22e21b38f7
1. provide options for bluetooth low power mode 2. provide two options for bluetooth low power clock: main XTAL and external 32kHz XTAL 3. provide function and callbacks to control bluetooth low power mode, including enable/disable sleep, software wakeup request, low power clock settings, check power state, etc 4. modify vhci API vhci_host_send_packet to use blocking mode 5. note that DFS and bluetooth modem sleep can not be used together currently.
156 lines
6.3 KiB
C
156 lines
6.3 KiB
C
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdint.h>
|
|
#include "rom/ets_sys.h"
|
|
#include "soc/rtc.h"
|
|
#include "soc/rtc_cntl_reg.h"
|
|
#include "soc/timer_group_reg.h"
|
|
|
|
#define MHZ (1000000)
|
|
|
|
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
|
|
* This feature counts the number of XTAL clock cycles within a given number of
|
|
* RTC_SLOW_CLK cycles.
|
|
*
|
|
* Slow clock calibration feature has two modes of operation: one-off and cycling.
|
|
* In cycling mode (which is enabled by default on SoC reset), counting of XTAL
|
|
* cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
|
|
* using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
|
|
* once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
|
|
* enabled using TIMG_RTC_CALI_START bit.
|
|
*/
|
|
|
|
/**
|
|
* @brief Clock calibration function used by rtc_clk_cal and rtc_clk_cal_ratio
|
|
* @param cal_clk which clock to calibrate
|
|
* @param slowclk_cycles number of slow clock cycles to count
|
|
* @return number of XTAL clock cycles within the given number of slow clock cycles
|
|
*/
|
|
static uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
|
|
{
|
|
/* Enable requested clock (150k clock is always on) */
|
|
int dig_32k_xtal_state = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN);
|
|
if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_state) {
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, 1);
|
|
}
|
|
|
|
if (cal_clk == RTC_CAL_8MD256) {
|
|
SET_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
|
|
}
|
|
/* Prepare calibration */
|
|
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cal_clk);
|
|
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
|
|
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
|
|
/* Figure out how long to wait for calibration to finish */
|
|
uint32_t expected_freq;
|
|
rtc_slow_freq_t slow_freq = REG_GET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_ANA_CLK_RTC_SEL);
|
|
if (cal_clk == RTC_CAL_32K_XTAL ||
|
|
(cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_32K_XTAL)) {
|
|
expected_freq = 32768; /* standard 32k XTAL */
|
|
} else if (cal_clk == RTC_CAL_8MD256 ||
|
|
(cal_clk == RTC_CAL_RTC_MUX && slow_freq == RTC_SLOW_FREQ_8MD256)) {
|
|
expected_freq = RTC_FAST_CLK_FREQ_APPROX / 256;
|
|
} else {
|
|
expected_freq = 150000; /* 150k internal oscillator */
|
|
}
|
|
uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
|
|
/* Start calibration */
|
|
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
|
|
SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
|
|
/* Wait the expected time calibration should take.
|
|
* TODO: if running under RTOS, and us_time_estimate > RTOS tick, use the
|
|
* RTOS delay function.
|
|
*/
|
|
ets_delay_us(us_time_estimate);
|
|
/* Wait for calibration to finish up to another us_time_estimate */
|
|
int timeout_us = us_time_estimate;
|
|
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY) &&
|
|
timeout_us > 0) {
|
|
timeout_us--;
|
|
ets_delay_us(1);
|
|
}
|
|
|
|
REG_SET_FIELD(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_XTAL32K_EN, dig_32k_xtal_state);
|
|
|
|
if (cal_clk == RTC_CAL_8MD256) {
|
|
CLEAR_PERI_REG_MASK(RTC_CNTL_CLK_CONF_REG, RTC_CNTL_DIG_CLK8M_D256_EN);
|
|
}
|
|
if (timeout_us == 0) {
|
|
/* timed out waiting for calibration */
|
|
return 0;
|
|
}
|
|
|
|
return REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
|
|
}
|
|
|
|
uint32_t rtc_clk_cal_ratio(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
|
|
{
|
|
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
|
|
uint64_t ratio_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT)) / slowclk_cycles;
|
|
uint32_t ratio = (uint32_t)(ratio_64 & UINT32_MAX);
|
|
return ratio;
|
|
}
|
|
|
|
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
|
|
{
|
|
rtc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
|
|
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
|
|
uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
|
|
uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
|
|
uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
|
|
return period;
|
|
}
|
|
|
|
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
|
|
{
|
|
/* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
|
|
* TODO: fix overflow.
|
|
*/
|
|
return (time_in_us << RTC_CLK_CAL_FRACT) / period;
|
|
}
|
|
|
|
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
|
|
{
|
|
return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
|
|
}
|
|
|
|
uint64_t rtc_time_get()
|
|
{
|
|
SET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_UPDATE);
|
|
while (GET_PERI_REG_MASK(RTC_CNTL_TIME_UPDATE_REG, RTC_CNTL_TIME_VALID) == 0) {
|
|
ets_delay_us(1); // might take 1 RTC slowclk period, don't flood RTC bus
|
|
}
|
|
SET_PERI_REG_MASK(RTC_CNTL_INT_CLR_REG, RTC_CNTL_TIME_VALID_INT_CLR);
|
|
uint64_t t = READ_PERI_REG(RTC_CNTL_TIME0_REG);
|
|
t |= ((uint64_t) READ_PERI_REG(RTC_CNTL_TIME1_REG)) << 32;
|
|
return t;
|
|
}
|
|
|
|
void rtc_clk_wait_for_slow_cycle()
|
|
{
|
|
REG_CLR_BIT(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING | TIMG_RTC_CALI_START);
|
|
REG_CLR_BIT(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY);
|
|
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, RTC_CAL_RTC_MUX);
|
|
/* Request to run calibration for 0 slow clock cycles.
|
|
* RDY bit will be set on the nearest slow clock cycle.
|
|
*/
|
|
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, 0);
|
|
REG_SET_BIT(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
|
|
ets_delay_us(1); /* RDY needs some time to go low */
|
|
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
|
|
ets_delay_us(1);
|
|
}
|
|
}
|
|
|