OVMS3/OVMS.V3/components/wolfssl/IDE/ROWLEY-CROSSWORKS-ARM/kinetis_hw.c

346 lines
11 KiB
C
Raw Normal View History

/* kinetis_hw.c
*
* Copyright (C) 2006-2020 wolfSSL Inc.
*
* This file is part of wolfSSL.
*
* wolfSSL is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* wolfSSL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335, USA
*/
#include "hw.h"
#include "user_settings.h"
#if defined(FREESCALE) && defined(K_SERIES)
/**********************************************
* NOTE: Customize for actual hardware
**********************************************/
// CPU include for Rowley CrossWorks packages
// $(TargetsDir) location:
// On Mac OS/X: Users/USERNAME/Library/Rowley Associates Limited/CrossWorks for ARM/packages/targets/
// On Windows: C:/Users/USERNAME/Application Data/Local/Rowley Associates Limited/CrossWorks for ARM/packages/targets/
// On Linux: home/USERNAME/.rowley_associates_limited/CrossWorks for ARM/v4/packages/targets/
// Located in $(TargetsDir)/Kinetis/CMSIS/
#ifdef FREESCALE_KSDK_BM
#include "fsl_common.h"
#include "fsl_debug_console.h"
#include "fsl_rtc.h"
#include "fsl_trng.h"
#include "fsl_lpuart.h"
#include "fsl_port.h"
#include "clock_config.h"
#else
#include <MK64F12.h> // Located in $(TargetsDir)/Kinetis/CMSIS/
#endif
// System clock
#ifdef FREESCALE_KSDK_BM
#define SYS_CLK_HZ SystemCoreClock
#else
#define SYS_CLK_HZ 96000000ul /* Core system clock in Hz */
#define SYS_CLK_DRS MCG_C4_DRST_DRS(0x03) /* DRS 0=24MHz, 1=48MHz, 2=72MHz, 3=96MHz */
#define SYS_CLK_DMX MCG_C4_DMX32_MASK /* 0=Disable DMX32 (lower actual speed), MCG_C4_DMX32_MASK=Enable DMX32 */
#define SYS_CLK_DIV 1 /* System clock divisor */
#define BUS_CLK_DIV 2 /* Bus clock divisor */
#define BUS_CLK_KHZ (SYS_CLK_HZ/BUS_CLK_DIV) /* Helper to calculate bus speed for UART */
#define FLASH_CLK_DIV 4 /* Flash clock divisor */
#endif
// UART TX Port, Pin, Mux and Baud
#ifdef FREESCALE_KSDK_BM
#define UART_PORT LPUART0 /* UART Port */
#define UART_TX_PORT PORTA /* UART TX Port */
#define UART_TX_PIN 2U /* UART TX Pin */
#define UART_TX_MUX kPORT_MuxAlt2 /* Kinetis UART pin mux */
#elif defined (WOLFSSL_FRDM_K64)
#define UART_PORT UART0 /* UART Port */
#define UART_TX_PORT PORTB /* UART TX Port */
#define UART_TX_PIN 17U /* UART TX Pin */
#define UART_TX_MUX 0x3 /* Kinetis UART pin mux */
#else
#define UART_PORT UART4 /* UART Port */
#define UART_TX_PORT PORTE /* UART TX Port */
#define UART_TX_PIN 24U /* UART TX Pin */
#define UART_TX_MUX 0x3 /* Kinetis UART pin mux */
#endif
#define UART_BAUD_RATE 115200 /* UART Baud Rate */
#ifdef WOLFSSL_FRDM_K64
#define UART_BAUD UART_BAUD_RATE*8
#else
#define UART_BAUD UART_BAUD_RATE
#endif
/* Note: You will also need to update the UART clock gate in hw_uart_init (SIM_SCGC1_UART5_MASK) */
/* Note: TWR-K60 is UART3, PTC17 */
/* Note: FRDM-K64 is UART4, PTE24 or UART0 PTB17 for OpenOCD (SIM_SCGC4_UART0_MASK)*/
/* Note: TWR-K64 is UART5, PTE8 */
/* Note: FRDM-K82F is LPUART0 A2, LPUART4 PTC15 */
/***********************************************/
// Private functions
static uint32_t mDelayCyclesPerUs = 0;
#define NOP_FOR_LOOP_INSTRUCTION_COUNT 6
static void delay_nop(uint32_t count)
{
int i;
for(i=0; i<count; i++) {
__asm volatile("nop");
}
}
static void hw_mcg_init(void)
{
#ifdef FREESCALE_KSDK_BM
BOARD_BootClockHSRUN();
#else
/* Adjust clock dividers (core/system=div/1, bus=div/2, flex bus=div/2, flash=div/4) */
SIM->CLKDIV1 = SIM_CLKDIV1_OUTDIV1(SYS_CLK_DIV-1) | SIM_CLKDIV1_OUTDIV2(BUS_CLK_DIV-1) |
SIM_CLKDIV1_OUTDIV3(BUS_CLK_DIV-1) | SIM_CLKDIV1_OUTDIV4(FLASH_CLK_DIV-1);
/* Configure FEI internal clock speed */
MCG->C4 = (SYS_CLK_DMX | SYS_CLK_DRS);
while((MCG->C4 & (MCG_C4_DRST_DRS_MASK | MCG_C4_DMX32_MASK)) != (SYS_CLK_DMX | SYS_CLK_DRS));
#endif
}
static void hw_gpio_init(void)
{
#ifdef FREESCALE_KSDK_BM
CLOCK_EnableClock(kCLOCK_PortA);
CLOCK_EnableClock(kCLOCK_PortB);
CLOCK_EnableClock(kCLOCK_PortC);
CLOCK_EnableClock(kCLOCK_PortD);
CLOCK_EnableClock(kCLOCK_PortE);
#else
/* Enable clocks to all GPIO ports */
SIM->SCGC5 |= (SIM_SCGC5_PORTA_MASK | SIM_SCGC5_PORTB_MASK
#ifdef SIM_SCGC5_PORTC_MASK
| SIM_SCGC5_PORTC_MASK
#endif
#ifdef SIM_SCGC5_PORTD_MASK
| SIM_SCGC5_PORTD_MASK
#endif
#ifdef SIM_SCGC5_PORTE_MASK
| SIM_SCGC5_PORTE_MASK
#endif
);
#if 0 /* Debug clock */
/* ClockOut on PTC3 */
PORTC->PCR[3] = PORT_PCR_MUX(0x05); /* Alt 5 */
SIM_SOPT2 |= SIM_SOPT2_CLKOUTSEL(0); /* FlexBus CLKOUT */
#endif
#endif
}
static void hw_uart_init(void)
{
#ifdef FREESCALE_KSDK_BM
PORT_SetPinMux(UART_TX_PORT, UART_TX_PIN, UART_TX_MUX);
CLOCK_SetLpuartClock(1); /* MCGPLLCLK */
DbgConsole_Init((uint32_t)UART_PORT, UART_BAUD, DEBUG_CONSOLE_DEVICE_TYPE_LPUART, SYS_CLK_HZ);
#else
register uint16_t sbr, brfa;
uint8_t temp;
#ifdef WOLFSSL_FRDM_K64
/* Enable UART core clock ONLY for FRDM-K64F */
SIM->SCGC4 |= SIM_SCGC4_UART0_MASK;
#else
/* Enable UART core clock */
/* Note: Remember to update me if UART_PORT changes */
SIM->SCGC1 |= SIM_SCGC1_UART4_MASK;
#endif
/* Configure UART TX pin */
UART_TX_PORT->PCR[UART_TX_PIN] = PORT_PCR_MUX(UART_TX_MUX);
/* Disable transmitter and receiver while we change settings. */
UART_PORT->C2 &= ~(UART_C2_TE_MASK | UART_C2_RE_MASK );
/* Configure the UART for 8-bit mode, no parity */
UART_PORT->C1 = 0;
/* Calculate baud settings */
sbr = (uint16_t)((BUS_CLK_KHZ * 1000)/(UART_BAUD * 16));
temp = UART_PORT->BDH & ~(UART_BDH_SBR(0x1F));
UART_PORT->BDH = temp | UART_BDH_SBR(((sbr & 0x1F00) >> 8));
UART_PORT->BDL = (uint8_t)(sbr & UART_BDL_SBR_MASK);
/* Determine if a fractional divider is needed to get closer to the baud rate */
brfa = (((BUS_CLK_KHZ * 32000)/(UART_BAUD * 16)) - (sbr * 32));
temp = UART_PORT->C4 & ~(UART_C4_BRFA(0x1F));
UART_PORT->C4 = temp | UART_C4_BRFA(brfa);
/* Enable receiver and transmitter */
UART_PORT->C2 |= (UART_C2_TE_MASK | UART_C2_RE_MASK);
#endif
}
static void hw_rtc_init(void)
{
/* Init nop delay */
mDelayCyclesPerUs = (SYS_CLK_HZ / 1000000 / NOP_FOR_LOOP_INSTRUCTION_COUNT);
/* Enable RTC clock and oscillator */
SIM->SCGC6 |= SIM_SCGC6_RTC_MASK;
if (RTC->SR & RTC_SR_TIF_MASK) {
/* Resets the RTC registers except for the SWR bit */
RTC->CR |= RTC_CR_SWR_MASK;
RTC->CR &= ~RTC_CR_SWR_MASK;
/* Set TSR register to 0x1 to avoid the TIF bit being set in the SR register */
RTC->TSR = 1;
}
/* Disable RTC Interrupts */
RTC->IER = 0;
/* Enable OSC */
if ((RTC->CR & RTC_CR_OSCE_MASK) == 0) {
/* Turn on */
RTC->CR |= RTC_CR_OSCE_MASK;
/* Wait RTC startup delay 1000 us */
delay_us(1000);
}
/* Enable counter */
RTC->SR |= RTC_SR_TCE_MASK;
}
static void hw_rand_init(void)
{
#ifdef FREESCALE_KSDK_BM
trng_config_t trngConfig;
TRNG_GetDefaultConfig(&trngConfig);
/* Set sample mode of the TRNG ring oscillator to Von Neumann, for better random data.*/
trngConfig.sampleMode = kTRNG_SampleModeVonNeumann;
/* Initialize TRNG */
TRNG_Init(TRNG0, &trngConfig);
#else
/* Enable RNG clocks */
SIM->SCGC6 |= SIM_SCGC6_RNGA_MASK;
SIM->SCGC3 |= SIM_SCGC3_RNGA_MASK;
/* Wake up RNG to normal mode (take out of sleep) */
RNG->CR &= ~RNG_CR_SLP_MASK;
/* Enable High Assurance mode (Enables notification of security violations via SR[SECV]) */
RNG->CR |= RNG_CR_HA_MASK;
/* Enable RNG generation to RANDOUT FIFO */
RNG->CR |= RNG_CR_GO_MASK;
#endif
}
/* Public Functions */
void hw_init(void)
{
hw_mcg_init();
hw_gpio_init();
hw_uart_init();
hw_rtc_init();
hw_rand_init();
}
uint32_t hw_get_time_sec(void)
{
/* Return RTC seconds */
return RTC->TSR;
}
uint32_t hw_get_time_msec(void)
{
/* RTC TPR precision register increments every 32.768 kHz clock cycle */
/* Convert with rounding crystal count (32768 or (1 << 15)) to milliseconds */
return ( ((uint32_t)RTC->TPR * 1000) + ((1 << 15) / 2) ) / (1 << 15);
}
void hw_uart_printchar(int c)
{
#ifdef FREESCALE_KSDK_BM
LPUART_WriteBlocking(UART_PORT, (const uint8_t*)&c, 1); /* Send the character */
#else
while(!(UART_PORT->S1 & UART_S1_TDRE_MASK)); /* Wait until space is available in the FIFO */
UART_PORT->D = (uint8_t)c; /* Send the character */
#endif
}
uint32_t hw_rand(void)
{
uint32_t rng;
#ifdef FREESCALE_KSDK_BM
TRNG_GetRandomData(TRNG0, &rng, sizeof(rng));
#else
while((RNG->SR & RNG_SR_OREG_LVL(0xF)) == 0) {}; /* Wait until FIFO has a value available */
rng = RNG->OR; /* Return next value in FIFO output register */
#endif
return rng;
}
void delay_us(uint32_t microseconds)
{
delay_nop(mDelayCyclesPerUs * microseconds);
}
// Watchdog
void hw_watchdog_disable(void)
{
WDOG->UNLOCK = 0xC520;
WDOG->UNLOCK = 0xD928;
WDOG->STCTRLH = WDOG_STCTRLH_ALLOWUPDATE_MASK;
}
// Flash configuration
#define FSEC_UNSECURE 2
#define FSEC_SECURE 0
#define FSEC_FSLACC_DENIED 2
#define FSEC_FSLACC_GRANTED 3
#define FSEC_KEY_ENABLED 2
#define FSEC_KEY_DISABLED 3
#define FSEC_MASS_ERASE_DISABLE 2
#define FSEC_MASS_ERASE_ENABLE 3
struct flash_conf {
uint8_t backdoor_key[8]; /* Backdoor Comparison Key */
uint8_t fprot[4]; /* Program flash protection bytes */
uint8_t fsec; /* Flash security byte */
uint8_t fopt; /* Flash nonvolatile option byte */
uint8_t feprot; /* FlexNVM: EEPROM protection byte */
uint8_t fdprot; /* FlexNVM: Data flash protection byte */
};
const struct flash_conf flash_conf __attribute__ ((section (".flashconf"),used)) =
{
.backdoor_key = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF },
.fprot = { 0xFF, 0xFF, 0xFF, 0xFF },
.fsec = NV_FSEC_SEC(FSEC_UNSECURE) | NV_FSEC_FSLACC(FSEC_FSLACC_GRANTED) |
NV_FSEC_MEEN(FSEC_MASS_ERASE_ENABLE) | NV_FSEC_KEYEN(FSEC_KEY_DISABLED),
.fopt = 0xFF,
.feprot = 0xFF,
.fdprot = 0xFF
};
#endif /* FREESCALE && K_SERIES */