OVMS3-idf/components/protocomm/test/test_protocomm.c
Amey Inamdar e94dffc9c5 Protocomm : Added unit tests and protobuf-c generated files
Co-Authored-By: Amey Inamdar <amey@espressif.com>
Co-Authored-By: Anurag Kar <anurag.kar@espressif.com>
2018-10-02 19:07:28 +05:30

1090 lines
31 KiB
C

// Copyright 2018 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <esp_err.h>
#include <esp_log.h>
#include <esp_system.h>
#include <sys/random.h>
#include <unity.h>
#include <mbedtls/aes.h>
#include <mbedtls/sha256.h>
#include <mbedtls/entropy.h>
#include <mbedtls/ctr_drbg.h>
#include <mbedtls/ecdh.h>
#include <mbedtls/error.h>
#include <mbedtls/ssl_internal.h>
#include <protocomm.h>
#include <protocomm_security.h>
#include <protocomm_security0.h>
#include <protocomm_security1.h>
#include "session.pb-c.h"
#ifdef DO_HEAP_TRACING
#include <esp_heap_trace.h>
#define NUM_RECORDS 100
static heap_trace_record_t trace_record[NUM_RECORDS]; // This buffer must be in internal RAM
#endif
#define PUBLIC_KEY_LEN 32
#define SZ_RANDOM 16
typedef struct {
uint32_t id;
uint8_t sec_ver;
uint8_t weak;
const protocomm_security_pop_t *pop;
uint8_t device_pubkey[PUBLIC_KEY_LEN];
uint8_t client_pubkey[PUBLIC_KEY_LEN];
uint8_t sym_key[PUBLIC_KEY_LEN];
uint8_t rand[SZ_RANDOM];
/* mbedtls context data for Curve25519 */
mbedtls_ecdh_context ctx_client;
mbedtls_entropy_context entropy;
mbedtls_ctr_drbg_context ctr_drbg;
/* mbedtls context data for AES */
mbedtls_aes_context ctx_aes;
unsigned char stb[16];
size_t nc_off;
} session_t;
static const char *TAG = "protocomm_test";
static protocomm_t *test_pc = NULL;
static const protocomm_security_t *test_sec = NULL;
static uint32_t test_priv_data = 1234;
static void flip_endian(uint8_t *data, size_t len)
{
uint8_t swp_buf;
for (int i = 0; i < len/2; i++) {
swp_buf = data[i];
data[i] = data[len - i - 1];
data[len - i - 1] = swp_buf;
}
}
static void hexdump(const char *msg, uint8_t *buf, int len)
{
ESP_LOGI(TAG, "%s:", msg);
ESP_LOG_BUFFER_HEX(TAG, buf, len);
}
static esp_err_t prepare_command0(session_t *session, SessionData *req)
{
Sec1Payload *in = (Sec1Payload *) malloc(sizeof(Sec1Payload));
if (in == NULL) {
ESP_LOGE(TAG, "Error allocating memory for request");
return ESP_ERR_NO_MEM;
}
SessionCmd0 *in_req = (SessionCmd0 *) malloc(sizeof(SessionCmd0));
if (in_req == NULL) {
ESP_LOGE(TAG, "Error allocating memory for request");
free(in);
return ESP_ERR_NO_MEM;
}
sec1_payload__init(in);
session_cmd0__init(in_req);
in_req->client_pubkey.data = session->client_pubkey;
in_req->client_pubkey.len = PUBLIC_KEY_LEN;
in->msg = SEC1_MSG_TYPE__Session_Command0;
in->payload_case = SEC1_PAYLOAD__PAYLOAD_SC0;
in->sc0 = in_req;
req->proto_case = SESSION_DATA__PROTO_SEC1;
req->sec_ver = protocomm_security1.ver;
req->sec1 = in;
return ESP_OK;
}
static void cleanup_command0(SessionData *req)
{
free(req->sec1->sc0);
free(req->sec1);
}
static esp_err_t verify_response0(session_t *session, SessionData *resp)
{
if ((resp->proto_case != SESSION_DATA__PROTO_SEC1) ||
(resp->sec1->msg != SEC1_MSG_TYPE__Session_Response0)) {
ESP_LOGE(TAG, "Invalid response type");
return ESP_ERR_INVALID_ARG;
}
int ret;
Sec1Payload *in = (Sec1Payload *) resp->sec1;
if (in->sr0->device_pubkey.len != PUBLIC_KEY_LEN) {
ESP_LOGE(TAG, "Device public key length as not as expected");
return ESP_FAIL;
}
if (in->sr0->device_random.len != SZ_RANDOM) {
ESP_LOGE(TAG, "Device random data length is not as expected");
return ESP_FAIL;
}
uint8_t *cli_pubkey = session->client_pubkey;
uint8_t *dev_pubkey = session->device_pubkey;
memcpy(session->device_pubkey, in->sr0->device_pubkey.data, in->sr0->device_pubkey.len);
hexdump("Device pubkey", dev_pubkey, PUBLIC_KEY_LEN);
hexdump("Client pubkey", cli_pubkey, PUBLIC_KEY_LEN);
ret = mbedtls_mpi_lset(&session->ctx_client.Qp.Z, 1);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_mpi_lset with error code : %d", ret);
return ESP_FAIL;
}
flip_endian(session->device_pubkey, PUBLIC_KEY_LEN);
ret = mbedtls_mpi_read_binary(&session->ctx_client.Qp.X, dev_pubkey, PUBLIC_KEY_LEN);
flip_endian(session->device_pubkey, PUBLIC_KEY_LEN);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_mpi_read_binary with error code : %d", ret);
return ESP_FAIL;
}
ret = mbedtls_ecdh_compute_shared(&session->ctx_client.grp,
&session->ctx_client.z,
&session->ctx_client.Qp,
&session->ctx_client.d,
mbedtls_ctr_drbg_random,
&session->ctr_drbg);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_ecdh_compute_shared with error code : %d", ret);
return ESP_FAIL;
}
ret = mbedtls_mpi_write_binary(&session->ctx_client.z, session->sym_key, PUBLIC_KEY_LEN);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_mpi_write_binary with error code : %d", ret);
return ESP_FAIL;
}
flip_endian(session->sym_key, PUBLIC_KEY_LEN);
const protocomm_security_pop_t *pop = session->pop;
if (pop != NULL && pop->data != NULL && pop->len != 0) {
ESP_LOGD(TAG, "Adding proof of possession");
uint8_t sha_out[PUBLIC_KEY_LEN];
ret = mbedtls_sha256_ret((const unsigned char *) pop->data, pop->len, sha_out, 0);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_sha256_ret with error code : %d", ret);
return ESP_FAIL;
}
for (int i = 0; i < PUBLIC_KEY_LEN; i++) {
session->sym_key[i] ^= sha_out[i];
}
}
hexdump("Shared key", session->sym_key, PUBLIC_KEY_LEN);
memcpy(session->rand, in->sr0->device_random.data, in->sr0->device_random.len);
hexdump("Dev random", session->rand, sizeof(session->rand));
return ESP_OK;
}
static esp_err_t prepare_command1(session_t *session, SessionData *req)
{
int ret;
uint8_t *outbuf = (uint8_t *) malloc(PUBLIC_KEY_LEN);
if (!outbuf) {
ESP_LOGE(TAG, "Error allocating ciphertext buffer");
return ESP_ERR_NO_MEM;
}
/* Initialise crypto context */
mbedtls_aes_init(&session->ctx_aes);
memset(session->stb, 0, sizeof(session->stb));
session->nc_off = 0;
ret = mbedtls_aes_setkey_enc(&session->ctx_aes, session->sym_key,
sizeof(session->sym_key)*8);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_aes_setkey_enc with erro code : %d", ret);
free(outbuf);
return ESP_FAIL;
}
ret = mbedtls_aes_crypt_ctr(&session->ctx_aes, PUBLIC_KEY_LEN,
&session->nc_off, session->rand,
session->stb, session->device_pubkey, outbuf);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_aes_crypt_ctr with erro code : %d", ret);
free(outbuf);
return ESP_FAIL;
}
Sec1Payload *out = (Sec1Payload *) malloc(sizeof(Sec1Payload));
if (!out) {
ESP_LOGE(TAG, "Error allocating out buffer");
free(outbuf);
return ESP_ERR_NO_MEM;
}
sec1_payload__init(out);
SessionCmd1 *out_req = (SessionCmd1 *) malloc(sizeof(SessionCmd1));
if (!out_req) {
ESP_LOGE(TAG, "Error allocating out_req buffer");
free(outbuf);
free(out);
return ESP_ERR_NO_MEM;
}
session_cmd1__init(out_req);
out_req->client_verify_data.data = outbuf;
out_req->client_verify_data.len = PUBLIC_KEY_LEN;
hexdump("Client verify data", outbuf, PUBLIC_KEY_LEN);
out->msg = SEC1_MSG_TYPE__Session_Command1;
out->payload_case = SEC1_PAYLOAD__PAYLOAD_SC1;
out->sc1 = out_req;
req->proto_case = SESSION_DATA__PROTO_SEC1;
req->sec_ver = protocomm_security1.ver;
req->sec1 = out;
return ESP_OK;
}
static void cleanup_command1(SessionData *req)
{
free(req->sec1->sc1->client_verify_data.data);
free(req->sec1->sc1);
free(req->sec1);
}
static esp_err_t verify_response1(session_t *session, SessionData *resp)
{
uint8_t *cli_pubkey = session->client_pubkey;
uint8_t *dev_pubkey = session->device_pubkey;
hexdump("Device pubkey", dev_pubkey, PUBLIC_KEY_LEN);
hexdump("Client pubkey", cli_pubkey, PUBLIC_KEY_LEN);
if ((resp->proto_case != SESSION_DATA__PROTO_SEC1) ||
(resp->sec1->msg != SEC1_MSG_TYPE__Session_Response1)) {
ESP_LOGE(TAG, "Invalid response type");
return ESP_ERR_INVALID_ARG;
}
uint8_t check_buf[PUBLIC_KEY_LEN];
Sec1Payload *in = (Sec1Payload *) resp->sec1;
int ret = mbedtls_aes_crypt_ctr(&session->ctx_aes, PUBLIC_KEY_LEN,
&session->nc_off, session->rand, session->stb,
in->sr1->device_verify_data.data, check_buf);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_aes_crypt_ctr with erro code : %d", ret);
return ESP_FAIL;
}
hexdump("Dec Device verifier", check_buf, sizeof(check_buf));
if (memcmp(check_buf, session->client_pubkey, sizeof(session->client_pubkey)) != 0) {
ESP_LOGE(TAG, "Key mismatch. Close connection");
return ESP_FAIL;
}
return ESP_OK;
}
static esp_err_t test_new_session(session_t *session)
{
if (session->sec_ver == 0) {
return ESP_OK;
}
if (!test_sec || !test_sec->new_transport_session) {
return ESP_ERR_INVALID_STATE;
}
uint32_t session_id = session->id;
if (test_sec->new_transport_session(session_id) != ESP_OK) {
ESP_LOGE(TAG, "Failed to launch new transport session");
return ESP_FAIL;
}
return ESP_OK;
}
static esp_err_t test_sec_endpoint(session_t *session)
{
if (session->sec_ver == 0) {
return ESP_OK;
}
uint32_t session_id = session->id;
int ret = ESP_FAIL;
SessionData req;
SessionData *resp;
ssize_t inlen = 0;
uint8_t *inbuf = NULL;
ssize_t outlen = 0;
uint8_t *outbuf = NULL;
mbedtls_ecdh_init(&session->ctx_client);
mbedtls_ctr_drbg_init(&session->ctr_drbg);
mbedtls_entropy_init(&session->entropy);
ret = mbedtls_ctr_drbg_seed(&session->ctr_drbg, mbedtls_entropy_func,
&session->entropy, NULL, 0);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_ctr_drbg_seed with error code : %d", ret);
goto abort_test_sec_endpoint;
}
ret = mbedtls_ecp_group_load(&session->ctx_client.grp, MBEDTLS_ECP_DP_CURVE25519);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_ecp_group_load with error code : %d", ret);
goto abort_test_sec_endpoint;
}
ret = mbedtls_ecdh_gen_public(&session->ctx_client.grp,
&session->ctx_client.d,
&session->ctx_client.Q,
mbedtls_ctr_drbg_random,
&session->ctr_drbg);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_ecdh_gen_public with error code : %d", ret);
goto abort_test_sec_endpoint;
}
if (session->weak) {
/* Read zero client public key */
ret = mbedtls_mpi_read_binary(&session->ctx_client.Q.X,
session->client_pubkey,
PUBLIC_KEY_LEN);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_mpi_read_binary with error code : %d", ret);
goto abort_test_sec_endpoint;
}
}
ret = mbedtls_mpi_write_binary(&session->ctx_client.Q.X,
session->client_pubkey,
PUBLIC_KEY_LEN);
if (ret != 0) {
ESP_LOGE(TAG, "Failed at mbedtls_mpi_write_binary with error code : %d", ret);
goto abort_test_sec_endpoint;
}
flip_endian(session->client_pubkey, PUBLIC_KEY_LEN);
/*********** Transaction0 = SessionCmd0 + SessionResp0 ****************/
session_data__init(&req);
if (prepare_command0(session, &req) != ESP_OK) {
ESP_LOGE(TAG, "Failed in prepare_command0");
goto abort_test_sec_endpoint;
}
inlen = session_data__get_packed_size(&req);
inbuf = (uint8_t *) malloc(inlen);
if (!inbuf) {
ESP_LOGE(TAG, "Failed to allocate inbuf");
goto abort_test_sec_endpoint;
}
session_data__pack(&req, inbuf);
cleanup_command0(&req);
outlen = 0;
outbuf = NULL;
ret = protocomm_req_handle(test_pc, "test-sec", session_id,
inbuf, inlen, &outbuf, &outlen);
free(inbuf);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "test-sec handler failed");
free(outbuf);
goto abort_test_sec_endpoint;
}
resp = session_data__unpack(NULL, outlen, outbuf);
free(outbuf);
if (!resp) {
ESP_LOGE(TAG, "Unable to unpack SessionResp0");
goto abort_test_sec_endpoint;
}
if (verify_response0(session, resp) != ESP_OK) {
ESP_LOGE(TAG, "Invalid response 0");
session_data__free_unpacked(resp, NULL);
goto abort_test_sec_endpoint;
}
session_data__free_unpacked(resp, NULL);
/*********** Transaction1 = SessionCmd1 + SessionResp1 ****************/
session_data__init(&req);
if (prepare_command1(session, &req) != ESP_OK) {
ESP_LOGE(TAG, "Failed in prepare_command1");
goto abort_test_sec_endpoint;
}
inlen = session_data__get_packed_size(&req);
inbuf = (uint8_t *) malloc(inlen);
if (!inbuf) {
ESP_LOGE(TAG, "Failed to allocate inbuf");
goto abort_test_sec_endpoint;
}
session_data__pack(&req, inbuf);
cleanup_command1(&req);
outlen = 0;
outbuf = NULL;
ret = protocomm_req_handle(test_pc, "test-sec", session_id,
inbuf, inlen, &outbuf, &outlen);
free(inbuf);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "test-sec handler failed");
free(outbuf);
goto abort_test_sec_endpoint;
}
resp = session_data__unpack(NULL, outlen, outbuf);
free(outbuf);
if (!resp) {
ESP_LOGE(TAG, "Unable to unpack SessionResp0");
goto abort_test_sec_endpoint;
}
if (verify_response1(session, resp) != ESP_OK) {
ESP_LOGE(TAG, "Invalid response 1");
session_data__free_unpacked(resp, NULL);
goto abort_test_sec_endpoint;
}
session_data__free_unpacked(resp, NULL);
mbedtls_ecdh_free(&session->ctx_client);
mbedtls_ctr_drbg_free(&session->ctr_drbg);
mbedtls_entropy_free(&session->entropy);
return ESP_OK;
abort_test_sec_endpoint:
mbedtls_ecdh_free(&session->ctx_client);
mbedtls_ctr_drbg_free(&session->ctr_drbg);
mbedtls_entropy_free(&session->entropy);
return ESP_FAIL;
}
static esp_err_t test_req_endpoint(session_t *session)
{
uint32_t session_id = session->id;
uint8_t rand_test_data[512], enc_test_data[512];
getrandom(rand_test_data, sizeof(rand_test_data), 0);
if (session->sec_ver == 0) {
memcpy(enc_test_data, rand_test_data, sizeof(rand_test_data));
}
else if (session->sec_ver == 1) {
mbedtls_aes_crypt_ctr(&session->ctx_aes, sizeof(rand_test_data), &session->nc_off,
session->rand, session->stb, rand_test_data, enc_test_data);
}
ssize_t verify_data_len = 0;
uint8_t *enc_verify_data = NULL;
esp_err_t ret = protocomm_req_handle(test_pc, "test-ep", session_id,
enc_test_data, sizeof(enc_test_data),
&enc_verify_data, &verify_data_len);
if (ret != ESP_OK) {
ESP_LOGE(TAG, "test-ep handler failed");
return ESP_FAIL;
}
uint8_t *verify_data = malloc(verify_data_len);
if (!verify_data) {
ESP_LOGE(TAG, "error allocating memory for decrypted data");
free(enc_verify_data);
return ESP_FAIL;
}
if (session->sec_ver == 0) {
memcpy(verify_data, enc_verify_data, verify_data_len);
}
else if (session->sec_ver == 1) {
mbedtls_aes_crypt_ctr(&session->ctx_aes, verify_data_len, &session->nc_off,
session->rand, session->stb, enc_verify_data, verify_data);
}
free(enc_verify_data);
hexdump("Sent data", rand_test_data, sizeof(rand_test_data));
hexdump("Recv data", verify_data, verify_data_len);
ESP_LOGI(TAG, "verify data len : %d", verify_data_len);
ESP_LOGI(TAG, "expected data len : %d", sizeof(rand_test_data));
if (verify_data_len != sizeof(rand_test_data)) {
ESP_LOGE(TAG, "incorrect response length from test-ep");
free(verify_data);
return ESP_FAIL;
}
if (memcmp(rand_test_data, verify_data, verify_data_len)) {
ESP_LOGE(TAG, "incorrect response data from test-ep");
free(verify_data);
return ESP_FAIL;
}
free(verify_data);
return ESP_OK;
}
esp_err_t test_req_handler (uint32_t session_id,
const uint8_t *inbuf, ssize_t inlen,
uint8_t **outbuf, ssize_t *outlen,
void *priv_data)
{
*outbuf = malloc(inlen);
if (*outbuf) {
*outlen = inlen;
memcpy(*outbuf, inbuf, inlen);
} else {
ESP_LOGE(TAG, "Error allocating response outbuf");
*outbuf = NULL;
*outlen = 0;
}
uint32_t *priv = (uint32_t *) priv_data;
if ((&test_priv_data != priv) || (test_priv_data != *priv)) {
ESP_LOGE(TAG, "Handler private data doesn't match");
return ESP_FAIL;
}
return ESP_OK;
}
static esp_err_t start_test_service(uint8_t sec_ver, const protocomm_security_pop_t *pop)
{
test_pc = protocomm_new();
if (test_pc == NULL) {
ESP_LOGE(TAG, "Failed to create new protocomm instance");
return ESP_FAIL;
}
if (sec_ver == 0) {
if (protocomm_set_security(test_pc, "test-sec", &protocomm_security0, NULL) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set Security0");
return ESP_FAIL;
}
test_sec = &protocomm_security0;
} else if (sec_ver == 1) {
if (protocomm_set_security(test_pc, "test-sec", &protocomm_security1, pop) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set Security1");
return ESP_FAIL;
}
test_sec = &protocomm_security1;
}
if (protocomm_add_endpoint(test_pc, "test-ep",
test_req_handler,
(void *) &test_priv_data) != ESP_OK) {
ESP_LOGE(TAG, "Failed to set test-ep endpoint handler");
return ESP_FAIL;
}
return ESP_OK;
}
static void stop_test_service(void)
{
protocomm_remove_endpoint(test_pc, "test-ep");
protocomm_unset_security(test_pc, "test-sec");
test_sec = NULL;
protocomm_delete(test_pc);
test_pc = NULL;
}
static esp_err_t test_security1_no_encryption (void)
{
ESP_LOGI(TAG, "Starting Security 1 no encryption test");
const char *pop_data = "test pop";
protocomm_security_pop_t pop = {
.data = (const uint8_t *)pop_data,
.len = strlen(pop_data)
};
session_t *session = calloc(1, sizeof(session_t));
if (session == NULL) {
ESP_LOGE(TAG, "Error allocating session");
return ESP_ERR_NO_MEM;
}
session->id = 1;
session->sec_ver = 1;
session->pop = &pop;
// Start protocomm service
if (start_test_service(1, &pop) != ESP_OK) {
ESP_LOGE(TAG, "Error starting test");
free(session);
return ESP_ERR_INVALID_STATE;
}
// Intialise protocomm session with zero public keys
if (test_new_session(session) != ESP_OK) {
ESP_LOGE(TAG, "Error creating new session");
stop_test_service();
free(session);
return ESP_FAIL;
}
// Perform 25519 security handshake to set public keys
if (test_sec_endpoint(session) != ESP_OK) {
ESP_LOGE(TAG, "Error testing security endpoint");
stop_test_service();
free(session);
return ESP_FAIL;
}
// Force endpoint with un-encrypted data
session->sec_ver = 0;
// Send unencrypted request data to echo endpoint.
// Response would be encrypted causing echoed back
// data to not match that which was sent, hence failing.
if (test_req_endpoint(session) == ESP_OK) {
ESP_LOGE(TAG, "Error testing request endpoint");
stop_test_service();
free(session);
return ESP_FAIL;
}
stop_test_service();
free(session);
ESP_LOGI(TAG, "Protocomm test successful");
return ESP_OK;
}
static esp_err_t test_security1_session_overflow (void)
{
ESP_LOGI(TAG, "Starting Security 1 session overflow test");
const char *pop_data = "test pop";
protocomm_security_pop_t pop = {
.data = (const uint8_t *)pop_data,
.len = strlen(pop_data)
};
session_t *session1 = calloc(1, sizeof(session_t));
if (session1 == NULL) {
ESP_LOGE(TAG, "Error allocating session");
return ESP_ERR_NO_MEM;
}
session1->id = 2;
session1->sec_ver = 1;
session1->pop = &pop;
session_t *session2 = calloc(1, sizeof(session_t));
if (session2 == NULL) {
ESP_LOGE(TAG, "Error allocating session");
free(session1);
return ESP_ERR_NO_MEM;
}
session2->id = 3;
session2->sec_ver = 1;
session2->pop = NULL;
// Start protocomm service
if (start_test_service(1, &pop) != ESP_OK) {
ESP_LOGE(TAG, "Error starting test");
free(session1);
free(session2);
return ESP_FAIL;
}
// Intialise protocomm session with zero public keys
if (test_new_session(session1) != ESP_OK) {
ESP_LOGE(TAG, "Error creating new session");
stop_test_service();
free(session1);
free(session2);
return ESP_FAIL;
}
// Perform 25519 security handshake to set public keys
if (test_sec_endpoint(session1) != ESP_OK) {
ESP_LOGE(TAG, "Error testing security endpoint");
stop_test_service();
free(session1);
free(session2);
return ESP_FAIL;
}
// Try to perform security handshake again with different
// session ID without registering new session, hence failing
if (test_sec_endpoint(session2) == ESP_OK) {
ESP_LOGE(TAG, "Error testing security endpoint");
stop_test_service();
free(session1);
free(session2);
return ESP_FAIL;
}
stop_test_service();
free(session1);
free(session2);
ESP_LOGI(TAG, "Protocomm test successful");
return ESP_OK;
}
static esp_err_t test_security1_wrong_pop (void)
{
ESP_LOGI(TAG, "Starting Security 1 wrong auth test");
const char *pop_data = "test pop";
protocomm_security_pop_t pop = {
.data = (const uint8_t *)pop_data,
.len = strlen(pop_data)
};
session_t *session = calloc(1, sizeof(session_t));
if (session == NULL) {
ESP_LOGE(TAG, "Error allocating session");
return ESP_ERR_NO_MEM;
}
session->id = 4;
session->sec_ver = 1;
session->pop = &pop;
// Start protocomm service
if (start_test_service(1, &pop) != ESP_OK) {
ESP_LOGE(TAG, "Error starting test");
free(session);
return ESP_FAIL;
}
// Intialise protocomm session with zero public keys
if (test_new_session(session) != ESP_OK) {
ESP_LOGE(TAG, "Error creating new session");
stop_test_service();
free(session);
return ESP_FAIL;
}
const char *wrong_pop_data = "wrong pop";
protocomm_security_pop_t wrong_pop = {
.data = (const uint8_t *)wrong_pop_data,
.len = strlen(wrong_pop_data)
};
// Force wrong pop during authentication
session->pop = &wrong_pop;
// Perform 25519 security handshake with
// wrong pop, hence failing
if (test_sec_endpoint(session) == ESP_OK) {
ESP_LOGE(TAG, "Error testing security endpoint");
stop_test_service();
free(session);
return ESP_FAIL;
}
stop_test_service();
free(session);
ESP_LOGI(TAG, "Protocomm test successful");
return ESP_OK;
}
static esp_err_t test_security1_insecure_client (void)
{
ESP_LOGI(TAG, "Starting Security 1 insecure client test");
const char *pop_data = "test pop";
protocomm_security_pop_t pop = {
.data = (const uint8_t *)pop_data,
.len = strlen(pop_data)
};
session_t *session = calloc(1, sizeof(session_t));
if (session == NULL) {
ESP_LOGE(TAG, "Error allocating session");
return ESP_ERR_NO_MEM;
}
session->id = 5;
session->sec_ver = 1;
session->pop = &pop;
// Start protocomm service
if (start_test_service(1, &pop) != ESP_OK) {
ESP_LOGE(TAG, "Error starting test");
free(session);
return ESP_FAIL;
}
// Perform 25519 security handshake without
// initialising session, hence failing
if (test_sec_endpoint(session) == ESP_OK) {
ESP_LOGE(TAG, "Error testing security endpoint");
stop_test_service();
free(session);
return ESP_FAIL;
}
// Communicating with request endpoint without
// initialising session, hence failing
if (test_req_endpoint(session) == ESP_OK) {
ESP_LOGE(TAG, "Error testing request endpoint");
stop_test_service();
free(session);
return ESP_FAIL;
}
stop_test_service();
free(session);
ESP_LOGI(TAG, "Protocomm test successful");
return ESP_OK;
}
static esp_err_t test_security1_weak_session (void)
{
ESP_LOGI(TAG, "Starting Security 1 weak session test");
const char *pop_data = "test pop";
protocomm_security_pop_t pop = {
.data = (const uint8_t *)pop_data,
.len = strlen(pop_data)
};
session_t *session = calloc(1, sizeof(session_t));
if (session == NULL) {
ESP_LOGE(TAG, "Error allocating session");
return ESP_ERR_NO_MEM;
}
session->id = 6;
session->sec_ver = 1;
session->pop = &pop;
session->weak = 1;
// Start protocomm service
if (start_test_service(1, &pop) != ESP_OK) {
ESP_LOGE(TAG, "Error starting test");
free(session);
return ESP_FAIL;
}
// Intialise protocomm session with zero public keys
if (test_new_session(session) != ESP_OK) {
ESP_LOGE(TAG, "Error creating new session");
stop_test_service();
free(session);
return ESP_FAIL;
}
// Perform 25519 security handshake with weak (zero)
// client public key, hence failing
if (test_sec_endpoint(session) == ESP_OK) {
ESP_LOGE(TAG, "Error testing security endpoint");
stop_test_service();
free(session);
return ESP_FAIL;
}
// Sending request data to echo endpoint encrypted with zero
// public keys on both client and server side should pass
if (test_req_endpoint(session) != ESP_OK) {
ESP_LOGE(TAG, "Error testing request endpoint");
stop_test_service();
free(session);
return ESP_FAIL;
}
stop_test_service();
free(session);
ESP_LOGI(TAG, "Protocomm test successful");
return ESP_OK;
}
static esp_err_t test_protocomm (session_t *session)
{
ESP_LOGI(TAG, "Starting Protocomm test");
// Start protocomm service
if (start_test_service(session->sec_ver, session->pop) != ESP_OK) {
ESP_LOGE(TAG, "Error starting test");
return ESP_FAIL;
}
// Intialise protocomm session with zero public keys
if (test_new_session(session) != ESP_OK) {
ESP_LOGE(TAG, "Error creating new session");
stop_test_service();
return ESP_FAIL;
}
// Perform 25519 security handshake to set public keys
if (test_sec_endpoint(session) != ESP_OK) {
ESP_LOGE(TAG, "Error testing security endpoint");
stop_test_service();
return ESP_FAIL;
}
// Send request data to echo endpoint encrypted with
// the set public keys on both client and server side
if (test_req_endpoint(session) != ESP_OK) {
ESP_LOGE(TAG, "Error testing request endpoint");
stop_test_service();
return ESP_FAIL;
}
// Stop protocomm service
stop_test_service();
ESP_LOGI(TAG, "Protocomm test successful");
return ESP_OK;
}
static esp_err_t test_security1 (void)
{
ESP_LOGI(TAG, "Starting Sec1 test");
const char *pop_data = "test pop";
protocomm_security_pop_t pop = {
.data = (const uint8_t *)pop_data,
.len = strlen(pop_data)
};
session_t *session = calloc(1, sizeof(session_t));
if (session == NULL) {
ESP_LOGE(TAG, "Error allocating session");
return ESP_ERR_NO_MEM;
}
session->id = 7;
session->sec_ver = 1;
session->pop = &pop;
if (test_protocomm (session) != ESP_OK) {
ESP_LOGE(TAG, "Sec1 test failed");
free(session);
return ESP_FAIL;
}
ESP_LOGI(TAG, "Sec1 test successful");
free(session);
return ESP_OK;
}
static esp_err_t test_security0 (void)
{
ESP_LOGI(TAG, "Starting Sec0 test");
session_t *session = calloc(1, sizeof(session_t));
if (session == NULL) {
ESP_LOGE(TAG, "Error allocating session");
return ESP_ERR_NO_MEM;
}
session->id = 8;
session->sec_ver = 0;
session->pop = NULL;
if (test_protocomm (session) != ESP_OK) {
ESP_LOGE(TAG, "Sec0 test failed");
free(session);
return ESP_FAIL;
}
ESP_LOGI(TAG, "Sec0 test successful");
free(session);
return ESP_OK;
}
TEST_CASE("leak test", "[PROTOCOMM]")
{
#ifdef DO_HEAP_TRACING
heap_trace_init_standalone(trace_record, NUM_RECORDS);
#endif
unsigned pre_start_mem = esp_get_free_heap_size();
#ifdef DO_HEAP_TRACING
heap_trace_start(HEAP_TRACE_LEAKS);
#endif
test_security0();
test_security1();
#ifdef DO_HEAP_TRACING
heap_trace_stop();
heap_trace_dump();
#endif
unsigned post_stop_mem = esp_get_free_heap_size();
if (pre_start_mem != post_stop_mem) {
ESP_LOGE(TAG, "Mismatch in free heap size");
}
#ifdef DO_HEAP_TRACING
TEST_ASSERT(pre_start_mem != post_stop_mem);
#endif
}
TEST_CASE("security 0 basic test", "[PROTOCOMM]")
{
TEST_ASSERT(test_security0() == ESP_OK);
}
TEST_CASE("security 1 basic test", "[PROTOCOMM]")
{
TEST_ASSERT(test_security1() == ESP_OK);
}
TEST_CASE("security 1 no encryption test", "[PROTOCOMM]")
{
TEST_ASSERT(test_security1_no_encryption() == ESP_OK);
}
TEST_CASE("security 1 session overflow test", "[PROTOCOMM]")
{
TEST_ASSERT(test_security1_session_overflow() == ESP_OK);
}
TEST_CASE("security 1 wrong pop test", "[PROTOCOMM]")
{
TEST_ASSERT(test_security1_wrong_pop() == ESP_OK);
}
TEST_CASE("security 1 insecure client test", "[PROTOCOMM]")
{
TEST_ASSERT(test_security1_insecure_client() == ESP_OK);
}
TEST_CASE("security 1 weak session test", "[PROTOCOMM]")
{
TEST_ASSERT(test_security1_weak_session() == ESP_OK);
}