797 lines
29 KiB
C
797 lines
29 KiB
C
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stddef.h>
|
|
#include <assert.h>
|
|
#include "rom/ets_sys.h"
|
|
#include "rom/rtc.h"
|
|
#include "rom/uart.h"
|
|
#include "rom/gpio.h"
|
|
#include "soc/rtc.h"
|
|
#include "soc/rtc_cntl_reg.h"
|
|
#include "soc/rtc_io_reg.h"
|
|
#include "soc/sens_reg.h"
|
|
#include "soc/dport_reg.h"
|
|
#include "soc/efuse_reg.h"
|
|
#include "soc/apb_ctrl_reg.h"
|
|
#include "i2c_rtc_clk.h"
|
|
#include "soc_log.h"
|
|
#include "sdkconfig.h"
|
|
#include "xtensa/core-macros.h"
|
|
|
|
|
|
#define MHZ (1000000)
|
|
|
|
/* Frequency of the 8M oscillator is 8.5MHz +/- 5%, at the default DCAP setting */
|
|
#define RTC_FAST_CLK_FREQ_8M 8500000
|
|
#define RTC_SLOW_CLK_FREQ_150K 150000
|
|
#define RTC_SLOW_CLK_FREQ_8MD256 (RTC_FAST_CLK_FREQ_8M / 256)
|
|
#define RTC_SLOW_CLK_FREQ_32K 32768
|
|
|
|
static const char* TAG = "rtc_clk";
|
|
|
|
/* Various constants related to the analog internals of the chip.
|
|
* Defined here because they don't have any use outside of this file.
|
|
*/
|
|
|
|
#define BBPLL_ENDIV5_VAL_320M 0x43
|
|
#define BBPLL_BBADC_DSMP_VAL_320M 0x84
|
|
#define BBPLL_ENDIV5_VAL_480M 0xc3
|
|
#define BBPLL_BBADC_DSMP_VAL_480M 0x74
|
|
#define BBPLL_IR_CAL_DELAY_VAL 0x18
|
|
#define BBPLL_IR_CAL_EXT_CAP_VAL 0x20
|
|
#define BBPLL_OC_ENB_FCAL_VAL 0x9a
|
|
#define BBPLL_OC_ENB_VCON_VAL 0x00
|
|
#define BBPLL_BBADC_CAL_7_0_VAL 0x00
|
|
|
|
#define APLL_SDM_STOP_VAL_1 0x09
|
|
#define APLL_SDM_STOP_VAL_2_REV0 0x69
|
|
#define APLL_SDM_STOP_VAL_2_REV1 0x49
|
|
|
|
#define APLL_CAL_DELAY_1 0x0f
|
|
#define APLL_CAL_DELAY_2 0x3f
|
|
#define APLL_CAL_DELAY_3 0x1f
|
|
|
|
#define XTAL_32K_DAC_VAL 3
|
|
#define XTAL_32K_DRES_VAL 3
|
|
#define XTAL_32K_DBIAS_VAL 0
|
|
|
|
#define XTAL_32K_BOOTSTRAP_DAC_VAL 3
|
|
#define XTAL_32K_BOOTSTRAP_DRES_VAL 3
|
|
#define XTAL_32K_BOOTSTRAP_DBIAS_VAL 0
|
|
#define XTAL_32K_BOOTSTRAP_TIME_US 7
|
|
|
|
/* Delays for various clock sources to be enabled/switched.
|
|
* All values are in microseconds.
|
|
* TODO: some of these are excessive, and should be reduced.
|
|
*/
|
|
#define DELAY_PLL_DBIAS_RAISE 3
|
|
#define DELAY_PLL_ENABLE_WITH_150K 80
|
|
#define DELAY_PLL_ENABLE_WITH_32K 160
|
|
#define DELAY_FAST_CLK_SWITCH 3
|
|
#define DELAY_SLOW_CLK_SWITCH 300
|
|
#define DELAY_8M_ENABLE 50
|
|
|
|
/* Number of 8M/256 clock cycles to use for XTAL frequency estimation.
|
|
* 10 cycles will take approximately 300 microseconds.
|
|
*/
|
|
#define XTAL_FREQ_EST_CYCLES 10
|
|
|
|
/* Core voltage needs to be increased in two cases:
|
|
* 1. running at 240 MHz
|
|
* 2. running with 80MHz Flash frequency
|
|
*
|
|
* There is a record in efuse which indicates the proper voltage for these two cases.
|
|
*/
|
|
#ifdef CONFIG_ESPTOOLPY_FLASHFREQ_80M
|
|
#define DIG_DBIAS_80M_160M RTC_CNTL_DBIAS_1V25
|
|
#else
|
|
#define DIG_DBIAS_80M_160M RTC_CNTL_DBIAS_1V10
|
|
#endif
|
|
#define DIG_DBIAS_240M RTC_CNTL_DBIAS_1V25
|
|
#define DIG_DBIAS_XTAL RTC_CNTL_DBIAS_1V10
|
|
#define DIG_DBIAS_2M RTC_CNTL_DBIAS_1V00
|
|
|
|
/* PLL currently enabled, if any */
|
|
typedef enum {
|
|
RTC_PLL_NONE,
|
|
RTC_PLL_320M,
|
|
RTC_PLL_480M
|
|
} rtc_pll_t;
|
|
static rtc_pll_t s_cur_pll = RTC_PLL_NONE;
|
|
|
|
/* Current CPU frequency; saved in a variable for faster freq. switching */
|
|
static rtc_cpu_freq_t s_cur_freq = RTC_CPU_FREQ_XTAL;
|
|
|
|
|
|
static void rtc_clk_32k_enable_internal(int dac, int dres, int dbias)
|
|
{
|
|
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG,
|
|
RTC_IO_X32P_RDE | RTC_IO_X32P_RUE | RTC_IO_X32N_RUE |
|
|
RTC_IO_X32N_RDE | RTC_IO_X32N_FUN_IE | RTC_IO_X32P_FUN_IE);
|
|
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
|
|
/* Set the parameters of xtal
|
|
dac --> current
|
|
dres --> resistance
|
|
dbias --> bais voltage
|
|
*/
|
|
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DAC_XTAL_32K, dac);
|
|
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DRES_XTAL_32K, dres);
|
|
REG_SET_FIELD(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_DBIAS_XTAL_32K, dbias);
|
|
|
|
#ifdef CONFIG_ESP32_RTC_EXTERNAL_CRYSTAL_ADDITIONAL_CURRENT
|
|
/* TOUCH sensor can provide additional current to external XTAL.
|
|
In some case, X32N and X32P PAD don't have enough drive capability to start XTAL */
|
|
SET_PERI_REG_MASK(RTC_IO_TOUCH_CFG_REG, RTC_IO_TOUCH_XPD_BIAS_M);
|
|
/* Tie PAD Touch8 to VDD
|
|
NOTE: TOUCH8 and TOUCH9 register settings are reversed except for DAC, so we set RTC_IO_TOUCH_PAD9_REG here instead
|
|
*/
|
|
SET_PERI_REG_MASK(RTC_IO_TOUCH_PAD9_REG, RTC_IO_TOUCH_PAD9_TIE_OPT_M);
|
|
/* Set the current used to compensate TOUCH PAD8 */
|
|
SET_PERI_REG_BITS(RTC_IO_TOUCH_PAD8_REG, RTC_IO_TOUCH_PAD8_DAC, 4, RTC_IO_TOUCH_PAD8_DAC_S);
|
|
/* Power up TOUCH8
|
|
So the Touch DAC start to drive some current from VDD to TOUCH8(which is also XTAL-N)
|
|
*/
|
|
SET_PERI_REG_MASK(RTC_IO_TOUCH_PAD9_REG, RTC_IO_TOUCH_PAD9_XPD_M);
|
|
#endif // CONFIG_ESP32_RTC_EXTERNAL_CRYSTAL_ADDITIONAL_CURRENT
|
|
/* Power up external xtal */
|
|
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K_M);
|
|
}
|
|
|
|
void rtc_clk_32k_enable(bool enable)
|
|
{
|
|
if (enable) {
|
|
rtc_clk_32k_enable_internal(XTAL_32K_DAC_VAL, XTAL_32K_DRES_VAL, XTAL_32K_DBIAS_VAL);
|
|
} else {
|
|
/* Disable X32N and X32P pad drive external xtal */
|
|
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K_M);
|
|
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32N_MUX_SEL | RTC_IO_X32P_MUX_SEL);
|
|
|
|
#ifdef CONFIG_ESP32_RTC_EXTERNAL_CRYSTAL_ADDITIONAL_CURRENT
|
|
/* Power down TOUCH */
|
|
CLEAR_PERI_REG_MASK(RTC_IO_TOUCH_PAD9_REG, RTC_IO_TOUCH_PAD9_XPD_M);
|
|
#endif // CONFIG_ESP32_RTC_EXTERNAL_CRYSTAL_ADDITIONAL_CURRENT
|
|
}
|
|
}
|
|
|
|
/* Helping external 32kHz crystal to start up.
|
|
* External crystal connected to outputs GPIO32 GPIO33.
|
|
* Forms N pulses with a frequency of about 32KHz on the outputs of the crystal.
|
|
*/
|
|
void rtc_clk_32k_bootstrap(uint32_t cycle)
|
|
{
|
|
if (cycle){
|
|
const uint32_t pin_32 = 32;
|
|
const uint32_t pin_33 = 33;
|
|
const uint32_t mask_32 = (1 << (pin_32 - 32));
|
|
const uint32_t mask_33 = (1 << (pin_33 - 32));
|
|
|
|
gpio_pad_select_gpio(pin_32);
|
|
gpio_pad_select_gpio(pin_33);
|
|
gpio_output_set_high(mask_32, mask_33, mask_32 | mask_33, 0);
|
|
|
|
const uint32_t delay_us = (1000000 / RTC_SLOW_CLK_FREQ_32K / 2);
|
|
while(cycle){
|
|
gpio_output_set_high(mask_32, mask_33, mask_32 | mask_33, 0);
|
|
ets_delay_us(delay_us);
|
|
gpio_output_set_high(mask_33, mask_32, mask_32 | mask_33, 0);
|
|
ets_delay_us(delay_us);
|
|
cycle--;
|
|
}
|
|
gpio_output_set_high(0, 0, 0, mask_32 | mask_33); // disable pins
|
|
}
|
|
|
|
CLEAR_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K);
|
|
SET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_X32P_RUE | RTC_IO_X32N_RDE);
|
|
ets_delay_us(XTAL_32K_BOOTSTRAP_TIME_US);
|
|
|
|
rtc_clk_32k_enable_internal(XTAL_32K_BOOTSTRAP_DAC_VAL,
|
|
XTAL_32K_BOOTSTRAP_DRES_VAL, XTAL_32K_BOOTSTRAP_DBIAS_VAL);
|
|
}
|
|
|
|
bool rtc_clk_32k_enabled()
|
|
{
|
|
return GET_PERI_REG_MASK(RTC_IO_XTAL_32K_PAD_REG, RTC_IO_XPD_XTAL_32K) != 0;
|
|
}
|
|
|
|
void rtc_clk_8m_enable(bool clk_8m_en, bool d256_en)
|
|
{
|
|
if (clk_8m_en) {
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
|
|
/* no need to wait once enabled by software */
|
|
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, 1);
|
|
if (d256_en) {
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
|
|
} else {
|
|
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV);
|
|
}
|
|
ets_delay_us(DELAY_8M_ENABLE);
|
|
} else {
|
|
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M);
|
|
REG_SET_FIELD(RTC_CNTL_TIMER1_REG, RTC_CNTL_CK8M_WAIT, RTC_CNTL_CK8M_WAIT_DEFAULT);
|
|
}
|
|
}
|
|
|
|
bool rtc_clk_8m_enabled()
|
|
{
|
|
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M) == 0;
|
|
}
|
|
|
|
bool rtc_clk_8md256_enabled()
|
|
{
|
|
return GET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ENB_CK8M_DIV) == 0;
|
|
}
|
|
|
|
void rtc_clk_apll_enable(bool enable, uint32_t sdm0, uint32_t sdm1, uint32_t sdm2, uint32_t o_div)
|
|
{
|
|
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD, enable ? 0 : 1);
|
|
REG_SET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PU, enable ? 1 : 0);
|
|
|
|
if (!enable &&
|
|
REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL) != RTC_CNTL_SOC_CLK_SEL_PLL) {
|
|
REG_SET_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
|
|
} else {
|
|
REG_CLR_BIT(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
|
|
}
|
|
|
|
if (enable) {
|
|
uint8_t sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV1;
|
|
uint32_t is_rev0 = (GET_PERI_REG_BITS2(EFUSE_BLK0_RDATA3_REG, 1, 15) == 0);
|
|
if (is_rev0) {
|
|
sdm0 = 0;
|
|
sdm1 = 0;
|
|
sdm_stop_val_2 = APLL_SDM_STOP_VAL_2_REV0;
|
|
}
|
|
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM2, sdm2);
|
|
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM0, sdm0);
|
|
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_DSDM1, sdm1);
|
|
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, APLL_SDM_STOP_VAL_1);
|
|
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_SDM_STOP, sdm_stop_val_2);
|
|
I2C_WRITEREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_OUTPUT_DIV, o_div);
|
|
|
|
/* calibration */
|
|
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_1);
|
|
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_2);
|
|
I2C_WRITEREG_RTC(I2C_APLL, I2C_APLL_IR_CAL_DELAY, APLL_CAL_DELAY_3);
|
|
|
|
/* wait for calibration end */
|
|
while (!(I2C_READREG_MASK_RTC(I2C_APLL, I2C_APLL_OR_CAL_END))) {
|
|
/* use ets_delay_us so the RTC bus doesn't get flooded */
|
|
ets_delay_us(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void rtc_clk_slow_freq_set(rtc_slow_freq_t slow_freq)
|
|
{
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL, slow_freq);
|
|
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN,
|
|
(slow_freq == RTC_SLOW_FREQ_32K_XTAL) ? 1 : 0);
|
|
|
|
ets_delay_us(DELAY_SLOW_CLK_SWITCH);
|
|
}
|
|
|
|
rtc_slow_freq_t rtc_clk_slow_freq_get()
|
|
{
|
|
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
|
|
}
|
|
|
|
uint32_t rtc_clk_slow_freq_get_hz()
|
|
{
|
|
switch(rtc_clk_slow_freq_get()) {
|
|
case RTC_SLOW_FREQ_RTC: return RTC_SLOW_CLK_FREQ_150K;
|
|
case RTC_SLOW_FREQ_32K_XTAL: return RTC_SLOW_CLK_FREQ_32K;
|
|
case RTC_SLOW_FREQ_8MD256: return RTC_SLOW_CLK_FREQ_8MD256;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void rtc_clk_fast_freq_set(rtc_fast_freq_t fast_freq)
|
|
{
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL, fast_freq);
|
|
ets_delay_us(DELAY_FAST_CLK_SWITCH);
|
|
}
|
|
|
|
rtc_fast_freq_t rtc_clk_fast_freq_get()
|
|
{
|
|
return REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_FAST_CLK_RTC_SEL);
|
|
}
|
|
|
|
void rtc_clk_bbpll_set(rtc_xtal_freq_t xtal_freq, rtc_cpu_freq_t cpu_freq)
|
|
{
|
|
uint8_t div_ref;
|
|
uint8_t div7_0;
|
|
uint8_t div10_8;
|
|
uint8_t lref;
|
|
uint8_t dcur;
|
|
uint8_t bw;
|
|
|
|
/* reset BBPLL configuration */
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_IR_CAL_DELAY, BBPLL_IR_CAL_DELAY_VAL);
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_IR_CAL_EXT_CAP, BBPLL_IR_CAL_EXT_CAP_VAL);
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_ENB_FCAL, BBPLL_OC_ENB_FCAL_VAL);
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_ENB_VCON, BBPLL_OC_ENB_VCON_VAL);
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_CAL_7_0, BBPLL_BBADC_CAL_7_0_VAL);
|
|
|
|
if (cpu_freq != RTC_CPU_FREQ_240M) {
|
|
/* Raise the voltage, if needed */
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
|
|
/* Configure 320M PLL */
|
|
switch (xtal_freq) {
|
|
case RTC_XTAL_FREQ_40M:
|
|
div_ref = 0;
|
|
div7_0 = 32;
|
|
div10_8 = 0;
|
|
lref = 0;
|
|
dcur = 6;
|
|
bw = 3;
|
|
break;
|
|
case RTC_XTAL_FREQ_26M:
|
|
div_ref = 12;
|
|
div7_0 = 224;
|
|
div10_8 = 4;
|
|
lref = 1;
|
|
dcur = 0;
|
|
bw = 1;
|
|
break;
|
|
case RTC_XTAL_FREQ_24M:
|
|
div_ref = 11;
|
|
div7_0 = 224;
|
|
div10_8 = 4;
|
|
lref = 1;
|
|
dcur = 0;
|
|
bw = 1;
|
|
break;
|
|
default:
|
|
div_ref = 12;
|
|
div7_0 = 224;
|
|
div10_8 = 4;
|
|
lref = 0;
|
|
dcur = 0;
|
|
bw = 0;
|
|
break;
|
|
}
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_320M);
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_320M);
|
|
} else {
|
|
/* Raise the voltage */
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_240M);
|
|
ets_delay_us(DELAY_PLL_DBIAS_RAISE);
|
|
/* Configure 480M PLL */
|
|
switch (xtal_freq) {
|
|
case RTC_XTAL_FREQ_40M:
|
|
div_ref = 0;
|
|
div7_0 = 28;
|
|
div10_8 = 0;
|
|
lref = 0;
|
|
dcur = 6;
|
|
bw = 3;
|
|
break;
|
|
case RTC_XTAL_FREQ_26M:
|
|
div_ref = 12;
|
|
div7_0 = 144;
|
|
div10_8 = 4;
|
|
lref = 1;
|
|
dcur = 0;
|
|
bw = 1;
|
|
break;
|
|
case RTC_XTAL_FREQ_24M:
|
|
div_ref = 11;
|
|
div7_0 = 144;
|
|
div10_8 = 4;
|
|
lref = 1;
|
|
dcur = 0;
|
|
bw = 1;
|
|
break;
|
|
default:
|
|
div_ref = 12;
|
|
div7_0 = 224;
|
|
div10_8 = 4;
|
|
lref = 0;
|
|
dcur = 0;
|
|
bw = 0;
|
|
break;
|
|
}
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_ENDIV5, BBPLL_ENDIV5_VAL_480M);
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_BBADC_DSMP, BBPLL_BBADC_DSMP_VAL_480M);
|
|
}
|
|
|
|
uint8_t i2c_bbpll_lref = (lref << 7) | (div10_8 << 4) | (div_ref);
|
|
uint8_t i2c_bbpll_div_7_0 = div7_0;
|
|
uint8_t i2c_bbpll_dcur = (bw << 6) | dcur;
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_LREF, i2c_bbpll_lref);
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DIV_7_0, i2c_bbpll_div_7_0);
|
|
I2C_WRITEREG_RTC(I2C_BBPLL, I2C_BBPLL_OC_DCUR, i2c_bbpll_dcur);
|
|
uint32_t delay_pll_en = (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_RTC) ?
|
|
DELAY_PLL_ENABLE_WITH_150K : DELAY_PLL_ENABLE_WITH_32K;
|
|
ets_delay_us(delay_pll_en);
|
|
}
|
|
|
|
/**
|
|
* Switch to XTAL frequency. Does not disable the PLL.
|
|
*/
|
|
static void rtc_clk_cpu_freq_to_xtal()
|
|
{
|
|
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
|
|
ets_update_cpu_frequency(xtal_freq);
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
|
|
REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, 0);
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_XTL);
|
|
|
|
rtc_clk_apb_freq_update(xtal_freq * MHZ);
|
|
s_cur_freq = RTC_CPU_FREQ_XTAL;
|
|
}
|
|
|
|
/**
|
|
* Switch to one of PLL-based frequencies. Current frequency can be XTAL or PLL.
|
|
* PLL must already be enabled.
|
|
* If switching between frequencies derived from different PLLs (320M and 480M),
|
|
* fall back to rtc_clk_cpu_freq_set.
|
|
* @param cpu_freq new CPU frequency
|
|
*/
|
|
static void rtc_clk_cpu_freq_to_pll(rtc_cpu_freq_t cpu_freq)
|
|
{
|
|
int freq = 0;
|
|
if (s_cur_pll == RTC_PLL_NONE ||
|
|
(cpu_freq == RTC_CPU_FREQ_240M && s_cur_pll == RTC_PLL_320M) ||
|
|
(cpu_freq != RTC_CPU_FREQ_240M && s_cur_pll == RTC_PLL_480M)) {
|
|
/* need to switch PLLs, fall back to full implementation */
|
|
rtc_clk_cpu_freq_set(cpu_freq);
|
|
return;
|
|
}
|
|
|
|
if (cpu_freq == RTC_CPU_FREQ_80M) {
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
|
|
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL_80);
|
|
freq = 80;
|
|
} else if (cpu_freq == RTC_CPU_FREQ_160M) {
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_80M_160M);
|
|
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL_160);
|
|
freq = 160;
|
|
} else if (cpu_freq == RTC_CPU_FREQ_240M) {
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_240M);
|
|
DPORT_REG_WRITE(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL_240);
|
|
freq = 240;
|
|
}
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_PLL);
|
|
rtc_clk_apb_freq_update(80 * MHZ);
|
|
ets_update_cpu_frequency(freq);
|
|
s_cur_freq = cpu_freq;
|
|
}
|
|
|
|
void rtc_clk_cpu_freq_set_fast(rtc_cpu_freq_t cpu_freq)
|
|
{
|
|
if (cpu_freq == s_cur_freq) {
|
|
return;
|
|
} else if (cpu_freq == RTC_CPU_FREQ_2M || s_cur_freq == RTC_CPU_FREQ_2M) {
|
|
/* fall back to full implementation if switch to/from 2M is needed */
|
|
rtc_clk_cpu_freq_set(cpu_freq);
|
|
} else if (cpu_freq == RTC_CPU_FREQ_XTAL) {
|
|
rtc_clk_cpu_freq_to_xtal();
|
|
} else if (cpu_freq > RTC_CPU_FREQ_XTAL) {
|
|
rtc_clk_cpu_freq_to_pll(cpu_freq);
|
|
rtc_clk_wait_for_slow_cycle();
|
|
}
|
|
}
|
|
|
|
void rtc_clk_cpu_freq_set(rtc_cpu_freq_t cpu_freq)
|
|
{
|
|
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
|
|
/* Switch CPU to XTAL frequency first */
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_XTAL);
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_XTL);
|
|
REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, 0);
|
|
ets_update_cpu_frequency(xtal_freq);
|
|
|
|
/* Frequency switch is synchronized to SLOW_CLK cycle. Wait until the switch
|
|
* is complete before disabling the PLL.
|
|
*/
|
|
rtc_clk_wait_for_slow_cycle();
|
|
|
|
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
|
|
RTC_CNTL_BB_I2C_FORCE_PD | RTC_CNTL_BBPLL_FORCE_PD |
|
|
RTC_CNTL_BBPLL_I2C_FORCE_PD);
|
|
s_cur_pll = RTC_PLL_NONE;
|
|
rtc_clk_apb_freq_update(xtal_freq * MHZ);
|
|
|
|
/* is APLL under force power down? */
|
|
uint32_t apll_fpd = REG_GET_FIELD(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_PLLA_FORCE_PD);
|
|
if (apll_fpd) {
|
|
/* then also power down the internal I2C bus */
|
|
SET_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG, RTC_CNTL_BIAS_I2C_FORCE_PD);
|
|
}
|
|
/* now switch to the desired frequency */
|
|
if (cpu_freq == RTC_CPU_FREQ_XTAL) {
|
|
/* already at XTAL, nothing to do */
|
|
} else if (cpu_freq == RTC_CPU_FREQ_2M) {
|
|
/* set up divider to produce 2MHz from XTAL */
|
|
REG_SET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT, (xtal_freq / 2) - 1);
|
|
ets_update_cpu_frequency(2);
|
|
rtc_clk_apb_freq_update(2 * MHZ);
|
|
/* lower the voltage */
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_DIG_DBIAS_WAK, DIG_DBIAS_2M);
|
|
} else {
|
|
/* use PLL as clock source */
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_OPTIONS0_REG,
|
|
RTC_CNTL_BIAS_I2C_FORCE_PD | RTC_CNTL_BB_I2C_FORCE_PD |
|
|
RTC_CNTL_BBPLL_FORCE_PD | RTC_CNTL_BBPLL_I2C_FORCE_PD);
|
|
rtc_clk_bbpll_set(xtal_freq, cpu_freq);
|
|
if (cpu_freq == RTC_CPU_FREQ_80M) {
|
|
DPORT_REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, DPORT_CPUPERIOD_SEL_80);
|
|
ets_update_cpu_frequency(80);
|
|
s_cur_pll = RTC_PLL_320M;
|
|
} else if (cpu_freq == RTC_CPU_FREQ_160M) {
|
|
DPORT_REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, DPORT_CPUPERIOD_SEL_160);
|
|
ets_update_cpu_frequency(160);
|
|
s_cur_pll = RTC_PLL_320M;
|
|
} else if (cpu_freq == RTC_CPU_FREQ_240M) {
|
|
DPORT_REG_SET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL, DPORT_CPUPERIOD_SEL_240);
|
|
ets_update_cpu_frequency(240);
|
|
s_cur_pll = RTC_PLL_480M;
|
|
}
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL, RTC_CNTL_SOC_CLK_SEL_PLL);
|
|
rtc_clk_wait_for_slow_cycle();
|
|
rtc_clk_apb_freq_update(80 * MHZ);
|
|
}
|
|
s_cur_freq = cpu_freq;
|
|
}
|
|
|
|
rtc_cpu_freq_t rtc_clk_cpu_freq_get()
|
|
{
|
|
uint32_t soc_clk_sel = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL);
|
|
switch (soc_clk_sel) {
|
|
case RTC_CNTL_SOC_CLK_SEL_XTL: {
|
|
uint32_t pre_div = REG_GET_FIELD(APB_CTRL_SYSCLK_CONF_REG, APB_CTRL_PRE_DIV_CNT);
|
|
if (pre_div == 0) {
|
|
return RTC_CPU_FREQ_XTAL;
|
|
} else if (pre_div == rtc_clk_xtal_freq_get() / 2 - 1) {
|
|
return RTC_CPU_FREQ_2M;
|
|
} else {
|
|
assert(false && "unsupported frequency");
|
|
}
|
|
break;
|
|
}
|
|
case RTC_CNTL_SOC_CLK_SEL_PLL: {
|
|
uint32_t cpuperiod_sel = DPORT_REG_GET_FIELD(DPORT_CPU_PER_CONF_REG, DPORT_CPUPERIOD_SEL);
|
|
if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_80) {
|
|
return RTC_CPU_FREQ_80M;
|
|
} else if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_160) {
|
|
return RTC_CPU_FREQ_160M;
|
|
} else if (cpuperiod_sel == DPORT_CPUPERIOD_SEL_240) {
|
|
return RTC_CPU_FREQ_240M;
|
|
} else {
|
|
assert(false && "unsupported frequency");
|
|
}
|
|
break;
|
|
}
|
|
case RTC_CNTL_SOC_CLK_SEL_APLL:
|
|
case RTC_CNTL_SOC_CLK_SEL_8M:
|
|
default:
|
|
assert(false && "unsupported frequency");
|
|
}
|
|
return RTC_CNTL_SOC_CLK_SEL_XTL;
|
|
}
|
|
|
|
uint32_t rtc_clk_cpu_freq_value(rtc_cpu_freq_t cpu_freq)
|
|
{
|
|
switch (cpu_freq) {
|
|
case RTC_CPU_FREQ_XTAL:
|
|
return ((uint32_t) rtc_clk_xtal_freq_get()) * MHZ;
|
|
case RTC_CPU_FREQ_2M:
|
|
return 2 * MHZ;
|
|
case RTC_CPU_FREQ_80M:
|
|
return 80 * MHZ;
|
|
case RTC_CPU_FREQ_160M:
|
|
return 160 * MHZ;
|
|
case RTC_CPU_FREQ_240M:
|
|
return 240 * MHZ;
|
|
default:
|
|
assert(false && "invalid rtc_cpu_freq_t value");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
bool rtc_clk_cpu_freq_from_mhz(int mhz, rtc_cpu_freq_t* out_val)
|
|
{
|
|
if (mhz == 240) {
|
|
*out_val = RTC_CPU_FREQ_240M;
|
|
} else if (mhz == 160) {
|
|
*out_val = RTC_CPU_FREQ_160M;
|
|
} else if (mhz == 80) {
|
|
*out_val = RTC_CPU_FREQ_80M;
|
|
} else if (mhz == (int) rtc_clk_xtal_freq_get()) {
|
|
*out_val = RTC_CPU_FREQ_XTAL;
|
|
} else if (mhz == 2) {
|
|
*out_val = RTC_CPU_FREQ_2M;
|
|
} else {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Values of RTC_XTAL_FREQ_REG and RTC_APB_FREQ_REG are stored as two copies in
|
|
* lower and upper 16-bit halves. These are the routines to work with such a
|
|
* representation.
|
|
*/
|
|
static bool clk_val_is_valid(uint32_t val) {
|
|
return (val & 0xffff) == ((val >> 16) & 0xffff) &&
|
|
val != 0 &&
|
|
val != UINT32_MAX;
|
|
}
|
|
|
|
static uint32_t reg_val_to_clk_val(uint32_t val) {
|
|
return val & UINT16_MAX;
|
|
}
|
|
|
|
static uint32_t clk_val_to_reg_val(uint32_t val) {
|
|
return (val & UINT16_MAX) | ((val & UINT16_MAX) << 16);
|
|
}
|
|
|
|
rtc_xtal_freq_t rtc_clk_xtal_freq_get()
|
|
{
|
|
/* We may have already written XTAL value into RTC_XTAL_FREQ_REG */
|
|
uint32_t xtal_freq_reg = READ_PERI_REG(RTC_XTAL_FREQ_REG);
|
|
if (!clk_val_is_valid(xtal_freq_reg)) {
|
|
SOC_LOGW(TAG, "invalid RTC_XTAL_FREQ_REG value: 0x%08x", xtal_freq_reg);
|
|
return RTC_XTAL_FREQ_AUTO;
|
|
}
|
|
return reg_val_to_clk_val(xtal_freq_reg);
|
|
}
|
|
|
|
void rtc_clk_xtal_freq_update(rtc_xtal_freq_t xtal_freq)
|
|
{
|
|
WRITE_PERI_REG(RTC_XTAL_FREQ_REG, clk_val_to_reg_val(xtal_freq));
|
|
}
|
|
|
|
static rtc_xtal_freq_t rtc_clk_xtal_freq_estimate()
|
|
{
|
|
/* Enable 8M/256 clock if needed */
|
|
const bool clk_8m_enabled = rtc_clk_8m_enabled();
|
|
const bool clk_8md256_enabled = rtc_clk_8md256_enabled();
|
|
if (!clk_8md256_enabled) {
|
|
rtc_clk_8m_enable(true, true);
|
|
}
|
|
|
|
uint64_t cal_val = rtc_clk_cal_ratio(RTC_CAL_8MD256, XTAL_FREQ_EST_CYCLES);
|
|
/* cal_val contains period of 8M/256 clock in XTAL clock cycles
|
|
* (shifted by RTC_CLK_CAL_FRACT bits).
|
|
* Xtal frequency will be (cal_val * 8M / 256) / 2^19
|
|
*/
|
|
uint32_t freq_mhz = (cal_val * RTC_FAST_CLK_FREQ_APPROX / MHZ / 256 ) >> RTC_CLK_CAL_FRACT;
|
|
/* Guess the XTAL type. For now, only 40 and 26MHz are supported.
|
|
*/
|
|
switch (freq_mhz) {
|
|
case 21 ... 31:
|
|
return RTC_XTAL_FREQ_26M;
|
|
case 32 ... 33:
|
|
SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 26 MHz", freq_mhz);
|
|
return RTC_XTAL_FREQ_26M;
|
|
case 34 ... 35:
|
|
SOC_LOGW(TAG, "Potentially bogus XTAL frequency: %d MHz, guessing 40 MHz", freq_mhz);
|
|
return RTC_XTAL_FREQ_40M;
|
|
case 36 ... 45:
|
|
return RTC_XTAL_FREQ_40M;
|
|
default:
|
|
SOC_LOGW(TAG, "Bogus XTAL frequency: %d MHz", freq_mhz);
|
|
return RTC_XTAL_FREQ_AUTO;
|
|
}
|
|
/* Restore 8M and 8md256 clocks to original state */
|
|
rtc_clk_8m_enable(clk_8m_enabled, clk_8md256_enabled);
|
|
}
|
|
|
|
void rtc_clk_apb_freq_update(uint32_t apb_freq)
|
|
{
|
|
WRITE_PERI_REG(RTC_APB_FREQ_REG, clk_val_to_reg_val(apb_freq >> 12));
|
|
}
|
|
|
|
uint32_t rtc_clk_apb_freq_get()
|
|
{
|
|
uint32_t freq_hz = reg_val_to_clk_val(READ_PERI_REG(RTC_APB_FREQ_REG)) << 12;
|
|
// round to the nearest MHz
|
|
freq_hz += MHZ / 2;
|
|
uint32_t remainder = freq_hz % MHZ;
|
|
return freq_hz - remainder;
|
|
}
|
|
|
|
|
|
void rtc_clk_init(rtc_clk_config_t cfg)
|
|
{
|
|
rtc_cpu_freq_t cpu_source_before = rtc_clk_cpu_freq_get();
|
|
|
|
/* If we get a TG WDT system reset while running at 240MHz,
|
|
* DPORT_CPUPERIOD_SEL register will be reset to 0 resulting in 120MHz
|
|
* APB and CPU frequencies after reset. This will cause issues with XTAL
|
|
* frequency estimation, so we switch to XTAL frequency first.
|
|
*
|
|
* Ideally we would only do this if RTC_CNTL_SOC_CLK_SEL == PLL and
|
|
* PLL is configured for 480M, but it takes less time to switch to 40M and
|
|
* run the following code than querying the PLL does.
|
|
*/
|
|
if (REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_SOC_CLK_SEL) == RTC_CNTL_SOC_CLK_SEL_PLL) {
|
|
rtc_clk_cpu_freq_set(RTC_CPU_FREQ_XTAL);
|
|
}
|
|
|
|
/* Set tuning parameters for 8M and 150k clocks.
|
|
* Note: this doesn't attempt to set the clocks to precise frequencies.
|
|
* Instead, we calibrate these clocks against XTAL frequency later, when necessary.
|
|
* - SCK_DCAP value controls tuning of 150k clock.
|
|
* The higher the value of DCAP is, the lower is the frequency.
|
|
* - CK8M_DFREQ value controls tuning of 8M clock.
|
|
* CLK_8M_DFREQ constant gives the best temperature characteristics.
|
|
*/
|
|
REG_SET_FIELD(RTC_CNTL_REG, RTC_CNTL_SCK_DCAP, cfg.slow_clk_dcap);
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DFREQ, cfg.clk_8m_dfreq);
|
|
|
|
/* Configure 8M clock division */
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_CK8M_DIV_SEL, cfg.clk_8m_div);
|
|
|
|
/* Enable the internal bus used to configure PLLs */
|
|
SET_PERI_REG_BITS(ANA_CONFIG_REG, ANA_CONFIG_M, ANA_CONFIG_M, ANA_CONFIG_S);
|
|
CLEAR_PERI_REG_MASK(ANA_CONFIG_REG, I2C_APLL_M | I2C_BBPLL_M);
|
|
|
|
/* Estimate XTAL frequency */
|
|
rtc_xtal_freq_t xtal_freq = cfg.xtal_freq;
|
|
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
|
|
if (clk_val_is_valid(READ_PERI_REG(RTC_XTAL_FREQ_REG))) {
|
|
/* XTAL frequency has already been set, use existing value */
|
|
xtal_freq = rtc_clk_xtal_freq_get();
|
|
} else {
|
|
/* Not set yet, estimate XTAL frequency based on RTC_FAST_CLK */
|
|
xtal_freq = rtc_clk_xtal_freq_estimate();
|
|
if (xtal_freq == RTC_XTAL_FREQ_AUTO) {
|
|
SOC_LOGW(TAG, "Can't estimate XTAL frequency, assuming 26MHz");
|
|
xtal_freq = RTC_XTAL_FREQ_26M;
|
|
}
|
|
}
|
|
} else if (!clk_val_is_valid(READ_PERI_REG(RTC_XTAL_FREQ_REG))) {
|
|
/* Exact frequency was set in sdkconfig, but still warn if autodetected
|
|
* frequency is different. If autodetection failed, worst case we get a
|
|
* bit of garbage output.
|
|
*/
|
|
rtc_xtal_freq_t est_xtal_freq = rtc_clk_xtal_freq_estimate();
|
|
if (est_xtal_freq != xtal_freq) {
|
|
SOC_LOGW(TAG, "Possibly invalid CONFIG_ESP32_XTAL_FREQ setting (%dMHz). Detected %d MHz.",
|
|
xtal_freq, est_xtal_freq);
|
|
}
|
|
}
|
|
uart_tx_wait_idle(0);
|
|
rtc_clk_xtal_freq_update(xtal_freq);
|
|
rtc_clk_apb_freq_update(xtal_freq * MHZ);
|
|
/* Set CPU frequency */
|
|
rtc_clk_cpu_freq_set(cfg.cpu_freq);
|
|
|
|
/* Re-calculate the ccount to make time calculation correct. */
|
|
uint32_t freq_before = rtc_clk_cpu_freq_value(cpu_source_before) / MHZ;
|
|
uint32_t freq_after = rtc_clk_cpu_freq_value(cfg.cpu_freq) / MHZ;
|
|
XTHAL_SET_CCOUNT( XTHAL_GET_CCOUNT() * freq_after / freq_before );
|
|
|
|
/* Slow & fast clocks setup */
|
|
if (cfg.slow_freq == RTC_SLOW_FREQ_32K_XTAL) {
|
|
rtc_clk_32k_enable(true);
|
|
}
|
|
if (cfg.fast_freq == RTC_FAST_FREQ_8M) {
|
|
bool need_8md256 = cfg.slow_freq == RTC_SLOW_FREQ_8MD256;
|
|
rtc_clk_8m_enable(true, need_8md256);
|
|
}
|
|
rtc_clk_fast_freq_set(cfg.fast_freq);
|
|
rtc_clk_slow_freq_set(cfg.slow_freq);
|
|
}
|
|
|
|
/* Name used in libphy.a:phy_chip_v7.o
|
|
* TODO: update the library to use rtc_clk_xtal_freq_get
|
|
*/
|
|
rtc_xtal_freq_t rtc_get_xtal() __attribute__((alias("rtc_clk_xtal_freq_get")));
|