OVMS3-idf/components/esp32/spiram_psram.c
2020-08-13 03:29:42 +00:00

1057 lines
45 KiB
C

/*
Driver bits for PSRAM chips (at the moment only the ESP-PSRAM32 chip).
*/
// Copyright 2013-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "sdkconfig.h"
#include "string.h"
#include "esp_attr.h"
#include "esp_err.h"
#include "esp_types.h"
#include "esp_log.h"
#include "spiram_psram.h"
#include "rom/ets_sys.h"
#include "rom/spi_flash.h"
#include "rom/gpio.h"
#include "rom/cache.h"
#include "rom/efuse.h"
#include "soc/io_mux_reg.h"
#include "soc/dport_reg.h"
#include "soc/gpio_sig_map.h"
#include "soc/efuse_reg.h"
#include "driver/gpio.h"
#include "driver/spi_common.h"
#include "driver/periph_ctrl.h"
#include "bootloader_common.h"
#if CONFIG_SPIRAM_SUPPORT
#include "soc/rtc.h"
//Commands for PSRAM chip
#define PSRAM_READ 0x03
#define PSRAM_FAST_READ 0x0B
#define PSRAM_FAST_READ_DUMMY 0x3
#define PSRAM_FAST_READ_QUAD 0xEB
#define PSRAM_FAST_READ_QUAD_DUMMY 0x5
#define PSRAM_WRITE 0x02
#define PSRAM_QUAD_WRITE 0x38
#define PSRAM_ENTER_QMODE 0x35
#define PSRAM_EXIT_QMODE 0xF5
#define PSRAM_RESET_EN 0x66
#define PSRAM_RESET 0x99
#define PSRAM_SET_BURST_LEN 0xC0
#define PSRAM_DEVICE_ID 0x9F
typedef enum {
PSRAM_CLK_MODE_NORM = 0, /*!< Normal SPI mode */
PSRAM_CLK_MODE_DCLK = 1, /*!< Two extra clock cycles after CS is set high level */
} psram_clk_mode_t;
#define PSRAM_ID_KGD_M 0xff
#define PSRAM_ID_KGD_S 8
#define PSRAM_ID_KGD 0x5d
#define PSRAM_ID_EID_M 0xff
#define PSRAM_ID_EID_S 16
// Use the [7:5](bit7~bit5) of EID to distinguish the psram size:
//
// BIT7 | BIT6 | BIT5 | SIZE(MBIT)
// -------------------------------------
// 0 | 0 | 0 | 16
// 0 | 0 | 1 | 32
// 0 | 1 | 0 | 64
#define PSRAM_EID_SIZE_M 0x07
#define PSRAM_EID_SIZE_S 5
typedef enum {
PSRAM_EID_SIZE_16MBITS = 0,
PSRAM_EID_SIZE_32MBITS = 1,
PSRAM_EID_SIZE_64MBITS = 2,
} psram_eid_size_t;
#define PSRAM_KGD(id) (((id) >> PSRAM_ID_KGD_S) & PSRAM_ID_KGD_M)
#define PSRAM_EID(id) (((id) >> PSRAM_ID_EID_S) & PSRAM_ID_EID_M)
#define PSRAM_SIZE_ID(id) ((PSRAM_EID(id) >> PSRAM_EID_SIZE_S) & PSRAM_EID_SIZE_M)
#define PSRAM_IS_VALID(id) (PSRAM_KGD(id) == PSRAM_ID_KGD)
// For the old version 32Mbit psram, using the spicial driver */
#define PSRAM_IS_32MBIT_VER0(id) (PSRAM_EID(id) == 0x20)
#define PSRAM_IS_64MBIT_TRIAL(id) (PSRAM_EID(id) == 0x26)
// IO-pins for PSRAM.
// WARNING: PSRAM shares all but the CS and CLK pins with the flash, so these defines
// hardcode the flash pins as well, making this code incompatible with either a setup
// that has the flash on non-standard pins or ESP32s with built-in flash.
#define PSRAM_SPIQ_SD0_IO 7
#define PSRAM_SPID_SD1_IO 8
#define PSRAM_SPIWP_SD3_IO 10
#define PSRAM_SPIHD_SD2_IO 9
#define FLASH_HSPI_CLK_IO 14
#define FLASH_HSPI_CS_IO 15
#define PSRAM_HSPI_SPIQ_SD0_IO 12
#define PSRAM_HSPI_SPID_SD1_IO 13
#define PSRAM_HSPI_SPIWP_SD3_IO 2
#define PSRAM_HSPI_SPIHD_SD2_IO 4
// PSRAM clock and cs IO should be configured based on hardware design.
// For ESP32-WROVER or ESP32-WROVER-B module, the clock IO is IO17, the cs IO is IO16,
// they are the default value for these two configs.
#define D0WD_PSRAM_CLK_IO CONFIG_D0WD_PSRAM_CLK_IO // Default value is 17
#define D0WD_PSRAM_CS_IO CONFIG_D0WD_PSRAM_CS_IO // Default value is 16
#define D2WD_PSRAM_CLK_IO CONFIG_D2WD_PSRAM_CLK_IO // Default value is 9
#define D2WD_PSRAM_CS_IO CONFIG_D2WD_PSRAM_CS_IO // Default value is 10
// For ESP32-PICO chip, the psram share clock with flash. The flash clock pin is fixed, which is IO6.
#define PICO_PSRAM_CLK_IO 6
#define PICO_PSRAM_CS_IO CONFIG_PICO_PSRAM_CS_IO // Default value is 10
typedef struct {
uint8_t flash_clk_io;
uint8_t flash_cs_io;
uint8_t psram_clk_io;
uint8_t psram_cs_io;
uint8_t psram_spiq_sd0_io;
uint8_t psram_spid_sd1_io;
uint8_t psram_spiwp_sd3_io;
uint8_t psram_spihd_sd2_io;
} psram_io_t;
#define PSRAM_INTERNAL_IO_28 28
#define PSRAM_INTERNAL_IO_29 29
#define PSRAM_IO_MATRIX_DUMMY_40M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_40M
#define PSRAM_IO_MATRIX_DUMMY_80M ESP_ROM_SPIFLASH_DUMMY_LEN_PLUS_80M
#define _SPI_CACHE_PORT 0
#define _SPI_FLASH_PORT 1
#define _SPI_80M_CLK_DIV 1
#define _SPI_40M_CLK_DIV 2
//For 4MB PSRAM, we need one more SPI host, select which one to use by kconfig
#ifdef CONFIG_SPIRAM_OCCUPY_HSPI_HOST
#define PSRAM_SPI_MODULE PERIPH_HSPI_MODULE
#define PSRAM_SPI_HOST HSPI_HOST
#define PSRAM_CLK_SIGNAL HSPICLK_OUT_IDX
#define PSRAM_SPI_NUM PSRAM_SPI_2
#define PSRAM_SPICLKEN DPORT_SPI2_CLK_EN
#elif defined CONFIG_SPIRAM_OCCUPY_VSPI_HOST
#define PSRAM_SPI_MODULE PERIPH_VSPI_MODULE
#define PSRAM_SPI_HOST VSPI_HOST
#define PSRAM_CLK_SIGNAL VSPICLK_OUT_IDX
#define PSRAM_SPI_NUM PSRAM_SPI_3
#define PSRAM_SPICLKEN DPORT_SPI3_CLK_EN
#else //set to SPI avoid HSPI and VSPI being used
#define PSRAM_SPI_MODULE PERIPH_SPI_MODULE
#define PSRAM_SPI_HOST SPI_HOST
#define PSRAM_CLK_SIGNAL SPICLK_OUT_IDX
#define PSRAM_SPI_NUM PSRAM_SPI_1
#define PSRAM_SPICLKEN DPORT_SPI01_CLK_EN
#endif
static const char* TAG = "psram";
typedef enum {
PSRAM_SPI_1 = 0x1,
PSRAM_SPI_2,
PSRAM_SPI_3,
PSRAM_SPI_MAX ,
} psram_spi_num_t;
static psram_cache_mode_t s_psram_mode = PSRAM_CACHE_MAX;
static psram_clk_mode_t s_clk_mode = PSRAM_CLK_MODE_DCLK;
static uint64_t s_psram_id = 0;
static bool s_2t_mode_enabled = false;
/* dummy_len_plus values defined in ROM for SPI flash configuration */
extern uint8_t g_rom_spiflash_dummy_len_plus[];
static int extra_dummy = 0;
typedef enum {
PSRAM_CMD_QPI,
PSRAM_CMD_SPI,
} psram_cmd_mode_t;
typedef struct {
uint16_t cmd; /*!< Command value */
uint16_t cmdBitLen; /*!< Command byte length*/
uint32_t *addr; /*!< Point to address value*/
uint16_t addrBitLen; /*!< Address byte length*/
uint32_t *txData; /*!< Point to send data buffer*/
uint16_t txDataBitLen; /*!< Send data byte length.*/
uint32_t *rxData; /*!< Point to recevie data buffer*/
uint16_t rxDataBitLen; /*!< Recevie Data byte length.*/
uint32_t dummyBitLen;
} psram_cmd_t;
static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode);
static void psram_clear_spi_fifo(psram_spi_num_t spi_num)
{
int i;
for (i = 0; i < 16; i++) {
WRITE_PERI_REG(SPI_W0_REG(spi_num)+i*4, 0);
}
}
//set basic SPI write mode
static void psram_set_basic_write_mode(psram_spi_num_t spi_num)
{
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
}
//set QPI write mode
static void psram_set_qio_write_mode(psram_spi_num_t spi_num)
{
SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QIO);
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DIO);
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_QUAD);
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_FWRITE_DUAL);
}
//set QPI read mode
static void psram_set_qio_read_mode(psram_spi_num_t spi_num)
{
SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
}
//set SPI read mode
static void psram_set_basic_read_mode(psram_spi_num_t spi_num)
{
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QIO);
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_QUAD);
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DUAL);
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_FREAD_DIO);
}
//start sending cmd/addr and optionally, receiving data
static void IRAM_ATTR psram_cmd_recv_start(psram_spi_num_t spi_num, uint32_t* pRxData, uint16_t rxByteLen,
psram_cmd_mode_t cmd_mode)
{
//get cs1
CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
uint32_t mode_backup = (READ_PERI_REG(SPI_USER_REG(spi_num)) >> SPI_FWRITE_DUAL_S) & 0xf;
uint32_t rd_mode_backup = READ_PERI_REG(SPI_CTRL_REG(spi_num)) & (SPI_FREAD_DIO_M | SPI_FREAD_DUAL_M | SPI_FREAD_QUAD_M | SPI_FREAD_QIO_M);
if (cmd_mode == PSRAM_CMD_SPI) {
psram_set_basic_write_mode(spi_num);
psram_set_basic_read_mode(spi_num);
} else if (cmd_mode == PSRAM_CMD_QPI) {
psram_set_qio_write_mode(spi_num);
psram_set_qio_read_mode(spi_num);
}
//Wait for SPI0 to idle
while ( READ_PERI_REG(SPI_EXT2_REG(0)) != 0);
DPORT_SET_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
// Start send data
SET_PERI_REG_MASK(SPI_CMD_REG(spi_num), SPI_USR);
while ((READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR));
DPORT_CLEAR_PERI_REG_MASK(DPORT_HOST_INF_SEL_REG, 1 << 14);
//recover spi mode
SET_PERI_REG_BITS(SPI_USER_REG(spi_num), (pRxData?SPI_FWRITE_DUAL_M:0xf), mode_backup, SPI_FWRITE_DUAL_S);
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), (SPI_FREAD_DIO_M|SPI_FREAD_DUAL_M|SPI_FREAD_QUAD_M|SPI_FREAD_QIO_M));
SET_PERI_REG_MASK(SPI_CTRL_REG(spi_num), rd_mode_backup);
//return cs to cs0
SET_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS1_DIS_M);
CLEAR_PERI_REG_MASK(SPI_PIN_REG(PSRAM_SPI_1), SPI_CS0_DIS_M);
if (pRxData) {
int idx = 0;
// Read data out
do {
*pRxData++ = READ_PERI_REG(SPI_W0_REG(spi_num) + (idx << 2));
} while (++idx < ((rxByteLen / 4) + ((rxByteLen % 4) ? 1 : 0)));
}
}
static uint32_t backup_usr[3];
static uint32_t backup_usr1[3];
static uint32_t backup_usr2[3];
//setup spi command/addr/data/dummy in user mode
static int psram_cmd_config(psram_spi_num_t spi_num, psram_cmd_t* pInData)
{
while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
backup_usr[spi_num]=READ_PERI_REG(SPI_USER_REG(spi_num));
backup_usr1[spi_num]=READ_PERI_REG(SPI_USER1_REG(spi_num));
backup_usr2[spi_num]=READ_PERI_REG(SPI_USER2_REG(spi_num));
// Set command by user.
if (pInData->cmdBitLen != 0) {
// Max command length 16 bits.
SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, pInData->cmdBitLen - 1,
SPI_USR_COMMAND_BITLEN_S);
// Enable command
SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
// Load command,bit15-0 is cmd value.
SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_VALUE, pInData->cmd, SPI_USR_COMMAND_VALUE_S);
} else {
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_COMMAND);
SET_PERI_REG_BITS(SPI_USER2_REG(spi_num), SPI_USR_COMMAND_BITLEN, 0, SPI_USR_COMMAND_BITLEN_S);
}
// Set Address by user.
if (pInData->addrBitLen != 0) {
SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, (pInData->addrBitLen - 1), SPI_USR_ADDR_BITLEN_S);
// Enable address
SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
// Set address
WRITE_PERI_REG(SPI_ADDR_REG(spi_num), *pInData->addr);
} else {
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_ADDR);
SET_PERI_REG_BITS(SPI_USER1_REG(spi_num), SPI_USR_ADDR_BITLEN, 0, SPI_USR_ADDR_BITLEN_S);
}
// Set data by user.
uint32_t* p_tx_val = pInData->txData;
if (pInData->txDataBitLen != 0) {
// Enable MOSI
SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
// Load send buffer
int len = (pInData->txDataBitLen + 31) / 32;
if (p_tx_val != NULL) {
memcpy((void*)SPI_W0_REG(spi_num), p_tx_val, len * 4);
}
// Set data send buffer length.Max data length 64 bytes.
SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, (pInData->txDataBitLen - 1),
SPI_USR_MOSI_DBITLEN_S);
} else {
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MOSI);
SET_PERI_REG_BITS(SPI_MOSI_DLEN_REG(spi_num), SPI_USR_MOSI_DBITLEN, 0, SPI_USR_MOSI_DBITLEN_S);
}
// Set rx data by user.
if (pInData->rxDataBitLen != 0) {
// Enable MOSI
SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
// Set data send buffer length.Max data length 64 bytes.
SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, (pInData->rxDataBitLen - 1),
SPI_USR_MISO_DBITLEN_S);
} else {
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_USR_MISO);
SET_PERI_REG_BITS(SPI_MISO_DLEN_REG(spi_num), SPI_USR_MISO_DBITLEN, 0, SPI_USR_MISO_DBITLEN_S);
}
if (pInData->dummyBitLen != 0) {
SET_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, pInData->dummyBitLen - 1,
SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
} else {
CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_DUMMY); // dummy en
SET_PERI_REG_BITS(SPI_USER1_REG(PSRAM_SPI_1), SPI_USR_DUMMY_CYCLELEN_V, 0, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
}
return 0;
}
static void psram_cmd_end(int spi_num) {
while (READ_PERI_REG(SPI_CMD_REG(spi_num)) & SPI_USR);
WRITE_PERI_REG(SPI_USER_REG(spi_num), backup_usr[spi_num]);
WRITE_PERI_REG(SPI_USER1_REG(spi_num), backup_usr1[spi_num]);
WRITE_PERI_REG(SPI_USER2_REG(spi_num), backup_usr2[spi_num]);
}
//exit QPI mode(set back to SPI mode)
static void psram_disable_qio_mode(psram_spi_num_t spi_num)
{
psram_cmd_t ps_cmd;
uint32_t cmd_exit_qpi;
cmd_exit_qpi = PSRAM_EXIT_QMODE;
ps_cmd.txDataBitLen = 8;
if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
switch (s_psram_mode) {
case PSRAM_CACHE_F80M_S80M:
break;
case PSRAM_CACHE_F80M_S40M:
case PSRAM_CACHE_F40M_S40M:
default:
cmd_exit_qpi = PSRAM_EXIT_QMODE << 8;
ps_cmd.txDataBitLen = 16;
break;
}
}
ps_cmd.txData = &cmd_exit_qpi;
ps_cmd.cmd = 0;
ps_cmd.cmdBitLen = 0;
ps_cmd.addr = 0;
ps_cmd.addrBitLen = 0;
ps_cmd.rxData = NULL;
ps_cmd.rxDataBitLen = 0;
ps_cmd.dummyBitLen = 0;
psram_cmd_config(spi_num, &ps_cmd);
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_QPI);
psram_cmd_end(spi_num);
}
//read psram id
static void psram_read_id(uint64_t* dev_id)
{
psram_spi_num_t spi_num = PSRAM_SPI_1;
psram_disable_qio_mode(spi_num);
uint32_t dummy_bits = 0 + extra_dummy;
uint32_t psram_id[2] = {0};
psram_cmd_t ps_cmd;
uint32_t addr = 0;
ps_cmd.addrBitLen = 3 * 8;
ps_cmd.cmd = PSRAM_DEVICE_ID;
ps_cmd.cmdBitLen = 8;
if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
switch (s_psram_mode) {
case PSRAM_CACHE_F80M_S80M:
break;
case PSRAM_CACHE_F80M_S40M:
case PSRAM_CACHE_F40M_S40M:
default:
ps_cmd.cmdBitLen = 2; //this two bits is used to delay 2 clock cycle
ps_cmd.cmd = 0;
addr = (PSRAM_DEVICE_ID << 24) | 0;
ps_cmd.addrBitLen = 4 * 8;
break;
}
}
ps_cmd.addr = &addr;
ps_cmd.txDataBitLen = 0;
ps_cmd.txData = NULL;
ps_cmd.rxDataBitLen = 8 * 8;
ps_cmd.rxData = psram_id;
ps_cmd.dummyBitLen = dummy_bits;
psram_cmd_config(spi_num, &ps_cmd);
psram_clear_spi_fifo(spi_num);
psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_SPI);
psram_cmd_end(spi_num);
*dev_id = (uint64_t)(((uint64_t)psram_id[1] << 32) | psram_id[0]);
}
//enter QPI mode
static esp_err_t IRAM_ATTR psram_enable_qio_mode(psram_spi_num_t spi_num)
{
psram_cmd_t ps_cmd;
uint32_t addr = (PSRAM_ENTER_QMODE << 24) | 0;
ps_cmd.cmdBitLen = 0;
if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
switch (s_psram_mode) {
case PSRAM_CACHE_F80M_S80M:
break;
case PSRAM_CACHE_F80M_S40M:
case PSRAM_CACHE_F40M_S40M:
default:
ps_cmd.cmdBitLen = 2;
break;
}
}
ps_cmd.cmd = 0;
ps_cmd.addr = &addr;
ps_cmd.addrBitLen = 8;
ps_cmd.txData = NULL;
ps_cmd.txDataBitLen = 0;
ps_cmd.rxData = NULL;
ps_cmd.rxDataBitLen = 0;
ps_cmd.dummyBitLen = 0;
psram_cmd_config(spi_num, &ps_cmd);
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
psram_cmd_end(spi_num);
return ESP_OK;
}
#if CONFIG_SPIRAM_2T_MODE
// use SPI user mode to write psram
static void spi_user_psram_write(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
{
uint32_t addr = (PSRAM_QUAD_WRITE << 24) | (address & 0x7fffff);
psram_cmd_t ps_cmd;
ps_cmd.cmdBitLen = 0;
ps_cmd.cmd = 0;
ps_cmd.addr = &addr;
ps_cmd.addrBitLen = 4 * 8;
ps_cmd.txDataBitLen = 32 * 8;
ps_cmd.txData = NULL;
ps_cmd.rxDataBitLen = 0;
ps_cmd.rxData = NULL;
ps_cmd.dummyBitLen = 0;
for(uint32_t i=0; i<data_len; i+=32) {
psram_clear_spi_fifo(spi_num);
addr = (PSRAM_QUAD_WRITE << 24) | ((address & 0x7fffff) + i);
ps_cmd.txData = data_buffer + (i / 4);
psram_cmd_config(spi_num, &ps_cmd);
psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
}
psram_cmd_end(spi_num);
}
// use SPI user mode to read psram
static void spi_user_psram_read(psram_spi_num_t spi_num, uint32_t address, uint32_t *data_buffer, uint32_t data_len)
{
uint32_t addr = (PSRAM_FAST_READ_QUAD << 24) | (address & 0x7fffff);
uint32_t dummy_bits = PSRAM_FAST_READ_QUAD_DUMMY + 1;
psram_cmd_t ps_cmd;
ps_cmd.cmdBitLen = 0;
ps_cmd.cmd = 0;
ps_cmd.addr = &addr;
ps_cmd.addrBitLen = 4 * 8;
ps_cmd.txDataBitLen = 0;
ps_cmd.txData = NULL;
ps_cmd.rxDataBitLen = 32 * 8;
ps_cmd.dummyBitLen = dummy_bits + extra_dummy;
for(uint32_t i=0; i<data_len; i+=32) {
psram_clear_spi_fifo(spi_num);
addr = (PSRAM_FAST_READ_QUAD << 24) | ((address & 0x7fffff) + i);
ps_cmd.rxData = data_buffer + (i / 4);
psram_cmd_config(spi_num, &ps_cmd);
psram_cmd_recv_start(spi_num, ps_cmd.rxData, ps_cmd.rxDataBitLen / 8, PSRAM_CMD_QPI);
}
psram_cmd_end(spi_num);
}
//enable psram 2T mode
static esp_err_t IRAM_ATTR psram_2t_mode_enable(psram_spi_num_t spi_num)
{
psram_disable_qio_mode(spi_num);
// configure psram clock as 5 MHz
uint32_t div = rtc_clk_apb_freq_get() / 5000000;
esp_rom_spiflash_config_clk(div, spi_num);
psram_cmd_t ps_cmd;
// setp1: send cmd 0x5e
// send one more bit clock after send cmd
ps_cmd.cmd = 0x5e;
ps_cmd.cmdBitLen = 8;
ps_cmd.addrBitLen = 0;
ps_cmd.addr = 0;
ps_cmd.txDataBitLen = 0;
ps_cmd.txData = NULL;
ps_cmd.rxDataBitLen =0;
ps_cmd.rxData = NULL;
ps_cmd.dummyBitLen = 1;
psram_cmd_config(spi_num, &ps_cmd);
psram_clear_spi_fifo(spi_num);
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
psram_cmd_end(spi_num);
// setp2: send cmd 0x5f
// send one more bit clock after send cmd
ps_cmd.cmd = 0x5f;
psram_cmd_config(spi_num, &ps_cmd);
psram_clear_spi_fifo(spi_num);
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
psram_cmd_end(spi_num);
// setp3: keep cs as high level
// send 128 cycles clock
// send 1 bit high levle in ninth clock from the back to PSRAM SIO1
GPIO_OUTPUT_SET(D0WD_PSRAM_CS_IO, 1);
gpio_matrix_out(D0WD_PSRAM_CS_IO, SIG_GPIO_OUT_IDX, 0, 0);
gpio_matrix_out(PSRAM_SPID_SD1_IO, SPIQ_OUT_IDX, 0, 0);
gpio_matrix_in(PSRAM_SPID_SD1_IO, SPIQ_IN_IDX, 0);
gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPID_OUT_IDX, 0, 0);
gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPID_IN_IDX, 0);
uint32_t w_data_2t[4] = {0x0, 0x0, 0x0, 0x00010000};
ps_cmd.cmd = 0;
ps_cmd.cmdBitLen = 0;
ps_cmd.txDataBitLen = 128;
ps_cmd.txData = w_data_2t;
ps_cmd.dummyBitLen = 0;
psram_clear_spi_fifo(spi_num);
psram_cmd_config(spi_num, &ps_cmd);
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
psram_cmd_end(spi_num);
gpio_matrix_out(PSRAM_SPIQ_SD0_IO, SPIQ_OUT_IDX, 0, 0);
gpio_matrix_in(PSRAM_SPIQ_SD0_IO, SPIQ_IN_IDX, 0);
gpio_matrix_out(PSRAM_SPID_SD1_IO, SPID_OUT_IDX, 0, 0);
gpio_matrix_in(PSRAM_SPID_SD1_IO, SPID_IN_IDX, 0);
gpio_matrix_out(D0WD_PSRAM_CS_IO, SPICS1_OUT_IDX, 0, 0);
// setp4: send cmd 0x5f
// send one more bit clock after send cmd
ps_cmd.cmd = 0x5f;
ps_cmd.cmdBitLen = 8;
ps_cmd.txDataBitLen = 0;
ps_cmd.txData = NULL;
ps_cmd.dummyBitLen = 1;
psram_cmd_config(spi_num, &ps_cmd);
psram_clear_spi_fifo(spi_num);
psram_cmd_recv_start(spi_num, NULL, 0, PSRAM_CMD_SPI);
psram_cmd_end(spi_num);
// configure psram clock back to the default value
switch (s_psram_mode) {
case PSRAM_CACHE_F80M_S40M:
case PSRAM_CACHE_F40M_S40M:
esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, spi_num);
break;
case PSRAM_CACHE_F80M_S80M:
esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, spi_num);
break;
default:
break;
}
psram_enable_qio_mode(spi_num);
return ESP_OK;
}
#define CHECK_DATA_LEN (1024)
#define CHECK_ADDR_STEP (0x100000)
#define SIZE_32MBIT (0x400000)
#define SIZE_64MBIT (0x800000)
static esp_err_t psram_2t_mode_check(psram_spi_num_t spi_num)
{
uint8_t w_check_data[CHECK_DATA_LEN] = {0};
uint8_t r_check_data[CHECK_DATA_LEN] = {0};
for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
}
memset(w_check_data, 0xff, sizeof(w_check_data));
for (uint32_t addr=SIZE_32MBIT; addr<SIZE_64MBIT; addr+=CHECK_ADDR_STEP) {
spi_user_psram_write(spi_num, addr, (uint32_t *)w_check_data, CHECK_DATA_LEN);
}
for (uint32_t addr=0; addr<SIZE_32MBIT; addr+=CHECK_ADDR_STEP) {
spi_user_psram_read(spi_num, addr, (uint32_t *)r_check_data, CHECK_DATA_LEN);
for (uint32_t j=0; j<CHECK_DATA_LEN; j++) {
if (r_check_data[j] != 0xff) {
return ESP_FAIL;
}
}
}
return ESP_OK;
}
#endif
void psram_set_cs_timing(psram_spi_num_t spi_num, psram_clk_mode_t clk_mode)
{
if (clk_mode == PSRAM_CLK_MODE_NORM) {
SET_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
// Set cs time.
SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_HOLD_TIME_V, 1, SPI_HOLD_TIME_S);
SET_PERI_REG_BITS(SPI_CTRL2_REG(spi_num), SPI_SETUP_TIME_V, 0, SPI_SETUP_TIME_S);
} else {
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CS_HOLD_M | SPI_CS_SETUP_M);
}
}
//spi param init for psram
void IRAM_ATTR psram_spi_init(psram_spi_num_t spi_num, psram_cache_mode_t mode)
{
CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_TRANS_DONE << 5);
// SPI_CPOL & SPI_CPHA
CLEAR_PERI_REG_MASK(SPI_PIN_REG(spi_num), SPI_CK_IDLE_EDGE);
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_CK_OUT_EDGE);
// SPI bit order
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_WR_BIT_ORDER);
CLEAR_PERI_REG_MASK(SPI_CTRL_REG(spi_num), SPI_RD_BIT_ORDER);
// SPI bit order
CLEAR_PERI_REG_MASK(SPI_USER_REG(spi_num), SPI_DOUTDIN);
// May be not must to do.
WRITE_PERI_REG(SPI_USER1_REG(spi_num), 0);
// SPI mode type
CLEAR_PERI_REG_MASK(SPI_SLAVE_REG(spi_num), SPI_SLAVE_MODE);
memset((void*)SPI_W0_REG(spi_num), 0, 16 * 4);
psram_set_cs_timing(spi_num, s_clk_mode);
}
//psram gpio init , different working frequency we have different solutions
static void IRAM_ATTR psram_gpio_config(psram_io_t *psram_io, psram_cache_mode_t mode)
{
int spi_cache_dummy = 0;
uint32_t rd_mode_reg = READ_PERI_REG(SPI_CTRL_REG(0));
if (rd_mode_reg & SPI_FREAD_QIO_M) {
spi_cache_dummy = SPI0_R_QIO_DUMMY_CYCLELEN;
} else if (rd_mode_reg & SPI_FREAD_DIO_M) {
spi_cache_dummy = SPI0_R_DIO_DUMMY_CYCLELEN;
SET_PERI_REG_BITS(SPI_USER1_REG(0), SPI_USR_ADDR_BITLEN_V, SPI0_R_DIO_ADDR_BITSLEN, SPI_USR_ADDR_BITLEN_S);
} else if (rd_mode_reg & (SPI_FREAD_QUAD_M | SPI_FREAD_DUAL_M)) {
spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
} else {
spi_cache_dummy = SPI0_R_FAST_DUMMY_CYCLELEN;
}
switch (mode) {
case PSRAM_CACHE_F80M_S40M:
extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
//set drive ability for clock
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
break;
case PSRAM_CACHE_F80M_S80M:
extra_dummy = PSRAM_IO_MATRIX_DUMMY_80M;
g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_80M;
SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_80M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_CACHE_PORT);
esp_rom_spiflash_config_clk(_SPI_80M_CLK_DIV, _SPI_FLASH_PORT);
//set drive ability for clock
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 3, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 3, FUN_DRV_S);
break;
case PSRAM_CACHE_F40M_S40M:
extra_dummy = PSRAM_IO_MATRIX_DUMMY_40M;
g_rom_spiflash_dummy_len_plus[_SPI_CACHE_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
g_rom_spiflash_dummy_len_plus[_SPI_FLASH_PORT] = PSRAM_IO_MATRIX_DUMMY_40M;
SET_PERI_REG_BITS(SPI_USER1_REG(_SPI_CACHE_PORT), SPI_USR_DUMMY_CYCLELEN_V, spi_cache_dummy + PSRAM_IO_MATRIX_DUMMY_40M, SPI_USR_DUMMY_CYCLELEN_S); //DUMMY
esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_CACHE_PORT);
esp_rom_spiflash_config_clk(_SPI_40M_CLK_DIV, _SPI_FLASH_PORT);
//set drive ability for clock
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV, 2, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV, 2, FUN_DRV_S);
break;
default:
break;
}
SET_PERI_REG_MASK(SPI_USER_REG(0), SPI_USR_DUMMY); // dummy enable
// In bootloader, all the signals are already configured,
// We keep the following code in case the bootloader is some older version.
gpio_matrix_out(psram_io->flash_cs_io, SPICS0_OUT_IDX, 0, 0);
gpio_matrix_out(psram_io->psram_cs_io, SPICS1_OUT_IDX, 0, 0);
gpio_matrix_out(psram_io->psram_spiq_sd0_io, SPIQ_OUT_IDX, 0, 0);
gpio_matrix_in(psram_io->psram_spiq_sd0_io, SPIQ_IN_IDX, 0);
gpio_matrix_out(psram_io->psram_spid_sd1_io, SPID_OUT_IDX, 0, 0);
gpio_matrix_in(psram_io->psram_spid_sd1_io, SPID_IN_IDX, 0);
gpio_matrix_out(psram_io->psram_spiwp_sd3_io, SPIWP_OUT_IDX, 0, 0);
gpio_matrix_in(psram_io->psram_spiwp_sd3_io, SPIWP_IN_IDX, 0);
gpio_matrix_out(psram_io->psram_spihd_sd2_io, SPIHD_OUT_IDX, 0, 0);
gpio_matrix_in(psram_io->psram_spihd_sd2_io, SPIHD_IN_IDX, 0);
//select pin function gpio
if ((psram_io->flash_clk_io == SPI_IOMUX_PIN_NUM_CLK) && (psram_io->flash_clk_io != psram_io->psram_clk_io)) {
//flash clock signal should come from IO MUX.
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUNC_SD_CLK_SPICLK);
} else {
//flash clock signal should come from GPIO matrix.
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], PIN_FUNC_GPIO);
}
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], PIN_FUNC_GPIO);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], PIN_FUNC_GPIO);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], PIN_FUNC_GPIO);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], PIN_FUNC_GPIO);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], PIN_FUNC_GPIO);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], PIN_FUNC_GPIO);
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], PIN_FUNC_GPIO);
uint32_t flash_id = g_rom_flashchip.device_id;
if (flash_id == FLASH_ID_GD25LQ32C) {
// Set drive ability for 1.8v flash in 80Mhz.
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->flash_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_cs_io], FUN_DRV_V, 3, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_clk_io], FUN_DRV_V, 3, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiq_sd0_io], FUN_DRV_V, 3, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spid_sd1_io], FUN_DRV_V, 3, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spihd_sd2_io], FUN_DRV_V, 3, FUN_DRV_S);
SET_PERI_REG_BITS(GPIO_PIN_MUX_REG[psram_io->psram_spiwp_sd3_io], FUN_DRV_V, 3, FUN_DRV_S);
}
}
psram_size_t psram_get_size()
{
if ((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id)) {
return s_2t_mode_enabled ? PSRAM_SIZE_32MBITS : PSRAM_SIZE_64MBITS;
} else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_32MBITS) {
return PSRAM_SIZE_32MBITS;
} else if (PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_16MBITS) {
return PSRAM_SIZE_16MBITS;
} else {
return PSRAM_SIZE_MAX;
}
}
/*
* Psram mode init will overwrite original flash speed mode, so that it is possible to change psram and flash speed after OTA.
* Flash read mode(QIO/QOUT/DIO/DOUT) will not be changed in app bin. It is decided by bootloader, OTA can not change this mode.
*/
esp_err_t IRAM_ATTR psram_enable(psram_cache_mode_t mode, psram_vaddr_mode_t vaddrmode) //psram init
{
psram_io_t psram_io={0};
uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
uint32_t pkg_ver = chip_ver & 0x7;
if (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D2WDQ5) {
ESP_EARLY_LOGI(TAG, "This chip is ESP32-D2WD");
rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
if (cfg.tieh != RTC_VDDSDIO_TIEH_1_8V) {
ESP_EARLY_LOGE(TAG, "VDDSDIO is not 1.8V");
return ESP_FAIL;
}
psram_io.psram_clk_io = D2WD_PSRAM_CLK_IO;
psram_io.psram_cs_io = D2WD_PSRAM_CS_IO;
} else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD2) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32PICOD4)) {
ESP_EARLY_LOGI(TAG, "This chip is ESP32-PICO");
rtc_vddsdio_config_t cfg = rtc_vddsdio_get_config();
if (cfg.tieh != RTC_VDDSDIO_TIEH_3_3V) {
ESP_EARLY_LOGE(TAG, "VDDSDIO is not 3.3V");
return ESP_FAIL;
}
s_clk_mode = PSRAM_CLK_MODE_NORM;
psram_io.psram_clk_io = PICO_PSRAM_CLK_IO;
psram_io.psram_cs_io = PICO_PSRAM_CS_IO;
} else if ((pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ6) || (pkg_ver == EFUSE_RD_CHIP_VER_PKG_ESP32D0WDQ5)){
ESP_EARLY_LOGI(TAG, "This chip is ESP32-D0WD");
psram_io.psram_clk_io = D0WD_PSRAM_CLK_IO;
psram_io.psram_cs_io = D0WD_PSRAM_CS_IO;
} else {
ESP_EARLY_LOGE(TAG, "Not a valid or known package id: %d", pkg_ver);
abort();
}
const uint32_t spiconfig = ets_efuse_get_spiconfig();
if (spiconfig == EFUSE_SPICONFIG_SPI_DEFAULTS) {
psram_io.flash_clk_io = SPI_IOMUX_PIN_NUM_CLK;
psram_io.flash_cs_io = SPI_IOMUX_PIN_NUM_CS;
psram_io.psram_spiq_sd0_io = PSRAM_SPIQ_SD0_IO;
psram_io.psram_spid_sd1_io = PSRAM_SPID_SD1_IO;
psram_io.psram_spiwp_sd3_io = PSRAM_SPIWP_SD3_IO;
psram_io.psram_spihd_sd2_io = PSRAM_SPIHD_SD2_IO;
} else if (spiconfig == EFUSE_SPICONFIG_HSPI_DEFAULTS) {
psram_io.flash_clk_io = FLASH_HSPI_CLK_IO;
psram_io.flash_cs_io = FLASH_HSPI_CS_IO;
psram_io.psram_spiq_sd0_io = PSRAM_HSPI_SPIQ_SD0_IO;
psram_io.psram_spid_sd1_io = PSRAM_HSPI_SPID_SD1_IO;
psram_io.psram_spiwp_sd3_io = PSRAM_HSPI_SPIWP_SD3_IO;
psram_io.psram_spihd_sd2_io = PSRAM_HSPI_SPIHD_SD2_IO;
} else {
psram_io.flash_clk_io = EFUSE_SPICONFIG_RET_SPICLK(spiconfig);
psram_io.flash_cs_io = EFUSE_SPICONFIG_RET_SPICS0(spiconfig);
psram_io.psram_spiq_sd0_io = EFUSE_SPICONFIG_RET_SPIQ(spiconfig);
psram_io.psram_spid_sd1_io = EFUSE_SPICONFIG_RET_SPID(spiconfig);
psram_io.psram_spihd_sd2_io = EFUSE_SPICONFIG_RET_SPIHD(spiconfig);
// If flash mode is set to QIO or QOUT, the WP pin is equal the value configured in bootloader.
// If flash mode is set to DIO or DOUT, the WP pin should config it via menuconfig.
#if CONFIG_FLASHMODE_QIO || CONFIG_FLASHMODE_QOUT
psram_io.psram_spiwp_sd3_io = CONFIG_BOOTLOADER_SPI_WP_PIN;
#else
psram_io.psram_spiwp_sd3_io = CONFIG_SPIRAM_SPIWP_SD3_PIN;
#endif
}
assert(mode < PSRAM_CACHE_MAX && "we don't support any other mode for now.");
s_psram_mode = mode;
WRITE_PERI_REG(SPI_EXT3_REG(0), 0x1);
CLEAR_PERI_REG_MASK(SPI_USER_REG(PSRAM_SPI_1), SPI_USR_PREP_HOLD_M);
psram_spi_init(PSRAM_SPI_1, mode);
switch (mode) {
case PSRAM_CACHE_F80M_S80M:
gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
break;
case PSRAM_CACHE_F80M_S40M:
case PSRAM_CACHE_F40M_S40M:
default:
if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
/* We need to delay CLK to the PSRAM with respect to the clock signal as output by the SPI peripheral.
We do this by routing it signal to signal 224/225, which are used as a loopback; the extra run through
the GPIO matrix causes the delay. We use GPIO20 (which is not in any package but has pad logic in
silicon) as a temporary pad for this. So the signal path is:
SPI CLK --> GPIO28 --> signal224(in then out) --> internal GPIO29 --> signal225(in then out) --> GPIO17(PSRAM CLK)
*/
gpio_matrix_out(PSRAM_INTERNAL_IO_28, SPICLK_OUT_IDX, 0, 0);
gpio_matrix_in(PSRAM_INTERNAL_IO_28, SIG_IN_FUNC224_IDX, 0);
gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC224_IDX, 0, 0);
gpio_matrix_in(PSRAM_INTERNAL_IO_29, SIG_IN_FUNC225_IDX, 0);
gpio_matrix_out(psram_io.psram_clk_io, SIG_IN_FUNC225_IDX, 0, 0);
} else {
gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
}
break;
}
// Rise VDDSIO for 1.8V psram.
bootloader_common_vddsdio_configure();
// GPIO related settings
psram_gpio_config(&psram_io, mode);
/* 16Mbit psram ID read error
* workaround: Issue a pre-condition of dummy read id, then Read ID command
*/
psram_read_id(&s_psram_id);
psram_read_id(&s_psram_id);
if (!PSRAM_IS_VALID(s_psram_id)) {
ESP_EARLY_LOGE(TAG, "PSRAM ID read error: 0x%08x", (uint32_t)s_psram_id);
return ESP_FAIL;
}
if (PSRAM_IS_32MBIT_VER0(s_psram_id)) {
s_clk_mode = PSRAM_CLK_MODE_DCLK;
if (mode == PSRAM_CACHE_F80M_S80M) {
/* note: If the third mode(80Mhz+80Mhz) is enabled for 32MBit 1V8 psram, VSPI port will be
occupied by the system.
Application code should never touch VSPI hardware in this case. We try to stop applications
from doing this using the drivers by claiming the port for ourselves */
periph_module_enable(PERIPH_VSPI_MODULE);
bool r=spicommon_periph_claim(VSPI_HOST);
if (!r) {
return ESP_ERR_INVALID_STATE;
}
gpio_matrix_out(psram_io.psram_clk_io, PSRAM_CLK_SIGNAL, 0, 0);
//use spi3 clock,but use spi1 data/cs wires
//We get a solid 80MHz clock from SPI3 by setting it up, starting a transaction, waiting until it
//is in progress, then cutting the clock (but not the reset!) to that peripheral.
WRITE_PERI_REG(SPI_ADDR_REG(PSRAM_SPI_NUM), 32 << 24);
SET_PERI_REG_MASK(SPI_CMD_REG(PSRAM_SPI_NUM), SPI_FLASH_READ_M);
uint32_t spi_status;
while (1) {
spi_status = READ_PERI_REG(SPI_EXT2_REG(PSRAM_SPI_NUM));
if (spi_status != 0 && spi_status != 1) {
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, PSRAM_SPICLKEN);
break;
}
}
}
} else {
// For other psram, we don't need any extra clock cycles after cs get back to high level
s_clk_mode = PSRAM_CLK_MODE_NORM;
gpio_matrix_out(PSRAM_INTERNAL_IO_28, SIG_GPIO_OUT_IDX, 0, 0);
gpio_matrix_out(PSRAM_INTERNAL_IO_29, SIG_GPIO_OUT_IDX, 0, 0);
gpio_matrix_out(psram_io.psram_clk_io, SPICLK_OUT_IDX, 0, 0);
}
// Update cs timing according to psram driving method.
psram_set_cs_timing(PSRAM_SPI_1, s_clk_mode);
psram_set_cs_timing(_SPI_CACHE_PORT, s_clk_mode);
psram_enable_qio_mode(PSRAM_SPI_1);
if(((PSRAM_SIZE_ID(s_psram_id) == PSRAM_EID_SIZE_64MBITS) || PSRAM_IS_64MBIT_TRIAL(s_psram_id))) {
#if CONFIG_SPIRAM_2T_MODE
#if CONFIG_SPIRAM_BANKSWITCH_ENABLE
ESP_EARLY_LOGE(TAG, "PSRAM 2T mode and SPIRAM bank switching can not enabled meanwhile. Please read the help text for SPIRAM_2T_MODE in the project configuration menu.");
abort();
#endif
/* Note: 2T mode command should not be sent twice,
otherwise psram would get back to normal mode. */
if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
psram_2t_mode_enable(PSRAM_SPI_1);
if (psram_2t_mode_check(PSRAM_SPI_1) != ESP_OK) {
ESP_EARLY_LOGE(TAG, "PSRAM 2T mode enable fail!");
return ESP_FAIL;
}
}
s_2t_mode_enabled = true;
ESP_EARLY_LOGI(TAG, "PSRAM is in 2T mode");
#endif
}
psram_cache_init(mode, vaddrmode);
return ESP_OK;
}
//register initialization for sram cache params and r/w commands
static void IRAM_ATTR psram_cache_init(psram_cache_mode_t psram_cache_mode, psram_vaddr_mode_t vaddrmode)
{
switch (psram_cache_mode) {
case PSRAM_CACHE_F80M_S80M:
CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk,80+40;
CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0. FLASH DIV 2+SRAM DIV4
break;
case PSRAM_CACHE_F80M_S40M:
CLEAR_PERI_REG_MASK(SPI_CLOCK_REG(0), SPI_CLK_EQU_SYSCLK_M);
SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKDIV_PRE_V, 0, SPI_CLKDIV_PRE_S);
SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_N, 1, SPI_CLKCNT_N_S);
SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_H, 0, SPI_CLKCNT_H_S);
SET_PERI_REG_BITS(SPI_CLOCK_REG(0), SPI_CLKCNT_L, 1, SPI_CLKCNT_L_S);
SET_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div , ONLY IF SPI/SRAM@ DIFFERENT SPEED,JUST FOR SPI0.
break;
case PSRAM_CACHE_F40M_S40M:
default:
CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(31)); //flash 1 div clk
CLEAR_PERI_REG_MASK(SPI_DATE_REG(0), BIT(30)); //pre clk div
break;
}
CLEAR_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_DIO_M); //disable dio mode for cache command
SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_SRAM_QIO_M); //enable qio mode for cache command
SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_RCMD_M); //enable cache read command
SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_CACHE_SRAM_USR_WCMD_M); //enable cache write command
SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_ADDR_BITLEN_V, 23, SPI_SRAM_ADDR_BITLEN_S); //write address for cache command.
SET_PERI_REG_MASK(SPI_CACHE_SCTRL_REG(0), SPI_USR_RD_SRAM_DUMMY_M); //enable cache read dummy
//config sram cache r/w command
SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 7,
SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S);
SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, PSRAM_FAST_READ_QUAD,
SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB
SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 7,
SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S);
SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, PSRAM_QUAD_WRITE,
SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38
SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
switch (psram_cache_mode) {
case PSRAM_CACHE_F80M_S80M: //in this mode , no delay is needed
break;
case PSRAM_CACHE_F80M_S40M: //if sram is @40M, need 2 cycles of delay
case PSRAM_CACHE_F40M_S40M:
default:
if (s_clk_mode == PSRAM_CLK_MODE_DCLK) {
SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_V, 15,
SPI_CACHE_SRAM_USR_RD_CMD_BITLEN_S); //read command length, 2 bytes(1byte for delay),sending in qio mode in cache
SET_PERI_REG_BITS(SPI_SRAM_DRD_CMD_REG(0), SPI_CACHE_SRAM_USR_RD_CMD_VALUE_V, ((PSRAM_FAST_READ_QUAD) << 8),
SPI_CACHE_SRAM_USR_RD_CMD_VALUE_S); //0xEB, read command value,(0x00 for delay,0xeb for cmd)
SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_BITLEN, 15,
SPI_CACHE_SRAM_USR_WR_CMD_BITLEN_S); //write command length,2 bytes(1byte for delay,send in qio mode in cache)
SET_PERI_REG_BITS(SPI_SRAM_DWR_CMD_REG(0), SPI_CACHE_SRAM_USR_WR_CMD_VALUE, ((PSRAM_QUAD_WRITE) << 8),
SPI_CACHE_SRAM_USR_WR_CMD_VALUE_S); //0x38, write command value,(0x00 for delay)
SET_PERI_REG_BITS(SPI_CACHE_SCTRL_REG(0), SPI_SRAM_DUMMY_CYCLELEN_V, PSRAM_FAST_READ_QUAD_DUMMY + extra_dummy,
SPI_SRAM_DUMMY_CYCLELEN_S); //dummy, psram cache : 40m--+1dummy; 80m--+2dummy
}
break;
}
DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL|DPORT_PRO_DRAM_SPLIT);
DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL|DPORT_APP_DRAM_SPLIT);
if (vaddrmode == PSRAM_VADDR_MODE_LOWHIGH) {
DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_HL);
DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_HL);
} else if (vaddrmode == PSRAM_VADDR_MODE_EVENODD) {
DPORT_SET_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL_REG, DPORT_PRO_DRAM_SPLIT);
DPORT_SET_PERI_REG_MASK(DPORT_APP_CACHE_CTRL_REG, DPORT_APP_DRAM_SPLIT);
}
DPORT_CLEAR_PERI_REG_MASK(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CACHE_MASK_DRAM1|DPORT_PRO_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
//cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
DPORT_SET_PERI_REG_BITS(DPORT_PRO_CACHE_CTRL1_REG, DPORT_PRO_CMMU_SRAM_PAGE_MODE, 0, DPORT_PRO_CMMU_SRAM_PAGE_MODE_S);
DPORT_CLEAR_PERI_REG_MASK(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CACHE_MASK_DRAM1|DPORT_APP_CACHE_MASK_OPSDRAM); //use Dram1 to visit ext sram.
//cache page mode : 1 -->16k 4 -->2k 0-->32k,(accord with the settings in cache_sram_mmu_set)
DPORT_SET_PERI_REG_BITS(DPORT_APP_CACHE_CTRL1_REG, DPORT_APP_CMMU_SRAM_PAGE_MODE, 0, DPORT_APP_CMMU_SRAM_PAGE_MODE_S);
CLEAR_PERI_REG_MASK(SPI_PIN_REG(0), SPI_CS1_DIS_M); //ENABLE SPI0 CS1 TO PSRAM(CS0--FLASH; CS1--SRAM)
}
#endif // CONFIG_SPIRAM_SUPPORT