c928bcc4b8
Fixes regression in core dump, when a crash happens in interrupt context.
767 lines
24 KiB
C
767 lines
24 KiB
C
// Copyright 2015-2019 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <sys/param.h>
|
|
#include <string.h>
|
|
|
|
#include "spi_flash_chip_driver.h"
|
|
#include "memspi_host_driver.h"
|
|
#include "esp_log.h"
|
|
#include "sdkconfig.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "esp_flash_internal.h"
|
|
#include <freertos/FreeRTOS.h>
|
|
#include <freertos/task.h>
|
|
#include "esp_timer.h"
|
|
|
|
static const char TAG[] = "spi_flash";
|
|
|
|
#define MAX_WRITE_CHUNK 8192 /* write in chunks */
|
|
#define MAX_READ_CHUNK 16384
|
|
|
|
|
|
#ifdef CONFIG_SPI_FLASH_DANGEROUS_WRITE_ABORTS
|
|
#define UNSAFE_WRITE_ADDRESS abort()
|
|
#else
|
|
#define UNSAFE_WRITE_ADDRESS return ESP_ERR_INVALID_ARG
|
|
#endif
|
|
|
|
/* CHECK_WRITE_ADDRESS macro to fail writes which land in the
|
|
bootloader, partition table, or running application region.
|
|
*/
|
|
#if CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
|
|
#define CHECK_WRITE_ADDRESS(CHIP, ADDR, SIZE)
|
|
#else /* FAILS or ABORTS */
|
|
#define CHECK_WRITE_ADDRESS(CHIP, ADDR, SIZE) do { \
|
|
if (CHIP && CHIP->os_func->region_protected && CHIP->os_func->region_protected(CHIP->os_func_data, ADDR, SIZE)) { \
|
|
UNSAFE_WRITE_ADDRESS; \
|
|
} \
|
|
} while(0)
|
|
#endif // CONFIG_SPI_FLASH_DANGEROUS_WRITE_ALLOWED
|
|
|
|
#define IO_STR_LEN 7
|
|
|
|
static const char io_mode_str[][IO_STR_LEN] = {
|
|
"slowrd",
|
|
"fastrd",
|
|
"dout",
|
|
"dio",
|
|
"qout",
|
|
"qio",
|
|
};
|
|
|
|
_Static_assert(sizeof(io_mode_str)/IO_STR_LEN == SPI_FLASH_READ_MODE_MAX, "the io_mode_str should be consistent with the esp_flash_io_mode_t defined in spi_flash_ll.h");
|
|
|
|
esp_err_t esp_flash_read_chip_id(esp_flash_t* chip, uint32_t* flash_id);
|
|
|
|
/* Static function to notify OS of a new SPI flash operation.
|
|
|
|
If returns an error result, caller must abort. If returns ESP_OK, caller must
|
|
call spiflash_end() before returning.
|
|
*/
|
|
static esp_err_t IRAM_ATTR spiflash_start(esp_flash_t *chip)
|
|
{
|
|
if (chip->os_func != NULL && chip->os_func->start != NULL) {
|
|
esp_err_t err = chip->os_func->start(chip->os_func_data);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
chip->host->dev_config(chip->host);
|
|
return ESP_OK;
|
|
}
|
|
|
|
/* Static function to notify OS that SPI flash operation is complete.
|
|
*/
|
|
static esp_err_t IRAM_ATTR spiflash_end(const esp_flash_t *chip, esp_err_t err)
|
|
{
|
|
if (chip->os_func != NULL
|
|
&& chip->os_func->end != NULL) {
|
|
esp_err_t end_err = chip->os_func->end(chip->os_func_data);
|
|
if (err == ESP_OK) {
|
|
err = end_err; // Only return the 'end' error if we haven't already failed
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/* Return true if regions 'a' and 'b' overlap at all, based on their start offsets and lengths. */
|
|
inline static bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len);
|
|
|
|
/* Top-level API functions, calling into chip_drv functions via chip->drv */
|
|
|
|
static esp_err_t detect_spi_flash_chip(esp_flash_t *chip);
|
|
|
|
bool esp_flash_chip_driver_initialized(const esp_flash_t *chip)
|
|
{
|
|
if (!chip->chip_drv) return false;
|
|
return true;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_init(esp_flash_t *chip)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
if (chip == NULL || chip->host == NULL || chip->host->driver_data == NULL ||
|
|
((memspi_host_data_t*)chip->host->driver_data)->spi == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
//read chip id
|
|
uint32_t flash_id;
|
|
int retries = 10;
|
|
do {
|
|
err = esp_flash_read_chip_id(chip, &flash_id);
|
|
} while (err == ESP_ERR_FLASH_NOT_INITIALISED && retries-- > 0);
|
|
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
chip->chip_id = flash_id;
|
|
|
|
if (!esp_flash_chip_driver_initialized(chip)) {
|
|
// Detect chip_drv
|
|
err = detect_spi_flash_chip(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
// Detect flash size
|
|
uint32_t size;
|
|
err = esp_flash_get_size(chip, &size);
|
|
if (err != ESP_OK) {
|
|
ESP_LOGE(TAG, "failed to get chip size");
|
|
return err;
|
|
}
|
|
|
|
ESP_LOGI(TAG, "flash io: %s", io_mode_str[chip->read_mode]);
|
|
err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
if (err == ESP_OK) {
|
|
// Try to set the flash mode to whatever default mode was chosen
|
|
err = chip->chip_drv->set_io_mode(chip);
|
|
if (err == ESP_ERR_FLASH_NO_RESPONSE && !esp_flash_is_quad_mode(chip)) {
|
|
//some chips (e.g. Winbond) don't support to clear QE, treat as success
|
|
err = ESP_OK;
|
|
}
|
|
}
|
|
// Done: all fields on 'chip' are initialised
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
//this is not public, but useful in unit tests
|
|
esp_err_t IRAM_ATTR esp_flash_read_chip_id(esp_flash_t* chip, uint32_t* flash_id)
|
|
{
|
|
esp_err_t err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
// Send generic RDID command twice, check for a matching result and retry in case we just powered on (inner
|
|
// function fails if it sees all-ones or all-zeroes.)
|
|
err = chip->host->read_id(chip->host, flash_id);
|
|
|
|
if (err == ESP_OK) { // check we see the same ID twice, in case of transient power-on errors
|
|
uint32_t new_id;
|
|
err = chip->host->read_id(chip->host, &new_id);
|
|
if (err == ESP_OK && (new_id != *flash_id)) {
|
|
err = ESP_ERR_FLASH_NOT_INITIALISED;
|
|
}
|
|
}
|
|
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
static esp_err_t IRAM_ATTR detect_spi_flash_chip(esp_flash_t *chip)
|
|
{
|
|
esp_err_t err;
|
|
uint32_t flash_id = chip->chip_id;
|
|
|
|
// Detect the chip and set the chip_drv structure for it
|
|
const spi_flash_chip_t **drivers = esp_flash_registered_chips;
|
|
while (*drivers != NULL && !esp_flash_chip_driver_initialized(chip)) {
|
|
chip->chip_drv = *drivers;
|
|
// start/end SPI operation each time, for multitasking
|
|
// and also so esp_flash_registered_flash_drivers can live in flash
|
|
ESP_LOGD(TAG, "trying chip: %s", chip->chip_drv->name);
|
|
|
|
err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
if (chip->chip_drv->probe(chip, flash_id) != ESP_OK) {
|
|
chip->chip_drv = NULL;
|
|
}
|
|
// if probe succeeded, chip->drv stays set
|
|
drivers++;
|
|
|
|
err = spiflash_end(chip, err);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
}
|
|
if (!esp_flash_chip_driver_initialized(chip)) {
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
ESP_LOGI(TAG, "detected chip: %s", chip->chip_drv->name);
|
|
return ESP_OK;
|
|
}
|
|
|
|
// Convenience macro for beginning of all API functions,
|
|
// check that the 'chip' parameter is properly initialised
|
|
// and supports the operation in question
|
|
#define VERIFY_OP(OP) do { \
|
|
if (chip == NULL) { \
|
|
chip = esp_flash_default_chip; \
|
|
} \
|
|
if (chip == NULL || !esp_flash_chip_driver_initialized(chip)) { \
|
|
return ESP_ERR_FLASH_NOT_INITIALISED; \
|
|
} \
|
|
if (chip->chip_drv->OP == NULL) { \
|
|
return ESP_ERR_FLASH_UNSUPPORTED_CHIP; \
|
|
} \
|
|
} while (0)
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_read_id(esp_flash_t *chip, uint32_t *out_id)
|
|
{
|
|
if (chip == NULL) {
|
|
chip = esp_flash_default_chip;
|
|
}
|
|
if (chip == NULL || !esp_flash_chip_driver_initialized(chip)) {
|
|
return ESP_ERR_FLASH_NOT_INITIALISED;
|
|
}
|
|
if (out_id == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
esp_err_t err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->host->read_id(chip->host, out_id);
|
|
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_get_size(esp_flash_t *chip, uint32_t *out_size)
|
|
{
|
|
VERIFY_OP(detect_size);
|
|
if (out_size == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if (chip->size != 0) {
|
|
*out_size = chip->size;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
uint32_t detect_size;
|
|
err = chip->chip_drv->detect_size(chip, &detect_size);
|
|
if (err == ESP_OK) {
|
|
chip->size = detect_size;
|
|
}
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_erase_chip(esp_flash_t *chip)
|
|
{
|
|
VERIFY_OP(erase_chip);
|
|
CHECK_WRITE_ADDRESS(chip, 0, chip->size);
|
|
|
|
esp_err_t err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->erase_chip(chip);
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_erase_region(esp_flash_t *chip, uint32_t start, uint32_t len)
|
|
{
|
|
VERIFY_OP(erase_sector);
|
|
VERIFY_OP(erase_block);
|
|
CHECK_WRITE_ADDRESS(chip, start, len);
|
|
uint32_t block_erase_size = chip->chip_drv->erase_block == NULL ? 0 : chip->chip_drv->block_erase_size;
|
|
uint32_t sector_size = chip->chip_drv->sector_size;
|
|
|
|
if (sector_size == 0 || (block_erase_size % sector_size) != 0) {
|
|
return ESP_ERR_FLASH_NOT_INITIALISED;
|
|
}
|
|
if (start > chip->size || start + len > chip->size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
if ((start % chip->chip_drv->sector_size) != 0 || (len % chip->chip_drv->sector_size) != 0) {
|
|
// Can only erase multiples of the sector size, starting at sector boundary
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
esp_err_t err = ESP_OK;
|
|
// Check for write protected regions overlapping the erase region
|
|
if (chip->chip_drv->get_protected_regions != NULL &&
|
|
chip->chip_drv->num_protectable_regions > 0) {
|
|
|
|
err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
uint64_t protected = 0;
|
|
err = chip->chip_drv->get_protected_regions(chip, &protected);
|
|
if (err == ESP_OK && protected != 0) {
|
|
for (int i = 0; i < chip->chip_drv->num_protectable_regions && err == ESP_OK; i++) {
|
|
const esp_flash_region_t *region = &chip->chip_drv->protectable_regions[i];
|
|
if ((protected & BIT64(i))
|
|
&& regions_overlap(start, len, region->offset, region->size)) {
|
|
err = ESP_ERR_FLASH_PROTECTED;
|
|
}
|
|
}
|
|
}
|
|
// Don't lock the SPI flash for the entire erase, as this may be very long
|
|
err = spiflash_end(chip, err);
|
|
}
|
|
|
|
#ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
|
|
int64_t no_yield_time_us = 0;
|
|
#endif
|
|
while (err == ESP_OK && len >= sector_size) {
|
|
#ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
|
|
int64_t start_time_us = esp_timer_get_time();
|
|
#endif
|
|
err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
#ifndef CONFIG_SPI_FLASH_BYPASS_BLOCK_ERASE
|
|
// If possible erase an entire multi-sector block
|
|
if (block_erase_size > 0 && len >= block_erase_size && (start % block_erase_size) == 0) {
|
|
err = chip->chip_drv->erase_block(chip, start);
|
|
start += block_erase_size;
|
|
len -= block_erase_size;
|
|
} else
|
|
#endif
|
|
{
|
|
// Otherwise erase individual sector only
|
|
err = chip->chip_drv->erase_sector(chip, start);
|
|
start += sector_size;
|
|
len -= sector_size;
|
|
}
|
|
|
|
err = spiflash_end(chip, err);
|
|
|
|
#ifdef CONFIG_SPI_FLASH_YIELD_DURING_ERASE
|
|
no_yield_time_us += (esp_timer_get_time() - start_time_us);
|
|
if (no_yield_time_us / 1000 >= CONFIG_SPI_FLASH_ERASE_YIELD_DURATION_MS) {
|
|
no_yield_time_us = 0;
|
|
if (chip->os_func->yield) {
|
|
chip->os_func->yield(chip->os_func_data);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
return err;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_get_chip_write_protect(esp_flash_t *chip, bool *out_write_protected)
|
|
{
|
|
VERIFY_OP(get_chip_write_protect);
|
|
if (out_write_protected == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
esp_err_t err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->get_chip_write_protect(chip, out_write_protected);
|
|
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_set_chip_write_protect(esp_flash_t *chip, bool write_protect)
|
|
{
|
|
VERIFY_OP(set_chip_write_protect);
|
|
//TODO: skip writing if already locked or unlocked
|
|
|
|
esp_err_t err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->set_chip_write_protect(chip, write_protect);
|
|
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
esp_err_t esp_flash_get_protectable_regions(const esp_flash_t *chip, const esp_flash_region_t **out_regions, uint32_t *out_num_regions)
|
|
{
|
|
if(out_num_regions != NULL) {
|
|
*out_num_regions = 0; // In case caller doesn't check result
|
|
}
|
|
VERIFY_OP(get_protected_regions);
|
|
|
|
if(out_regions == NULL || out_num_regions == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
*out_num_regions = chip->chip_drv->num_protectable_regions;
|
|
*out_regions = chip->chip_drv->protectable_regions;
|
|
return ESP_OK;
|
|
}
|
|
|
|
static esp_err_t find_region(const esp_flash_t *chip, const esp_flash_region_t *region, uint8_t *index)
|
|
{
|
|
if (region == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
for(*index = 0; *index < chip->chip_drv->num_protectable_regions; (*index)++) {
|
|
if (memcmp(&chip->chip_drv->protectable_regions[*index],
|
|
region, sizeof(esp_flash_region_t)) == 0) {
|
|
return ESP_OK;
|
|
}
|
|
}
|
|
|
|
return ESP_ERR_NOT_FOUND;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_get_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool *out_protected)
|
|
{
|
|
VERIFY_OP(get_protected_regions);
|
|
|
|
if (out_protected == NULL) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
uint8_t index;
|
|
esp_err_t err = find_region(chip, region, &index);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
uint64_t protection_mask = 0;
|
|
err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->get_protected_regions(chip, &protection_mask);
|
|
if (err == ESP_OK) {
|
|
*out_protected = protection_mask & (1LL << index);
|
|
}
|
|
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_set_protected_region(esp_flash_t *chip, const esp_flash_region_t *region, bool protect)
|
|
{
|
|
VERIFY_OP(set_protected_regions);
|
|
|
|
uint8_t index;
|
|
esp_err_t err = find_region(chip, region, &index);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
uint64_t protection_mask = 0;
|
|
err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->get_protected_regions(chip, &protection_mask);
|
|
if (err == ESP_OK) {
|
|
if (protect) {
|
|
protection_mask |= (1LL << index);
|
|
} else {
|
|
protection_mask &= ~(1LL << index);
|
|
}
|
|
err = chip->chip_drv->set_protected_regions(chip, protection_mask);
|
|
}
|
|
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_read(esp_flash_t *chip, void *buffer, uint32_t address, uint32_t length)
|
|
{
|
|
if (length == 0) {
|
|
return ESP_OK;
|
|
}
|
|
VERIFY_OP(read);
|
|
if (buffer == NULL || address > chip->size || address+length > chip->size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
//when the cache is disabled, only the DRAM can be read, check whether we need to receive in another buffer in DRAM.
|
|
bool direct_read = chip->host->supports_direct_read(chip->host, buffer);
|
|
uint8_t* temp_buffer = NULL;
|
|
|
|
//each time, we at most read this length
|
|
//after that, we release the lock to allow some other operations
|
|
size_t read_chunk_size = MIN(MAX_READ_CHUNK, length);
|
|
|
|
if (!direct_read) {
|
|
/* Allocate temporary internal buffer to use for the actual read. If the preferred size
|
|
doesn't fit in free internal memory, allocate the largest available free block.
|
|
|
|
(May need to shrink read_chunk_size and retry due to race conditions with other tasks
|
|
also allocating from the heap.)
|
|
*/
|
|
unsigned retries = 5;
|
|
while(temp_buffer == NULL && retries--) {
|
|
read_chunk_size = MIN(read_chunk_size, heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT));
|
|
read_chunk_size = (read_chunk_size + 3) & ~3;
|
|
temp_buffer = heap_caps_malloc(read_chunk_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
}
|
|
ESP_LOGV(TAG, "allocate temp buffer: %p (%d)", temp_buffer, read_chunk_size);
|
|
|
|
if (temp_buffer == NULL) {
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
}
|
|
|
|
esp_err_t err = ESP_OK;
|
|
|
|
do {
|
|
err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
break;
|
|
}
|
|
//if required (dma buffer allocated), read to the buffer instead of the original buffer
|
|
uint8_t* buffer_to_read = (temp_buffer)? temp_buffer : buffer;
|
|
|
|
// Length we will read this iteration is either the chunk size or the remaining length, whichever is smaller
|
|
size_t length_to_read = MIN(read_chunk_size, length);
|
|
|
|
if (err == ESP_OK) {
|
|
err = chip->chip_drv->read(chip, buffer_to_read, address, length_to_read);
|
|
}
|
|
if (err != ESP_OK) {
|
|
spiflash_end(chip, err);
|
|
break;
|
|
}
|
|
//even if this is failed, the data is still valid, copy before quit
|
|
err = spiflash_end(chip, err);
|
|
|
|
//copy back to the original buffer
|
|
if (temp_buffer) {
|
|
memcpy(buffer, temp_buffer, length_to_read);
|
|
}
|
|
address += length_to_read;
|
|
length -= length_to_read;
|
|
buffer += length_to_read;
|
|
} while (err == ESP_OK && length > 0);
|
|
|
|
free(temp_buffer);
|
|
return err;
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_write(esp_flash_t *chip, const void *buffer, uint32_t address, uint32_t length)
|
|
{
|
|
if (length == 0) {
|
|
return ESP_OK;
|
|
}
|
|
VERIFY_OP(write);
|
|
CHECK_WRITE_ADDRESS(chip, address, length);
|
|
if (buffer == NULL || address > chip->size || address+length > chip->size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
|
|
//when the cache is disabled, only the DRAM can be read, check whether we need to copy the data first
|
|
bool direct_write = chip->host->supports_direct_write(chip->host, buffer);
|
|
|
|
esp_err_t err = ESP_OK;
|
|
/* Write output in chunks, either by buffering on stack or
|
|
by artificially cutting into MAX_WRITE_CHUNK parts (in an OS
|
|
environment, this prevents writing from causing interrupt or higher priority task
|
|
starvation.) */
|
|
do {
|
|
uint32_t write_len;
|
|
const void *write_buf;
|
|
if (direct_write) {
|
|
write_len = MIN(length, MAX_WRITE_CHUNK);
|
|
write_buf = buffer;
|
|
} else {
|
|
uint32_t buf[8];
|
|
write_len = MIN(length, sizeof(buf));
|
|
memcpy(buf, buffer, write_len);
|
|
write_buf = buf;
|
|
}
|
|
|
|
err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
err = chip->chip_drv->write(chip, write_buf, address, write_len);
|
|
|
|
address += write_len;
|
|
buffer = (void *)((intptr_t)buffer + write_len);
|
|
length -= write_len;
|
|
|
|
err = spiflash_end(chip, err);
|
|
} while (err == ESP_OK && length > 0);
|
|
return err;
|
|
}
|
|
|
|
//currently the legacy implementation is used, from flash_ops.c
|
|
esp_err_t spi_flash_write_encrypted(size_t dest_addr, const void *src, size_t size);
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_write_encrypted(esp_flash_t *chip, uint32_t address, const void *buffer, uint32_t length)
|
|
{
|
|
/*
|
|
* Since currently this feature is supported only by the hardware, there
|
|
* is no way to support non-standard chips. We use the legacy
|
|
* implementation and skip the chip and driver layers.
|
|
*/
|
|
if (chip == NULL) {
|
|
chip = esp_flash_default_chip;
|
|
} else if (chip != esp_flash_default_chip) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
if (buffer == NULL || address > chip->size || address+length > chip->size) {
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
return spi_flash_write_encrypted(address, buffer, length);
|
|
}
|
|
|
|
inline static IRAM_ATTR bool regions_overlap(uint32_t a_start, uint32_t a_len,uint32_t b_start, uint32_t b_len)
|
|
{
|
|
uint32_t a_end = a_start + a_len;
|
|
uint32_t b_end = b_start + b_len;
|
|
return (a_end > b_start && b_end > a_start);
|
|
}
|
|
|
|
//currently the legacy implementation is used, from flash_ops.c
|
|
esp_err_t spi_flash_read_encrypted(size_t src, void *dstv, size_t size);
|
|
|
|
esp_err_t IRAM_ATTR esp_flash_read_encrypted(esp_flash_t *chip, uint32_t address, void *out_buffer, uint32_t length)
|
|
{
|
|
/*
|
|
* Since currently this feature is supported only by the hardware, there
|
|
* is no way to support non-standard chips. We use the legacy
|
|
* implementation and skip the chip and driver layers.
|
|
*/
|
|
if (chip == NULL) {
|
|
chip = esp_flash_default_chip;
|
|
} else if (chip != esp_flash_default_chip) {
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
}
|
|
return spi_flash_read_encrypted(address, out_buffer, length);
|
|
}
|
|
|
|
// test only, non-public
|
|
IRAM_ATTR esp_err_t esp_flash_get_io_mode(esp_flash_t* chip, bool* qe)
|
|
{
|
|
VERIFY_OP(get_io_mode);
|
|
esp_flash_io_mode_t io_mode;
|
|
|
|
esp_err_t err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
err = chip->chip_drv->get_io_mode(chip, &io_mode);
|
|
err = spiflash_end(chip, err);
|
|
if (err == ESP_OK) {
|
|
*qe = (io_mode == SPI_FLASH_QOUT);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
IRAM_ATTR esp_err_t esp_flash_set_io_mode(esp_flash_t* chip, bool qe)
|
|
{
|
|
VERIFY_OP(set_io_mode);
|
|
chip->read_mode = (qe? SPI_FLASH_QOUT: SPI_FLASH_SLOWRD);
|
|
esp_err_t err = spiflash_start(chip);
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
err = chip->chip_drv->set_io_mode(chip);
|
|
return spiflash_end(chip, err);
|
|
}
|
|
|
|
#ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
|
|
esp_err_t esp_flash_app_disable_protect(bool disable)
|
|
{
|
|
if (disable) {
|
|
return esp_flash_app_disable_os_functions(esp_flash_default_chip);
|
|
} else {
|
|
return esp_flash_app_init_os_functions(esp_flash_default_chip);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*------------------------------------------------------------------------------
|
|
Adapter layer to original api before IDF v4.0
|
|
------------------------------------------------------------------------------*/
|
|
|
|
#ifndef CONFIG_SPI_FLASH_USE_LEGACY_IMPL
|
|
|
|
/* Translate any ESP_ERR_FLASH_xxx error code (new API) to a generic ESP_ERR_xyz error code
|
|
*/
|
|
static IRAM_ATTR esp_err_t spi_flash_translate_rc(esp_err_t err)
|
|
{
|
|
switch (err) {
|
|
case ESP_OK:
|
|
case ESP_ERR_INVALID_ARG:
|
|
case ESP_ERR_NO_MEM:
|
|
return err;
|
|
|
|
case ESP_ERR_FLASH_NOT_INITIALISED:
|
|
case ESP_ERR_FLASH_PROTECTED:
|
|
return ESP_ERR_INVALID_STATE;
|
|
|
|
case ESP_ERR_NOT_FOUND:
|
|
case ESP_ERR_FLASH_UNSUPPORTED_HOST:
|
|
case ESP_ERR_FLASH_UNSUPPORTED_CHIP:
|
|
return ESP_ERR_NOT_SUPPORTED;
|
|
|
|
case ESP_ERR_FLASH_NO_RESPONSE:
|
|
return ESP_ERR_INVALID_RESPONSE;
|
|
|
|
default:
|
|
ESP_EARLY_LOGE(TAG, "unexpected spi flash error code: 0x%x", err);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR spi_flash_erase_range(uint32_t start_addr, uint32_t size)
|
|
{
|
|
esp_err_t err = esp_flash_erase_region(NULL, start_addr, size);
|
|
return spi_flash_translate_rc(err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR spi_flash_write(size_t dst, const void *srcv, size_t size)
|
|
{
|
|
esp_err_t err = esp_flash_write(NULL, srcv, dst, size);
|
|
return spi_flash_translate_rc(err);
|
|
}
|
|
|
|
esp_err_t IRAM_ATTR spi_flash_read(size_t src, void *dstv, size_t size)
|
|
{
|
|
esp_err_t err = esp_flash_read(NULL, dstv, src, size);
|
|
return spi_flash_translate_rc(err);
|
|
}
|
|
|
|
#endif // CONFIG_SPI_FLASH_USE_LEGACY_IMPL
|