|
||
|
return DUK_POW(x, 1.0 / 3.0);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
DUK_LOCAL double duk__log2(double x) {
|
||
|
#if defined(DUK_LOG2)
|
||
|
return DUK_LOG2(x);
|
||
|
#else
|
||
|
return DUK_LOG(x) * DUK_DOUBLE_LOG2E;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
DUK_LOCAL double duk__log10(double x) {
|
||
|
#if defined(DUK_LOG10)
|
||
|
return DUK_LOG10(x);
|
||
|
#else
|
||
|
return DUK_LOG(x) * DUK_DOUBLE_LOG10E;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
DUK_LOCAL double duk__trunc(double x) {
|
||
|
#if defined(DUK_TRUNC)
|
||
|
return DUK_TRUNC(x);
|
||
|
#else
|
||
|
/* Handles -0 correctly: -0.0 matches 'x >= 0.0' but floor()
|
||
|
* is required to return -0 when the argument is -0.
|
||
|
*/
|
||
|
return x >= 0.0 ? DUK_FLOOR(x) : DUK_CEIL(x);
|
||
|
#endif
|
||
|
}
|
||
|
#endif /* DUK_USE_ES6 */
|
||
|
|
||
|
DUK_LOCAL double duk__round_fixed(double x) {
|
||
|
/* Numbers half-way between integers must be rounded towards +Infinity,
|
||
|
* e.g. -3.5 must be rounded to -3 (not -4). When rounded to zero, zero
|
||
|
* sign must be set appropriately. E5.1 Section 15.8.2.15.
|
||
|
*
|
||
|
* Note that ANSI C round() is "round to nearest integer, away from zero",
|
||
|
* which is incorrect for negative values. Here we make do with floor().
|
||
|
*/
|
||
|
|
||
|
duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
||
|
if (c == DUK_FP_NAN || c == DUK_FP_INFINITE || c == DUK_FP_ZERO) {
|
||
|
return x;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* x is finite and non-zero
|
||
|
*
|
||
|
* -1.6 -> floor(-1.1) -> -2
|
||
|
* -1.5 -> floor(-1.0) -> -1 (towards +Inf)
|
||
|
* -1.4 -> floor(-0.9) -> -1
|
||
|
* -0.5 -> -0.0 (special case)
|
||
|
* -0.1 -> -0.0 (special case)
|
||
|
* +0.1 -> +0.0 (special case)
|
||
|
* +0.5 -> floor(+1.0) -> 1 (towards +Inf)
|
||
|
* +1.4 -> floor(+1.9) -> 1
|
||
|
* +1.5 -> floor(+2.0) -> 2 (towards +Inf)
|
||
|
* +1.6 -> floor(+2.1) -> 2
|
||
|
*/
|
||
|
|
||
|
if (x >= -0.5 && x < 0.5) {
|
||
|
/* +0.5 is handled by floor, this is on purpose */
|
||
|
if (x < 0.0) {
|
||
|
return -0.0;
|
||
|
} else {
|
||
|
return +0.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return DUK_FLOOR(x + 0.5);
|
||
|
}
|
||
|
|
||
|
/* Wrappers for calling standard math library methods. These may be required
|
||
|
* on platforms where one or more of the math built-ins are defined as macros
|
||
|
* or inline functions and are thus not suitable to be used as function pointers.
|
||
|
*/
|
||
|
#if defined(DUK_USE_AVOID_PLATFORM_FUNCPTRS)
|
||
|
DUK_LOCAL double duk__fabs(double x) {
|
||
|
return DUK_FABS(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__acos(double x) {
|
||
|
return DUK_ACOS(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__asin(double x) {
|
||
|
return DUK_ASIN(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__atan(double x) {
|
||
|
return DUK_ATAN(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__ceil(double x) {
|
||
|
return DUK_CEIL(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__cos(double x) {
|
||
|
return DUK_COS(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__exp(double x) {
|
||
|
return DUK_EXP(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__floor(double x) {
|
||
|
return DUK_FLOOR(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__log(double x) {
|
||
|
return DUK_LOG(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__sin(double x) {
|
||
|
return DUK_SIN(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__sqrt(double x) {
|
||
|
return DUK_SQRT(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__tan(double x) {
|
||
|
return DUK_TAN(x);
|
||
|
}
|
||
|
DUK_LOCAL double duk__atan2_fixed(double x, double y) {
|
||
|
#if defined(DUK_USE_ATAN2_WORKAROUNDS)
|
||
|
/* Specific fixes to common atan2() implementation issues:
|
||
|
* - test-bug-mingw-math-issues.js
|
||
|
*/
|
||
|
if (DUK_ISINF(x) && DUK_ISINF(y)) {
|
||
|
if (DUK_SIGNBIT(x)) {
|
||
|
if (DUK_SIGNBIT(y)) {
|
||
|
return -2.356194490192345;
|
||
|
} else {
|
||
|
return -0.7853981633974483;
|
||
|
}
|
||
|
} else {
|
||
|
if (DUK_SIGNBIT(y)) {
|
||
|
return 2.356194490192345;
|
||
|
} else {
|
||
|
return 0.7853981633974483;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
/* Some ISO C assumptions. */
|
||
|
|
||
|
DUK_ASSERT(duk_double_equals(DUK_ATAN2(DUK_DOUBLE_INFINITY, DUK_DOUBLE_INFINITY), 0.7853981633974483));
|
||
|
DUK_ASSERT(duk_double_equals(DUK_ATAN2(-DUK_DOUBLE_INFINITY, DUK_DOUBLE_INFINITY), -0.7853981633974483));
|
||
|
DUK_ASSERT(duk_double_equals(DUK_ATAN2(DUK_DOUBLE_INFINITY, -DUK_DOUBLE_INFINITY), 2.356194490192345));
|
||
|
DUK_ASSERT(duk_double_equals(DUK_ATAN2(-DUK_DOUBLE_INFINITY, -DUK_DOUBLE_INFINITY), -2.356194490192345));
|
||
|
#endif
|
||
|
|
||
|
return DUK_ATAN2(x, y);
|
||
|
}
|
||
|
#endif /* DUK_USE_AVOID_PLATFORM_FUNCPTRS */
|
||
|
|
||
|
/* order must match constants in genbuiltins.py */
|
||
|
DUK_LOCAL const duk__one_arg_func duk__one_arg_funcs[] = {
|
||
|
#if defined(DUK_USE_AVOID_PLATFORM_FUNCPTRS)
|
||
|
duk__fabs,
|
||
|
duk__acos,
|
||
|
duk__asin,
|
||
|
duk__atan,
|
||
|
duk__ceil,
|
||
|
duk__cos,
|
||
|
duk__exp,
|
||
|
duk__floor,
|
||
|
duk__log,
|
||
|
duk__round_fixed,
|
||
|
duk__sin,
|
||
|
duk__sqrt,
|
||
|
duk__tan,
|
||
|
#if defined(DUK_USE_ES6)
|
||
|
duk__cbrt,
|
||
|
duk__log2,
|
||
|
duk__log10,
|
||
|
duk__trunc
|
||
|
#endif
|
||
|
#else /* DUK_USE_AVOID_PLATFORM_FUNCPTRS */
|
||
|
DUK_FABS,
|
||
|
DUK_ACOS,
|
||
|
DUK_ASIN,
|
||
|
DUK_ATAN,
|
||
|
DUK_CEIL,
|
||
|
DUK_COS,
|
||
|
DUK_EXP,
|
||
|
DUK_FLOOR,
|
||
|
DUK_LOG,
|
||
|
duk__round_fixed,
|
||
|
DUK_SIN,
|
||
|
DUK_SQRT,
|
||
|
DUK_TAN,
|
||
|
#if defined(DUK_USE_ES6)
|
||
|
duk__cbrt,
|
||
|
duk__log2,
|
||
|
duk__log10,
|
||
|
duk__trunc
|
||
|
#endif
|
||
|
#endif /* DUK_USE_AVOID_PLATFORM_FUNCPTRS */
|
||
|
};
|
||
|
|
||
|
/* order must match constants in genbuiltins.py */
|
||
|
DUK_LOCAL const duk__two_arg_func duk__two_arg_funcs[] = {
|
||
|
#if defined(DUK_USE_AVOID_PLATFORM_FUNCPTRS)
|
||
|
duk__atan2_fixed,
|
||
|
duk_js_arith_pow
|
||
|
#else
|
||
|
duk__atan2_fixed,
|
||
|
duk_js_arith_pow
|
||
|
#endif
|
||
|
};
|
||
|
|
||
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_onearg_shared(duk_hthread *thr) {
|
||
|
duk_small_int_t fun_idx = duk_get_current_magic(thr);
|
||
|
duk__one_arg_func fun;
|
||
|
duk_double_t arg1;
|
||
|
|
||
|
DUK_ASSERT(fun_idx >= 0);
|
||
|
DUK_ASSERT(fun_idx < (duk_small_int_t) (sizeof(duk__one_arg_funcs) / sizeof(duk__one_arg_func)));
|
||
|
arg1 = duk_to_number(thr, 0);
|
||
|
fun = duk__one_arg_funcs[fun_idx];
|
||
|
duk_push_number(thr, (duk_double_t) fun((double) arg1));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_twoarg_shared(duk_hthread *thr) {
|
||
|
duk_small_int_t fun_idx = duk_get_current_magic(thr);
|
||
|
duk__two_arg_func fun;
|
||
|
duk_double_t arg1;
|
||
|
duk_double_t arg2;
|
||
|
|
||
|
DUK_ASSERT(fun_idx >= 0);
|
||
|
DUK_ASSERT(fun_idx < (duk_small_int_t) (sizeof(duk__two_arg_funcs) / sizeof(duk__two_arg_func)));
|
||
|
arg1 = duk_to_number(thr, 0); /* explicit ordered evaluation to match coercion semantics */
|
||
|
arg2 = duk_to_number(thr, 1);
|
||
|
fun = duk__two_arg_funcs[fun_idx];
|
||
|
duk_push_number(thr, (duk_double_t) fun((double) arg1, (double) arg2));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_max(duk_hthread *thr) {
|
||
|
return duk__math_minmax(thr, -DUK_DOUBLE_INFINITY, duk__fmax_fixed);
|
||
|
}
|
||
|
|
||
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_min(duk_hthread *thr) {
|
||
|
return duk__math_minmax(thr, DUK_DOUBLE_INFINITY, duk__fmin_fixed);
|
||
|
}
|
||
|
|
||
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_random(duk_hthread *thr) {
|
||
|
duk_push_number(thr, (duk_double_t) DUK_UTIL_GET_RANDOM_DOUBLE(thr));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
#if defined(DUK_USE_ES6)
|
||
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_hypot(duk_hthread *thr) {
|
||
|
/*
|
||
|
* E6 Section 20.2.2.18: Math.hypot
|
||
|
*
|
||
|
* - If no arguments are passed, the result is +0.
|
||
|
* - If any argument is +inf, the result is +inf.
|
||
|
* - If any argument is -inf, the result is +inf.
|
||
|
* - If no argument is +inf or -inf, and any argument is NaN, the result is
|
||
|
* NaN.
|
||
|
* - If all arguments are either +0 or -0, the result is +0.
|
||
|
*/
|
||
|
|
||
|
duk_idx_t nargs;
|
||
|
duk_idx_t i;
|
||
|
duk_bool_t found_nan;
|
||
|
duk_double_t max;
|
||
|
duk_double_t sum, summand;
|
||
|
duk_double_t comp, prelim;
|
||
|
duk_double_t t;
|
||
|
|
||
|
nargs = duk_get_top(thr);
|
||
|
|
||
|
/* Find the highest value. Also ToNumber() coerces. */
|
||
|
max = 0.0;
|
||
|
found_nan = 0;
|
||
|
for (i = 0; i < nargs; i++) {
|
||
|
t = DUK_FABS(duk_to_number(thr, i));
|
||
|
if (DUK_FPCLASSIFY(t) == DUK_FP_NAN) {
|
||
|
found_nan = 1;
|
||
|
} else {
|
||
|
max = duk_double_fmax(max, t);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Early return cases. */
|
||
|
if (duk_double_equals(max, DUK_DOUBLE_INFINITY)) {
|
||
|
duk_push_number(thr, DUK_DOUBLE_INFINITY);
|
||
|
return 1;
|
||
|
} else if (found_nan) {
|
||
|
duk_push_number(thr, DUK_DOUBLE_NAN);
|
||
|
return 1;
|
||
|
} else if (duk_double_equals(max, 0.0)) {
|
||
|
duk_push_number(thr, 0.0);
|
||
|
/* Otherwise we'd divide by zero. */
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/* Use Kahan summation and normalize to the highest value to minimize
|
||
|
* floating point rounding error and avoid overflow.
|
||
|
*
|
||
|
* https://en.wikipedia.org/wiki/Kahan_summation_algorithm
|
||
|
*/
|
||
|
sum = 0.0;
|
||
|
comp = 0.0;
|
||
|
for (i = 0; i < nargs; i++) {
|
||
|
t = DUK_FABS(duk_get_number(thr, i)) / max;
|
||
|
summand = (t * t) - comp;
|
||
|
prelim = sum + summand;
|
||
|
comp = (prelim - sum) - summand;
|
||
|
sum = prelim;
|
||
|
}
|
||
|
|
||
|
duk_push_number(thr, (duk_double_t) DUK_SQRT(sum) * max);
|
||
|
return 1;
|
||
|
}
|
||
|
#endif /* DUK_USE_ES6 */
|
||
|
|
||
|
#if defined(DUK_USE_ES6)
|
||
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_sign(duk_hthread *thr) {
|
||
|
duk_double_t d;
|
||
|
|
||
|
d = duk_to_number(thr, 0);
|
||
|
if (duk_double_is_nan(d)) {
|
||
|
DUK_ASSERT(duk_is_nan(thr, -1));
|
||
|
return 1; /* NaN input -> return NaN */
|
||
|
}
|
||
|
if (duk_double_equals(d, 0.0)) {
|
||
|
/* Zero sign kept, i.e. -0 -> -0, +0 -> +0. */
|
||
|
return 1;
|
||
|
}
|
||
|
duk_push_int(thr, (d > 0.0 ? 1 : -1));
|
||
|
return 1;
|
||
|
}
|
||
|
#endif /* DUK_USE_ES6 */
|
||
|
|
||
|
#if defined(DUK_USE_ES6)
|
||
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_clz32(duk_hthread *thr) {
|
||
|
duk_uint32_t x;
|
||
|
duk_small_uint_t i;
|
||
|
|
||
|
#if defined(DUK_USE_PREFER_SIZE)
|
||
|
duk_uint32_t mask;
|
||
|
|
||
|
x = duk_to_uint32(thr, 0);
|
||
|
for (i = 0, mask = 0x80000000UL; mask != 0; mask >>= 1) {
|
||
|
if (x & mask) {
|
||
|
break;
|
||
|
}
|
||
|
i++;
|
||
|
}
|
||
|
DUK_ASSERT(i <= 32);
|
||
|
duk_push_uint(thr, i);
|
||
|
return 1;
|
||
|
#else /* DUK_USE_PREFER_SIZE */
|
||
|
i = 0;
|
||
|
x = duk_to_uint32(thr, 0);
|
||
|
if (x & 0xffff0000UL) {
|
||
|
x >>= 16;
|
||
|
} else {
|
||
|
i += 16;
|
||
|
}
|
||
|
if (x & 0x0000ff00UL) {
|
||
|
x >>= 8;
|
||
|
} else {
|
||
|
i += 8;
|
||
|
}
|
||
|
if (x & 0x000000f0UL) {
|
||
|
x >>= 4;
|
||
|
} else {
|
||
|
i += 4;
|
||
|
}
|
||
|
if (x & 0x0000000cUL) {
|
||
|
x >>= 2;
|
||
|
} else {
|
||
|
i += 2;
|
||
|
}
|
||
|
if (x & 0x00000002UL) {
|
||
|
x >>= 1;
|
||
|
} else {
|
||
|
i += 1;
|
||
|
}
|
||
|
if (x & 0x00000001UL) {
|
||
|
;
|
||
|
} else {
|
||
|
i += 1;
|
||
|
}
|
||
|
DUK_ASSERT(i <= 32);
|
||
|
duk_push_uint(thr, i);
|
||
|
return 1;
|
||
|
#endif /* DUK_USE_PREFER_SIZE */
|
||
|
}
|
||
|
#endif /* DUK_USE_ES6 */
|
||
|
|
||
|
#if defined(DUK_USE_ES6)
|
||
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_imul(duk_hthread *thr) {
|
||
|
duk_uint32_t x, y, z;
|
||
|
|
||
|
x = duk_to_uint32(thr, 0);
|
||
|
y = duk_to_uint32(thr, 1);
|
||
|
z = x * y;
|
||
|
|
||
|
/* While arguments are ToUint32() coerced and the multiplication
|
||
|
* is unsigned as such, the final result is curiously interpreted
|
||
|
* as a signed 32-bit value.
|
||
|
*/
|
||
|
duk_push_i32(thr, (duk_int32_t) z);
|
||
|
return 1;
|
||
|
}
|
||
|
#endif /* DUK_USE_ES6 */
|
||
|
|
||
|
#endif /* DUK_USE_MATH_BUILTIN */
|