OVMS3-idf/components/esp_wifi/src/phy_init.c
2020-03-05 16:14:00 +08:00

1065 lines
37 KiB
C

// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <sys/lock.h>
#include "soc/rtc.h"
#include "soc/dport_reg.h"
#include "esp_err.h"
#include "esp_phy_init.h"
#include "esp_system.h"
#include "esp_log.h"
#include "nvs.h"
#include "nvs_flash.h"
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/portmacro.h"
#include "phy.h"
#include "phy_init_data.h"
#include "esp_coexist_internal.h"
#include "driver/periph_ctrl.h"
#include "esp_private/wifi.h"
#if CONFIG_IDF_TARGET_ESP32
#include "esp32/rom/ets_sys.h"
#include "esp32/rom/rtc.h"
#include "esp32/rom/crc.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/rom/ets_sys.h"
#include "esp32s2/rom/rtc.h"
#include "esp32s2/rom/crc.h"
#endif
#if CONFIG_IDF_TARGET_ESP32
extern wifi_mac_time_update_cb_t s_wifi_mac_time_update_cb;
#endif
static const char* TAG = "phy_init";
static _lock_t s_phy_rf_init_lock;
/* Bit mask of modules needing to call phy_rf_init */
static uint32_t s_module_phy_rf_init = 0;
/* Whether modem sleep is turned on */
static volatile bool s_is_phy_rf_en = false;
#if CONFIG_IDF_TARGET_ESP32
/* Whether WiFi/BT common clock enabled reference */
static volatile int32_t s_common_clock_enable_ref = 0;
/* PHY spinlock mux */
static portMUX_TYPE s_phy_spin_lock = portMUX_INITIALIZER_UNLOCKED;
#endif
/* Bit mask of modules needing to enter modem sleep mode */
static uint32_t s_modem_sleep_module_enter = 0;
/* Bit mask of modules which might use RF, system can enter modem
* sleep mode only when all modules registered require to enter
* modem sleep*/
static uint32_t s_modem_sleep_module_register = 0;
/* Whether modern sleep is turned on */
static volatile bool s_is_modem_sleep_en = false;
static _lock_t s_modem_sleep_lock;
#if CONFIG_IDF_TARGET_ESP32
/* time stamp updated when the PHY/RF is turned on */
static int64_t s_phy_rf_en_ts = 0;
#endif
static DRAM_ATTR portMUX_TYPE s_phy_int_mux = portMUX_INITIALIZER_UNLOCKED;
#if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
/* The following static variables are only used by Wi-Fi tasks, so they can be handled without lock */
static phy_init_data_type_t s_phy_init_data_type = 0;
static phy_init_data_type_t s_current_apply_phy_init_data = 0;
static char s_phy_current_country[PHY_COUNTRY_CODE_LEN] = {0};
/* Whether it is a new bin */
static bool s_multiple_phy_init_data_bin = false;
/* PHY init data type array */
static char* s_phy_type[ESP_PHY_INIT_DATA_TYPE_NUMBER] = {"DEFAULT", "SRRC", "FCC", "CE", "NCC", "KCC", "MIC", "IC",
"ACMA", "ANATEL", "ISED", "WPC", "OFCA", "IFETEL", "RCM"};
/* Country and PHY init data type map */
static phy_country_to_bin_type_t s_country_code_map_type_table[] = {
{"AT", ESP_PHY_INIT_DATA_TYPE_CE},
{"AU", ESP_PHY_INIT_DATA_TYPE_ACMA},
{"BE", ESP_PHY_INIT_DATA_TYPE_CE},
{"BG", ESP_PHY_INIT_DATA_TYPE_CE},
{"BR", ESP_PHY_INIT_DATA_TYPE_ANATEL},
{"CA", ESP_PHY_INIT_DATA_TYPE_ISED},
{"CH", ESP_PHY_INIT_DATA_TYPE_CE},
{"CN", ESP_PHY_INIT_DATA_TYPE_SRRC},
{"CY", ESP_PHY_INIT_DATA_TYPE_CE},
{"CZ", ESP_PHY_INIT_DATA_TYPE_CE},
{"DE", ESP_PHY_INIT_DATA_TYPE_CE},
{"DK", ESP_PHY_INIT_DATA_TYPE_CE},
{"EE", ESP_PHY_INIT_DATA_TYPE_CE},
{"ES", ESP_PHY_INIT_DATA_TYPE_CE},
{"FI", ESP_PHY_INIT_DATA_TYPE_CE},
{"FR", ESP_PHY_INIT_DATA_TYPE_CE},
{"GB", ESP_PHY_INIT_DATA_TYPE_CE},
{"GR", ESP_PHY_INIT_DATA_TYPE_CE},
{"HK", ESP_PHY_INIT_DATA_TYPE_OFCA},
{"HR", ESP_PHY_INIT_DATA_TYPE_CE},
{"HU", ESP_PHY_INIT_DATA_TYPE_CE},
{"IE", ESP_PHY_INIT_DATA_TYPE_CE},
{"IN", ESP_PHY_INIT_DATA_TYPE_WPC},
{"IS", ESP_PHY_INIT_DATA_TYPE_CE},
{"IT", ESP_PHY_INIT_DATA_TYPE_CE},
{"JP", ESP_PHY_INIT_DATA_TYPE_MIC},
{"KR", ESP_PHY_INIT_DATA_TYPE_KCC},
{"LI", ESP_PHY_INIT_DATA_TYPE_CE},
{"LT", ESP_PHY_INIT_DATA_TYPE_CE},
{"LU", ESP_PHY_INIT_DATA_TYPE_CE},
{"LV", ESP_PHY_INIT_DATA_TYPE_CE},
{"MT", ESP_PHY_INIT_DATA_TYPE_CE},
{"MX", ESP_PHY_INIT_DATA_TYPE_IFETEL},
{"NL", ESP_PHY_INIT_DATA_TYPE_CE},
{"NO", ESP_PHY_INIT_DATA_TYPE_CE},
{"NZ", ESP_PHY_INIT_DATA_TYPE_RCM},
{"PL", ESP_PHY_INIT_DATA_TYPE_CE},
{"PT", ESP_PHY_INIT_DATA_TYPE_CE},
{"RO", ESP_PHY_INIT_DATA_TYPE_CE},
{"SE", ESP_PHY_INIT_DATA_TYPE_CE},
{"SI", ESP_PHY_INIT_DATA_TYPE_CE},
{"SK", ESP_PHY_INIT_DATA_TYPE_CE},
{"TW", ESP_PHY_INIT_DATA_TYPE_NCC},
{"US", ESP_PHY_INIT_DATA_TYPE_FCC},
};
#endif
uint32_t IRAM_ATTR phy_enter_critical(void)
{
if (xPortInIsrContext()) {
portENTER_CRITICAL_ISR(&s_phy_int_mux);
} else {
portENTER_CRITICAL(&s_phy_int_mux);
}
// Interrupt level will be stored in current tcb, so always return zero.
return 0;
}
void IRAM_ATTR phy_exit_critical(uint32_t level)
{
// Param level don't need any more, ignore it.
if (xPortInIsrContext()) {
portEXIT_CRITICAL_ISR(&s_phy_int_mux);
} else {
portEXIT_CRITICAL(&s_phy_int_mux);
}
}
#if CONFIG_IDF_TARGET_ESP32
int64_t esp_phy_rf_get_on_ts(void)
{
return s_phy_rf_en_ts;
}
static inline void phy_update_wifi_mac_time(bool en_clock_stopped, int64_t now)
{
static uint32_t s_common_clock_disable_time = 0;
if (en_clock_stopped) {
s_common_clock_disable_time = (uint32_t)now;
} else {
if (s_common_clock_disable_time) {
uint32_t diff = (uint64_t)now - s_common_clock_disable_time;
if (s_wifi_mac_time_update_cb) {
s_wifi_mac_time_update_cb(diff);
}
s_common_clock_disable_time = 0;
}
}
}
IRAM_ATTR static inline void phy_spin_lock(void)
{
if (xPortInIsrContext()) {
portENTER_CRITICAL_ISR(&s_phy_spin_lock);
} else {
portENTER_CRITICAL(&s_phy_spin_lock);
}
}
IRAM_ATTR static inline void phy_spin_unlock(void)
{
if (xPortInIsrContext()) {
portEXIT_CRITICAL_ISR(&s_phy_spin_lock);
} else {
portEXIT_CRITICAL(&s_phy_spin_lock);
}
}
#endif
IRAM_ATTR void esp_phy_common_clock_enable(void)
{
#if CONFIG_IDF_TARGET_ESP32
phy_spin_lock();
if (s_common_clock_enable_ref == 0) {
// Enable WiFi/BT common clock
periph_module_enable(PERIPH_WIFI_BT_COMMON_MODULE);
}
s_common_clock_enable_ref++;
phy_spin_unlock();
#else
periph_module_enable(PERIPH_WIFI_BT_COMMON_MODULE);
#endif
}
IRAM_ATTR void esp_phy_common_clock_disable(void)
{
#if CONFIG_IDF_TARGET_ESP32
phy_spin_lock();
if (s_common_clock_enable_ref > 0) {
s_common_clock_enable_ref --;
if (s_common_clock_enable_ref == 0) {
// Disable WiFi/BT common clock
periph_module_disable(PERIPH_WIFI_BT_COMMON_MODULE);
}
} else {
abort();
}
phy_spin_unlock();
#else
periph_module_disable(PERIPH_WIFI_BT_COMMON_MODULE);
#endif
}
esp_err_t esp_phy_rf_init(const esp_phy_init_data_t* init_data, esp_phy_calibration_mode_t mode,
esp_phy_calibration_data_t* calibration_data, phy_rf_module_t module)
{
/* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */
if (module >= PHY_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, PHY_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
_lock_acquire(&s_phy_rf_init_lock);
uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init;
bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & (BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE)));
esp_err_t status = ESP_OK;
s_module_phy_rf_init |= BIT(module);
if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){
status = ESP_FAIL;
}
else if (s_is_phy_rf_en == true) {
}
else {
/* If Wi-Fi, BT all disabled, modem sleep should not take effect;
* If either Wi-Fi or BT is enabled, should allow modem sleep requires
* to enter sleep;
* If Wi-Fi, BT co-exist, it is disallowed that only one module
* support modem sleep, E,g. BT support modem sleep but Wi-Fi not
* support modem sleep;
*/
if (is_wifi_or_bt_enabled == false){
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
s_is_phy_rf_en = true;
}
}
else {
if (module == PHY_MODEM_MODULE){
s_is_phy_rf_en = true;
}
else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
/* New module (BT or Wi-Fi) can init RF according to modem_sleep_exit */
}
}
if (s_is_phy_rf_en == true){
#if CONFIG_IDF_TARGET_ESP32
// Update time stamp
s_phy_rf_en_ts = esp_timer_get_time();
// Update WiFi MAC time before WiFi/BT common clock is enabled
phy_update_wifi_mac_time(false, s_phy_rf_en_ts);
#endif
esp_phy_common_clock_enable();
phy_set_wifi_mode_only(0);
#if CONFIG_IDF_TARGET_ESP32S2
if (module == PHY_MODEM_MODULE) {
phy_wakeup_init();
}
else
#endif
if (ESP_CAL_DATA_CHECK_FAIL == register_chipv7_phy(init_data, calibration_data, mode)) {
ESP_LOGW(TAG, "saving new calibration data because of checksum failure, mode(%d)", mode);
#ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
if (mode != PHY_RF_CAL_FULL) {
esp_phy_store_cal_data_to_nvs(calibration_data);
}
#endif
}
#if CONFIG_IDF_TARGET_ESP32
coex_bt_high_prio();
#endif
}
}
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
if ((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) { //both wifi & bt enabled
coex_init();
coex_resume();
}
}
#endif
_lock_release(&s_phy_rf_init_lock);
return status;
}
esp_err_t esp_phy_rf_deinit(phy_rf_module_t module)
{
/* 3 modules may call phy_init: Wi-Fi, BT, Modem Sleep */
if (module >= PHY_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, PHY_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
_lock_acquire(&s_phy_rf_init_lock);
uint32_t s_module_phy_rf_init_old = s_module_phy_rf_init;
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
bool is_wifi_or_bt_enabled = !!(s_module_phy_rf_init_old & phy_bt_wifi_mask);
bool is_both_wifi_bt_enabled = ((s_module_phy_rf_init_old & phy_bt_wifi_mask) == phy_bt_wifi_mask);
s_module_phy_rf_init &= ~BIT(module);
esp_err_t status = ESP_OK;
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
if (is_both_wifi_bt_enabled == true) {
coex_deinit();
}
}
#endif
if ((is_wifi_or_bt_enabled == false) && (module == PHY_MODEM_MODULE)){
/* Modem sleep should not take effect in this case */
status = ESP_FAIL;
}
else if (s_is_phy_rf_en == false) {
//do nothing
}
else {
if (is_wifi_or_bt_enabled == false){
if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
s_is_phy_rf_en = false;
ESP_LOGE(TAG, "%s, RF should not be in enabled state if both Wi-Fi and BT are disabled", __func__);
}
}
else {
if (module == PHY_MODEM_MODULE){
s_is_phy_rf_en = false;
}
else if ((module == PHY_BT_MODULE) || (module == PHY_WIFI_MODULE)){
s_is_phy_rf_en = is_both_wifi_bt_enabled ? true : false;
}
}
if (s_is_phy_rf_en == false) {
// Disable PHY and RF.
phy_close_rf();
#if CONFIG_IDF_TARGET_ESP32
// Update WiFi MAC time before disalbe WiFi/BT common peripheral clock
phy_update_wifi_mac_time(true, esp_timer_get_time());
#endif
// Disable WiFi/BT common peripheral clock. Do not disable clock for hardware RNG
esp_phy_common_clock_disable();
}
}
_lock_release(&s_phy_rf_init_lock);
return status;
}
esp_err_t esp_modem_sleep_enter(modem_sleep_module_t module)
{
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
#endif
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (!(s_modem_sleep_module_register & BIT(module))){
ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module);
return ESP_ERR_INVALID_ARG;
}
else {
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_enter |= BIT(module);
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
_lock_acquire(&s_phy_rf_init_lock);
if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) //both wifi & bt enabled
&& (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) != 0){
coex_pause();
}
_lock_release(&s_phy_rf_init_lock);
#endif
if (!s_is_modem_sleep_en && (s_modem_sleep_module_enter == s_modem_sleep_module_register)){
esp_err_t status = esp_phy_rf_deinit(PHY_MODEM_MODULE);
if (status == ESP_OK){
s_is_modem_sleep_en = true;
}
}
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
}
esp_err_t esp_modem_sleep_exit(modem_sleep_module_t module)
{
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
uint32_t phy_bt_wifi_mask = BIT(PHY_BT_MODULE) | BIT(PHY_WIFI_MODULE);
#endif
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (!(s_modem_sleep_module_register & BIT(module))){
ESP_LOGW(TAG, "%s, module (%d) has not been registered", __func__, module);
return ESP_ERR_INVALID_ARG;
}
else {
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_enter &= ~BIT(module);
if (s_is_modem_sleep_en){
esp_err_t status = esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE);
if (status == ESP_OK){
s_is_modem_sleep_en = false;
}
}
#if CONFIG_ESP32_WIFI_SW_COEXIST_ENABLE
_lock_acquire(&s_phy_rf_init_lock);
if (((s_module_phy_rf_init & phy_bt_wifi_mask) == phy_bt_wifi_mask) //both wifi & bt enabled
&& (s_modem_sleep_module_enter & (MODEM_BT_MASK | MODEM_WIFI_MASK)) == 0){
coex_resume();
}
_lock_release(&s_phy_rf_init_lock);
#endif
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
return ESP_OK;
}
esp_err_t esp_modem_sleep_register(modem_sleep_module_t module)
{
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (s_modem_sleep_module_register & BIT(module)){
ESP_LOGI(TAG, "%s, multiple registration of module (%d)", __func__, module);
return ESP_OK;
}
else{
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_register |= BIT(module);
/* The module is set to enter modem sleep by default, otherwise will prevent
* other modules from entering sleep mode if this module never call enter sleep function
* in the future */
s_modem_sleep_module_enter |= BIT(module);
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
}
esp_err_t esp_modem_sleep_deregister(modem_sleep_module_t module)
{
if (module >= MODEM_MODULE_COUNT){
ESP_LOGE(TAG, "%s, invalid module parameter(%d), should be smaller than \
module count(%d)", __func__, module, MODEM_MODULE_COUNT);
return ESP_ERR_INVALID_ARG;
}
else if (!(s_modem_sleep_module_register & BIT(module))){
ESP_LOGI(TAG, "%s, module (%d) has not been registered", __func__, module);
return ESP_OK;
}
else{
_lock_acquire(&s_modem_sleep_lock);
s_modem_sleep_module_enter &= ~BIT(module);
s_modem_sleep_module_register &= ~BIT(module);
if (s_modem_sleep_module_register == 0){
s_modem_sleep_module_enter = 0;
/* Once all module are de-registered and current state
* is modem sleep mode, we need to turn off modem sleep
*/
if (s_is_modem_sleep_en == true){
s_is_modem_sleep_en = false;
esp_phy_rf_init(NULL,PHY_RF_CAL_NONE,NULL, PHY_MODEM_MODULE);
}
}
_lock_release(&s_modem_sleep_lock);
return ESP_OK;
}
}
// PHY init data handling functions
#if CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
#include "esp_partition.h"
const esp_phy_init_data_t* esp_phy_get_init_data(void)
{
const esp_partition_t* partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL);
if (partition == NULL) {
ESP_LOGE(TAG, "PHY data partition not found");
return NULL;
}
ESP_LOGD(TAG, "loading PHY init data from partition at offset 0x%x", partition->address);
size_t init_data_store_length = sizeof(phy_init_magic_pre) +
sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post);
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for PHY init data");
return NULL;
}
esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "failed to read PHY data partition (0x%x)", err);
return NULL;
}
if (memcmp(init_data_store, PHY_INIT_MAGIC, sizeof(phy_init_magic_pre)) != 0 ||
memcmp(init_data_store + init_data_store_length - sizeof(phy_init_magic_post),
PHY_INIT_MAGIC, sizeof(phy_init_magic_post)) != 0) {
ESP_LOGE(TAG, "failed to validate PHY data partition");
return NULL;
}
#if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
if ((*(init_data_store + (sizeof(phy_init_magic_pre) + PHY_SUPPORT_MULTIPLE_BIN_OFFSET)))) {
s_multiple_phy_init_data_bin = true;
ESP_LOGI(TAG, "Support multiple PHY init data bins");
} else {
ESP_LOGW(TAG, "Does not support multiple PHY init data bins");
}
#endif
ESP_LOGD(TAG, "PHY data partition validated");
return (const esp_phy_init_data_t*) (init_data_store + sizeof(phy_init_magic_pre));
}
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
{
free((uint8_t*) init_data - sizeof(phy_init_magic_pre));
}
#else // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
// phy_init_data.h will declare static 'phy_init_data' variable initialized with default init data
const esp_phy_init_data_t* esp_phy_get_init_data(void)
{
ESP_LOGD(TAG, "loading PHY init data from application binary");
return &phy_init_data;
}
void esp_phy_release_init_data(const esp_phy_init_data_t* init_data)
{
// no-op
}
#endif // CONFIG_ESP32_PHY_INIT_DATA_IN_PARTITION
// PHY calibration data handling functions
static const char* PHY_NAMESPACE = "phy";
static const char* PHY_CAL_VERSION_KEY = "cal_version";
static const char* PHY_CAL_MAC_KEY = "cal_mac";
static const char* PHY_CAL_DATA_KEY = "cal_data";
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle_t handle,
esp_phy_calibration_data_t* out_cal_data);
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle,
const esp_phy_calibration_data_t* cal_data);
esp_err_t esp_phy_load_cal_data_from_nvs(esp_phy_calibration_data_t* out_cal_data)
{
nvs_handle_t handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READONLY, &handle);
if (err == ESP_ERR_NVS_NOT_INITIALIZED) {
ESP_LOGE(TAG, "%s: NVS has not been initialized. "
"Call nvs_flash_init before starting WiFi/BT.", __func__);
return err;
} else if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
return err;
}
err = load_cal_data_from_nvs_handle(handle, out_cal_data);
nvs_close(handle);
return err;
}
esp_err_t esp_phy_store_cal_data_to_nvs(const esp_phy_calibration_data_t* cal_data)
{
nvs_handle_t handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to open NVS namespace (0x%x)", __func__, err);
return err;
}
else {
err = store_cal_data_to_nvs_handle(handle, cal_data);
nvs_close(handle);
return err;
}
}
esp_err_t esp_phy_erase_cal_data_in_nvs(void)
{
nvs_handle_t handle;
esp_err_t err = nvs_open(PHY_NAMESPACE, NVS_READWRITE, &handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to open NVS phy namespace (0x%x)", __func__, err);
return err;
}
else {
err = nvs_erase_all(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to erase NVS phy namespace (0x%x)", __func__, err);
}
else {
err = nvs_commit(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to commit NVS phy namespace (0x%x)", __func__, err);
}
}
}
nvs_close(handle);
return err;
}
static esp_err_t load_cal_data_from_nvs_handle(nvs_handle_t handle,
esp_phy_calibration_data_t* out_cal_data)
{
esp_err_t err;
uint32_t cal_data_version;
err = nvs_get_u32(handle, PHY_CAL_VERSION_KEY, &cal_data_version);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_version (0x%x)", __func__, err);
return err;
}
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
if (cal_data_version != cal_format_version) {
ESP_LOGD(TAG, "%s: expected calibration data format %d, found %d",
__func__, cal_format_version, cal_data_version);
return ESP_FAIL;
}
uint8_t cal_data_mac[6];
size_t length = sizeof(cal_data_mac);
err = nvs_get_blob(handle, PHY_CAL_MAC_KEY, cal_data_mac, &length);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: failed to get cal_mac (0x%x)", __func__, err);
return err;
}
if (length != sizeof(cal_data_mac)) {
ESP_LOGD(TAG, "%s: invalid length of cal_mac (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}
uint8_t sta_mac[6];
esp_efuse_mac_get_default(sta_mac);
if (memcmp(sta_mac, cal_data_mac, sizeof(sta_mac)) != 0) {
ESP_LOGE(TAG, "%s: calibration data MAC check failed: expected " \
MACSTR ", found " MACSTR,
__func__, MAC2STR(sta_mac), MAC2STR(cal_data_mac));
return ESP_FAIL;
}
length = sizeof(*out_cal_data);
err = nvs_get_blob(handle, PHY_CAL_DATA_KEY, out_cal_data, &length);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to get cal_data(0x%x)", __func__, err);
return err;
}
if (length != sizeof(*out_cal_data)) {
ESP_LOGD(TAG, "%s: invalid length of cal_data (%d)", __func__, length);
return ESP_ERR_INVALID_SIZE;
}
return ESP_OK;
}
static esp_err_t store_cal_data_to_nvs_handle(nvs_handle_t handle,
const esp_phy_calibration_data_t* cal_data)
{
esp_err_t err;
err = nvs_set_blob(handle, PHY_CAL_DATA_KEY, cal_data, sizeof(*cal_data));
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration data failed(0x%x)\n", __func__, err);
return err;
}
uint8_t sta_mac[6];
esp_efuse_mac_get_default(sta_mac);
err = nvs_set_blob(handle, PHY_CAL_MAC_KEY, sta_mac, sizeof(sta_mac));
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration mac failed(0x%x)\n", __func__, err);
return err;
}
uint32_t cal_format_version = phy_get_rf_cal_version() & (~BIT(16));
ESP_LOGV(TAG, "phy_get_rf_cal_version: %d\n", cal_format_version);
err = nvs_set_u32(handle, PHY_CAL_VERSION_KEY, cal_format_version);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration version failed(0x%x)\n", __func__, err);
return err;
}
err = nvs_commit(handle);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: store calibration nvs commit failed(0x%x)\n", __func__, err);
}
return err;
}
#if CONFIG_ESP32_REDUCE_PHY_TX_POWER
// TODO: fix the esp_phy_reduce_tx_power unused warning for esp32s2 - IDF-759
static void __attribute((unused)) esp_phy_reduce_tx_power(esp_phy_init_data_t* init_data)
{
uint8_t i;
for(i = 0; i < PHY_TX_POWER_NUM; i++) {
// LOWEST_PHY_TX_POWER is the lowest tx power
init_data->params[PHY_TX_POWER_OFFSET+i] = PHY_TX_POWER_LOWEST;
}
}
#endif
void esp_phy_load_cal_and_init(phy_rf_module_t module)
{
esp_phy_calibration_data_t* cal_data =
(esp_phy_calibration_data_t*) calloc(sizeof(esp_phy_calibration_data_t), 1);
if (cal_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for RF calibration data");
abort();
}
#if CONFIG_ESP32_REDUCE_PHY_TX_POWER
const esp_phy_init_data_t* phy_init_data = esp_phy_get_init_data();
if (phy_init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}
esp_phy_init_data_t* init_data = (esp_phy_init_data_t*) malloc(sizeof(esp_phy_init_data_t));
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for phy init data");
abort();
}
memcpy(init_data, phy_init_data, sizeof(esp_phy_init_data_t));
#if CONFIG_IDF_TARGET_ESP32
// ToDo: remove once esp_reset_reason is supported on esp32s2
if (esp_reset_reason() == ESP_RST_BROWNOUT) {
esp_phy_reduce_tx_power(init_data);
}
#endif
#else
const esp_phy_init_data_t* init_data = esp_phy_get_init_data();
if (init_data == NULL) {
ESP_LOGE(TAG, "failed to obtain PHY init data");
abort();
}
#endif
#ifdef CONFIG_ESP32_PHY_CALIBRATION_AND_DATA_STORAGE
esp_phy_calibration_mode_t calibration_mode = PHY_RF_CAL_PARTIAL;
uint8_t sta_mac[6];
if (rtc_get_reset_reason(0) == DEEPSLEEP_RESET) {
calibration_mode = PHY_RF_CAL_NONE;
}
esp_err_t err = esp_phy_load_cal_data_from_nvs(cal_data);
if (err != ESP_OK) {
ESP_LOGW(TAG, "failed to load RF calibration data (0x%x), falling back to full calibration", err);
calibration_mode = PHY_RF_CAL_FULL;
}
esp_efuse_mac_get_default(sta_mac);
memcpy(cal_data->mac, sta_mac, 6);
esp_phy_rf_init(init_data, calibration_mode, cal_data, module);
if (calibration_mode != PHY_RF_CAL_NONE && err != ESP_OK) {
err = esp_phy_store_cal_data_to_nvs(cal_data);
} else {
err = ESP_OK;
}
#else
esp_phy_rf_init(init_data, PHY_RF_CAL_FULL, cal_data, module);
#endif
#if CONFIG_ESP32_REDUCE_PHY_TX_POWER
esp_phy_release_init_data(phy_init_data);
free(init_data);
#else
esp_phy_release_init_data(init_data);
#endif
free(cal_data); // PHY maintains a copy of calibration data, so we can free this
}
#if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
static esp_err_t phy_crc_check_init_data(uint8_t* init_data, const uint8_t* checksum, size_t init_data_length)
{
uint32_t crc_data = 0;
crc_data = crc32_le(crc_data, init_data, init_data_length);
uint32_t crc_size_conversion = htonl(crc_data);
if (crc_size_conversion != *(uint32_t*)(checksum)) {
return ESP_FAIL;
}
return ESP_OK;
}
static uint8_t phy_find_bin_type_according_country(const char* country)
{
uint32_t i = 0;
uint8_t phy_init_data_type = 0;
for (i = 0; i < sizeof(s_country_code_map_type_table)/sizeof(phy_country_to_bin_type_t); i++)
{
if (!memcmp(country, s_country_code_map_type_table[i].cc, sizeof(s_phy_current_country))) {
phy_init_data_type = s_country_code_map_type_table[i].type;
ESP_LOGD(TAG, "Current country is %c%c, PHY init data type is %s\n", s_country_code_map_type_table[i].cc[0],
s_country_code_map_type_table[i].cc[1], s_phy_type[s_country_code_map_type_table[i].type]);
break;
}
}
if (i == sizeof(s_country_code_map_type_table)/sizeof(phy_country_to_bin_type_t)) {
phy_init_data_type = ESP_PHY_INIT_DATA_TYPE_DEFAULT;
ESP_LOGW(TAG, "Use the default certification code beacuse %c%c doesn't have a certificate", country[0], country[1]);
}
return phy_init_data_type;
}
static esp_err_t phy_find_bin_data_according_type(uint8_t* out_init_data_store,
const phy_control_info_data_t* init_data_control_info,
const uint8_t* init_data_multiple,
phy_init_data_type_t init_data_type)
{
int i = 0;
for (i = 0; i < init_data_control_info->number; i++) {
if (init_data_type == *(init_data_multiple + (i * sizeof(esp_phy_init_data_t)) + PHY_INIT_DATA_TYPE_OFFSET)) {
memcpy(out_init_data_store + sizeof(phy_init_magic_pre),
init_data_multiple + (i * sizeof(esp_phy_init_data_t)), sizeof(esp_phy_init_data_t));
break;
}
}
if (i == init_data_control_info->number) {
return ESP_FAIL;
}
return ESP_OK;
}
static esp_err_t phy_get_multiple_init_data(const esp_partition_t* partition,
uint8_t* init_data_store,
size_t init_data_store_length,
phy_init_data_type_t init_data_type)
{
phy_control_info_data_t* init_data_control_info = (phy_control_info_data_t*) malloc(sizeof(phy_control_info_data_t));
if (init_data_control_info == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for PHY init data control info");
return ESP_FAIL;
}
esp_err_t err = esp_partition_read(partition, init_data_store_length, init_data_control_info, sizeof(phy_control_info_data_t));
if (err != ESP_OK) {
free(init_data_control_info);
ESP_LOGE(TAG, "failed to read PHY control info data partition (0x%x)", err);
return ESP_FAIL;
}
if ((init_data_control_info->check_algorithm) == PHY_CRC_ALGORITHM) {
err = phy_crc_check_init_data(init_data_control_info->multiple_bin_checksum, init_data_control_info->control_info_checksum,
sizeof(phy_control_info_data_t) - sizeof(init_data_control_info->control_info_checksum));
if (err != ESP_OK) {
free(init_data_control_info);
ESP_LOGE(TAG, "PHY init data control info check error");
return ESP_FAIL;
}
} else {
free(init_data_control_info);
ESP_LOGE(TAG, "Check algorithm not CRC, PHY init data update failed");
return ESP_FAIL;
}
uint8_t* init_data_multiple = (uint8_t*) malloc(sizeof(esp_phy_init_data_t) * init_data_control_info->number);
if (init_data_multiple == NULL) {
free(init_data_control_info);
ESP_LOGE(TAG, "failed to allocate memory for PHY init data multiple bin");
return ESP_FAIL;
}
err = esp_partition_read(partition, init_data_store_length + sizeof(phy_control_info_data_t),
init_data_multiple, sizeof(esp_phy_init_data_t) * init_data_control_info->number);
if (err != ESP_OK) {
free(init_data_multiple);
free(init_data_control_info);
ESP_LOGE(TAG, "failed to read PHY init data multiple bin partition (0x%x)", err);
return ESP_FAIL;
}
if ((init_data_control_info->check_algorithm) == PHY_CRC_ALGORITHM) {
err = phy_crc_check_init_data(init_data_multiple, init_data_control_info->multiple_bin_checksum,
sizeof(esp_phy_init_data_t) * init_data_control_info->number);
if (err != ESP_OK) {
free(init_data_multiple);
free(init_data_control_info);
ESP_LOGE(TAG, "PHY init data multiple bin check error");
return ESP_FAIL;
}
} else {
free(init_data_multiple);
free(init_data_control_info);
ESP_LOGE(TAG, "Check algorithm not CRC, PHY init data update failed");
return ESP_FAIL;
}
err = phy_find_bin_data_according_type(init_data_store, init_data_control_info, init_data_multiple, init_data_type);
if (err != ESP_OK) {
ESP_LOGW(TAG, "%s has not been certified, use DEFAULT PHY init data", s_phy_type[init_data_type]);
s_phy_init_data_type = ESP_PHY_INIT_DATA_TYPE_DEFAULT;
} else {
s_phy_init_data_type = init_data_type;
}
free(init_data_multiple);
free(init_data_control_info);
return ESP_OK;
}
esp_err_t esp_phy_update_init_data(phy_init_data_type_t init_data_type)
{
const esp_partition_t* partition = esp_partition_find_first(
ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_PHY, NULL);
if (partition == NULL) {
ESP_LOGE(TAG, "Updated country code PHY data partition not found");
return ESP_FAIL;
}
size_t init_data_store_length = sizeof(phy_init_magic_pre) +
sizeof(esp_phy_init_data_t) + sizeof(phy_init_magic_post);
uint8_t* init_data_store = (uint8_t*) malloc(init_data_store_length);
if (init_data_store == NULL) {
ESP_LOGE(TAG, "failed to allocate memory for updated country code PHY init data");
return ESP_ERR_NO_MEM;
}
esp_err_t err = esp_partition_read(partition, 0, init_data_store, init_data_store_length);
if (err != ESP_OK) {
free(init_data_store);
ESP_LOGE(TAG, "failed to read updated country code PHY data partition (0x%x)", err);
return ESP_FAIL;
}
if (memcmp(init_data_store, PHY_INIT_MAGIC, sizeof(phy_init_magic_pre)) != 0 ||
memcmp(init_data_store + init_data_store_length - sizeof(phy_init_magic_post),
PHY_INIT_MAGIC, sizeof(phy_init_magic_post)) != 0) {
free(init_data_store);
ESP_LOGE(TAG, "failed to validate updated country code PHY data partition");
return ESP_FAIL;
}
//find init data bin according init data type
if (init_data_type != ESP_PHY_INIT_DATA_TYPE_DEFAULT) {
err = phy_get_multiple_init_data(partition, init_data_store, init_data_store_length, init_data_type);
if (err != ESP_OK) {
free(init_data_store);
#if CONFIG_ESP32_PHY_INIT_DATA_ERROR
abort();
#else
return ESP_FAIL;
#endif
}
} else {
s_phy_init_data_type = ESP_PHY_INIT_DATA_TYPE_DEFAULT;
}
if (s_current_apply_phy_init_data != s_phy_init_data_type) {
err = esp_phy_apply_phy_init_data(init_data_store + sizeof(phy_init_magic_pre));
if (err != ESP_OK) {
ESP_LOGE(TAG, "PHY init data failed to load");
free(init_data_store);
return ESP_FAIL;
}
ESP_LOGI(TAG, "PHY init data type updated from %s to %s",
s_phy_type[s_current_apply_phy_init_data], s_phy_type[s_phy_init_data_type]);
s_current_apply_phy_init_data = s_phy_init_data_type;
}
free(init_data_store);
return ESP_OK;
}
#endif
esp_err_t esp_phy_update_country_info(const char *country)
{
#if CONFIG_ESP32_SUPPORT_MULTIPLE_PHY_INIT_DATA_BIN
uint8_t phy_init_data_type_map = 0;
//if country equal s_phy_current_country, return;
if (!memcmp(country, s_phy_current_country, sizeof(s_phy_current_country))) {
return ESP_OK;
}
memcpy(s_phy_current_country, country, sizeof(s_phy_current_country));
if (!s_multiple_phy_init_data_bin) {
ESP_LOGD(TAG, "Does not support multiple PHY init data bins");
return ESP_FAIL;
}
phy_init_data_type_map = phy_find_bin_type_according_country(country);
if (phy_init_data_type_map == s_phy_init_data_type) {
return ESP_OK;
}
esp_err_t err = esp_phy_update_init_data(phy_init_data_type_map);
if (err != ESP_OK) {
return err;
}
#endif
return ESP_OK;
}