957 lines
36 KiB
C
957 lines
36 KiB
C
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include <esp_types.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include "freertos/FreeRTOS.h"
|
|
#include "freertos/semphr.h"
|
|
#include "freertos/xtensa_api.h"
|
|
#include "freertos/ringbuf.h"
|
|
#include "esp_intr_alloc.h"
|
|
#include "esp_log.h"
|
|
#include "esp_err.h"
|
|
#include "soc/gpio_periph.h"
|
|
#include "driver/periph_ctrl.h"
|
|
#include "driver/rmt.h"
|
|
#include "soc/soc_memory_layout.h"
|
|
|
|
#include <sys/lock.h>
|
|
|
|
#define RMT_SOUCCE_CLK_APB (APB_CLK_FREQ) /*!< RMT source clock is APB_CLK */
|
|
#define RMT_SOURCE_CLK_REF (1 * 1000000) /*!< not used yet */
|
|
#define RMT_SOURCE_CLK(select) ((select == RMT_BASECLK_REF) ? (RMT_SOURCE_CLK_REF) : (RMT_SOUCCE_CLK_APB)) /*! RMT source clock frequency */
|
|
|
|
#define RMT_CHANNEL_ERROR_STR "RMT CHANNEL ERR"
|
|
#define RMT_ADDR_ERROR_STR "RMT ADDRESS ERR"
|
|
#define RMT_MEM_CNT_ERROR_STR "RMT MEM BLOCK NUM ERR"
|
|
#define RMT_CARRIER_ERROR_STR "RMT CARRIER LEVEL ERR"
|
|
#define RMT_MEM_OWNER_ERROR_STR "RMT MEM OWNER_ERR"
|
|
#define RMT_BASECLK_ERROR_STR "RMT BASECLK ERR"
|
|
#define RMT_WR_MEM_OVF_ERROR_STR "RMT WR MEM OVERFLOW"
|
|
#define RMT_GPIO_ERROR_STR "RMT GPIO ERROR"
|
|
#define RMT_MODE_ERROR_STR "RMT MODE ERROR"
|
|
#define RMT_CLK_DIV_ERROR_STR "RMT CLK DIV ERR"
|
|
#define RMT_DRIVER_ERROR_STR "RMT DRIVER ERR"
|
|
#define RMT_DRIVER_LENGTH_ERROR_STR "RMT PARAM LEN ERROR"
|
|
#define RMT_PSRAM_BUFFER_WARN_STR "Using buffer allocated from psram"
|
|
#define RMT_TRANSLATOR_NULL_STR "RMT translator is null"
|
|
#define RMT_TRANSLATOR_UNINIT_STR "RMT translator not init"
|
|
#define RMT_PARAM_ERR_STR "RMT param error"
|
|
|
|
static const char* RMT_TAG = "rmt";
|
|
static uint8_t s_rmt_driver_channels; // Bitmask (bits 0-7) of installed drivers' channels
|
|
static rmt_isr_handle_t s_rmt_driver_intr_handle;
|
|
|
|
#define RMT_CHECK(a, str, ret_val) \
|
|
if (!(a)) { \
|
|
ESP_LOGE(RMT_TAG,"%s(%d): %s", __FUNCTION__, __LINE__, str); \
|
|
return (ret_val); \
|
|
}
|
|
|
|
// Spinlock for protecting concurrent register-level access only
|
|
static portMUX_TYPE rmt_spinlock = portMUX_INITIALIZER_UNLOCKED;
|
|
|
|
// Mutex lock for protecting concurrent register/unregister of RMT channels' ISR
|
|
static _lock_t rmt_driver_isr_lock;
|
|
|
|
typedef struct {
|
|
size_t tx_offset;
|
|
size_t tx_len_rem;
|
|
size_t tx_sub_len;
|
|
bool translator;
|
|
bool wait_done; //Mark whether wait tx done.
|
|
rmt_channel_t channel;
|
|
const rmt_item32_t* tx_data;
|
|
xSemaphoreHandle tx_sem;
|
|
#if CONFIG_SPIRAM_USE_MALLOC
|
|
int intr_alloc_flags;
|
|
StaticSemaphore_t tx_sem_buffer;
|
|
#endif
|
|
rmt_item32_t* tx_buf;
|
|
RingbufHandle_t rx_buf;
|
|
sample_to_rmt_t sample_to_rmt;
|
|
size_t sample_size_remain;
|
|
const uint8_t *sample_cur;
|
|
} rmt_obj_t;
|
|
|
|
rmt_obj_t* p_rmt_obj[RMT_CHANNEL_MAX] = {0};
|
|
|
|
// Event called when transmission is ended
|
|
static rmt_tx_end_callback_t rmt_tx_end_callback;
|
|
|
|
static void rmt_set_tx_wrap_en(bool en)
|
|
{
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.apb_conf.mem_tx_wrap_en = en;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
}
|
|
|
|
static void rmt_set_data_mode(rmt_data_mode_t data_mode)
|
|
{
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.apb_conf.fifo_mask = data_mode;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
}
|
|
|
|
esp_err_t rmt_set_clk_div(rmt_channel_t channel, uint8_t div_cnt)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT.conf_ch[channel].conf0.div_cnt = div_cnt;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_clk_div(rmt_channel_t channel, uint8_t* div_cnt)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(div_cnt != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*div_cnt = RMT.conf_ch[channel].conf0.div_cnt;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_rx_idle_thresh(rmt_channel_t channel, uint16_t thresh)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT.conf_ch[channel].conf0.idle_thres = thresh;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_rx_idle_thresh(rmt_channel_t channel, uint16_t *thresh)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(thresh != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*thresh = RMT.conf_ch[channel].conf0.idle_thres;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_mem_block_num(rmt_channel_t channel, uint8_t rmt_mem_num)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(rmt_mem_num <= RMT_CHANNEL_MAX - channel, RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT.conf_ch[channel].conf0.mem_size = rmt_mem_num;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_mem_block_num(rmt_channel_t channel, uint8_t* rmt_mem_num)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(rmt_mem_num != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*rmt_mem_num = RMT.conf_ch[channel].conf0.mem_size;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_tx_carrier(rmt_channel_t channel, bool carrier_en, uint16_t high_level, uint16_t low_level,
|
|
rmt_carrier_level_t carrier_level)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(carrier_level < RMT_CARRIER_LEVEL_MAX, RMT_CARRIER_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT.carrier_duty_ch[channel].high = high_level;
|
|
RMT.carrier_duty_ch[channel].low = low_level;
|
|
RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
|
|
RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_mem_pd(rmt_channel_t channel, bool pd_en)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT.conf_ch[channel].conf0.mem_pd = pd_en;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_mem_pd(rmt_channel_t channel, bool* pd_en)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*pd_en = (bool) RMT.conf_ch[channel].conf0.mem_pd;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_tx_start(rmt_channel_t channel, bool tx_idx_rst)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
if(tx_idx_rst) {
|
|
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
|
|
}
|
|
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
|
|
RMT.conf_ch[channel].conf1.tx_start = 1;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_tx_stop(rmt_channel_t channel)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMTMEM.chan[channel].data32[0].val = 0;
|
|
RMT.conf_ch[channel].conf1.tx_start = 0;
|
|
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
|
|
RMT.conf_ch[channel].conf1.mem_rd_rst = 0;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_rx_start(rmt_channel_t channel, bool rx_idx_rst)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
if(rx_idx_rst) {
|
|
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
|
|
}
|
|
RMT.conf_ch[channel].conf1.rx_en = 0;
|
|
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
|
|
RMT.conf_ch[channel].conf1.rx_en = 1;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_rx_stop(rmt_channel_t channel)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.conf_ch[channel].conf1.rx_en = 0;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_memory_rw_rst(rmt_channel_t channel)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
|
|
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_memory_owner(rmt_channel_t channel, rmt_mem_owner_t owner)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(owner < RMT_MEM_OWNER_MAX, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.conf_ch[channel].conf1.mem_owner = owner;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_memory_owner(rmt_channel_t channel, rmt_mem_owner_t* owner)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(owner != NULL, RMT_MEM_OWNER_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*owner = (rmt_mem_owner_t) RMT.conf_ch[channel].conf1.mem_owner;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_tx_loop_mode(rmt_channel_t channel, bool loop_en)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.conf_ch[channel].conf1.tx_conti_mode = loop_en;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_tx_loop_mode(rmt_channel_t channel, bool* loop_en)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*loop_en = (bool) RMT.conf_ch[channel].conf1.tx_conti_mode;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_rx_filter(rmt_channel_t channel, bool rx_filter_en, uint8_t thresh)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.conf_ch[channel].conf1.rx_filter_en = rx_filter_en;
|
|
RMT.conf_ch[channel].conf1.rx_filter_thres = thresh;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_source_clk(rmt_channel_t channel, rmt_source_clk_t base_clk)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(base_clk < RMT_BASECLK_MAX, RMT_BASECLK_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.conf_ch[channel].conf1.ref_always_on = base_clk;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_source_clk(rmt_channel_t channel, rmt_source_clk_t* src_clk)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*src_clk = (rmt_source_clk_t) (RMT.conf_ch[channel].conf1.ref_always_on);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_idle_level(rmt_channel_t channel, bool idle_out_en, rmt_idle_level_t level)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(level < RMT_IDLE_LEVEL_MAX, "RMT IDLE LEVEL ERR", ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.conf_ch[channel].conf1.idle_out_en = idle_out_en;
|
|
RMT.conf_ch[channel].conf1.idle_out_lv = level;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_idle_level(rmt_channel_t channel, bool* idle_out_en, rmt_idle_level_t* level)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*idle_out_en = (bool) (RMT.conf_ch[channel].conf1.idle_out_en);
|
|
*level = (rmt_idle_level_t) (RMT.conf_ch[channel].conf1.idle_out_lv);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_status(rmt_channel_t channel, uint32_t* status)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*status = RMT.status_ch[channel];
|
|
return ESP_OK;
|
|
}
|
|
|
|
rmt_data_mode_t rmt_get_data_mode(void)
|
|
{
|
|
return (rmt_data_mode_t) (RMT.apb_conf.fifo_mask);
|
|
}
|
|
|
|
void rmt_set_intr_enable_mask(uint32_t mask)
|
|
{
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.int_ena.val |= mask;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
}
|
|
|
|
void rmt_clr_intr_enable_mask(uint32_t mask)
|
|
{
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.int_ena.val &= (~mask);
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
}
|
|
|
|
esp_err_t rmt_set_rx_intr_en(rmt_channel_t channel, bool en)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
if(en) {
|
|
rmt_set_intr_enable_mask(BIT(channel * 3 + 1));
|
|
} else {
|
|
rmt_clr_intr_enable_mask(BIT(channel * 3 + 1));
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_err_intr_en(rmt_channel_t channel, bool en)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
if(en) {
|
|
rmt_set_intr_enable_mask(BIT(channel * 3 + 2));
|
|
} else {
|
|
rmt_clr_intr_enable_mask(BIT(channel * 3 + 2));
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_tx_intr_en(rmt_channel_t channel, bool en)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
if(en) {
|
|
rmt_set_intr_enable_mask(BIT(channel * 3));
|
|
} else {
|
|
rmt_clr_intr_enable_mask(BIT(channel * 3));
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_tx_thr_intr_en(rmt_channel_t channel, bool en, uint16_t evt_thresh)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
if(en) {
|
|
RMT_CHECK(evt_thresh <= 256, "RMT EVT THRESH ERR", ESP_ERR_INVALID_ARG);
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.tx_lim_ch[channel].limit = evt_thresh;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
rmt_set_tx_wrap_en(true);
|
|
rmt_set_intr_enable_mask(BIT(channel + 24));
|
|
} else {
|
|
rmt_clr_intr_enable_mask(BIT(channel + 24));
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_set_pin(rmt_channel_t channel, rmt_mode_t mode, gpio_num_t gpio_num)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(mode < RMT_MODE_MAX, RMT_MODE_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(((GPIO_IS_VALID_GPIO(gpio_num) && (mode == RMT_MODE_RX)) || (GPIO_IS_VALID_OUTPUT_GPIO(gpio_num) && (mode == RMT_MODE_TX))),
|
|
RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
|
|
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio_num], 2);
|
|
if(mode == RMT_MODE_TX) {
|
|
gpio_set_direction(gpio_num, GPIO_MODE_OUTPUT);
|
|
gpio_matrix_out(gpio_num, RMT_SIG_OUT0_IDX + channel, 0, 0);
|
|
} else {
|
|
gpio_set_direction(gpio_num, GPIO_MODE_INPUT);
|
|
gpio_matrix_in(gpio_num, RMT_SIG_IN0_IDX + channel, 0);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_config(const rmt_config_t* rmt_param)
|
|
{
|
|
uint8_t mode = rmt_param->rmt_mode;
|
|
uint8_t channel = rmt_param->channel;
|
|
uint8_t gpio_num = rmt_param->gpio_num;
|
|
uint8_t mem_cnt = rmt_param->mem_block_num;
|
|
int clk_div = rmt_param->clk_div;
|
|
uint32_t carrier_freq_hz = rmt_param->tx_config.carrier_freq_hz;
|
|
bool carrier_en = rmt_param->tx_config.carrier_en;
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(GPIO_IS_VALID_GPIO(gpio_num), RMT_GPIO_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK((mem_cnt + channel <= 8 && mem_cnt > 0), RMT_MEM_CNT_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK((clk_div > 0), RMT_CLK_DIV_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
if (mode == RMT_MODE_TX) {
|
|
RMT_CHECK((!carrier_en || carrier_freq_hz > 0), "RMT carrier frequency can't be zero", ESP_ERR_INVALID_ARG);
|
|
}
|
|
|
|
periph_module_enable(PERIPH_RMT_MODULE);
|
|
|
|
RMT.conf_ch[channel].conf0.div_cnt = clk_div;
|
|
/*Visit data use memory not FIFO*/
|
|
rmt_set_data_mode(RMT_DATA_MODE_MEM);
|
|
/*Reset tx/rx memory index */
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
|
|
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
|
|
if(mode == RMT_MODE_TX) {
|
|
uint32_t rmt_source_clk_hz = 0;
|
|
uint16_t carrier_duty_percent = rmt_param->tx_config.carrier_duty_percent;
|
|
uint8_t carrier_level = rmt_param->tx_config.carrier_level;
|
|
uint8_t idle_level = rmt_param->tx_config.idle_level;
|
|
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
RMT.conf_ch[channel].conf1.tx_conti_mode = rmt_param->tx_config.loop_en;
|
|
/*Memory set block number*/
|
|
RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
|
|
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
|
|
/*We use APB clock in this version, which is 80Mhz, later we will release system reference clock*/
|
|
RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
|
|
rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
|
|
/*Set idle level */
|
|
RMT.conf_ch[channel].conf1.idle_out_en = rmt_param->tx_config.idle_output_en;
|
|
RMT.conf_ch[channel].conf1.idle_out_lv = idle_level;
|
|
/*Set carrier*/
|
|
RMT.conf_ch[channel].conf0.carrier_en = carrier_en;
|
|
if (carrier_en) {
|
|
uint32_t duty_div, duty_h, duty_l;
|
|
duty_div = rmt_source_clk_hz / carrier_freq_hz;
|
|
duty_h = duty_div * carrier_duty_percent / 100;
|
|
duty_l = duty_div - duty_h;
|
|
RMT.conf_ch[channel].conf0.carrier_out_lv = carrier_level;
|
|
RMT.carrier_duty_ch[channel].high = duty_h;
|
|
RMT.carrier_duty_ch[channel].low = duty_l;
|
|
} else {
|
|
RMT.conf_ch[channel].conf0.carrier_out_lv = 0;
|
|
RMT.carrier_duty_ch[channel].high = 0;
|
|
RMT.carrier_duty_ch[channel].low = 0;
|
|
}
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
|
|
ESP_LOGD(RMT_TAG, "Rmt Tx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Carrier_Hz %u|Duty %u",
|
|
channel, gpio_num, rmt_source_clk_hz, clk_div, carrier_freq_hz, carrier_duty_percent);
|
|
|
|
}
|
|
else if(RMT_MODE_RX == mode) {
|
|
uint8_t filter_cnt = rmt_param->rx_config.filter_ticks_thresh;
|
|
uint16_t threshold = rmt_param->rx_config.idle_threshold;
|
|
|
|
portENTER_CRITICAL(&rmt_spinlock);
|
|
/*clock init*/
|
|
RMT.conf_ch[channel].conf1.ref_always_on = RMT_BASECLK_APB;
|
|
uint32_t rmt_source_clk_hz = RMT_SOURCE_CLK(RMT_BASECLK_APB);
|
|
/*memory set block number and owner*/
|
|
RMT.conf_ch[channel].conf0.mem_size = mem_cnt;
|
|
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
|
|
/*Set idle threshold*/
|
|
RMT.conf_ch[channel].conf0.idle_thres = threshold;
|
|
/* Set RX filter */
|
|
RMT.conf_ch[channel].conf1.rx_filter_thres = filter_cnt;
|
|
RMT.conf_ch[channel].conf1.rx_filter_en = rmt_param->rx_config.filter_en;
|
|
portEXIT_CRITICAL(&rmt_spinlock);
|
|
|
|
ESP_LOGD(RMT_TAG, "Rmt Rx Channel %u|Gpio %u|Sclk_Hz %u|Div %u|Thresold %u|Filter %u",
|
|
channel, gpio_num, rmt_source_clk_hz, clk_div, threshold, filter_cnt);
|
|
}
|
|
rmt_set_pin(channel, mode, gpio_num);
|
|
return ESP_OK;
|
|
}
|
|
|
|
static void IRAM_ATTR rmt_fill_memory(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
|
|
{
|
|
portENTER_CRITICAL_SAFE(&rmt_spinlock);
|
|
RMT.apb_conf.fifo_mask = RMT_DATA_MODE_MEM;
|
|
portEXIT_CRITICAL_SAFE(&rmt_spinlock);
|
|
int i;
|
|
for(i = 0; i < item_num; i++) {
|
|
RMTMEM.chan[channel].data32[i + mem_offset].val = item[i].val;
|
|
}
|
|
}
|
|
|
|
esp_err_t rmt_fill_tx_items(rmt_channel_t channel, const rmt_item32_t* item, uint16_t item_num, uint16_t mem_offset)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, (0));
|
|
RMT_CHECK((item != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK((item_num > 0), RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
|
|
/*Each block has 64 x 32 bits of data*/
|
|
uint8_t mem_cnt = RMT.conf_ch[channel].conf0.mem_size;
|
|
RMT_CHECK((mem_cnt * RMT_MEM_ITEM_NUM >= item_num), RMT_WR_MEM_OVF_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
rmt_fill_memory(channel, item, item_num, mem_offset);
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_isr_register(void (*fn)(void*), void * arg, int intr_alloc_flags, rmt_isr_handle_t *handle)
|
|
{
|
|
RMT_CHECK((fn != NULL), RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(s_rmt_driver_channels == 0, "RMT driver installed, can not install generic ISR handler", ESP_FAIL);
|
|
|
|
return esp_intr_alloc(ETS_RMT_INTR_SOURCE, intr_alloc_flags, fn, arg, handle);
|
|
}
|
|
|
|
|
|
esp_err_t rmt_isr_deregister(rmt_isr_handle_t handle)
|
|
{
|
|
return esp_intr_free(handle);
|
|
}
|
|
|
|
static int IRAM_ATTR rmt_get_mem_len(rmt_channel_t channel)
|
|
{
|
|
int block_num = RMT.conf_ch[channel].conf0.mem_size;
|
|
int item_block_len = block_num * RMT_MEM_ITEM_NUM;
|
|
volatile rmt_item32_t* data = RMTMEM.chan[channel].data32;
|
|
int idx;
|
|
for(idx = 0; idx < item_block_len; idx++) {
|
|
if(data[idx].duration0 == 0) {
|
|
return idx;
|
|
} else if(data[idx].duration1 == 0) {
|
|
return idx + 1;
|
|
}
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
static void IRAM_ATTR rmt_driver_isr_default(void* arg)
|
|
{
|
|
const uint32_t intr_st = RMT.int_st.val;
|
|
uint32_t status = intr_st;
|
|
uint8_t channel;
|
|
portBASE_TYPE HPTaskAwoken = 0;
|
|
while (status) {
|
|
int i = __builtin_ffs(status) - 1;
|
|
status &= ~(1 << i);
|
|
if(i < 24) {
|
|
channel = i / 3;
|
|
rmt_obj_t* p_rmt = p_rmt_obj[channel];
|
|
if(NULL == p_rmt) {
|
|
continue;
|
|
}
|
|
switch(i % 3) {
|
|
//TX END
|
|
case 0:
|
|
xSemaphoreGiveFromISR(p_rmt->tx_sem, &HPTaskAwoken);
|
|
RMT.conf_ch[channel].conf1.mem_rd_rst = 1;
|
|
RMT.conf_ch[channel].conf1.mem_rd_rst = 0;
|
|
p_rmt->tx_data = NULL;
|
|
p_rmt->tx_len_rem = 0;
|
|
p_rmt->tx_offset = 0;
|
|
p_rmt->tx_sub_len = 0;
|
|
p_rmt->sample_cur = NULL;
|
|
p_rmt->translator = false;
|
|
if(rmt_tx_end_callback.function != NULL) {
|
|
rmt_tx_end_callback.function(channel, rmt_tx_end_callback.arg);
|
|
}
|
|
break;
|
|
//RX_END
|
|
case 1:
|
|
RMT.conf_ch[channel].conf1.rx_en = 0;
|
|
int item_len = rmt_get_mem_len(channel);
|
|
//change memory owner to protect data.
|
|
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_TX;
|
|
if(p_rmt->rx_buf) {
|
|
BaseType_t res = xRingbufferSendFromISR(p_rmt->rx_buf, (void*) RMTMEM.chan[channel].data32, item_len * 4, &HPTaskAwoken);
|
|
if(res == pdFALSE) {
|
|
ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER FULL");
|
|
} else {
|
|
|
|
}
|
|
} else {
|
|
ESP_EARLY_LOGE(RMT_TAG, "RMT RX BUFFER ERROR\n");
|
|
}
|
|
RMT.conf_ch[channel].conf1.mem_wr_rst = 1;
|
|
RMT.conf_ch[channel].conf1.mem_owner = RMT_MEM_OWNER_RX;
|
|
RMT.conf_ch[channel].conf1.rx_en = 1;
|
|
break;
|
|
//ERR
|
|
case 2:
|
|
ESP_EARLY_LOGE(RMT_TAG, "RMT[%d] ERR", channel);
|
|
ESP_EARLY_LOGE(RMT_TAG, "status: 0x%08x", RMT.status_ch[channel]);
|
|
RMT.int_ena.val &= (~(BIT(i)));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
channel = i - 24;
|
|
rmt_obj_t* p_rmt = p_rmt_obj[channel];
|
|
|
|
if(p_rmt->tx_data == NULL) {
|
|
//skip
|
|
} else {
|
|
if(p_rmt->translator) {
|
|
if(p_rmt->sample_size_remain > 0) {
|
|
size_t translated_size = 0;
|
|
p_rmt->sample_to_rmt((void *) p_rmt->sample_cur,
|
|
p_rmt->tx_buf,
|
|
p_rmt->sample_size_remain,
|
|
p_rmt->tx_sub_len,
|
|
&translated_size,
|
|
&p_rmt->tx_len_rem
|
|
);
|
|
p_rmt->sample_size_remain -= translated_size;
|
|
p_rmt->sample_cur += translated_size;
|
|
p_rmt->tx_data = p_rmt->tx_buf;
|
|
} else {
|
|
p_rmt->sample_cur = NULL;
|
|
p_rmt->translator = false;
|
|
}
|
|
}
|
|
const rmt_item32_t* pdata = p_rmt->tx_data;
|
|
int len_rem = p_rmt->tx_len_rem;
|
|
if(len_rem >= p_rmt->tx_sub_len) {
|
|
rmt_fill_memory(channel, pdata, p_rmt->tx_sub_len, p_rmt->tx_offset);
|
|
p_rmt->tx_data += p_rmt->tx_sub_len;
|
|
p_rmt->tx_len_rem -= p_rmt->tx_sub_len;
|
|
} else if(len_rem == 0) {
|
|
RMTMEM.chan[channel].data32[p_rmt->tx_offset].val = 0;
|
|
} else {
|
|
rmt_fill_memory(channel, pdata, len_rem, p_rmt->tx_offset);
|
|
RMTMEM.chan[channel].data32[p_rmt->tx_offset + len_rem].val = 0;
|
|
p_rmt->tx_data += len_rem;
|
|
p_rmt->tx_len_rem -= len_rem;
|
|
}
|
|
if(p_rmt->tx_offset == 0) {
|
|
p_rmt->tx_offset = p_rmt->tx_sub_len;
|
|
} else {
|
|
p_rmt->tx_offset = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
RMT.int_clr.val = intr_st;
|
|
if(HPTaskAwoken == pdTRUE) {
|
|
portYIELD_FROM_ISR();
|
|
}
|
|
}
|
|
|
|
esp_err_t rmt_driver_uninstall(rmt_channel_t channel)
|
|
{
|
|
esp_err_t err = ESP_OK;
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK((s_rmt_driver_channels & BIT(channel)) != 0, "No RMT driver for this channel", ESP_ERR_INVALID_STATE);
|
|
if(p_rmt_obj[channel] == NULL) {
|
|
return ESP_OK;
|
|
}
|
|
//Avoid blocking here(when the interrupt is disabled and do not wait tx done).
|
|
if(p_rmt_obj[channel]->wait_done) {
|
|
xSemaphoreTake(p_rmt_obj[channel]->tx_sem, portMAX_DELAY);
|
|
}
|
|
rmt_set_rx_intr_en(channel, 0);
|
|
rmt_set_err_intr_en(channel, 0);
|
|
rmt_set_tx_intr_en(channel, 0);
|
|
rmt_set_tx_thr_intr_en(channel, 0, 0xffff);
|
|
|
|
_lock_acquire_recursive(&rmt_driver_isr_lock);
|
|
|
|
s_rmt_driver_channels &= ~BIT(channel);
|
|
if (s_rmt_driver_channels == 0) { // all channels have driver disabled
|
|
err = rmt_isr_deregister(s_rmt_driver_intr_handle);
|
|
s_rmt_driver_intr_handle = NULL;
|
|
}
|
|
|
|
_lock_release_recursive(&rmt_driver_isr_lock);
|
|
|
|
if (err != ESP_OK) {
|
|
return err;
|
|
}
|
|
|
|
if(p_rmt_obj[channel]->tx_sem) {
|
|
vSemaphoreDelete(p_rmt_obj[channel]->tx_sem);
|
|
p_rmt_obj[channel]->tx_sem = NULL;
|
|
}
|
|
if(p_rmt_obj[channel]->rx_buf) {
|
|
vRingbufferDelete(p_rmt_obj[channel]->rx_buf);
|
|
p_rmt_obj[channel]->rx_buf = NULL;
|
|
}
|
|
if(p_rmt_obj[channel]->tx_buf) {
|
|
free(p_rmt_obj[channel]->tx_buf);
|
|
p_rmt_obj[channel]->tx_buf = NULL;
|
|
}
|
|
if(p_rmt_obj[channel]->sample_to_rmt) {
|
|
p_rmt_obj[channel]->sample_to_rmt = NULL;
|
|
}
|
|
|
|
free(p_rmt_obj[channel]);
|
|
p_rmt_obj[channel] = NULL;
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_driver_install(rmt_channel_t channel, size_t rx_buf_size, int intr_alloc_flags)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK((s_rmt_driver_channels & BIT(channel)) == 0, "RMT driver already installed for channel", ESP_ERR_INVALID_STATE);
|
|
|
|
esp_err_t err = ESP_OK;
|
|
|
|
if(p_rmt_obj[channel] != NULL) {
|
|
ESP_LOGD(RMT_TAG, "RMT driver already installed");
|
|
return ESP_ERR_INVALID_STATE;
|
|
}
|
|
|
|
#if !CONFIG_SPIRAM_USE_MALLOC
|
|
p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
|
|
#else
|
|
if( !(intr_alloc_flags & ESP_INTR_FLAG_IRAM) ) {
|
|
p_rmt_obj[channel] = (rmt_obj_t*) malloc(sizeof(rmt_obj_t));
|
|
} else {
|
|
p_rmt_obj[channel] = (rmt_obj_t*) heap_caps_calloc(1, sizeof(rmt_obj_t), MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
|
|
}
|
|
#endif
|
|
|
|
if(p_rmt_obj[channel] == NULL) {
|
|
ESP_LOGE(RMT_TAG, "RMT driver malloc error");
|
|
return ESP_ERR_NO_MEM;
|
|
}
|
|
memset(p_rmt_obj[channel], 0, sizeof(rmt_obj_t));
|
|
|
|
p_rmt_obj[channel]->tx_len_rem = 0;
|
|
p_rmt_obj[channel]->tx_data = NULL;
|
|
p_rmt_obj[channel]->channel = channel;
|
|
p_rmt_obj[channel]->tx_offset = 0;
|
|
p_rmt_obj[channel]->tx_sub_len = 0;
|
|
p_rmt_obj[channel]->wait_done = false;
|
|
p_rmt_obj[channel]->translator = false;
|
|
p_rmt_obj[channel]->sample_to_rmt = NULL;
|
|
if(p_rmt_obj[channel]->tx_sem == NULL) {
|
|
#if !CONFIG_SPIRAM_USE_MALLOC
|
|
p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
|
|
#else
|
|
p_rmt_obj[channel]->intr_alloc_flags = intr_alloc_flags;
|
|
if( !(intr_alloc_flags & ESP_INTR_FLAG_IRAM) ) {
|
|
p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinary();
|
|
} else {
|
|
p_rmt_obj[channel]->tx_sem = xSemaphoreCreateBinaryStatic(&p_rmt_obj[channel]->tx_sem_buffer);
|
|
}
|
|
#endif
|
|
xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
|
|
}
|
|
if(p_rmt_obj[channel]->rx_buf == NULL && rx_buf_size > 0) {
|
|
p_rmt_obj[channel]->rx_buf = xRingbufferCreate(rx_buf_size, RINGBUF_TYPE_NOSPLIT);
|
|
rmt_set_rx_intr_en(channel, 1);
|
|
rmt_set_err_intr_en(channel, 1);
|
|
}
|
|
|
|
_lock_acquire_recursive(&rmt_driver_isr_lock);
|
|
|
|
if(s_rmt_driver_channels == 0) { // first RMT channel using driver
|
|
err = rmt_isr_register(rmt_driver_isr_default, NULL, intr_alloc_flags, &s_rmt_driver_intr_handle);
|
|
}
|
|
if (err == ESP_OK) {
|
|
s_rmt_driver_channels |= BIT(channel);
|
|
rmt_set_tx_intr_en(channel, 1);
|
|
}
|
|
|
|
_lock_release_recursive(&rmt_driver_isr_lock);
|
|
|
|
return err;
|
|
}
|
|
|
|
esp_err_t rmt_write_items(rmt_channel_t channel, const rmt_item32_t* rmt_item, int item_num, bool wait_tx_done)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
|
|
RMT_CHECK(rmt_item != NULL, RMT_ADDR_ERROR_STR, ESP_FAIL);
|
|
RMT_CHECK(item_num > 0, RMT_DRIVER_LENGTH_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
#if CONFIG_SPIRAM_USE_MALLOC
|
|
if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
|
|
if( !esp_ptr_internal(rmt_item) ) {
|
|
ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
}
|
|
#endif
|
|
rmt_obj_t* p_rmt = p_rmt_obj[channel];
|
|
int block_num = RMT.conf_ch[channel].conf0.mem_size;
|
|
int item_block_len = block_num * RMT_MEM_ITEM_NUM;
|
|
int item_sub_len = block_num * RMT_MEM_ITEM_NUM / 2;
|
|
int len_rem = item_num;
|
|
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
|
|
// fill the memory block first
|
|
if(item_num >= item_block_len) {
|
|
rmt_fill_memory(channel, rmt_item, item_block_len, 0);
|
|
len_rem -= item_block_len;
|
|
rmt_set_tx_loop_mode(channel, false);
|
|
rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
|
|
p_rmt->tx_data = rmt_item + item_block_len;
|
|
p_rmt->tx_len_rem = len_rem;
|
|
p_rmt->tx_offset = 0;
|
|
p_rmt->tx_sub_len = item_sub_len;
|
|
} else {
|
|
rmt_fill_memory(channel, rmt_item, len_rem, 0);
|
|
RMTMEM.chan[channel].data32[len_rem].val = 0;
|
|
p_rmt->tx_len_rem = 0;
|
|
}
|
|
rmt_tx_start(channel, true);
|
|
p_rmt->wait_done = wait_tx_done;
|
|
if(wait_tx_done) {
|
|
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
|
|
xSemaphoreGive(p_rmt->tx_sem);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_wait_tx_done(rmt_channel_t channel, TickType_t wait_time)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
|
|
if(xSemaphoreTake(p_rmt_obj[channel]->tx_sem, wait_time) == pdTRUE) {
|
|
p_rmt_obj[channel]->wait_done = false;
|
|
xSemaphoreGive(p_rmt_obj[channel]->tx_sem);
|
|
return ESP_OK;
|
|
}
|
|
else {
|
|
if (wait_time != 0) { // Don't emit error message if just polling.
|
|
ESP_LOGE(RMT_TAG, "Timeout on wait_tx_done");
|
|
}
|
|
return ESP_ERR_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
esp_err_t rmt_get_ringbuf_handle(rmt_channel_t channel, RingbufHandle_t* buf_handle)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
|
|
RMT_CHECK(buf_handle != NULL, RMT_ADDR_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
*buf_handle = p_rmt_obj[channel]->rx_buf;
|
|
return ESP_OK;
|
|
}
|
|
|
|
rmt_tx_end_callback_t rmt_register_tx_end_callback(rmt_tx_end_fn_t function, void *arg)
|
|
{
|
|
rmt_tx_end_callback_t previous = rmt_tx_end_callback;
|
|
rmt_tx_end_callback.function = function;
|
|
rmt_tx_end_callback.arg = arg;
|
|
return previous;
|
|
}
|
|
|
|
esp_err_t rmt_translator_init(rmt_channel_t channel, sample_to_rmt_t fn)
|
|
{
|
|
RMT_CHECK(fn != NULL, RMT_TRANSLATOR_NULL_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
|
|
const uint32_t block_size = RMT.conf_ch[channel].conf0.mem_size * RMT_MEM_ITEM_NUM * sizeof(rmt_item32_t);
|
|
if (p_rmt_obj[channel]->tx_buf == NULL) {
|
|
#if !CONFIG_SPIRAM_USE_MALLOC
|
|
p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
|
|
#else
|
|
if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
|
|
p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)malloc(block_size);
|
|
} else {
|
|
p_rmt_obj[channel]->tx_buf = (rmt_item32_t *)heap_caps_calloc(1, block_size, MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT);
|
|
}
|
|
#endif
|
|
if(p_rmt_obj[channel]->tx_buf == NULL) {
|
|
ESP_LOGE(RMT_TAG, "RMT translator buffer create fail");
|
|
return ESP_FAIL;
|
|
}
|
|
}
|
|
p_rmt_obj[channel]->sample_to_rmt = fn;
|
|
p_rmt_obj[channel]->sample_size_remain = 0;
|
|
p_rmt_obj[channel]->sample_cur = NULL;
|
|
ESP_LOGD(RMT_TAG, "RMT translator init done");
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_write_sample(rmt_channel_t channel, const uint8_t *src, size_t src_size, bool wait_tx_done)
|
|
{
|
|
RMT_CHECK(channel < RMT_CHANNEL_MAX, RMT_CHANNEL_ERROR_STR, ESP_ERR_INVALID_ARG);
|
|
RMT_CHECK(p_rmt_obj[channel] != NULL, RMT_DRIVER_ERROR_STR, ESP_FAIL);
|
|
RMT_CHECK(p_rmt_obj[channel]->sample_to_rmt != NULL,RMT_TRANSLATOR_UNINIT_STR, ESP_FAIL);
|
|
#if CONFIG_SPIRAM_USE_MALLOC
|
|
if( p_rmt_obj[channel]->intr_alloc_flags & ESP_INTR_FLAG_IRAM ) {
|
|
if( !esp_ptr_internal(src) ) {
|
|
ESP_LOGE(RMT_TAG, RMT_PSRAM_BUFFER_WARN_STR);
|
|
return ESP_ERR_INVALID_ARG;
|
|
}
|
|
}
|
|
#endif
|
|
size_t item_num = 0;
|
|
size_t translated_size = 0;
|
|
rmt_obj_t* p_rmt = p_rmt_obj[channel];
|
|
const uint32_t item_block_len = RMT.conf_ch[channel].conf0.mem_size * RMT_MEM_ITEM_NUM;
|
|
const uint32_t item_sub_len = item_block_len / 2;
|
|
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
|
|
p_rmt->sample_to_rmt((void *)src, p_rmt->tx_buf, src_size, item_block_len, &translated_size, &item_num);
|
|
p_rmt->sample_size_remain = src_size - translated_size;
|
|
p_rmt->sample_cur = src + translated_size;
|
|
rmt_fill_memory(channel, p_rmt->tx_buf, item_num, 0);
|
|
if (item_num == item_block_len) {
|
|
rmt_set_tx_thr_intr_en(channel, 1, item_sub_len);
|
|
p_rmt->tx_data = p_rmt->tx_buf;
|
|
p_rmt->tx_offset = 0;
|
|
p_rmt->tx_sub_len = item_sub_len;
|
|
p_rmt->translator = true;
|
|
} else {
|
|
RMTMEM.chan[channel].data32[item_num].val = 0;
|
|
p_rmt->tx_len_rem = 0;
|
|
p_rmt->sample_cur = NULL;
|
|
p_rmt->translator = false;
|
|
}
|
|
rmt_tx_start(channel, true);
|
|
p_rmt->wait_done = wait_tx_done;
|
|
if (wait_tx_done) {
|
|
xSemaphoreTake(p_rmt->tx_sem, portMAX_DELAY);
|
|
xSemaphoreGive(p_rmt->tx_sem);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t rmt_get_channel_status(rmt_channel_status_result_t *channel_status)
|
|
{
|
|
RMT_CHECK(channel_status != NULL, RMT_PARAM_ERR_STR, ESP_ERR_INVALID_ARG);
|
|
for(int i = 0; i < RMT_CHANNEL_MAX; i++) {
|
|
channel_status->status[i]= RMT_CHANNEL_UNINIT;
|
|
if( p_rmt_obj[i] != NULL ) {
|
|
if( p_rmt_obj[i]->tx_sem != NULL ) {
|
|
if( xSemaphoreTake(p_rmt_obj[i]->tx_sem, (TickType_t)0) == pdTRUE ) {
|
|
channel_status->status[i] = RMT_CHANNEL_IDLE;
|
|
xSemaphoreGive(p_rmt_obj[i]->tx_sem);
|
|
} else {
|
|
channel_status->status[i] = RMT_CHANNEL_BUSY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return ESP_OK;
|
|
}
|