974 lines
26 KiB
C
974 lines
26 KiB
C
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include <string.h>
|
|
#include <stdbool.h>
|
|
#include <stdarg.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/param.h>
|
|
#include "esp_vfs.h"
|
|
#include "esp_vfs_dev.h"
|
|
#include "esp_attr.h"
|
|
#include "driver/uart.h"
|
|
#include "sdkconfig.h"
|
|
#include "driver/uart_select.h"
|
|
#include "esp32/rom/uart.h"
|
|
|
|
// TODO: make the number of UARTs chip dependent
|
|
#define UART_NUM SOC_UART_NUM
|
|
|
|
// Token signifying that no character is available
|
|
#define NONE -1
|
|
|
|
#if CONFIG_NEWLIB_STDOUT_LINE_ENDING_CRLF
|
|
# define DEFAULT_TX_MODE ESP_LINE_ENDINGS_CRLF
|
|
#elif CONFIG_NEWLIB_STDOUT_LINE_ENDING_CR
|
|
# define DEFAULT_TX_MODE ESP_LINE_ENDINGS_CR
|
|
#else
|
|
# define DEFAULT_TX_MODE ESP_LINE_ENDINGS_LF
|
|
#endif
|
|
|
|
#if CONFIG_NEWLIB_STDIN_LINE_ENDING_CRLF
|
|
# define DEFAULT_RX_MODE ESP_LINE_ENDINGS_CRLF
|
|
#elif CONFIG_NEWLIB_STDIN_LINE_ENDING_CR
|
|
# define DEFAULT_RX_MODE ESP_LINE_ENDINGS_CR
|
|
#else
|
|
# define DEFAULT_RX_MODE ESP_LINE_ENDINGS_LF
|
|
#endif
|
|
|
|
// UART write bytes function type
|
|
typedef void (*tx_func_t)(int, int);
|
|
// UART read bytes function type
|
|
typedef int (*rx_func_t)(int);
|
|
|
|
// Basic functions for sending and receiving bytes over UART
|
|
static void uart_tx_char(int fd, int c);
|
|
static int uart_rx_char(int fd);
|
|
|
|
// Functions for sending and receiving bytes which use UART driver
|
|
static void uart_tx_char_via_driver(int fd, int c);
|
|
static int uart_rx_char_via_driver(int fd);
|
|
|
|
typedef struct {
|
|
// Pointers to UART peripherals
|
|
uart_dev_t* uart;
|
|
// One-character buffer used for newline conversion code, per UART
|
|
int peek_char;
|
|
// per-UART locks, lazily initialized
|
|
_lock_t read_lock;
|
|
_lock_t write_lock;
|
|
// Per-UART non-blocking flag. Note: default implementation does not honor this
|
|
// flag, all reads are non-blocking. This option becomes effective if UART
|
|
// driver is used.
|
|
bool non_blocking;
|
|
// Newline conversion mode when transmitting
|
|
esp_line_endings_t tx_mode;
|
|
// Newline conversion mode when receiving
|
|
esp_line_endings_t rx_mode;
|
|
// Functions used to write bytes to UART. Default to "basic" functions.
|
|
tx_func_t tx_func;
|
|
// Functions used to read bytes from UART. Default to "basic" functions.
|
|
rx_func_t rx_func;
|
|
} vfs_uart_context_t;
|
|
|
|
#define VFS_CTX_DEFAULT_VAL(uart_dev) (vfs_uart_context_t) {\
|
|
.uart = (uart_dev),\
|
|
.peek_char = NONE,\
|
|
.tx_mode = DEFAULT_TX_MODE,\
|
|
.rx_mode = DEFAULT_RX_MODE,\
|
|
.tx_func = uart_tx_char,\
|
|
.rx_func = uart_rx_char,\
|
|
}
|
|
|
|
//If the context should be dynamically initialized, remove this structure
|
|
//and point s_ctx to allocated data.
|
|
static vfs_uart_context_t s_context[UART_NUM] = {
|
|
VFS_CTX_DEFAULT_VAL(&UART0),
|
|
VFS_CTX_DEFAULT_VAL(&UART1),
|
|
#if UART_NUM > 2
|
|
VFS_CTX_DEFAULT_VAL(&UART2),
|
|
#endif
|
|
};
|
|
|
|
static vfs_uart_context_t* s_ctx[UART_NUM] = {
|
|
&s_context[0],
|
|
&s_context[1],
|
|
#if UART_NUM > 2
|
|
&s_context[2],
|
|
#endif
|
|
};
|
|
|
|
/* Lock ensuring that uart_select is used from only one task at the time */
|
|
static _lock_t s_one_select_lock;
|
|
|
|
static esp_vfs_select_sem_t _select_sem = {.sem = NULL};
|
|
static fd_set *_readfds = NULL;
|
|
static fd_set *_writefds = NULL;
|
|
static fd_set *_errorfds = NULL;
|
|
static fd_set *_readfds_orig = NULL;
|
|
static fd_set *_writefds_orig = NULL;
|
|
static fd_set *_errorfds_orig = NULL;
|
|
|
|
|
|
static void uart_end_select(void);
|
|
|
|
|
|
static int uart_open(const char * path, int flags, int mode)
|
|
{
|
|
// this is fairly primitive, we should check if file is opened read only,
|
|
// and error out if write is requested
|
|
int fd = -1;
|
|
|
|
if (strcmp(path, "/0") == 0) {
|
|
fd = 0;
|
|
} else if (strcmp(path, "/1") == 0) {
|
|
fd = 1;
|
|
} else if (strcmp(path, "/2") == 0) {
|
|
fd = 2;
|
|
} else {
|
|
errno = ENOENT;
|
|
return fd;
|
|
}
|
|
|
|
s_ctx[fd]->non_blocking = ((flags & O_NONBLOCK) == O_NONBLOCK);
|
|
|
|
return fd;
|
|
}
|
|
|
|
static void uart_tx_char(int fd, int c)
|
|
{
|
|
uart_dev_t* uart = s_ctx[fd]->uart;
|
|
while (uart->status.txfifo_cnt >= 127) {
|
|
;
|
|
}
|
|
uart->fifo.rw_byte = c;
|
|
}
|
|
|
|
static void uart_tx_char_via_driver(int fd, int c)
|
|
{
|
|
char ch = (char) c;
|
|
uart_write_bytes(fd, &ch, 1);
|
|
}
|
|
|
|
static int uart_rx_char(int fd)
|
|
{
|
|
uart_dev_t* uart = s_ctx[fd]->uart;
|
|
if (uart->status.rxfifo_cnt == 0) {
|
|
return NONE;
|
|
}
|
|
return uart->fifo.rw_byte;
|
|
}
|
|
|
|
static int uart_rx_char_via_driver(int fd)
|
|
{
|
|
uint8_t c;
|
|
int timeout = s_ctx[fd]->non_blocking ? 0 : portMAX_DELAY;
|
|
int n = uart_read_bytes(fd, &c, 1, timeout);
|
|
if (n <= 0) {
|
|
return NONE;
|
|
}
|
|
return c;
|
|
}
|
|
|
|
static ssize_t uart_write(int fd, const void * data, size_t size)
|
|
{
|
|
assert(fd >=0 && fd < 3);
|
|
const char *data_c = (const char *)data;
|
|
/* Even though newlib does stream locking on each individual stream, we need
|
|
* a dedicated UART lock if two streams (stdout and stderr) point to the
|
|
* same UART.
|
|
*/
|
|
_lock_acquire_recursive(&s_ctx[fd]->write_lock);
|
|
for (size_t i = 0; i < size; i++) {
|
|
int c = data_c[i];
|
|
if (c == '\n' && s_ctx[fd]->tx_mode != ESP_LINE_ENDINGS_LF) {
|
|
s_ctx[fd]->tx_func(fd, '\r');
|
|
if (s_ctx[fd]->tx_mode == ESP_LINE_ENDINGS_CR) {
|
|
continue;
|
|
}
|
|
}
|
|
s_ctx[fd]->tx_func(fd, c);
|
|
}
|
|
_lock_release_recursive(&s_ctx[fd]->write_lock);
|
|
return size;
|
|
}
|
|
|
|
/* Helper function which returns a previous character or reads a new one from
|
|
* UART. Previous character can be returned ("pushed back") using
|
|
* uart_return_char function.
|
|
*/
|
|
static int uart_read_char(int fd)
|
|
{
|
|
/* return character from peek buffer, if it is there */
|
|
if (s_ctx[fd]->peek_char != NONE) {
|
|
int c = s_ctx[fd]->peek_char;
|
|
s_ctx[fd]->peek_char = NONE;
|
|
return c;
|
|
}
|
|
return s_ctx[fd]->rx_func(fd);
|
|
}
|
|
|
|
/* Push back a character; it will be returned by next call to uart_read_char */
|
|
static void uart_return_char(int fd, int c)
|
|
{
|
|
assert(s_ctx[fd]->peek_char == NONE);
|
|
s_ctx[fd]->peek_char = c;
|
|
}
|
|
|
|
static ssize_t uart_read(int fd, void* data, size_t size)
|
|
{
|
|
assert(fd >=0 && fd < 3);
|
|
char *data_c = (char *) data;
|
|
size_t received = 0;
|
|
_lock_acquire_recursive(&s_ctx[fd]->read_lock);
|
|
while (received < size) {
|
|
int c = uart_read_char(fd);
|
|
if (c == '\r') {
|
|
if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CR) {
|
|
c = '\n';
|
|
} else if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CRLF) {
|
|
/* look ahead */
|
|
int c2 = uart_read_char(fd);
|
|
if (c2 == NONE) {
|
|
/* could not look ahead, put the current character back */
|
|
uart_return_char(fd, c);
|
|
break;
|
|
}
|
|
if (c2 == '\n') {
|
|
/* this was \r\n sequence. discard \r, return \n */
|
|
c = '\n';
|
|
} else {
|
|
/* \r followed by something else. put the second char back,
|
|
* it will be processed on next iteration. return \r now.
|
|
*/
|
|
uart_return_char(fd, c2);
|
|
}
|
|
}
|
|
} else if (c == NONE) {
|
|
break;
|
|
}
|
|
data_c[received] = (char) c;
|
|
++received;
|
|
if (c == '\n') {
|
|
break;
|
|
}
|
|
}
|
|
_lock_release_recursive(&s_ctx[fd]->read_lock);
|
|
if (received > 0) {
|
|
return received;
|
|
}
|
|
errno = EWOULDBLOCK;
|
|
return -1;
|
|
}
|
|
|
|
static int uart_fstat(int fd, struct stat * st)
|
|
{
|
|
assert(fd >=0 && fd < 3);
|
|
st->st_mode = S_IFCHR;
|
|
return 0;
|
|
}
|
|
|
|
static int uart_close(int fd)
|
|
{
|
|
assert(fd >=0 && fd < 3);
|
|
return 0;
|
|
}
|
|
|
|
static int uart_fcntl(int fd, int cmd, int arg)
|
|
{
|
|
assert(fd >=0 && fd < 3);
|
|
int result = 0;
|
|
if (cmd == F_GETFL) {
|
|
if (s_ctx[fd]->non_blocking) {
|
|
result |= O_NONBLOCK;
|
|
}
|
|
} else if (cmd == F_SETFL) {
|
|
s_ctx[fd]->non_blocking = (arg & O_NONBLOCK) != 0;
|
|
} else {
|
|
// unsupported operation
|
|
result = -1;
|
|
errno = ENOSYS;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int uart_access(const char *path, int amode)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (strcmp(path, "/0") == 0 || strcmp(path, "/1") == 0 || strcmp(path, "/2") == 0) {
|
|
if (F_OK == amode) {
|
|
ret = 0; //path exists
|
|
} else {
|
|
if ((((amode & R_OK) == R_OK) || ((amode & W_OK) == W_OK)) && ((amode & X_OK) != X_OK)) {
|
|
ret = 0; //path is readable and/or writable but not executable
|
|
} else {
|
|
errno = EACCES;
|
|
}
|
|
}
|
|
} else {
|
|
errno = ENOENT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int uart_fsync(int fd)
|
|
{
|
|
assert(fd >= 0 && fd < 3);
|
|
_lock_acquire_recursive(&s_ctx[fd]->write_lock);
|
|
uart_tx_wait_idle((uint8_t) fd);
|
|
_lock_release_recursive(&s_ctx[fd]->write_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void select_notif_callback(uart_port_t uart_num, uart_select_notif_t uart_select_notif, BaseType_t *task_woken)
|
|
{
|
|
switch (uart_select_notif) {
|
|
case UART_SELECT_READ_NOTIF:
|
|
if (FD_ISSET(uart_num, _readfds_orig)) {
|
|
FD_SET(uart_num, _readfds);
|
|
esp_vfs_select_triggered_isr(_select_sem, task_woken);
|
|
}
|
|
break;
|
|
case UART_SELECT_WRITE_NOTIF:
|
|
if (FD_ISSET(uart_num, _writefds_orig)) {
|
|
FD_SET(uart_num, _writefds);
|
|
esp_vfs_select_triggered_isr(_select_sem, task_woken);
|
|
}
|
|
break;
|
|
case UART_SELECT_ERROR_NOTIF:
|
|
if (FD_ISSET(uart_num, _errorfds_orig)) {
|
|
FD_SET(uart_num, _errorfds);
|
|
esp_vfs_select_triggered_isr(_select_sem, task_woken);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static esp_err_t uart_start_select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, esp_vfs_select_sem_t select_sem)
|
|
{
|
|
if (_lock_try_acquire(&s_one_select_lock)) {
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
const int max_fds = MIN(nfds, UART_NUM);
|
|
|
|
portENTER_CRITICAL(uart_get_selectlock());
|
|
|
|
if (_readfds || _writefds || _errorfds || _readfds_orig || _writefds_orig || _errorfds_orig || _select_sem.sem) {
|
|
portEXIT_CRITICAL(uart_get_selectlock());
|
|
uart_end_select();
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
if ((_readfds_orig = malloc(sizeof(fd_set))) == NULL) {
|
|
portEXIT_CRITICAL(uart_get_selectlock());
|
|
uart_end_select();
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
if ((_writefds_orig = malloc(sizeof(fd_set))) == NULL) {
|
|
portEXIT_CRITICAL(uart_get_selectlock());
|
|
uart_end_select();
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
if ((_errorfds_orig = malloc(sizeof(fd_set))) == NULL) {
|
|
portEXIT_CRITICAL(uart_get_selectlock());
|
|
uart_end_select();
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
|
|
//uart_set_select_notif_callback set the callbacks in UART ISR
|
|
for (int i = 0; i < max_fds; ++i) {
|
|
if (FD_ISSET(i, readfds) || FD_ISSET(i, writefds) || FD_ISSET(i, exceptfds)) {
|
|
uart_set_select_notif_callback(i, select_notif_callback);
|
|
}
|
|
}
|
|
|
|
_select_sem = select_sem;
|
|
|
|
_readfds = readfds;
|
|
_writefds = writefds;
|
|
_errorfds = exceptfds;
|
|
|
|
*_readfds_orig = *readfds;
|
|
*_writefds_orig = *writefds;
|
|
*_errorfds_orig = *exceptfds;
|
|
|
|
FD_ZERO(readfds);
|
|
FD_ZERO(writefds);
|
|
FD_ZERO(exceptfds);
|
|
|
|
for (int i = 0; i < max_fds; ++i) {
|
|
if (FD_ISSET(i, _readfds_orig)) {
|
|
size_t buffered_size;
|
|
if (uart_get_buffered_data_len(i, &buffered_size) == ESP_OK && buffered_size > 0) {
|
|
// signalize immediately when data is buffered
|
|
FD_SET(i, _readfds);
|
|
esp_vfs_select_triggered(_select_sem);
|
|
}
|
|
}
|
|
}
|
|
|
|
portEXIT_CRITICAL(uart_get_selectlock());
|
|
// s_one_select_lock is not released on successfull exit - will be
|
|
// released in uart_end_select()
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void uart_end_select(void)
|
|
{
|
|
portENTER_CRITICAL(uart_get_selectlock());
|
|
for (int i = 0; i < UART_NUM; ++i) {
|
|
uart_set_select_notif_callback(i, NULL);
|
|
}
|
|
|
|
_select_sem.sem = NULL;
|
|
|
|
_readfds = NULL;
|
|
_writefds = NULL;
|
|
_errorfds = NULL;
|
|
|
|
if (_readfds_orig) {
|
|
free(_readfds_orig);
|
|
_readfds_orig = NULL;
|
|
}
|
|
|
|
if (_writefds_orig) {
|
|
free(_writefds_orig);
|
|
_writefds_orig = NULL;
|
|
}
|
|
|
|
if (_errorfds_orig) {
|
|
free(_errorfds_orig);
|
|
_errorfds_orig = NULL;
|
|
}
|
|
portEXIT_CRITICAL(uart_get_selectlock());
|
|
_lock_release(&s_one_select_lock);
|
|
}
|
|
|
|
#ifdef CONFIG_VFS_SUPPORT_TERMIOS
|
|
static int uart_tcsetattr(int fd, int optional_actions, const struct termios *p)
|
|
{
|
|
if (fd < 0 || fd >= UART_NUM) {
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
if (p == NULL) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
switch (optional_actions) {
|
|
case TCSANOW:
|
|
// nothing to do
|
|
break;
|
|
case TCSADRAIN:
|
|
if (uart_wait_tx_done(fd, portMAX_DELAY) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
/* FALLTHRU */
|
|
|
|
case TCSAFLUSH:
|
|
if (uart_flush_input(fd) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
break;
|
|
default:
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (p->c_iflag & IGNCR) {
|
|
s_ctx[fd]->rx_mode = ESP_LINE_ENDINGS_CRLF;
|
|
} else if (p->c_iflag & ICRNL) {
|
|
s_ctx[fd]->rx_mode = ESP_LINE_ENDINGS_CR;
|
|
} else {
|
|
s_ctx[fd]->rx_mode = ESP_LINE_ENDINGS_LF;
|
|
}
|
|
|
|
// output line endings are not supported because there is no alternative in termios for converting LF to CR
|
|
|
|
{
|
|
uart_word_length_t data_bits;
|
|
const tcflag_t csize_bits = p->c_cflag & CSIZE;
|
|
|
|
switch (csize_bits) {
|
|
case CS5:
|
|
data_bits = UART_DATA_5_BITS;
|
|
break;
|
|
case CS6:
|
|
data_bits = UART_DATA_6_BITS;
|
|
break;
|
|
case CS7:
|
|
data_bits = UART_DATA_7_BITS;
|
|
break;
|
|
case CS8:
|
|
data_bits = UART_DATA_8_BITS;
|
|
break;
|
|
default:
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (uart_set_word_length(fd, data_bits) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (uart_set_stop_bits(fd, (p->c_cflag & CSTOPB) ? UART_STOP_BITS_2 : UART_STOP_BITS_1) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (uart_set_parity(fd, (p->c_cflag & PARENB) ?
|
|
((p->c_cflag & PARODD) ? UART_PARITY_ODD : UART_PARITY_EVEN)
|
|
:
|
|
UART_PARITY_DISABLE) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
if (p->c_cflag & (CBAUD | CBAUDEX)) {
|
|
if (p->c_ispeed != p->c_ospeed) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
} else {
|
|
uint32_t b;
|
|
if (p->c_cflag & BOTHER) {
|
|
b = p->c_ispeed;
|
|
} else {
|
|
switch (p->c_ispeed) {
|
|
case B0:
|
|
b = 0;
|
|
break;
|
|
case B50:
|
|
b = 50;
|
|
break;
|
|
case B75:
|
|
b = 75;
|
|
break;
|
|
case B110:
|
|
b = 110;
|
|
break;
|
|
case B134:
|
|
b = 134;
|
|
break;
|
|
case B150:
|
|
b = 150;
|
|
break;
|
|
case B200:
|
|
b = 200;
|
|
break;
|
|
case B300:
|
|
b = 300;
|
|
break;
|
|
case B600:
|
|
b = 600;
|
|
break;
|
|
case B1200:
|
|
b = 1200;
|
|
break;
|
|
case B1800:
|
|
b = 1800;
|
|
break;
|
|
case B2400:
|
|
b = 2400;
|
|
break;
|
|
case B4800:
|
|
b = 4800;
|
|
break;
|
|
case B9600:
|
|
b = 9600;
|
|
break;
|
|
case B19200:
|
|
b = 19200;
|
|
break;
|
|
case B38400:
|
|
b = 38400;
|
|
break;
|
|
case B57600:
|
|
b = 57600;
|
|
break;
|
|
case B115200:
|
|
b = 115200;
|
|
break;
|
|
case B230400:
|
|
b = 230400;
|
|
break;
|
|
case B460800:
|
|
b = 460800;
|
|
break;
|
|
case B500000:
|
|
b = 500000;
|
|
break;
|
|
case B576000:
|
|
b = 576000;
|
|
break;
|
|
case B921600:
|
|
b = 921600;
|
|
break;
|
|
case B1000000:
|
|
b = 1000000;
|
|
break;
|
|
case B1152000:
|
|
b = 1152000;
|
|
break;
|
|
case B1500000:
|
|
b = 1500000;
|
|
break;
|
|
case B2000000:
|
|
b = 2000000;
|
|
break;
|
|
case B2500000:
|
|
b = 2500000;
|
|
break;
|
|
case B3000000:
|
|
b = 3000000;
|
|
break;
|
|
case B3500000:
|
|
b = 3500000;
|
|
break;
|
|
case B4000000:
|
|
b = 4000000;
|
|
break;
|
|
default:
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
if (uart_set_baudrate(fd, b) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uart_tcgetattr(int fd, struct termios *p)
|
|
{
|
|
if (fd < 0 || fd >= UART_NUM) {
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
if (p == NULL) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
memset(p, 0, sizeof(struct termios));
|
|
|
|
if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CRLF) {
|
|
p->c_iflag |= IGNCR;
|
|
} else if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CR) {
|
|
p->c_iflag |= ICRNL;
|
|
}
|
|
|
|
{
|
|
uart_word_length_t data_bits;
|
|
|
|
if (uart_get_word_length(fd, &data_bits) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
p->c_cflag &= (~CSIZE);
|
|
|
|
switch (data_bits) {
|
|
case UART_DATA_5_BITS:
|
|
p->c_cflag |= CS5;
|
|
break;
|
|
case UART_DATA_6_BITS:
|
|
p->c_cflag |= CS6;
|
|
break;
|
|
case UART_DATA_7_BITS:
|
|
p->c_cflag |= CS7;
|
|
break;
|
|
case UART_DATA_8_BITS:
|
|
p->c_cflag |= CS8;
|
|
break;
|
|
default:
|
|
errno = ENOSYS;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
{
|
|
uart_stop_bits_t stop_bits;
|
|
if (uart_get_stop_bits(fd, &stop_bits) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
switch (stop_bits) {
|
|
case UART_STOP_BITS_1:
|
|
// nothing to do
|
|
break;
|
|
case UART_STOP_BITS_2:
|
|
p->c_cflag |= CSTOPB;
|
|
break;
|
|
default:
|
|
// UART_STOP_BITS_1_5 is unsupported by termios
|
|
errno = ENOSYS;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
{
|
|
uart_parity_t parity_mode;
|
|
if (uart_get_parity(fd, &parity_mode) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
switch (parity_mode) {
|
|
case UART_PARITY_EVEN:
|
|
p->c_cflag |= PARENB;
|
|
break;
|
|
case UART_PARITY_ODD:
|
|
p->c_cflag |= (PARENB | PARODD);
|
|
break;
|
|
case UART_PARITY_DISABLE:
|
|
// nothing to do
|
|
break;
|
|
default:
|
|
errno = ENOSYS;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
{
|
|
uint32_t baudrate;
|
|
if (uart_get_baudrate(fd, &baudrate) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
p->c_cflag |= (CBAUD | CBAUDEX);
|
|
|
|
speed_t sp;
|
|
switch (baudrate) {
|
|
case 0:
|
|
sp = B0;
|
|
break;
|
|
case 50:
|
|
sp = B50;
|
|
break;
|
|
case 75:
|
|
sp = B75;
|
|
break;
|
|
case 110:
|
|
sp = B110;
|
|
break;
|
|
case 134:
|
|
sp = B134;
|
|
break;
|
|
case 150:
|
|
sp = B150;
|
|
break;
|
|
case 200:
|
|
sp = B200;
|
|
break;
|
|
case 300:
|
|
sp = B300;
|
|
break;
|
|
case 600:
|
|
sp = B600;
|
|
break;
|
|
case 1200:
|
|
sp = B1200;
|
|
break;
|
|
case 1800:
|
|
sp = B1800;
|
|
break;
|
|
case 2400:
|
|
sp = B2400;
|
|
break;
|
|
case 4800:
|
|
sp = B4800;
|
|
break;
|
|
case 9600:
|
|
sp = B9600;
|
|
break;
|
|
case 19200:
|
|
sp = B19200;
|
|
break;
|
|
case 38400:
|
|
sp = B38400;
|
|
break;
|
|
case 57600:
|
|
sp = B57600;
|
|
break;
|
|
case 115200:
|
|
sp = B115200;
|
|
break;
|
|
case 230400:
|
|
sp = B230400;
|
|
break;
|
|
case 460800:
|
|
sp = B460800;
|
|
break;
|
|
case 500000:
|
|
sp = B500000;
|
|
break;
|
|
case 576000:
|
|
sp = B576000;
|
|
break;
|
|
case 921600:
|
|
sp = B921600;
|
|
break;
|
|
case 1000000:
|
|
sp = B1000000;
|
|
break;
|
|
case 1152000:
|
|
sp = B1152000;
|
|
break;
|
|
case 1500000:
|
|
sp = B1500000;
|
|
break;
|
|
case 2000000:
|
|
sp = B2000000;
|
|
break;
|
|
case 2500000:
|
|
sp = B2500000;
|
|
break;
|
|
case 3000000:
|
|
sp = B3000000;
|
|
break;
|
|
case 3500000:
|
|
sp = B3500000;
|
|
break;
|
|
case 4000000:
|
|
sp = B4000000;
|
|
break;
|
|
default:
|
|
p->c_cflag |= BOTHER;
|
|
sp = baudrate;
|
|
break;
|
|
}
|
|
|
|
p->c_ispeed = p->c_ospeed = sp;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uart_tcdrain(int fd)
|
|
{
|
|
if (fd < 0 || fd >= UART_NUM) {
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
if (uart_wait_tx_done(fd, portMAX_DELAY) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int uart_tcflush(int fd, int select)
|
|
{
|
|
if (fd < 0 || fd >= UART_NUM) {
|
|
errno = EBADF;
|
|
return -1;
|
|
}
|
|
|
|
if (select == TCIFLUSH) {
|
|
if (uart_flush_input(fd) != ESP_OK) {
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
} else {
|
|
// output flushing is not supported
|
|
errno = EINVAL;
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif // CONFIG_VFS_SUPPORT_TERMIOS
|
|
|
|
void esp_vfs_dev_uart_register(void)
|
|
{
|
|
esp_vfs_t vfs = {
|
|
.flags = ESP_VFS_FLAG_DEFAULT,
|
|
.write = &uart_write,
|
|
.open = &uart_open,
|
|
.fstat = &uart_fstat,
|
|
.close = &uart_close,
|
|
.read = &uart_read,
|
|
.fcntl = &uart_fcntl,
|
|
.fsync = &uart_fsync,
|
|
.access = &uart_access,
|
|
.start_select = &uart_start_select,
|
|
.end_select = &uart_end_select,
|
|
#ifdef CONFIG_VFS_SUPPORT_TERMIOS
|
|
.tcsetattr = &uart_tcsetattr,
|
|
.tcgetattr = &uart_tcgetattr,
|
|
.tcdrain = &uart_tcdrain,
|
|
.tcflush = &uart_tcflush,
|
|
#endif // CONFIG_VFS_SUPPORT_TERMIOS
|
|
};
|
|
ESP_ERROR_CHECK(esp_vfs_register("/dev/uart", &vfs, NULL));
|
|
}
|
|
|
|
void esp_vfs_dev_uart_set_rx_line_endings(esp_line_endings_t mode)
|
|
{
|
|
for (int i = 0; i < UART_NUM; ++i) {
|
|
s_ctx[i]->rx_mode = mode;
|
|
}
|
|
}
|
|
|
|
void esp_vfs_dev_uart_set_tx_line_endings(esp_line_endings_t mode)
|
|
{
|
|
for (int i = 0; i < UART_NUM; ++i) {
|
|
s_ctx[i]->tx_mode = mode;
|
|
}
|
|
}
|
|
|
|
void esp_vfs_dev_uart_use_nonblocking(int uart_num)
|
|
{
|
|
_lock_acquire_recursive(&s_ctx[uart_num]->read_lock);
|
|
_lock_acquire_recursive(&s_ctx[uart_num]->write_lock);
|
|
s_ctx[uart_num]->tx_func = uart_tx_char;
|
|
s_ctx[uart_num]->rx_func = uart_rx_char;
|
|
_lock_release_recursive(&s_ctx[uart_num]->write_lock);
|
|
_lock_release_recursive(&s_ctx[uart_num]->read_lock);
|
|
}
|
|
|
|
void esp_vfs_dev_uart_use_driver(int uart_num)
|
|
{
|
|
_lock_acquire_recursive(&s_ctx[uart_num]->read_lock);
|
|
_lock_acquire_recursive(&s_ctx[uart_num]->write_lock);
|
|
s_ctx[uart_num]->tx_func = uart_tx_char_via_driver;
|
|
s_ctx[uart_num]->rx_func = uart_rx_char_via_driver;
|
|
_lock_release_recursive(&s_ctx[uart_num]->write_lock);
|
|
_lock_release_recursive(&s_ctx[uart_num]->read_lock);
|
|
}
|